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Abstract

This paper presents theory and algorithms for co-
variance analysis and stochastic realization without
any minimality condition imposed. Also without any
minimality conditions, we show that several proper-
ties of covariance factorization and positive realness
hold. The results are significant for validation in sys-
tem identification of state-space models from finite
input-output sequences. Using the Riccati equation,
we have designed a procedure to provide a reduced-
order stochastic model that is minimal with respect
to system order as well as the number of stochastic
inputs. -

Introduction

System identification deals with the problem of fit-
ting mathematical models to time series of input-
output data [14]. Important subproblems are the
extraction both of a ‘deterministic’ subsystem—
i.e., computation of an input-output model—and a
‘stochastic’ subsystem which is usually modeled as
a linear time-invariant system with white-noise in-
puts and outputs which represent the misfit between
model and data. Evaluation of model misfit is often
determined as an innovations sequence of a Kalman
filter model which, in turn, also permits covariance-
matrix factorization [26]. The related problem of
stochastic realization has been approached by Ho and
Kalman [13], Faurre [7],(8], Akaike [1], Desai and
Pal [5], Larimore [17], Lindquist and Picci [18], [19].
Reasons for elaboration on stochastic models of the
misfit are at least two-fold: Firstly, the stochastic
model is needed to compute an appropriate Kalman
filter which, in turn, is useful to compute state esti-
mates. Secondly, residual analysis is used for statis-
tical model validation [14].

An important observation pointed out in [25] is
that state-space identification algorithms based on
stochastic realization algorithm often fail to provide
a positive definite solution of the Riccati equation
which, in turn, brings attention to the open problem
of “positive real sequences”, their bias and variance
" [25, p. 85 ff]. This problem refers to the partial

0-7803-6638-7/00$10.00 © 2000 IEEE

realization problem with properties of the spectrum

Syy(2) = A(2)=Au(2)+ ALz (1)
Avz) = %A0+A1z‘1+Agz_2+~-- )

A condition for A(z) to be spectral density is that
A+(2) be positive real on the unit circle—i.e., for
z € {C : |z| = 1}—and if this condition is not ful-
filled, the stochastic realization algorithm will fail
(8], [19]. Rank-deficient output covariance might
be found in cases of redundant measurement—e.g.,
in sensor-array measurement. Hence, the rank-
deficiency property among stochastic inputs or out-
puts is a generic case that requires theoretical atten-
tion. The purpose of this paper to provide the link
between stochastic realization and statistical valida-
tion methodology for the framework of state-space
model identification. The main results deal with the
problem of rank-deficient covariance matrix factor-
ization. The novel approach taken is to show that
stochastic realization needs to address not only the
state-space order determination but also that of the
number of stochastic inputs.

Problems of Singular Covariance Matrices
Consider a discrete-time time-invariant system
%.(A, B, C, D) with the state-space equations

Xpt1 A B\ (x Uk

()-E o) @)@ @
with input u; € IR™, output y, € IR?, state vector
xr € R" and zero-mean stochastic input sequences
vr € R", e, € IR acting on the state dynamics and
the output, respectively. The state-space identifica-
tion problem is to fit system matrices A,B,C,D to
data records {u;}}_; and {y+}} ; such that the state-
space model reproduce the input-output behavior of
data. The important remaining problem is to de-
termine the model-misfit sequences of independent
random variables {vz}}_,, {ex}}; such that they are
uncorrelated with any state estimation error or in-
put. Thus, it is assumed that u; and y; only are
available to measurement and that the zero-mean
stochastic processes {v:}, {ex} have the covariance @



with g =rank(@) <n+p

ve) (v7)" Ql Q |

v ) 1=Qd, Q=(}7 [V 4

{(ek> (ej> b=Q%. Q (Q{z Q22 ()
As only input-output data are available, it is suffi-
cient to consider state-space models with the same
statistics as the original model of Eq. (3). Thus, by
replacement of Eq. (3) by an innovations model—
see [2, p. 230]—with {vs},, {ex}), replaced by a
sequence of zero-mean independent identically dis-
tributed (i.i.d.) stochastic variables w;, € IR? so that

B)=E o)) -G

A residual sequence computed as the estimate {@x} -

of the innavations sequence {w;} may be obtained by
means of the model inverse of Eq. (5), that is

Xpt1 _(A—-KC B-KD X n K
wr ) -C —-D Up I, Yk

Both the formulation of an innovations model for and
of optimal reconstruction of {x;} of Eq. (3)—i.e., the
stationary Kalman filter problem

P = inflim KK, KE)=t(S) (6
S = E{(%r — xe) (X — )T}, S= I}er)lo Sk (7)
Xpt1 = AZXp+ Bur+ K(yr— Cxr — Duy) (8)

proceed by solving the Riccati equation

S = ASAT —KRKT +Qu
R = CSCT + Qs
KR = ASCT+Q12 9)

with the infimal loss

P = Jim tr E{ (%5 — x2) (%6 — x)T} = tr (S)

For full-rank covariance matrices the problem of
residual computation can be approached by solving
the Riccati equation involving estimated system ma-
trices A and C and covariance matrix . It is a stan-
dard result that a positive definite matrix S (with
interpretation of variance) and a matrix K solving
Riccati equation (9) exist provided that Qs is posi-
tive definite and that the resulting matrix A— K C is
stable [2]. By the invertibility properties of R, some
cases of rank-deficient @q2 still permit a solution—
see [2, Sec. 11.3] for an approach to state estimation
instrumented by a reduced-order Kalman filter and
by-passing of state variables.

Example: A system that fails to exhibit positivity is

1.5 —-09 1 0
Axk+ﬁwk=(1 0 )xk+<0 0>wk

Cxp + dwy, = ((1) (1)) xx + (é g) wy (10)

Xk+1

Y&

For {w;} such that E{w;} = 0 and E{w:} = I, there
is an indefinite matrix

_ (S—-ASAT p-ASCT
@ = (,BT——CSAT R-CSCT (11)
1 0 -1003 -397
0 0  -1397 -11.0
~1003 —1397 1 0
397 -1103 0 0

which has no interpretation as a covariance matrix.

Residual Model Structures

When R is rank-deficient, however, then no K can be
determined from the solution to the Riccati equation
(9). In turn, determination of the residual sequence
and statistical model validation are hampered. A
remedy requires: i. a suitable residual model struc-
ture that includes the innovations model as the full-
rank special case; ii. solution of the Riccati equation
for the state-space model tested, finite data records
and the possibly rank-deficient covariance matrix to
find a residual realization model while preserving
stability and minimum variance; iii. computation of
the residual sequence from input-output data applied
to the residual realization model.

Theorem 1 (Rank-deficient model inverse) Let
the rank-deficient innovations model be given as the
state-space model

)= ) )+ (B)w

with up € R™, vy € R:,x; € R",y; € R”,p > q and
with A € R™", B € R"*™, C € IR"*", D € IR"*™,
p € R, 6 € IRP*%. Then, a left inverse of the
innovations model of Eq. (12) is

%) A—K;C B—Ks;D K5\ [
(%:1) =( _6'C 6D 5f> (”’*) (13)
Yk
with left inverse 6 to & and
Ks=B6"+K.(I,—388"), 6'6=1I, q<p (14)

for some arbitrary K, preserving stability of the error
Xp =2 — Xp

zIH—I _ A_Kﬁc Onxq Ek

< Vi ) - ( stc I, Vi (15)

and for covariance matrices S = f{fkfz }and R =
E{erel} obeying the Riccati equation

§3) - ws Do oo

— I, "Ké’ __A)B
T = (5 ).s=(6 5
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Proof (sketch): By direct calculation based on the
factorization

ostui~(3) 3

and the observation that the Riccati Eq. (9) may be
reformulated as (cf. [11], [15])

G Al G 0=k

(17)

dle 5

Covariance Analysis and Positive Realness
Conditions to find a state-space system {4, B, C, D}
reproducing a given output autocovariance se-
quence {C,,(k)} is usually approached by factorizing
{Cyy(k)} as {CA*-1B} for £ > 1 and C,,(0) = DDT.
Such a linear system with stochastic input {w;} is

(-6 96 B

Then, the output covariance R = C,,(0), state co-
variance P > 0 and the input covariance @ > 0 must
satisfy the ‘positive realness’ condition.

Lemma 1 (Positive Real Lyapunov Equation)
The equation of positive realness

Qu Q1) _ [ S—-ASAT B-ASCT
0= (Q1T2 @2/ \BT—CSAT R-CSCT (19)
is equivalent to the Lyapunov equation '

APAT - P

= -Q (20)

where Q = QY?*Q7T/2 and

(8 0 _[(A-xC « ot
p o (S0 an (A ). cuna
T = (Ig _IK>,Q=TQQ‘T (21)
b

The solution P = PT > 0 exists if A has its eigenval-
ues within the unit circle and if (4,Q?) is control-
lable.

Proof is made by direct calculation and by Lyapunov
equation properties and generalization of Lemma 1
for rank-deficient R = pp” holds for x = B(p")Tp!

and
I, c _[(A—-xC «
T = (0 #),ﬂ—( Pz, O) (22)

Lemma 1 offers constructive means to find SPR
transfer functions that are not necessarily minimal

p

" ance analysis.
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and is very useful for stability analysis and covari-
Solutions P suitable for Lyapunov
function design can be found under the relaxed con-
dition that (A, Q/2) be controllable. This Lyapunov
equation and its Riccati-equation companion are also
useful in the form

A—-xC x A—xC «x\7T
P = ( p 0)?( o 0) +Q (23)
and as the recursive equation Py = AP AT + Q.

Residual variance properties

By Theorem 1, the mismatch of residuals {V:} as
compared to {v;} depends on the variance properties
of the non-standard Kalman filter embodied in the
residual reconstruction.

) - (e ) w
- E)E A DE

Let P, = E{erel}, Ry = E{vivl}, Ry = E{WV]},
Sy = E{X;X['}. Variance properties can be summa-
rized in the following Riccati-equation reformulation:

Theorem 2 (Kalman filter for rank-def. input)
Consider for given matrices A, B, C, D and zero-
mean independent identically distributed stochastic
processes {ur}, {er} with covariance

)(&)

E{ ('e’z) (2:) T} Q= (Qn Q12) _ (Qv Qv

QL Q@ Q./) \ Q.
the observer of x; € IR" based on uy € R™, y;, € IRP

()= (48 25 () ()
)

and error dynamics represented by
1) _ (A—KC I,
& /T C 0

Let the covariance variables

-K
Ip

Se = E{%x|Fa-1} (25)

Py = E{erei|Fa-1} = CSiCT + Qo2 = prpf

Ty = E{xer16]|Fe1} = ASiCT + Q12 — K P,
denote mathematical expectation given information

up to time k— 1. Then, S; is the solution to the
Riccati matrix equation

Skr1—Te(p})T O, TT 0\ 1
0o - z( GRS EARNCY
PLC £Q:)\0 I) \piC p;Q.
. (I, —(Tv+ KRp)(p))T
Z = (O (Tr + 1, 1) (Pr) ) (27)



and tr(Sg) achieves its minimum for

K = (ASiCT + Qu2)(p})" P} + Ki(Tp — p1p})

for arbitrary K, € IR™*? preserving stability of A —
KC.

Proof is made by Lemma 1 [15]. For the case non-
stationary and finite-duration time series, covariance
relationships of the innovations model of Eq. (24)
obey the recursive equation

s .

5 n) = 7(3 )7 @
_ [A—K¢S'C 0

.‘7‘— = ( 61'000 lq) (29)

With Ay — Ko6'Cy being a stability matrix, the
asymptotic covariance relationships of Eq. (24) as
k — oo are

Sks1 = (Ao — Ko8'Co)Sk(Ao — Ko5'Co)T

Ry, E{(vivT} = 87CSCT (6Y)T + R, (30)
Py = E{erel} = CS.CT +6R, 67 — 5R, 7

Positive Realness and Factorization

We make the following constructive proof of positive
realness to hold for the relaxed conditions. Let

R = CSCT+@Qy (31)

K = BR'=(Qi2+ASCTR' (32)

H(z) = In+C(zl,—A) 'K (33)

= In+C(zl,— A)(Q2 + ASCT)R'
Av(z) = C(zI,—A)'KR+ %R (34)
and
_ —S+ASAT + @ Q12 + ASCT
Ro = ( QT, + CSAT Q2 + CSCT (35)
0 KR
LO = (RKT R ) (36)

and the feedback transformation matrix

(I, K\ _ (I, —(Qi+ASCT)R'
T = (0 Im>_(0 T )(37)

Then the Riccati equations of Eq. (19) and Eq. (9)
are reproduced as

0 = —Lo+Ro (38)

_S+ASAT +@Qu @iz +ASCT —KR
Q% + CSAT —RKT Qa+ CSCT - R

and 0 = T(—Lo + Ro)T7, respectively. Multiplica-
tion by .

Ly(z) = (Czl,—A)! In) (39)
of Loy, Ro gives

La(2) La(2) LoLf (z77) = Au(2) + AT(z77) (40)
Ri(2) La(2)RoLi (z7") = H(z)RH (") (41)

As L1(z) = R1(z2), positive realness holds for z = €9,
6 € [0,2x] so that

As(2) + AL(z7)|omge = H(2)RHT (27")| ;=00 > 0 (42)

Thus, the positive realness condition is fulfilled also
for the rank-deficient case for which a modified Ric-
cati equation is to be solved.

Continuous-time Systems: Now consider the
following continuous-time reformulation of the
Yakubovich-Kalman-Popov (YKP) matrix equation

a-- (& &)= (5tE J5ion)

Then, this YKP matrix equation may be reformulated
as the special Lyapunov equation

PA+ATP = -Q (43)

Theorem 3 Assume that Q = QT > 0 and a LTI
state-space system {A,B,C,D} be given. Let

— A B\ — P 0 (n+m)x(n+m)
;4_<_C _D),:P—(O Im)em (44)

If (A,QY?) is observable and if all eigenvalues of A
are in the open left-half plane, then the Lyapunov
equation

PA+ATP = -QT?QV*=-Q (45)

provides a unique positive definite solution P = PT >
0 to the YKP matrix equation for {A,B,C, D}.

Moreover, there are rational functions G(s) = C(sI —

A)'B+DandT(s)= (Q: Qi(sI—-A)'B+Qys),
Q 1, Q2 matrices, satisfying

II(=s)l2(s) = G(s)+GT(~s) (46)

T (—io)l:(io) G(iw) + G (~iw) > 0(47)

Il

Proof: We make the following constructive proof
of positive realness: Let
_ I, 0 (I, 0O
L(s) = (C(sln ! 1,,,)’ E= (o o,,,)
_ (I, —(sI,—A)"'B
o) = (5 27F) (48)
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First, the transmission zeros of the system
{A,B,C,D} are found from the generalized eigen-

value problem of
L(S) (SI"(;— A

Let Q'/2 denote a matrix factor of Q = QT > 0 so
that

0

sE-A4 G(s)

) R(s) (49)

Q QTPQY2 = (%;;) Q1 Qo) (50)

Assume that for (4, Q!/2) observable and eigenvalues

of A with negative real part, the Lyapunov equations
PA+ATP -Q

PA+ATP = -Q5Q.¥ -Qu

(51)

has provided the positive definite solutions ? and P
and that the solution obtained has been brought to
block-diagonal form of Eq. (44). Then, expand the
Lyapunov equation (51) into

Q = PGE-A)+(—sE-AT)P (52)

By Eq. (49), it follows that

P(sI,—A) 0
P(E - A) ( (s o ) G(s)> R(s)

Thus, for

I's) = QR s)=(Q: Qi(sI-A)'B+Q,)
Gu(s) = CT+(=sl,—AT)P(sI,— A)'B (53)

= Qu(sl,—A)'B+C" -PB (54)

one finds that

Q(s) = TT(=s)T(s) = RT(-s)Q"QR(s) (85) -

RT(=s)(P(sE — A) + (~sE — AT)P)R(s)

_ (~(PAYATP)  Gu(s)
- ( Gl(—s) G(s)+GT(—s)>

with rank deficit only at the transmission zeros

of {A,B,C,D}. By the matrix equations (, 56),
the simultaneous transfer-function positivity and the
positive definite Lyapunov equation properties fol-
low from the diagonal matrix equation blocks of
'T(—s)I(s) that

—(PA+ATP)
G(s) + GT(—s)

T (=s)Ta(s) =
7 (—s)Ta(s)

1Q: (56)
(57)

As for s = iw, it follows that
I'’T(—iw)Ts(io) = G(iw) + GT(—iw) >0  (58)

which shows that the Nyquist curve of the transfer
function G(s) is situated to the right of the imaginary
axis thus fulfilling the ‘positive-real’ condition. "]

Remark: The converse result holds for Q
Q/2QT/2 and for a controllable pair (4, Q/?). If all
eigenvalues of 4 are in the open left-half plane, then
the Lyapunov equation

AP + PAT = —QY2QT2=—-Q (59)
provides a unique positive deﬁnite solution and pos-
itive definite solution P = PT > 0 to the YKP matrix
equation for {A,B,C,D}.

Discussion
Several properties of positivity and factorization re-.
main valid for stable nonminimal realizations. As
state-space model identification provides controllable
state dynamics as well as uncontrollable stochastic
dynamics, minimality tests may be replaced by some
test of the property

E{v97} = @6y, E{Vul} =0, Vi, j (60)
Correlation test can be made by direct application
of statistical validation methods [14, Sec. 9.4]. Al-
though the reconstructed innovations sequence will
exhibit no autocorrelation, the resulting prediction
error sequence may still exhibit autocorrelation.

Conclusions

The problem of stochastic residual realization to ac-
company estimated input-output models in the case
of state-space model identification such as multi-
input multi-output state-space model identification
is solved and its relationship to positive realness
is shown. The case considered includes the prob-
lem of rank-deficient residual covariance matrices,
a case which is encountered in applications with
mixed stochastic-deterministic input-output proper-
ties as well as for cases where outputs are linearly
dependent, thus extending previous results of par-
tial realization [8], [10]. Also without any minimal-
ity conditions, we show that several properties of co-
variance factorization and positive realness hold. In
addition, we provide a constructive method to solve
the Riccati equation of covariance analysis by means

" of a reduction to a Lyapunov equation. The case con-
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sidered includes the problem of rank-deficient resid-
ual covariance matrices, a case which is encountered
in applications with mixed stochastic-deterministic
input-output properties as well as for cases where
outputs are linearly dependent. Our approach has
been the formulation of a rank-deficient innovations
model and inverse innovations model in the form of
a state-space inverse model and a left transfer func-
tion inverse applicable to the rank-deficient model
output. This extension is related to a rank-deficient



Riccati equation and is accompanied by a reformula-
tion of the Riccati equation and nonminimal positive
realness conditions.
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