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Abstract 

This paper presents theory and algorithms for co- 
variance analysis and stochastic realization without 
any minimality condition imposed. Also without any 
minimality conditions, we show that several proper- 
ties of covariance factorization and positive realness 
hold. The results are significant for validation in sys- 
tem identification of state-space models from finite 
input-output sequences. Using the Riccati equation, 
we have designed a procedure to  provide a reduced- 
order stochastic model that is minimal with respect 
to system order as well as the number of stochastic 
inputs. 

Introduction 

System identification deals with the problem of fit- 
ting mathematical models to time series of input- 
output data (141. Important subproblems are the 
extraction both of a 'deterministic' subsystem- 
i.e., computation of an input-output model-and a 
'stochastic' subsystem which is usually modeled as 
a linear time-invariant system with white-noise in- 
puts and outputs which represent the misfit between 
model and data. Evaluation of model misfit is often 
determined as an innovations sequence of a Kalman 
filter model which, in turn, also permits covariance- 
matrix factorization [26]. The related problem of 
stochastic realization has been approached by Ho and 
Kalman [13], Faurre [7],[8], Akaike [l], Desai and 
Pal [5], Larimore [17], Lindquist and Picci [18], [19]. 
Reasons for' elaboration on stochastic models of the 
misfit are at  least two-fold: Firstly, the stochastic 
model is needed to compute an appropriate Kalman 
filter which, in turn, is useful to compute state esti- 
mates. Secondly, residual analysis is used for statis- 
tical model validation [ 141. 

An important observation pointed out in I251 is 
that state-space identification algorithms based on 
stochastic realization algorithm often fail to provide 
a positive definite solution of the Riccati equation 
which, in turn, brings attention to the open problem 
of "positive real sequences", their bias and variance 
[25, p. 85 ff.]. This problem refers to the partial 
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realization problem with properties of the spectrum 

A condition for A(z) to be spectral density is that 
A+(z) be positive real on the unit circle-i.e., for 
z E {C : IzI = 1)-and if this condition is not ful- 
filled, the stochastic realization algorithm will fail 
[8], [ 19). Rank-deficient output covariance might 
be found in cases of redundant measurement-e.g., 
in sensor-array measurement. Hence, the rank- 
deficiency property among stochastic inputs or out- 
puts is a generic case that requires theoretical atten- 
tion. The purpose of this paper to provide the link 
between stochastic realization and statistical valida- 
tion methodology for the framework of state-space 
model identification. The main results deal with the 
problem of rank-deficient covariance matrix factor- 
ization. The novel approach taken is to  show that 
stochastic realization needs to address not only the 
state-space order determination but also that of the 
number of stochastic inputs. 

Problems of Singular Covariance Matrices 
Consider a discrete-time time-invariant system 
&(A, B ,  C ,  D) with the state-space equations 

(3) 
A B  

with input U k  E IRm, output Y k  E IRP, state vector 
X k  E B" and zero-mean stochastic input sequences 
Uk E En, e k  E IRp acting on the state dynamics and 
the output, respectively. The state-space identifica- 
tion problem is to  fit system matrices A, B ,  C ,  D to 
data records {Uk}$=' and { y k } $ = 1  such that the state- 
space model reproduce the input-output behavior of 
data. The important remaining problem is to de- 
termine the model-misfit sequences of independent 
random variables { ~ k } f ! ~ ,  { e k } f Y l  such that they are 
uncorrelated with any state estimation error or in- 
put. Thus, it is assumed that U k  and Y k  only are 
available to  measurement and that the zero-mean 
stochastic processes {Uk}, { e h }  have the covariance Q 



with q = rank(Q) I n + p 

As only input-output data are available, it is sufii- 
cient to consider state-space models with the same 
statistics as the original model of Eq. (3). Thus, by 
replacement of Eq. (3) by an innovations model- 
see [2, p. 2301-with { U k } f = 1 ,  {ek};='=, replaced by a 
sequence of zero-mean independent identically dis- 
tributed (i.i.d.) stochastic variables W k  E IRp so that 

A residual sequence computed as the estimate {Gk} 
of the innovations sequence { W k }  may be obtained by 
means of the model inverse of Eq. (5 ) ,  that is 

Both the formulation of an innovations model for and 
of optimal reconstruction of { X k }  of Eq. (3)-i.e., the 
stationary Kalman filter problem 

J o  = inf K k-m lim Jk(K) ,  Jk(K)  = tr(Sk) ( 6 )  

sk = E { ( X ? k - x k ) ( z k - x k ) T } ,  s= limsk (7) 

?k+l = Ajccb + Bu)  -k K(yk - czk - DUk) ( 8 )  
k-w 

proceed by solving the Riccati equation 

S = A S A T - K R K T + Q 1 l  
R = CSCT+Q22 

K R  ASCT+Q1z (9) 
with the infimal loss 

O - Iim tr  E{(zk - X k ) ( z k  - X k ) T }  = tr (s)  
For full-rank covariance matrices the problem of 
residual computation can be approached by solving 
the Riccati equation involving estimated system ma- 
trices A and C and covariance matrix &. It is a stan- 
dard result that a positive definite matrix S (with 
interpretation of variance) and a matrix K solving 
Riccati equation (9) exist provided that Q22 is posi- 
tive definite and that the resulting matrix A - K C is 
stable [2]. By the invertibility properties of R,  some 
cases of rank-deficient Q22 still permit a solution- 
see (2, Sec. 11.31 for an approach to state estimation 
instrumented by a reduced-order Kalman filter and 
by-passing of state variables. 

-k+m 

Example: A system that fails to exhibit positivity is 

For { W k }  such that 
is an indefinite matrix 

= 0 and E { W k }  = 12, there 

(11) 
( S - ASAT p - A S C T )  

PT-CSAT R - C S C T  
1 0 -10.03 -3.97 

0 -13.97 -11.03 

0 
-10.03 -13.97 1 
-3.97 -11.03 0 

which has no interpretation as a covariance matrix. 

Residual Model Structures 

When R is rank-deficient, however, then no K can be 
determined from the solution to the Riccati equation 
(9). In turn, determination of the residual sequence 
and statistical model validation are hampered. A 
remedy requires: i .  a suitable residual model struc- 
ture that includes the innovations model as the full- 
rank special case; i i .  solution of the Riccati equation 
for the state-space model tested, finite data records 
and the possibly rank-deficient covariance matrix to 
find a residual realization model while preserving 
stability and minimum variance; iii. computation of 
the residual sequence from input-output data applied 
to  the residual realization model. 

Theorem 1 (Rank-deficient model inverse) Let 
the rank-deficient innovations model be given as the 
state-space model 

with U k  E mm, vk E R q , X k  E En, Y k  E R p , p  2 and 
with A E Rnxn, B E lRnxm,  C E W"", D E IRP"", 

p E lRnxq, 6 E lRpxq. Then, a left inverse of the 
innovations model of Eq. (12) is 

with left inverse 6' to 6 and 

K 6 = P 6 t + K i ( I p - 6 6 t ) ,  q s p  (14) 

for some arbitrary K i  preserving stability of the error - h 

xk = xk - x k  

and for covariance matrices S = E{j&i?T} and R = 
E{&k&r} obeying the Riccati equation 

s o  s o  
( 0  R )  = I S ( O  I J S T T T  
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Proof (sketch): By direct calculation based on the 
factorization 

and the observation that the Riccati Eq. (9) may be 
reformulated as (cf  [ll], [E]) 

Covariance Analysis and Positive Realness 
Conditions to find a state-space system X{A, B ,  C ,  D }  
reproducing a given output autocovariance se- 
quence { Cyy(k ) }  is usually approached by factorizing 
{ C y y ( k ) }  as { C A k - l B )  for k 2 1 and Cyy(0)  = D D T .  
Such a linear system with stochastic input { W k }  is 

Then, the output covariance R = Cyy(0) ,  state co- 
variance P 2 0 and the input covariance Q 2 0 must 
satisfy the 'positive realness' condition. 

Lemma 1 (Positive Real Lyapunov Equation) 
The equation of positive realness 

( QT2 6 2 2 )  = (BT - CSAT R - CSCT 
Qii Q12 S - ASAT B - A S C T )  (19) 

is equivalent to the Lyapunov equation 

ATAT-T = -Q (20) 

where Q = Q1I2QTI2 and 

T = (o s o  . ) , A = (  A - K C  K o), K=BR+ 

The solution T = TT > 0 exists i f  A has its eigenval- 
ues within the unit circle and if (A, Q1/2) is control- 
lable. 

Proof is made by direct calculation and by Lyapunov 
equation properties and generalization of Lemma 1 
for rank-deficient R = ppT holds for K = B ( ~ ? ) ~ p t  
and 

A - K C  K * = (i $), A =  ( p T c  o) (22 )  

Lemma 1 offers constructive means to find SPR 
transfer functions that are not necessarily minimal 

and is very useful for stability analysis and covari- 
ance analysis. Solutions P suitable for Lyapunov 
function design can be found under the relaxed con- 
dition that (A, Q1/2) be controllable. This Lyapunov 
equation and its Riccati-equation companion are also 
useful in the form 

T = ("iKc :)T( A - K C  K o ) T + Q  (23) 

and as the recursive equation 5?k+l = A5?kAT + Q. 

Residual variance properties 
By Theorem 1, the mismatch of residuals {i&} as 
compared to  { v k }  depends on the variance properties 
of the non-standard Kalman filter embodied in the 
residual reconstruction. 

= (: -:) (: 6q)  (G Ao KO 6 )  (f;) 
S k  = E { X k Z l ) .  Variance properties can be summa- 
rized in the following Riccati-equation reformulation: 

Let pk = E{&k&f},  R,  = (E{vkvr}, R k  = E{?k?l}, 

Theorem 2 (Kalman filter for rank-def. input) 
Consider for given matrices A, B, C, D and zero- 
mean independent identically distributed stochastic 
processes { v k } ,  { ek} with covariance 

8 1 1  8 1 2  
(QT2 Q22) = (z:)  

the observer of  X k  E R" based on U k  E R ~ ,  Yk E np 
as 

) (:) + (:) Y k  
Pe;l) = ( , _KC B - K D  

-C -D 
and error dynamics represented by 

Let the covariance variables 

s k  = E{ z k  ZkT I A- 1 } (25 )  
T pk = E{&k&fl!h-l) = CSkCT -t Q22 = pkpk 

Tk = E{?k+l&fl!h-l} = ASkCT -k Q12 - KPk 
denote mathematical expectation given information 
up to time k - 1. Then, sk is the solution to the 
Riccati matrix equation 
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and tr(Sk) achieves its minimum for 

K = (ASkCT + Q l ~ ) ( p L ) ~ p ;  + Kl(Ip - pkpL) 

for arbitrary K.L E lRnxp preserving stability of A - 
KC. 

Proof is made by Lemma 1 [E]. For the case non- 
stationary and finite-duration time series, covariance 
relationships of the innovations model of Eq. (24) 
obey the recursive equation 

('2' j k )  = .(" 0 Rv O) FT (28) 

With A0 - KoGtG being a stability matrix, the 
asymptotic covariance relationships of Eq. (24) as 
K + CO are 

sk+l = (A0 - KostG)&(Ao - K O ~ ' G ) ~  
Rk = E{?k?l} = SfGSkCT(8t)T + Rv (30) 
Pk = E{&k&c} = askc: 6RvGT 4 SRvGT 

Positive Realness and Factorization 

We make the following constructive proof of positive 
realness to hold for the relaxed conditions. Let 

R CSCT+Qz2 (31) 
K = BRt = (Q1z + ASCT)Rt (32) 

H ( z )  = Zm + C ( Z I ~  - A ) - ~ K  (33) 

(34) 

= I m  + C(ZIn-A)-'(Q12 + ASCT)Rt 
1 

A+(z) = C(zZn - A)-'KR + PR 

and 

S + ASAT + Q1l Q12 + ASCT xo = (- QT 12 + CSAT Q22 + CSCT 

and the feedback transformation matrix 

Then the Riccati equations of Eq. (19) and Eq. (9) 
are reproduced as 

0 = -Lo+Ro ,(38) 

and 0 = I(-.& + $ 0 ) I T ,  respectively. Multiplica- 
tion by 

Lz(z )  = (C(zIn-A)- l  I m )  (39) 

of Lo, RO gives 

L'(z) = L ~ ( z ) L ~ L : ( z - ~ )  = A+(z) + AT(&) (40) 
!&(z) = LZ(Z)Z( ,~L; (Z-~)  = H(z)RHT(z-')  (41) 

As &(z )  = R ~ ( z ) ,  positive realness holds for z = eie, 
0 E [0,27t] so that 

A+(z) + A T ( z - ~ ) I ~ = ~ B  = H ( ~ ) R H ~ ( z - l ) l , , e e  2 0 (42) 

Thus, the positive realness condition is fulfilled also 
for the rank-deficient case for which a modified Ric- 
cati equation is to be solved. 

Continuous-time Systems: Now consider the 
following continuous-time reformulation of the 
Yakubovich-Kalman-Popov (YKP) matrix equation 

Then, this YKP matrix equation may be reformulated 
as the special Lyapunov equation 

T2+!ATT = -Q (43) 
. . .  

Theorem 3 Assume that Q = QT > 0 and a LTI 
state-space system {A,  B ,  C,  D }  be given. Let 

If (2, Q1/z) is observable and i f  all eigenvalues of A 
are in the open left-half plane, then the Lyapunov 
equation 

TA + A T P  = -QTl2Q1l2 = -Q (45) 

provides a unique positive definite solution P = PT > 
0 to the YKP matrix equation for {A,  B ,  C ,  D } .  

Moreover, there are rational functions G ( s )  = C(sI  - 
A)-lB +D and T(s) = ( Q 1  Q l ( s I  -A)-'B + Q z ) ,  
Q 1 , Q 2 matrices, satisfiing 

~ ; ( - S ) ~ Z ( S )  = G ( s )  + GT(-s)  (46) 
r r ( - iw)r2 ( io )  = G(iw)  + GT(-iw) 2 0 (47) 

Proof: 
of positive realness: Let 

We make the following constructive proof 

-(sin - A)- lB 
R(s )  = (t 1, 

-S + ASAT + Q11 Q12 + ASCT - K R  
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First, the transmission zeros of the system 
{A,  B ,  C,  D }  are found from the generalized eigen- 
value problem of 

S E - A  = L(s)  

Let Q112 denote a matrix factor of Q = QT 2 0 so 
that 

T 

2 
Q = Q TI2 Q 112 - - (QT) QI (Q1 Q2) (50) 

Assume that for (A, Q1/2) observable and eigenvalues 
of A with negative real part, the Lyapunov equations 

TA+ATT = -Q (51) 
PA + A T P  = -Q:Q~ Cf - Q ~ ~  

has provided the positive definite solutions T and P 
and that the solution obtained has been brought to 
block-diagonal form of Eq. (44). Then, expand the 
Lyapunov equation (51) into 

Q = T ( s E  - A )  + ( -SE -AT)T (52) 

By Eq. (49), it follows that 

Thus, for 

F(s) = Q'"R-'(S) = (Q1 Ql(sZ-A)- lB +Q2) 

Glz(s) = CT + (-sZn - AT)P(SZn - A)-'B (53) 
= Qll(sZn - A)-lB + CT - P B  (54) 

n(s) = rT(-s)r(s) = R - ~ ( - ~ ) Q ~ Q R - ~ ( ~ )  (55) 

one finds that 

= 

- ( GT2(-s) G ( s )  +GT(- -s )  

R-T ( - s ) ( P ( s E  -A) + ( -SE -AT)!P)R-'(s) 

) - -(PA + ATP)  

with rank deficit only at the transmission zeros 
of {A,  B ,  C, D } .  By the matrix equations (, 56), 
the simultaneous transfer-function positivity and the 
positive definite Lyapunov equation properties fol- 
low from the diagonal matrix equation blocks of 
rT (-s)r(s) that 

-(PA + A T P )  = rT(-s)I',(s) = Q:Q1 (56) 

G(s )  + GT(-s)  = r:(--s)r~(s) (57) 

As for s = iw, it follows that 

rr(-i~)r2(i~) = G(iw) + GT(-iW) 1 0  (58) 

which shows that the Nyquist curve of the transfer 
function G(s )  is situated to the right of the imaginary 
axis thus fulfilling the 'positive-real' condition. 

Remark The converse result holds for Q = 
Q1I2QTI2 and for a controllable pair (A, Q1/2). If all 
eigenvalues of A are in the open left-half plane, then 
the Lyapunov equation 

AT + TAT = -Q1I2QTl2 = -Q (59) 

provides a unique positive definite solution and pos- 
itive definite solution P = PT > 0 to the Y K P  matrix 
equation for {A,  B ,  C, D } .  

Discussion 
Several properties of positivity and factorization re- 
main valid for stable nonminimal realizations. As 
state-space model identification provides controllable 
state dynamics as well as uncontrollable stochastic 
dynamics, minimality tests may be replaced by some 
test of the property 

(60)  q - - T  vivj } - - Q&j, '€{Piu;} = 0, V i , j  

Correlation test can be made by direct application 
of statistical validation methods [14, Sec. 9.41. Al- 
though the reconstructed innovations sequence will 
exhibit no autocorrelation, the resulting prediction 
error sequence may still exhibit autocorrelation. 

Conclusions 

The problem of stochastic residual realization to  ac- 
company estimated input-output models in the case 
of state-space model identification such as multi- 
input multi-output state-space model identification 
is solved and its relationship to positive realness 
is shown. The case considered includes the prob- 
lem of rank-deficient residual covariance matrices, 
a case which is encountered in applications with 
mixed stochastic-deterministic input-output proper- 
ties as well as for cases where outputs are linearly 
dependent, thus extending previous results of par- 
tial realization [8],  [lo]. Also without any minimal- 
ity conditions, we show that several properties of co- 
variance factorization and positive realness hold. In 
addition, we provide a constructive method to solve 
the Riccati equation of covariance analysis by means 
of a reduction to a Lyapunov equation. The case con- 
sidered includes the problem of rank-deficient resid- 
ual covariance matrices, a case which is encountered 
in applications with mixed stochastic-deterministic 
input-output properties as well as for cases where 
outputs are linearly dependent. Our approach has 
been the formulation of a rank-deficient innovations 
model and inverse innovations model in the form of 
a state-space inverse model and a left transfer func- 
tion inverse applicable to  the rank-deficient model 
output. This extension is related to a rank-deficient 
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Riccati equation and is accompanied by a reformula- 
tion of the Riccati equation and nonminimal positive 
realness conditions. 
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