LUND UNIVERSITY

Prospects of caching in a distributed digital library

Hollmann, Jochen; Ardo, Anders; Stenstrom, Per

2003

Link to publication

Citation for published version (APA):
Hollmann, J., Ardd, A., & Stenstrom, P. (2003). Prospects of caching in a distributed digital library. Dept of
Computer Engineering, Chalmers University of Technology.

Total number of authors:
3

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/1ee11302-d249-4b6d-bd34-2b6b43ca789c

Prospects of Caching in a Distributed Digital
Library

Technical Report 03-04
Jochen Hollmann', Anders Ardé?, Per Stenstrom'

fCSE, Chalmers, 412 96 Goteborg, Sweden
{joho,pers} @ce.chalmers.se

'Lund University, 221 00 Lund, Sweden
anders@it.lth.se

Abstract

Many independent publishers are today offering digital libraries
with fulltext archives. In an attempt to provide a single user-interface
to a large set of archives, DTVs-Article-Database-Service offers a con-
solidated interface to a geographically distributed set of archives. While
this approach offers a tremendous functional advantage to a user, the
delays caused by the network and queuing delays in servers make the
user-perceived interactive performance poor.

In this paper, we study the prospects of caching articles at the
client level as well as intermediate points as manifested by gateways
that implement the interfaces to the many fulltext archives. A cen-
tral research question is what the nature of the locality is in the user
accesses to such a digital library. Based on access logs to drive sim-
ulations, we find that client side caching can result in a 20% hitrate.
However, at the gateway level, where multiple users may access the
same article, the temporal locality is poor and caching is not relevant.
We have also studied whether spatial locality can be exploited by con-
sidering loading into cache all articles in an issue, volume, or journal,
if a single article is accessed, but found that spatial locality is quite
poor, too. Finally we find that the reason for the cache behaviour is
the extremly low accesses frequency observed.

1 Introduction

As computer networks in the form of the World Wide Web went mainstream,
at least in the research community, many publishers of research related lit-
erature have started to provide their content over the Internet as Digital
Libraries. However, while all publishers still run their own web interface and
servers as a gateway to give the user access to their literature, there have
been efforts to integrate the archives of different publishers into one system.
One such initiative is the DADS system [1, 10].

Figure 1, taken from our previous paper [6], shows the schematic architec-
ture of such a distributed digital library (DL) system. On the right side we
have the fulltext servers of the publishers containing the text archives, often
taking the form of a large number of PDF files. Those servers are located at
remote places around the world, which is the reason why such a system will
always be distributed. On the left side we have the digital library users, that
send queries to access research articles.

A gateway constitutes a confluence point for multiple users to get access
to the multiple fulltext servers. The gateway has access to an index con-
taining meta data and references to all fulltexts of all accessible publishers.
Meta data includes for example the author, title, publication date and place,
keywords and the like. Thus, the speed by which articles can be located is
greatly enhanced as the gateway has the meta data necessary to locate the
fulltext server of each and every article.

Unfortunately, owing to the geographically distributed system architec-
ture, there is a quite significant network latency between the gateway and
the fulltext servers. In a typical query, the user will perceive a latency time
that consists of the waiting time for setting up the network connection to the
fulltext server and the time to fetch the article in the fulltext server’s mem-
ory and transferring it to the user including queuing delays in the network
and at the servers. Additionally, there are also waiting times associated with
starting up a viewer and rendering the document on the users local desktop.
These client-local latencies will be disregarded in the rest of the paper.

Of course, if all fulltext archives would be replicated across the gateways
as local archives, one could potentially get rid of a significant portion of
the network latency. However, as the amount of storage needed to store
all articles is increasing, such an approach scales not well and will lead to
prohibitive costs for storage.

Caching is founded on the principle of reference locality. Reference locality
either takes the form of temporal or spatial. Whereas temporal locality states
that an access unit is reused, spatial locality means that nearby access units
are likely to be accessed. In a DL system, an access unit can be an article,

)
. | Fulltext
>
server
N—

)
Fulltext
server
—

)
Fulltext
server
N—

!
Fulltext
server
~—

> Fulltext
server

.
Fulltext
server
~—

Figure 1: Distributed Digital Library Architecture

an issue, a volume, or a journal.

Consistency, the handling of changing data in a caching system, is an
important issue in areas like processor caches or web proxy caching. But
published research articles will never change. Hence this simplifies caching,
because objects to be replaced can always be removed without further han-
dling and can stay in the cache indefinitely, without getting stale.

In this paper, we study for the first time the limitations of caching DL
access units in a distributed digital library. We consider caching at the level
of gateways and clients. Whereas caching at clients only can exploit locality
based on one user, caching at gateways can exploit locality among multiple
users connected to the same gateway.

We have collected a log of user accesses spanning two years. From this
log, we can deduce time of the access request and the DL unit accesses
at that time. By feeding the access log through a simulation model of a
system organization according to Figure 1, we have been able to study the
effectiveness of caching. With the model, we have been able to experiment
with the size of the cache and the replacement policy. We experiment with
various history based algorithms published in the literature [8, 7, 2, 11].
To establish an upper boundary on the effectiveness of caching, we have
studied the hitrate for a fully associative cache that implements an optimal
replacement algorithm. This algorithm always selects as a target the article
in the cache that will be accessed furthest away in the future.

The contributions of this paper are the following main observations. We

3

find that there exists some locality at the client level and a hitrate of 20%
can be achieved with a simple replacement algorithm. Whereas the optimal
algorithm was able to identify that there is a fair amount of reuse also at
the gateway level (10%), most of the published history-based replacement
algorithms like LRU, LRU-K [8], MFU [11] and LFU [11] with its variant
LFU-AGE, did not manage to capture this. In fact, the best of them did
only marginally better than a replacement algorithm that randomly selects
a target. We also studied to what extent spatial locality in the access stream
can be exploited to improve performance of caching in DL systems. For
example, if several article accesses are collocated in the same issue, volume
or journal, it makes sense to cache a larger granularity such as issue, volume
or journal. Our findings are quite negative; while some spatial locality was
observed, it seems not easy to exploit it.

Looking for the fundamental reasons for the poor caching behaviour at
the gateways we found that most DL units are simply not reaccessed within
a reasonable time frame. In fact we found indicies, that our observation time
of two years were too short to capture the low frequency accesses.

As for the rest of the paper, in Section 2 we introduce caching strategies
used for our studies and put them also in the context of other caching areas,
in particular web caching. In Section 3 we present our analysis method and
show our analysis results in Section 4. Finally we summarize and conclude
with obtained results.

2 Caching strategies

2.1 Reference locality

For caches to be effective, the reference stream, in our case user accesses to
fulltext servers, must exhibit locality either in the temporal or in the spatial
domain. In the following, we put these concepts in perspective of accesses to
a Digital Library system.

e temporal locality is based on the observation that in many systems re-
accessed objects are accessed shortly after they have been accessed.
As an example the content of a variable within a computer program
may be accessed very often within a subroutine, hence keeping it in the
cache during this time makes sense. For digital libraries, this would
mean that for example a document is read often within a short period
of time and then it will not be accessed for a long period.

e spatial locality is based on the observation that accesses are not spread
out evenly but instead the probability to access objects closed by is
much higher. An example where this property is used would be paging
as done by an operating system. Since most programs keep variable
locations within a limited region, paging in a page does not only serve
a single variable accessed, but all close by variables, too. In a digital
library serving research articles the objects to be cached may not only
be articles, but whole issues, volumes or journals. Bringing in those
objects can potentially serve upcoming accesses to other documents
within the same object.

2.2 One-timers, Multi-timers, Reuse and Popularity

Of course caches only improve the system if objects are accessed multiple
times. In the following, we will refer to objects that are only accessed once
as one-timers. The opposite, objects, which are accessed more than once,
are called multi-timers. While it is pointless to cache one-timers, they can in
fact displace objects that will be accessed in the near future.

Re-accesses to the same access object have their origin from two sources.
The document can be reused from the same client machine. Assuming that
there is a one-to-one relation between a client machine and a user, which is
the case for most desktop machines, this means that the same user reuses
the document. We will call this type of re-access reuse. Another possibility
is that different clients access the same object. Since we assume that client
machines are independent and used by different users, re-accesses of this type
must be caused by popularity within a user group.

In the following, we will consider user accesses to articles, issues, volumes,
and journals to study how significant spatial locality is. While the sizes of
these ojectss may vary, our baseline assumption is that all articles have the
same size. Hence, we will estimate cache sizes based on a unity size of an
article.

The key question raised in this research is whether there is enough ex-
ploitable locality, temporal or spatial, to make caching feasible in a digital
library system. To study temporal locality, we next review some published
history-based replacement algorithms that will be used in the experiments
later in the paper.

2.3 Replacement strategies

The design space of profitable caching strategies is between two only theo-
retically interesting strategies: OPT and RANDOM.

The OPT strategy is aware of the future and is an upper limit for the
achievable performance, if the cached objects have a fixed size. OPT only
brings in objects into the cache, which will be accessed again, hence it avoids
cache pollution. In case there is not enough room left, the object, which will
be accessed the longest in the future, will be removed. Objects which will
not be re-accessed in the future are also removed, when they experience their
last hit. This can reduce the computation time of the replacement algorithm.

In case of caching on the article level, where always only one article is
removed to make space for another one, OPT must be the optimal strategy.
Assume that object A resides in the cache and will be accessed the next time
at t4, the largest next access time stamp of all objects in the cache. Now
assume that there is no space left in the cache and a not yet present object
B is accessed right now. We know that the following access to B will take
place at tg and tg < t4. If we do not replace A by B, we will have a miss
now, at tp and a hit at t4. If we replace A by B we will have a miss now, a
hit at ¢ and a miss at ¢t4. Hence this switch makes things not worse. But
the second approach has the advantage, that there may be hits to B in the
time between tp and ¢4, which can improve the hitrate.

On the issue, volume and journal level, OPT applies the same scheme.
But since those objects differ considerably in size, this strategy will only
be a lower bound for the optimal strategy. We may lose performance when
moving in an object replacing two others having only one hit. In this case
we have traded two hits against one, which is sub optimal. Also, in case an
object is larger than the cache size, it will not be cached at all.

The RANDOM strategy does not exploit the behavior embedded in the
access pattern. Instead, if a miss occurs, the object which caused the miss is
moved into the cache and space for it is made by removing randomly selected
objects. Strategies which do better, should be considered; strategies which
do worse, should not be applied.

The well know strategy least recently used (LRU) will be used in most
of our experiments as a simple strategy based on temporal locality. We have
implemented it as follows. On a miss, we check the available space in the
cache. If the object does not fit in, we search for the object with the oldest
access time stamp and remove it. Then we start over. Once space is available,
we move the object into the cache. LRU is widely used and often represents
the baseline to compare improved caching strategies.

LRU considers only the last access. O’Neil et al. [8] introduce LRU-
K in the context of database disk buffering. LRU-K considers the K-last
accesses to an object. Based on these time stamps the oldest object is purged.
Objects, which have not yet been accessed K times, will have the k-age oco.
If two or more objects have the k-age oo, the decision is done with the (k-

6

1)-age and so on. O’Neil et al. [9] did also prove that LRU-K is optimal on
the available information. It’s of advantage to use LRU-K instead of LRU if
regular accesses are mixed with patterns of infrequent burst accesses.

Another variant of LRU is Segmented LRU (SLRU), introduced by Karedla
et al. [7]. For this strategy the available cache space is divided into two parts,
an unprotected and a protected segment. LRU runs on both segments. A
hit in the unprotected segment moves this object into the protected area and
moves the oldest object from the protected segment into the unprotected
segment. Hence objects which have been accessed at least twice get always
a second chance, by being moved to the unprotected area. This strategy is
advantageous, if many objects are accessed only once, because those objects
will never make it to the protected segment, which will be reserved for objects
with more accesses. Arlitt found, that SLRU works best for web caching, if
60% of the cache is protected area [2].

The Most Frequently Used (MFU) and Least Frequently Used (LFU)
algorithms, both mentioned by Vakali[11], represent two more history based
approaches. MFU removes those objects, which have a high access frequency.
All objects above a certain MFU threshold are removed from the cache.
Hence it is good for burst accesses with an upper limit in the number of
re-accesses. LFU on the other hand removes objects which have a low access
count first, hence it favors objects with many, frequent accesses. LFU-AGE,
as we implemented it, reduces the access counts in regular intervals by 10%
to give older accesses less weight, which had no accesses recently. Vakali [11]
gives a comprehensive comparison and extension of the above strategies and
variants of them in the context of web proxy caching.

One difference between web caching and for example a processor cache
is, that object size varies a lot. A single access can transfer a few bytes or
up to hundreds of megabytes. Therefore for the performance of web caching
there are two measures: The hitrate, which is the relative number of hits to
objects of the total number of object accesses and the byte hitrate which is
the number of bytes served from the cache compared to the total number
of bytes requested. Williams et al. [12] give an overview of basic removal
algorithms in this context.

In order to increase the hitrate, it is useful to favor small objects, because
then more objects fit into the cache having a similar effect as using a larger
cache. For the byte hitrate it is better to keep large objects, because a
re-transfer would reduce the byte hitrate considerably.

Efficient algorithms for web proxy caches like GreedyDual-Size (GDS)
proposed by Cao and Irani [4] or LRU-SP [5] by Cheng and Kambayashi are
optimized for both hitrate and byte hitrate and are therefore less relevant
for us. Busari et al. [3] have studied the effects of hierarchical web proxy

7

caching. Their approach comes closest to our studies.

3 Analysis Method

We now move on to the experimental approach used to derive our results.

3.1 Logging Infrastructure

Our analysis is based on log files from DTVs Article Database Service (DADS)
[1, 10], a digital library for journal and conference articles developed at the
Technical Knowledge Center (DTV) of the Technical University of Den-
mark. DADS is implemented according to Figure 1. The gateway is im-
plemented using a HT'TP server running scripts, which communicates with
an index database performing the searches on the users demand. DADS in-
dex database contains around 20 million entries for articles from all major
scientific publishers.

Once the user finds an article, it is fetched from the fulltext server, if the
paper is available online. The user environment is a standard web browser,
which interacts with the gateway HTTP server. We had no influence on
the web browsers, hence we do not know if and what kind of caching is
implemented at this level. During the time we recorded the log files, DADS
itself did not have any cache implemented.

We have captured all incoming HTTP requests recorded from a gateway.
The log files contain, for incoming fulltext accesses, the client’s IP-address, a
time stamp, the article number, the status code as well as more data, which
is not of interest in our study.

The log files gathered are from the gateway used primarily by the Techni-
cal University of Denmark including DTV. For our analysis, we have removed
all requests from domains outside the university. We base our studies on the
time frame from March 2000 to January 2002, totaling 700 days.

For this study we are only interested in article access patterns. In par-
ticular we are interested which articles the users try to access as well as
when this happens. Requesting an article in fulltext is a two step process
in DADS. The system first displays a delivery page with the choice of differ-
ent access methods like ordering a paper copy or download from the fulltext
archive. Because fulltext is only available from a limited number of database
records (approximately 20%), we have decided to use accesses to the above
described delivery page instead of the actual fulltext accesses. This is rea-
sonable, because the user has to pass this decision page for every single real
fulltext access and does not know in advance, if the fulltext will be accessi-

ble electronically or not. This way we have access traces available for both,
online articles as well as for articles available as paper copy only. For a more
detailed description of the DADS user model see our previous paper [6].

The gathered log files do not contain any information about the issue,
volume or journal where the accessed articles were published. Therefore we
have taken this data from the index database available within the DADS
system.

Combining the information from the log files with the index database
allows us to create a suitable trace. Such a trace contains a time stamp for
any accesses as well as a unique identifier for the article, issue, volume and
journal, the size in articles for each unit.

3.2 Simulation

In order to study the user access patterns and the effects of different caching
strategies we use a trace driven simulation model based on the traces de-
scribed above.

Our simulator takes a trace as input and reads through it, line by line,
executing the caching strategies. The cache is implemented as a set of access
unit IDs. The cache also counts how many articles it contains at every
moment. Besides this, for every unit accessed, there is the possibility to
store additional data, like the last access time, number of accesses and alike.

To implement strategies which need to be aware of the future, there is the
option to read the whole trace twice. In a preparation phase only meta data
like future accesses are recorded on a per unit base, so that the OPT strategies
have this data available later on. The simulator has also the possibility to
discard all but the first access to a particular article from a particular client
machine. This implements filtering as done by a perfect client cache.

When a new request, represented by a line in the trace, is read in, it is
checked if its access unit ID is present in the cache. If it is, this is counted
as a cache hit. In any case the request itself is counted and the appropriate
actions according to the caching strategy are performed.

For caching units larger than articles, it may be necessary to discard more
than one unit in order to bring in a new large unit. This is done recursively
by calculating new targets to be removed, until the cache can take in the
new object. An exception is the case where the particular unit to be cached
does not fit into the cache at all. In this case no replacement happens and
the unit is not brought into the cache.

The output of a simulation run will be a hitrate, computed over the total
time of the trace.

hitrate using popularity and reuse
40

"OoPT —+—
[RU —x—
RANDOM

3\
X

\\\\
N
ANRY

hitrate in %

0 L L M| L L | L L M| L L M| L L M| L L L
1 10 100 1000 10000 100000 le+06

cache size in articles

Figure 2: Hitrate achieved at a central proxy cache running OPT, LRU and
RANDOM taking advantage of popularity and reuse, because no (perfect)
client caching was simulated

4 Analysis Results and Discussion

4.1 Reuse versus Popularity

In a first experiment we study the effects of client side caching versus central
proxy caching. Ideally we would like to have a trace of a system where no
caching is implemented at all. But in practice this is not the case. Most users
have already a local client cache integrated into their web browser, which we
assume to keep recently accessed web documents in order to reduce latency.
Those caches influence cache hits due to reuse, but not due to popularity.
Figure 2 shows the simulation results for implementing a central proxy
cache, taking advantage of both reuse and popularity. On the x-axes, using a
logarithmic scale, we have varied the cache size from one article to a million
articles, which represent 5% of the total archive size. The curves show the
hitrate for OPT, LRU and RANDOM. We can see that OPT does a lot
better than both LRU and RANDOM, with LRU being only slightly better
than RANDOM. We can also observe that a cache size of a little bit above

10

hitrate using popularity only

40 N T T T T T T T T T T T
OPT-clientcache —+—
LRU-clientcache ---x---
RANDOM-clientcache ------
35]
30 |]
25 |]

hitrate in %
N
o
T
1

15 : : —x 3
S
10 | .
5L]
03 % I ik S _// 1 . L . L . .
1 10 100 1000 10000 100000 1le+06

cache size in articles

Figure 3: Hitrate achieved at a central proxy cache running OPT, LRU and
RANDOM with perfect client caching taking only advantage of popularity

200 000 articles is sufficient to achieve the maximum performance of the cache
with any replacement strategy. This is the point where the cache can hold
all articles accessed. Note that this point depends heavily on the size of the
trace, because over time a larger variety of articles is accessed and needs to fit
into the cache. Since the archive contains approximately 20 000 000 articles
this point corresponds to about 1% of the total archive. OPT achieves the
same performance with 0.1% of the total archive.

To separate the caching effects of reuse versus popularity we did an exper-
iment, where we assumed perfect client caches. Such a perfect cache would
serve all re-accesses to a particular article from a particular client. This
can easily be simulated by considering only the first access from a particular
client to a particular document.

The results are shown in Figure 3. While the shape of the curve has not
changed for cache sizes above 10000 articles, we have lost more than half of
the maximal achievable hitrate due to the filtering of accesses by the perfect
client caches. Also, the results of LRU and RANDOM got closer to each
other. We have done this experiment with other history based strategies like

11

LRU-K, MFU etc, but all those results were worse than RANDOM. This
may be a hint that temporal locality present is mainly caused by reuse.

hitrate using reuse only

40 T T T T T T T T T T T T T
OPT —+—
LRU ——-x---
RANDOM ------
35 | .
30 | .
25 | .

hitrate in %

)

\

\

\

|

\

K

H

|

|
\
'
e
i
"
]
4
X
X
X
b3

0 . L . L . L . L . L . -
1 10 100 1000 10000 100000 le+06

cache size in articles

Figure 4: Hitrate average at a client side cache running OPT, LRU and
RANDOM taking advantage of reuse only

To answer this question we have done a third experiment, simulating
client caches. We used the full trace and split it into multiple traces, one
per client machine. Those sub-traces were then used to drive the simulation
model starting for each sub-trace with an empty cache. The hitrate observed
is the average hitrate achievable and is shown in Figure 4. Note that the
cache sizes naturally are much smaller per client, even if the sum of all cache
sizes may be larger than in the previous case.

This time we do observe more temporal locality, because LRU behaves a
lot better than RANDOM. In practice those results may be even better, be-
cause our traces are, at least partly, filtered by browser caches in place. From
the observations we can say that most of the temporal locality is actually
due to reuse and not due to popularity.

We also can observe that the cache size for each client to achieve a con-
siderable hit-rate can be small when compared to a central approach. Since
client side disk space is cheap, ideally a digital library application would keep

12

every accessed fulltext article on the client side. This would require to have
a cache size of 10000 articles (collected over almost 2 years), which would
be approximately 10GB, for the machines accessing many articles. But for
most machines this would only require 100 articles, approximately 100MB,
easily implementable with todays client disks.

To implement this, web browsers would only have to support different
caching schemes for different URLs. Regular expressions could be used to
define caching classes with different strategies. If a regular expression, match-
ing all fulltext archives, would prevent applying a strategy with expiry, such
a perfect cache would be implemented.

4.2 Caching based on popularity

For the remaining part of this paper we will only consider the trace, which was
filtered by a perfect client cache, removing all occurrences of reuse. We have
already seen in Figure 3, that temporal locality gives not much advantage
over a random caching scheme centrally. Hence we have tried to explore
spatial locality instead changing the objects cached to larger entities.

Figure 5 shows the theoretical possibilities of employing spatial locality,
comparing the OPT strategy on the article, issue, volume and journal level.
Note that this study does not consider the bandwidth used and latency ex-
perienced for fetching whole issues, volumes or journals.

We can observe that the best strategy seems to be based on journals.
Hence we show in Figure 6 a comparison on different strategies running on
the journal level. To see if we can really employ spatial locality or whether
the higher hitrates achievable are only based on the fact, that more articles
are present in the cache we have implemented a strategy called RANFETCH.
RANFETCH brings in the average amount of articles of a journal, but evenly
spread out over the whole article archive, if a randomly selected chunk is not
yet present in the cache. If the accesses between articles from the same
journal should be independent, then RANFETCH should perform similarly
to the other strategies.

Since this is not the case, spatial locality is present and could be used
for caching strategies. In practice, it is not a good choice, however, because
to achieve reasonable hitrates — say 40% — one needs a cache comparable
to more than 10% of the archive. In a previous paper [6] we reported that
prefetching can be used to achieve at least comparable performance. In
an upcoming paper we will verify the effectiveness of prefetching using a
prototype.

13

hitrate using spatial locality

100 T T T 1 T T T T T T
article —+—
issue ---x---
volume ---*---
journal 8-
80 i
=8 2
60 | R x|
S o
£ g
Q
g
= Kmmmmmmmm e B S X
< /’
40 I = i
g
~TTR
e
,—"x/h .
0 P L L P L L | L L P L L P
0.01 0.1 1 10 100

cache size in % of the total archive (in articles)

Figure 5: OPT strategy caching articles, issues, volumes or journals

4.3 Revisiting the caching problem or the problem of
observability

We have seen that central caching does not work well, especially on the
article level. Because we have tried out many different, poorly performing
caching strategies, we are in the last part of this paper looking for the reasons.
Doing simple counting of the accesses, again assuming a perfect client cache,
we found the numbers shown in Figure 7

As we can see the vast majority of articles accessed are one-timers. Those
articles should not be cached at all, since they will never be re-accessed again.
The group of articles which had 5 and more accesses is also extremely small.
Hence this group will not achieve a substantial part of the hitrate either.
Most of the hitrate is actually achieved by the second and third accesses to
an article. This basically means that already, on the first accesses, the caching
algorithm has to decide whether the article is going to be a one-timer or a
multi-timer. But on the first access there is no history information available,
hence all history based strategies are likely to fail.

Additionally the time between accesses tends to be very long. Figure 8
shows the empirical, cumulative distribution of time between accesses. Since

14

hitrate for caching on the journal level

100 T T L i T 1 T T T T T T
OPT-clientcache —+—
LRU-clientcache ---x---
RANDOM-clientcache ------
LFU-clientcache &
LFU-AGE-clientcache --m-
80 | RANFETCH-clientcache ---o-- i

hitrate in %

0.01 0.1 1 10 100
cache size in % of the total archive (in articles)

Figure 6: Comparison between the OPT, LRU, RANDOM, LFU, LFU-AGE
and RANFETCH replacement strategy on the journal level

our trace is about 700 days long and typically more than 40% of the accesses
have more than 100 days between two accesses, we can question if all accesses,
which we called one-timers, are really one-times. Maybe our observation time
of nearly 2 years is simply too short to observe enough re-accesses.

To investigate this deeper we have modified our OPT strategy to have a
time horizon. The standard OPT strategy is allowed to look as far in the
future as the trace permits, i.e. for the full duration of it. This means that
in the beginning of the trace OPT will, in our case, have 700 days, while as
we proceed the amount of trace available would decrease all the time.

For the last experiment we want to define a time horizon, the time the
OPT strategy is allowed to look into the future. Re-accesses not occurring
within this time are not considered, and hence the corresponding articles
will be removed from the cache, even if they would be accessed further into
the future again. There are no other chances, so the potential problem will
remain that the time horizon is larger than the remaining trace.

Figure 9 shows the results of running the OPT strategy with different
time horizons using different cache sizes. The topmost line characterizes

15

articles % of total % of MT
one-timers 187456 84.97%
two accesses 24287 11.01% 73.24%

three accesses 5637 2.56% 17.00%
four accesses 1761 0.80% 5.31%
five and more 1475 0.67% 4.45%

multi-timers (MT) 33160 15.03% 100.00%
total 220616 100.00%

Figure 7: Distribution of accesses

the maximum hitrate achievable with any cache size. Lines below show the
limitation by cache size above a certain time horizon.

We can observe, that it is very important to have a long time horizon to
achieve a considerable hitrate. But this basically means that the length of
the trace has an influence on the hitrate, supporting the hypothesis that our
trace may be too short to observe enough multi-timers.

But even if we assume having a trace of many decades, which is not yet
feasible, and if we find re-accesses patterns usable for caching, those patterns
would most likely span years. And it is questionable if someone would like
to keep articles in a cache over a couple of server and disk generations over
the years.

5 Conclusions and alternatives

We have investigated the possibilities to improve the user-perceived latency
to access fulltext archives in digital libraries using caching. We found that
caching at the client level faces even in the case of the OPT strategy a limited
hitrate. But it is both feasible to be implemented with small cache sizes and
delivers a hitrate which is acceptably close to optimal on average. Improving
web browsers to allow specific URL patterns to be cached forever would allow
implementing perfect client caches with small changes to the web browsers.
As for central caching, we have found that there is spatial locality when
caching issues, volumes or journals but too little to be employed with rea-
sonable cache sizes. Acceptable hitrates can only be achieved if the cache
size is at least 10% of the total archive. We have already found hints that
prefetching achieving hit-rates above 50% is a good alternative [6] and will
show that those results can be verified in practice in an upcoming paper.
We found two reasons for the bad central caching behavior: Tt is extremely
hard to separate one-timers from multi-timers, which leads to cache pollution.

16

inter arrival times for multible accesses

100 . — . —_ ' — ' _ ' _
1st to 2nd access
2nd to 2rd access —------
90 - 3rd to 4th access -------- / |
4th to 5th access
8 5th to 6th access -~
g 80 |
0
©
(]
£ 70 |
g
T 60 |
1S
7]
S
s 50 |
1]
Q@
£ 40} |
©
©
o 30 |
5]
<
S 20t |
S
10 |
0 v .) L . o . o
0.001 0.01 0.1 1 10 100

time distance beween two accesses in days

Figure 8: Interarrival times between accesses (n—1) and n, n € {2,3,4,5,6}

And re-accesses are occurring with very low frequencies, so that articles have
to have been kept for “years” in the cache. Apart from the technical issues,
there will also by copyright issues involved.

When building a digital library our recommendation is to use client
caching in combination with prefetching at the gateway level, since prefetch-
ing is cutting latencies for both one- and multi-timers independent of access
patterns. Using different strategies at different hierarchy levels, as suggested
by us, is in a way similar to the finding of Busari et al. [3], who suggested
using a size-base caching strategy on one and a history based strategy on the
other level.

17

hitrate with cache size 10, 100, 1000, 10000 and 100000 articles

20 . —_— —
10 articles cache size —+—
100 articles cache size ---x---
1000 articles cache size ---*---
10000 articles cache size -
100000 articles cache size --m--
15]
P i
JuEex=an=:
b g
Pl
3 r,/
£ /‘/
o 10 | e a
e /,/
= -
U TERTEETEEREE Koo KK K- KK
/(‘r’/‘
o
///./
//.//
5F w]
/,//:—"X ,,,,,, X Xo—= K mmmm K m o m o X——m - K K-Km K=K
o
/r/r
0 ﬁ%ik. L L | 1
1 10 100

horizon in days

Figure 9: Maximal achievable hitrate for OPT strategy for time horizons

References

[1] A. Ardo, F. Falcoz, T. Nielsen, and S. B. Shanawa. Integrating article
databases and full text archives into a digital journal collection. In C. Niko-
laou and C. Stephanidis, editors, Proceedings of the Second European Confer-
ence on Research and Advanced Technology for Digital Libraries, ECDL’98,
volume 1513 of Lecture Notes in Computer Science, pages 641-642. Springer-
Verlag, sep 1998.

[2] M. Arlitt, R. Friedrich, and T. Jin. Performance evaluation of web proxy
cache replacement policies. Performance Evaluation, 39(1-4):149-164, 2000.

[3] M. Busari and C. Williamson. Simulation evaluation of a heterogeneous web
proxy caching hierarchy. In Proceedings of the Ninth International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, pages 379-388. IEEE Comput. Soc, Aug 2001.

[4] P. Cao and S. Irani. Cost-aware www proxy caching algorithms. In Proceed-
ings of the USENIX Symposium on Internet Technologies and Systems, pages
193-206. USENIX Assoc, Dec 1997.

[6] K. Cheng and Y. Kambayashi. Lru-sp: a size-adjusted and popularity-aware
Iru replacement algorithm for web caching. In The 24th Annual Interna-

18

[6]

[7]

8]

[9]

[10]

[11]

[12]

tional Computer Software and Applications Conference, pages 48-53. IEEE
Computer Society, Oct 2000.

J. Hollmann, A. Ardo, and P. Stenstrom. Empirical observations regarding
predictability in user access-behavior in a distributed digital library system.
In Proceedings of the 16th International Parallel and Distributed Processing
Symposium, pages 221-228, Fort Lauderdale, FL, USA, April 2002. TEEE.
R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to improve disk
system performance. IEEE Computer, 27(3):38-46, 1994.

E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page replace-
ment algorithm for database disk buffering. In Proceedings of SIGMOD ’93.
1993 ACM SIGMOD. International Conference on Management of Data, vol-
ume 22, pages 297-306. ACM, 1993.

E. J. O’Neil, P. E. O’Neil, and G. Weikum. An optimality proof of the lru-k
page replacement algorithm. Journal of the ACM - Association for Computing
Machinery, 46(1):92-112, 1999.

M. Sandfeer, A. Ardo, F. Falcoz, and S. Shanawa. The architecture of DADS
- a large digital library of scientific journals. In Online Information 99, Pro-
ceedings, pages 217223, dec 1999.

A. Vakali. Proxy cache replacement algorithms: A history-based approach.
World Wide Web, 4(4):277-297, 2001.

S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and E. A. Fox. Re-
moval policies in network caches for world wide web documents. In Pro-
ceedings of the ACM SIGCOMM ’96 Conference. Applications, Technologies,
Architectures, and Protocols for Computer Communications, pages 293-305.
ACM Press, 1996.

19

