

LUND UNIVERSITY

Spridningsteori med antenntillämpningar

Kristensson, Gerhard

1999

Link to publication

Citation for published version (APA): Kristensson, G. (1999). Spridningsteori med antenntillämpningar. Studentlitteratur AB.

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or recorder.

- or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Gerhard Kristensson

Spridningsteori med Antenntillämpningar

Räkneregler med ∇ -operatorn

- (1) $\nabla(\varphi + \psi) = \nabla\varphi + \nabla\psi$
- (2) $\nabla(\varphi\psi) = \psi\nabla\varphi + \varphi\nabla\psi$
- (3) $\nabla (\boldsymbol{a} \cdot \boldsymbol{b}) = (\boldsymbol{a} \cdot \nabla)\boldsymbol{b} + (\boldsymbol{b} \cdot \nabla)\boldsymbol{a} + \boldsymbol{a} \times (\nabla \times \boldsymbol{b}) + \boldsymbol{b} \times (\nabla \times \boldsymbol{a})$
- (4) $\nabla(\boldsymbol{a} \cdot \boldsymbol{b}) = -\nabla \times (\boldsymbol{a} \times \boldsymbol{b}) + 2(\boldsymbol{b} \cdot \nabla)\boldsymbol{a} + \boldsymbol{a} \times (\nabla \times \boldsymbol{b}) + \boldsymbol{b} \times (\nabla \times \boldsymbol{a}) + \boldsymbol{a}(\nabla \cdot \boldsymbol{b}) \boldsymbol{b}(\nabla \cdot \boldsymbol{a})$
- (5) $\nabla \cdot (\boldsymbol{a} + \boldsymbol{b}) = \nabla \cdot \boldsymbol{a} + \nabla \cdot \boldsymbol{b}$
- (6) $\nabla \cdot (\varphi \boldsymbol{a}) = \varphi (\nabla \cdot \boldsymbol{a}) + (\nabla \varphi) \cdot \boldsymbol{a}$

(7)
$$\nabla \cdot (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{b} \cdot (\nabla \times \boldsymbol{a}) - \boldsymbol{a} \cdot (\nabla \times \boldsymbol{b})$$

- (8) $\nabla \times (\boldsymbol{a} + \boldsymbol{b}) = \nabla \times \boldsymbol{a} + \nabla \times \boldsymbol{b}$
- (9) $\nabla \times (\varphi \boldsymbol{a}) = \varphi(\nabla \times \boldsymbol{a}) + (\nabla \varphi) \times \boldsymbol{a}$
- (10) $\nabla \times (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{a}(\nabla \cdot \boldsymbol{b}) \boldsymbol{b}(\nabla \cdot \boldsymbol{a}) + (\boldsymbol{b} \cdot \nabla)\boldsymbol{a} (\boldsymbol{a} \cdot \nabla)\boldsymbol{b}$

(11)
$$\nabla \times (\boldsymbol{a} \times \boldsymbol{b}) = -\nabla (\boldsymbol{a} \cdot \boldsymbol{b}) + 2(\boldsymbol{b} \cdot \nabla)\boldsymbol{a} + \boldsymbol{a} \times (\nabla \times \boldsymbol{b}) + \boldsymbol{b} \times (\nabla \times \boldsymbol{a}) + \boldsymbol{a}(\nabla \cdot \boldsymbol{b}) - \boldsymbol{b}(\nabla \cdot \boldsymbol{a})$$

- (12) $\nabla \cdot \nabla \varphi = \nabla^2 \varphi = \Delta \varphi$
- (13) $\nabla \times (\nabla \times \boldsymbol{a}) = \nabla (\nabla \cdot \boldsymbol{a}) \nabla^2 \boldsymbol{a}$
- (14) $\nabla \times (\nabla \varphi) = \mathbf{0}$
- (15) $\nabla \cdot (\nabla \times \boldsymbol{a}) = 0$

(16)
$$\nabla^2(\varphi\psi) = \varphi\nabla^2\psi + \psi\nabla^2\varphi + 2\nabla\varphi\cdot\nabla\psi$$

- (17) $\nabla r = \hat{r}$
- (18) $\nabla \times \boldsymbol{r} = \boldsymbol{0}$
- (19) $\nabla \times \hat{\boldsymbol{r}} = \boldsymbol{0}$
- (20) $\nabla \cdot \boldsymbol{r} = 3$
- (21) $\nabla \cdot \hat{\boldsymbol{r}} = \frac{2}{r}$
- (22) $\nabla(\boldsymbol{a} \cdot \boldsymbol{r}) = \boldsymbol{a}, \quad \boldsymbol{a} \text{ konstant vektor}$
- (23) $(\boldsymbol{a} \cdot \nabla)\boldsymbol{r} = \boldsymbol{a}$
- (24) $(\boldsymbol{a} \cdot \nabla)\hat{\boldsymbol{r}} = \frac{1}{r} (\boldsymbol{a} \hat{\boldsymbol{r}} (\boldsymbol{a} \cdot \hat{\boldsymbol{r}})) = \frac{\boldsymbol{a}_{\perp}}{r}$

(25)
$$\nabla^2 (\boldsymbol{r} \cdot \boldsymbol{a}) = 2\nabla \cdot \boldsymbol{a} + \boldsymbol{r} \cdot (\nabla^2 \boldsymbol{a})$$

(26)
$$\nabla u(f) = (\nabla f) \frac{du}{df}$$

(27) $\nabla \cdot \mathbf{F}(f) = (\nabla f) \cdot d\mathbf{F}$

(27)
$$\nabla \cdot \mathbf{F}(f) = (\nabla f) \cdot \frac{\partial f}{\partial f}$$

(28)
$$\nabla \times \mathbf{F}(f) = (\nabla f) \times \frac{d\mathbf{F}}{df}$$

(29)
$$\nabla = \hat{\boldsymbol{r}}(\hat{\boldsymbol{r}} \cdot \nabla) - \hat{\boldsymbol{r}} \times (\hat{\boldsymbol{r}} \times \nabla)$$

Spridningsteori med Antenntillämpningar

Gerhard Kristensson

 \bigodot Gerhard Kristensson, Lund 21 december 2008

Innehåll

	För	ord		vii
1	Gru	Grundläggande ekvationer		
	1.1	Allmä	nna tidsberoende fält	1
		1.1.1	Maxwells fältekvationer	1
		1.1.2	Randvillkor vid gränsytor	4
		1.1.3	Energikonservering och Poyntings sats	8
	1.2	Tidsha	armoniska fält	11
		1.2.1	Maxwells fältekvationer	13
		1.2.2	Poyntings sats	14
		1.2.3	Polarisationsellipsen	15
	1.3	Mater	ialbeskrivning	19
		1.3.1	Konstitutiva relationer	19
		1.3.2	Aktiva, passiva och förlustfria material	24
		1.3.3	Planvågor	26
	1.4	Koher	ens och polarisationsgrad	29
		1.4.1	Opolariserat fält	33
		1.4.2	Fullständigt polariserat fält	34
		1.4.3	Allmän polarisationsgrad	34
		1.4.4	Stokes-parametrarna	35
		1.4.5	Poincaré-sfären	37
		Övningar till kapitel 1		38
		Samm	anfattning av kapitel 1	40
2	Into	aralfra	amställningar	45
2	2.1	Käller och Greenfunktioner		40 45
	2.1	2 1 1	Potentialer och gaugetransformationer	46
		2.1.1 2.1.2	Kanoniskt problem	48
		2.1.2 2.1.3	Icke-strålande källor	51
	2.2	Čerenl	kovstrålning	52
	2.2	2 2 1	Energiutflöde	57
	2.3	Integr	alframställning av fälten	59
	2.0	2.3.1	Ytintegralframställning	62
		Övnin	gar till kapitel 2	65
		Samm	anfattning av kapitel 2	67

3	Inle	dande spridningsteori	69
	3.1	Fjärrfält	71
		3.1.1 Volymformulering	72
		3.1.2 Ytformulering	74
	3.2	Spridningstvärsnitt	81
	3.3	Spridningsdyaden	83
	3.4	Optiska teoremet	87
		3.4.1 Volymformulering	87
		3.4.2 Ytformulering	90
	3.5	Kortvågsapproximationer	92
		3.5.1 Planvågsreflektion mot plan metallyta	95
		3.5.2 Fysikalisk-optik-approximationen	97
		3.5.3 Geometrisk-optik-approximationen	107
	3.6	Långvågsapproximation	118
	3.7	Spridning mot flera objekt	122
	3.8	Några numeriska exempel	126
		Övningar till kapitel 3	128
		Sammanfattning av kapitel 3	133
4	Spri	idning och sfäriska vektorvågor	137
	4.1	Sfäriska vektorvågfunktioner	137
		4.1.1 Definition av stäriska vektorvågor	140
		4.1.2 Utveckling av planvåg	144
		4.1.3 Fjärrfältsamplitud	145
	4.2	Spridning mot perfekt ledande sfär	147
		4.2.1 Långvågsgräns	150
	4.3	Spridning mot dielektrisk sfär	153
		4.3.1 Långvågsgräns	158
		Ovningar till kapitel 4	161
		Sammanfattning av kapitel 4	163
5	Inve	ers spridningsteori	167
0	5.1	Svaga spridare	168
	0.1	5.1.1 Born-approximationen	169
		5.1.2 Bytov-approximationen	171
		5.1.2 Projektionssatsen	174
		5.1.0 Inversion med integralekvation	175
	59	Inversion med for approximation on	178
	0.2	Övringer till kepitel 5	181
		Sammanfattning av kapitel 5	182
		Sammamanuming av rapiter 5	100
\mathbf{A}	Bes	selfunktioner	185
	A.1	Bessel- och Hankelfunktioner	185
	A.2	Sfäriska Bessel- och Hankelfunktioner	188

В	Ortogonalpolynom	191
	B.1 Legendrepolynom	. 191
	B.2 Tjebysjevpolynom	. 192
\mathbf{C}	Klotytfunktioner	195
	C.1 Associerade Legendrefunktioner	. 195
	C.2 Klotytfunktioner	. 196
	C.3 Vektorklotytfunktioner	. 199
D	abla i kroklinjiga koordinatsystem	203
	D.1 Kartesiska koordinater	. 203
	D.2 Cylindriska koordinater	. 204
	D.3 Sfäriska koordinater	. 204
\mathbf{E}	E Beräkning av en integral	
\mathbf{F}	'Enheter och konstanter	
\mathbf{G}	Beteckningar	
	Litteraturförteckning	217
	Facit	219
	Sakregister	223

vi **Innehåll**

Förord

U tbredningen av elektromagnetiska vågor störs ofta av "hinder" av olika slag. Sådana hinder kan vara hus, regn (vattendroppar), vegetation eller berg. Dessa vågutbredningsproblem utgör exempel på s.k. direkta spridningsproblem. Hos ett direkt spridningsproblem är materialet som vågen fortplantas igenom känt, och man vill beräkna de kvantitativa effekterna av spridningen.

Det finns också ett omvänt problem, det s.k. inversa spridningsproblemet. Här vill man med hjälp av spridningsdata ta reda på egenskaper hos det material som gav upphov till spridningen. Det inversa spridningsproblemet har otaliga tillämpningsområden. Viktiga sådana finns inom medicinen, där man önskar avbilda kroppens inre organ utan kirurgiska ingrepp. Även inom andra områden finns stor användning av s.k. icke-förstörande testning av material. Vår kunskap om jordens atmosfär och rymden utanför har vi till stor del fått genom att tolka elektromagnetiska vågors fortplantning genom okända material. Även mikroskopiskt används elektromagnetiska vågor för att undersöka t.ex. atomers och atomkärnors egenskaper.

Denna kurs utgör en introduktion till några av de viktigaste egenskaperna hos elektromagnetiska vågor och deras växelverkan med passiva material och spridare. Kursens syfte är främst att ge en teoretisk behandling av dessa spridningsfenomen. Spridningsteorin är viktig inom teorin för passiva antenner, och boken exemplifierar detta genom en analys av reflektorantenner. Däremot behandlas inte traditionell antennteori.

Kursen förutsätter vissa kunskaper i grundläggande elektromagnetisk fältteori, t.ex. grundkursen i elektromagnetisk fältteori vid våra tekniska högskolor. Maxwells fältekvationer förutsätts vara bekanta, liksom grundläggande vektoranalys och räkningar med nabla-operatorn ∇ .

I det första kapitlet repeteras de allmänna ekvationerna för elektromagnetiska fält—särskilt specialfallet tidsharmoniska fält. En rad viktiga begrepp som effekttransport, aktiva, passiva och förlustfria material definieras, liksom det elektromagnetiska fältets polarisationstillstånd.

De elektromagnetiska fältens representation i volyms- och ytintegraler återfinns i kapitel 2. Dessa representationer ligger till grund för analysen av spridningsproblemen som presenteras i kapitel 3. Kapitel 3 innehåller, förutom definitioner av olika fundamentala spridningsstorheter, en genomgång av det optiska teoremet, olika kortvågsapproximationer samt spridning i långvågsgränsen. Spridning mot flera spridare analyseras i det fall då multipelspridningseffekter kan försummas. Vidare ges i ett avsnitt några exempel på numeriska beräkningar av spridningsproblem. Spridningsteorin utvecklas sedan vidare i kapitel 4 med användning av de sfäriska vektorvågorna och genom att explicit lösa spridning mot sfäriska objekt. Avslutningsvis behandlas i kapitel 5 några enkla inversa spridningsproblem.

Övningar på de olika teoriavsnitten finns samlade i slutet av varje kapitel. Mer krävande övningar är markerade med en stjärna (*). Svar till övningarna finns samlade i ett facit i bokens slut. Varje kapitel avslutas med en sammanfattning av kapitlets viktigaste resultat.

Flera personer har hjälp till vid framställningen av denna bok. Jag vill speciellt framföra ett varm tack till Sören Poulsen för värdefull assistans vid beräkningar av reflektorantenndiagrammen.

Denna bok hade troligen aldrig blivit klar utan den uppmuntran jag fått från min familj. Många helger och sena kvällar har gått åt till skrivarbete och det trogna stöd jag har fått av er har varit ovärderligt. Tack Mona-Lisa, Ester och Elias!

Dalby, december 2008

Gerhard Kristensson

Kapitel 1 Grundläggande ekvationer

Detta kapitel behandlar kortfattat de grundläggande ekvationerna för elektromagnetiska fält. I ett första avsnitt repeteras Maxwells fältekvationer för allmänna tidsberoende fält, randvillkor vid skiljeytor mellan två material samt energikonservering. I ett separat avsnitt behandlas tidsharmoniska förlopp där bl.a. polarisationsellipsen diskuteras. Kapitlet avslutas med ett avsnitt om de konstitutiva relationerna för isotropa material och klassificeringen i passiva, aktiva och förlustfria material.

1.1 Allmänna tidsberoende fält

1.1.1 Maxwells fältekvationer

Maxwells fältekvationer utgör den grundläggande matematiska modellen för praktiskt taget all teoretisk behandling av makroskopiska elektromagnetiska fenomen. James Clerk Maxwell publicerade sina berömda ekvationer 1864, och de tester som utförts sedan dess har givit god experimentell överensstämmelse med denna modell. Först när mikroskopiska fenomen skall förklaras måste en mer noggrann teori införas, där även kvantmekaniska effekter tas med. Det har således genom åren byggts upp ett överväldigande bevismaterial för ekvationernas giltighet i skilda tillämpningar.

Maxwells fältekvationer utgör en av grundstenarna vid behandlingen av makroskopiska elektromagnetiska vågutbredningsfenomen.¹ Ekvationerna lyder²

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{1.1}$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \tag{1.2}$$

¹En utförlig härledning av dessa makroskopiska ekvationer utgående från en mikroskopisk formulering finns att hämta i G. Russakoff, "A Derivation of the Macroscopic Maxwell Equations," *Am. J. Phys.*, **38**(10), 1188–1195 (1970).

 $^{^2\}mathrm{Vi}$ kommer genomgående att använda oss av SI-enheterna (MKSA) för de elektromagnetiska storheterna.

Ekvation (1.1) (eller motsvarande integralformulering) brukar benämnas Faradays induktionslag, medan ekvation (1.2) ofta bär namnet Ampères (generaliserade) lag. De olika ingående vektorfälten i Maxwells fältekvationer är:³

- E Elektrisk fältstyrka [V/m]
- H Magnetisk fältstyrka [A/m]
- D Elektrisk flödestäthet [As/m²]
- \boldsymbol{B} Magnetisk flödestäthet [Vs/m²]
- J Strömtäthet [A/m²]

Dessa fält är funktioner av rums- och tidskoordinaterna (\mathbf{r}, t) . Ofta skriver vi inte explicit ut dessa variabler för att beteckningarna skall bli enkla. Endast i de fall där missförstånd kan uppstå eller där vi särskilt vill påpeka funktionsberoendet skrivs variablerna ut.

Den elektriska fältstyrkan E och den magnetiska flödestätheten B definieras genom kraftverkan på en laddad partikel genom *Lorentz-kraften*

$$\boldsymbol{F} = q\left\{\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}\right\}$$

där q är partikelns laddning och v dess hastighet.

De fria laddningarna i materialet, t.ex. ledningselektroner, beskrivs av strömtätheten J. De bundna laddningarnas bidrag, t.ex. från elektroner bundna till atomkärnan, ingår i den elektriska flödestätheten D. Vi kommer senare i detta avsnitt att återkomma till skillnaderna mellan elektrisk flödestäthet D och elektrisk fältstyrka E, liksom till skillnaderna mellan magnetisk fältstyrka H och magnetisk flödestäthet B.

Ett annat fundamentalt antagande i elläran är lagen om laddningens oförstörbarhet. Éven denna naturlag är experimentellt mycket noggrant uttestad. Ett sätt att uttrycka laddningskonserveringen matematiskt är genom *laddningens kontinuitetsekvation*

$$\nabla \cdot \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0 \tag{1.3}$$

Här är ρ den till strömtätheten J hörande laddningstätheten (laddning/volymsenhet). ρ beskriver således de fria laddningarnas laddningstäthet.

Vanligen associeras ytterligare två ekvationer till Maxwells fältekvationer.

$$\nabla \cdot \boldsymbol{B} = 0 \tag{1.4}$$

$$\nabla \cdot \boldsymbol{D} = \rho \tag{1.5}$$

Ekvation (1.4) implicerar avsaknaden av magnetiska punktladdningar och innebär att det magnetiska flödet är bevarat. Ekvation (1.5) bär namnet *Gauss lag.* Dessa

³Dessa benämningar överensstämmer med Svensk standard [25]. Andra förekommande benämningar på H-fältet och D-fältet är amperevarvstäthet respektive elektriskt förskjutningsfält [13]. Man ser även ibland att B-fältet kallas magnetiskt fält. Vi kommer dock att använda de namn som föreslås av Svensk standard eller rätt och slätt skriva E-fält, D-fält, B-fält och H-fält.

båda ekvationer kan under lämpliga antaganden ses som en konsekvens av ekvationerna (1.1), (1.2) och (1.3). Tag nämligen divergensen av (1.1) och (1.2). Detta leder till

$$\nabla \cdot \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
$$\nabla \cdot \boldsymbol{J} + \nabla \cdot \frac{\partial \boldsymbol{D}}{\partial t} = 0$$

eftersom $\nabla \cdot (\nabla \times \mathbf{A}) = 0$. En växling av deriveringsordningen och användning av (1.3) ger

$$\frac{\partial (\nabla \cdot \boldsymbol{B})}{\partial t} = 0$$
$$\frac{\partial (\nabla \cdot \boldsymbol{D} - \rho)}{\partial t} = 0$$

Från dessa ekvationer följer att

$$abla \cdot \boldsymbol{B} = f_1$$

 $abla \cdot \boldsymbol{D} - \rho = f_2$

där f_1 och f_2 är två funktioner som ej explicit beror på tiden t (kan däremot bero på rumskoordinaterna r). Om fälten B, D och ρ antas vara identiskt noll före en fix ändlig tid, dvs

$$B(\mathbf{r},t) = \mathbf{0}$$
$$D(\mathbf{r},t) = \mathbf{0}$$
$$\rho(\mathbf{r},t) = 0$$

för $t < \tau$ för något ändligt τ , så följer av detta antagande ekvationerna (1.4) och (1.5). Rent statiska fält eller tidsharmoniska fält uppfyller naturligtvis inte detta antagande, eftersom det inte går att finna någon ändlig tid τ , före vilken alla fält är noll.⁴ För tidsberoende fält gör vi det rimliga antagandet att fält och laddningar i en punkt inte existerat i evighet. Ekvationerna (1.1), (1.2) och (1.3) utgör då en tillräcklig uppsättning differentialekvationer för de elektromagnetiska fälten, strömtätheten och laddningstätheten.

Maxwells fältekvationer (1.1) och (1.2) är tillsammans 6 stycken ekvationer—en för varje vektorkomponent. Om strömtätheten J är given, så innehåller Maxwells fältekvationer totalt 12 stycken obekanta (4 stycken vektorfält E, B, D och H). Det "fattas" således 6 stycken ekvationer för att få lika många ekvationer som obekanta. De konstitutiva relationerna ger dessa återstående 6 ekvationer.

I vakuum är den elektriska fältstyrkan E och den elektriska flödestätheten D parallella. Detsamma gäller för den magnetiska flödestätheten B och den magnetiska fältstyrkan H. Det gäller att

 $^{^4\}mathrm{Vi}$ återkommer till härledningen av ekvationerna (1.4) och (1.5) för tidsharmoniska fält i avsnitt 1.2.1 på sidan 13.

$$oldsymbol{D} = \epsilon_0 oldsymbol{E}$$

 $oldsymbol{B} = \mu_0 oldsymbol{H}$

där ϵ_0 och μ_0 är vakuums dielektricitets- respektive permeabilitetskonstant. Numeriska värden på dessa konstanter är $\epsilon_0 \approx 8.854 \cdot 10^{-12} \text{ As/Vm}$ och $\mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/Am} \approx 1.257 \cdot 10^{-6} \text{ Vs/Am}.$

Inuti ett material är skillnaden mellan den elektriska fältstyrkan E och den elektriska flödestätheten D samt mellan den magnetiska flödestätheten B och den magnetiska fältstyrkan H ett mått på växelverkan mellan laddningsbärarna i materialet och fälten. Ofta införs två nya vektorfält, polarisationen P och magnetiseringen M, för att beskriva dessa skillnader mellan fälten. De definieras genom

$$\boldsymbol{P} = \boldsymbol{D} - \epsilon_0 \boldsymbol{E} \tag{1.6}$$

$$\boldsymbol{M} = \frac{1}{\mu_0} \boldsymbol{B} - \boldsymbol{H} \tag{1.7}$$

Vektorfältet P kan grovt sägas utgöra ett mått på hur mycket de bundna laddningarna är förskjutna i förhållande till sina neutrala opåverkade positioner. Detta inkluderar både *permanent* och *inducerad polarisation*. Det största bidraget till detta fält härrör från tyngdpunktsförskjutningar hos de positiva och negativa laddningsbärarna i materialet, men även högre ordningens effekter bidrar. På liknande sätt utgör magnetiseringen M ett mått på de resulterande (bundna) strömmarna i materialet. Éven detta fält kan vara av *permanent* eller *inducerad* natur.

Att ange ett materials polarisation och magnetisering är ekvivalent med att ange de konstitutiva relationerna för materialet och innebär att ytterligare 6 ekvationer som karakteriserar materialet specificeras.

1.1.2 Randvillkor vid gränsytor

I gränsskiktet mellan två material varierar de elektromagnetiska fälten diskontinuerligt på ett föreskrivet sätt, som är relaterat till materialens elektriska och magnetiska egenskaper på ömse sidor om gränsytan. Det sätt på vilket de varierar är en konsekvens av Maxwells fältekvationer, och här ges en enkel härledning av dessa villkor, som fälten måste uppfylla vid gränsytan. Endast ytor som är fixa i tiden (ej i rörelse) behandlas här.

Maxwells fältekvationer, såsom de presenterades i avsnitt 1.1.1, förutsätter att de elektromagnetiska fälten är differentierbara som funktion av rums- och tidsvariablerna. Vid en gränsyta mellan två material är, som redan påpekats, fälten i allmänhet diskontinuerliga som funktion av rumskoordinaterna. Därför behöver vi omformulera dessa ekvationer till en form med mer generell giltighet. Syftet med denna omskrivning är att få ekvationer som gäller även då fälten inte är differentierbara i alla punkter.

Figur 1.1: Geometri för integration.

Låt V vara en godtycklig (enkelt sammanhängande) volym med randyta S och utåtriktad normal \hat{n} i det område som vi behandlar, se figur 1.1.

Integrera Maxwells fältekvationer, (1.1)–(1.2) och (1.4)–(1.5), över volymen V.

$$\iiint_{V} \nabla \times \boldsymbol{E} \, dv = -\iiint_{V} \frac{\partial \boldsymbol{B}}{\partial t} \, dv$$
$$\iiint_{V} \nabla \times \boldsymbol{H} \, dv = \iiint_{V} \boldsymbol{J} \, dv + \iiint_{V} \frac{\partial \boldsymbol{D}}{\partial t} \, dv$$
$$\iiint_{V} \nabla \cdot \boldsymbol{B} \, dv = 0$$
$$\iiint_{V} \nabla \cdot \boldsymbol{D} \, dv = \iiint_{V} \rho \, dv$$

där dv är volymsmåttet ($dv = dx \, dy \, dz$).

Följande två integrationssatser för vektorfält är nu lämpliga att använda:

$$\iiint_{V} \nabla \cdot \boldsymbol{A} \, dv = \iint_{S} \boldsymbol{A} \cdot \hat{\boldsymbol{n}} \, dS$$
$$\iiint_{V} \nabla \times \boldsymbol{A} \, dv = \iint_{S} \hat{\boldsymbol{n}} \times \boldsymbol{A} \, dS$$

där A är ett godtyckligt (kontinuerligt deriverbart) vektorfält och dS ytan S:s ytelement. Det första sambandet brukar benämnas divergenssatsen eller Gauss sats⁵ och det andra en till divergenssatsen analog sats.

Resultatet blir efter en skiftning av derivering m.a.p. tiden t och integration

⁵Skilj på Gauss lag, (1.5), och Gauss sats.

Figur 1.2: Gränsyta mellan två olika material 1 och 2.

(volymen V är fix i tiden och vi antar att fälten är tillräckligt reguljära).

$$\iint_{S} \hat{\boldsymbol{n}} \times \boldsymbol{E} \, dS = -\frac{d}{dt} \iiint_{V} \boldsymbol{B} \, dv \tag{1.8}$$

$$\iint_{S} \hat{\boldsymbol{n}} \times \boldsymbol{H} \, dS = \iiint_{V} \boldsymbol{J} \, dv + \frac{d}{dt} \iiint_{V} \boldsymbol{D} \, dv \tag{1.9}$$

$$\iint_{S} \boldsymbol{B} \cdot \hat{\boldsymbol{n}} \, dS = 0 \tag{1.10}$$

$$\iint_{S} \boldsymbol{D} \cdot \hat{\boldsymbol{n}} \, dS = \iiint_{V} \rho \, dv \tag{1.11}$$

För ett område V där fälten E, B, D och H är kontinuerligt differentierbara är dessa integralformler helt ekvivalenta med differentialformuleringen i avsnitt 1.1.1. Denna ekvivalens har vi här visat åt ena hållet. ?t det andra hållet gör man räkningarna baklänges och utnyttjar att volymen V kan väljas godtycklig.

Integralformuleringen, (1.8)–(1.11), har emellertid den fördelen att de ingående fälten inte behöver vara differentierbara i rumsvariablerna för att ha en mening. I detta avseende är integralformuleringen mer allmän än differentialformuleringen i avsnitt 1.1.1. Fälten $\boldsymbol{E}, \boldsymbol{B}, \boldsymbol{D}$ och \boldsymbol{H} , som satisfierar ekvationerna (1.8)–(1.11)sägs vara svaga lösningar till Maxwells ekvationer, i de fall de inte är kontinuerligt differentierbara och differentialekvationerna i avsnitt 1.1.1 saknar mening.

Dessa integralformler tillämpas nu på en speciell volym V, som skär gränsytan mellan två olika material, se figur 1.2. Normalriktningen \hat{n} är riktad från material 2 in i material 1. Vi antar att de elektromagnetiska fälten E, B, D och Hoch deras tidsderivator har ändliga värden intill gränsytan från båda håll. Dessa gränsvärden betecknas E_1 respektive E_2 på ömse sidor om gränsytan. Gränsvärdena på de övriga tre fälten betecknas på liknande sätt med index 1 eller 2. Strömtätheten J och laddningstätheten ρ kan däremot tillåtas anta oändliga värden, som fallet är vid metalliska ytor.⁶ Det visar sig lämpligt att införa en *ytströmtäthet* J_S och en *ytladdningstäthet* ρ_S enligt följande gränsförfarande:

$$J_S = hJ$$
$$\rho_S = h\rho$$

där h är en tjocklek inom vilken laddningarna finns koncentrerade. Denna tjocklek låter vi gå mot noll samtidigt som J och ρ blir oändligt stora på ett sådant sätt att J_S och ρ_S har väldefinierade ändliga värden i denna gränsprocess. Vid detta gränsförfarande antags ytströmtätheten J_S endast ha komponenter parallellt med gränsytan. Höjden på volymen V låter vi vara denna tjocklek h och arean på basrespektive toppytan är a, som är liten jämfört med fältens variation längs skiljeytan och ytans krökning.

Termerna $\frac{d}{dt} \iiint_V \mathbf{B} dv$ och $\frac{d}{dt} \iiint_V \mathbf{D} dv$ går båda mot noll då $h \to 0$, eftersom fälten \mathbf{B} och \mathbf{D} och deras tidsderivator antas vara ändliga vid gränsytan. Vidare gäller att alla bidrag från sidoytorna (area $\sim h$) i ytintegralerna i (1.8)–(1.11) går mot noll då $h \to 0$. Bidragen från toppytan (normal $\hat{\mathbf{n}}$) och basytan (normal $-\hat{\mathbf{n}}$) är proportionella mot arean a, om arean väljs tillräckligt liten och medelvärdessatsen för integraler används. Följande bidrag från topp- respektive basytan i ytintegralerna återstår efter gränsövergång $h \to 0$.

$$a \left[\hat{\boldsymbol{n}} \times (\boldsymbol{E}_1 - \boldsymbol{E}_2) \right] = \boldsymbol{0}$$

$$a \left[\hat{\boldsymbol{n}} \times (\boldsymbol{H}_1 - \boldsymbol{H}_2) \right] = ah\boldsymbol{J} = a\boldsymbol{J}_S$$

$$a \left[\hat{\boldsymbol{n}} \cdot (\boldsymbol{B}_1 - \boldsymbol{B}_2) \right] = 0$$

$$a \left[\hat{\boldsymbol{n}} \cdot (\boldsymbol{D}_1 - \boldsymbol{D}_2) \right] = ah\rho = a\rho_S$$

Förenkla genom att dividera med arean a. Resultatet blir

$$\begin{cases} \hat{\boldsymbol{n}} \times (\boldsymbol{E}_1 - \boldsymbol{E}_2) = \boldsymbol{0} \\ \hat{\boldsymbol{n}} \times (\boldsymbol{H}_1 - \boldsymbol{H}_2) = \boldsymbol{J}_S \\ \hat{\boldsymbol{n}} \cdot (\boldsymbol{B}_1 - \boldsymbol{B}_2) = \boldsymbol{0} \\ \hat{\boldsymbol{n}} \cdot (\boldsymbol{D}_1 - \boldsymbol{D}_2) = \rho_S \end{cases}$$
(1.12)

Dessa randvillkor föreskriver hur de elektromagnetiska fälten är relaterade till varandra på ömse sidor om gränsytan (normalen \hat{n} är riktad från material 2 in i material 1). Vi kan formulera dessa randvillkor i text:

- Elektriska fältstyrkans tangentialkomponent är kontinuerlig över gränsytan.
- Magnetiska fältstyrkans tangentialkomponent är diskontinuerlig över gränsytan. Diskontinuitetens storlek är J_S . I det fall ytströmtätheten är noll, vilket

 $^{^6\}mathrm{Detta}$ är naturligtvis en idealisering av en verklighet där tä
theten antar mycket stora värden inom ett makroskopiskt tunt gränsskikt.

Figur 1.3: Variation av $B \cdot \hat{n}$ och $D \cdot \hat{n}$ vid skiljeytan.

t. ex. inträffar om materialet har ändlig ledningsförmåga,
7 $\ddot{\rm ar}$ tangentialkomponenten kontinuerlig över gränsytan.

- Magnetiska flödestäthetens normalkomponent är kontinuerlig över gränsytan.
- Elektriska flödestäthetens normalkomponent är diskontinuerlig över gränsytan. Diskontinuitetens storlek är ρ_S . I det fall ytladdningstätheten är noll är normalkomponenten kontinuerlig över gränsytan.

I figur 1.3 exemplifieras hur normalkomponenterna hos de magnetiska och elektriska flödestätheterna kan variera vid skiljeytan mellan två material.

Ett viktigt specialfall, som ofta förekommer, är det fall då material 2 är en perfekt ledare, som är en modell av ett material som har lättrörliga laddningsbärare, t.ex. flera metaller. I material 2 är fälten noll och vi får från (1.12)

$$\begin{cases} \hat{\boldsymbol{n}} \times \boldsymbol{E}_{1} = \boldsymbol{0} \\ \hat{\boldsymbol{n}} \times \boldsymbol{H}_{1} = \boldsymbol{J}_{S} \\ \hat{\boldsymbol{n}} \cdot \boldsymbol{B}_{1} = \boldsymbol{0} \\ \hat{\boldsymbol{n}} \cdot \boldsymbol{D}_{1} = \rho_{S} \end{cases}$$
(1.13)

där J_S och ρ_S är metallytans ytströmtäthet respektive ytladdningstäthet.

1.1.3 Energikonservering och Poyntings sats

Energikonservering visas genom att utgå från Maxwells ekvationer (1.1) och (1.2).

⁷Detta följer av antagandet att det elektriska fältet E är ändligt nära gränsytan, vilket medför att $J_S = hJ = h\sigma E \rightarrow 0$, då $h \rightarrow 0$.

$$abla imes oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$$
 $abla imes oldsymbol{H} = oldsymbol{J} + rac{\partial oldsymbol{D}}{\partial t}$

Multiplicera den första ekvationen skalärt med ${\pmb H}$ och den andra med ${\pmb E}$ samt subtrahera. Resultatet blir

$$\boldsymbol{H} \cdot (\nabla \times \boldsymbol{E}) - \boldsymbol{E} \cdot (\nabla \times \boldsymbol{H}) + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{E} \cdot \boldsymbol{J} = 0$$

Därefter använder vi räkneregeln $\nabla \cdot (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{b} \cdot (\nabla \times \boldsymbol{a}) - \boldsymbol{a} \cdot (\nabla \times \boldsymbol{b})$ för att skriva om detta uttryck.

$$\nabla \cdot (\boldsymbol{E} \times \boldsymbol{H}) + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{E} \cdot \boldsymbol{J} = 0$$

Vi inför Poyntings vektor⁸ $S = E \times H$ vilket resulterar i Poyntings sats.

$$\nabla \cdot \boldsymbol{S} + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{E} \cdot \boldsymbol{J} = 0$$
(1.14)

Poyntings vektor S anger det elektromagnetiska fältets effektflödestäthet eller effekttransport per ytenhet i vektorn S:s riktning. Detta ses klarare om vi integrerar (1.14) över en volym V, randyta S och utåtriktad normal \hat{n} , se figur 1.1, och använder divergenssatsen.

$$\iint_{S} \boldsymbol{S} \cdot \hat{\boldsymbol{n}} \, dS = \iiint_{V} \nabla \cdot \boldsymbol{S} \, dv$$
$$= -\iiint_{V} \left[\boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} \right] \, dv - \iiint_{V} \boldsymbol{E} \cdot \boldsymbol{J} \, dv$$
(1.15)

Termerna tolkas på följande sätt:

• Vänstra ledet:

$$\iint_{S} \boldsymbol{S} \cdot \hat{\boldsymbol{n}} \, dS$$

ger den totalt utstrålade effekten, dvs. energi per tidsenhet, genom ytan S, buren av det elektromagnetiska fältet.

• Högra ledet: Effektflödet ut genom ytan S kompenseras av två bidrag. Den första volymsintegralen i högra ledet

$$\iiint_V \left[\boldsymbol{H} \cdot \frac{\partial}{\partial t} \boldsymbol{B} + \boldsymbol{E} \cdot \frac{\partial}{\partial t} \boldsymbol{D} \right] dv$$

⁸John Henry Poynting (1852–1914), engelsk fysiker.

anger den till det elektromagnetiska fältet
iV bundna effekten. 9 Den andra volym
sintegralen

$$\iiint_V \boldsymbol{E} \cdot \boldsymbol{J} \, dv$$

anger arbetet per tidsenhet, dvs. effekten, som det elektriska fältet uträttar på de fria laddningsbärarna.

Ekvation (1.15) uttrycker därför energibalans.¹⁰

Genom S utstrålad effekt + effektförbrukning i V

= – effekt bunden till det elektromagnetiska fältet

I härledningen ovan antog vi att volymen V inte skar någon yta där fälten varierade diskontinuerligt, t.ex. en gränsyta mellan två material. Om skiljeytan S är en gränsyta mellan två olika material, se figur 1.2, gäller att Poyntings vektor i material 1 nära gränsytan är

$$\boldsymbol{S}_1 = \boldsymbol{E}_1 \times \boldsymbol{H}_1$$

medan Poyntings vektor nära gränsytan i material 2 är

$$oldsymbol{S}_2 = oldsymbol{E}_2 imes oldsymbol{H}_2$$

Randvillkoren vid gränsytan ges av (1.12).

$$egin{aligned} \hat{m{n}} imes m{E}_1 &= \hat{m{n}} imes m{E}_2 \ \hat{m{n}} imes m{H}_1 &= \hat{m{n}} imes m{H}_2 + m{J}_S \end{aligned}$$

Vi skall nu visa att effekten som det elektromagnetiska fältet transporterar genom skiljeytan är kontinuerlig. Med andra ord att

$$\iint_{S} \boldsymbol{S}_{1} \cdot \hat{\boldsymbol{n}} \, dS = \iint_{S} \boldsymbol{S}_{2} \cdot \hat{\boldsymbol{n}} \, dS - \iint_{S} \boldsymbol{E}_{2} \cdot \boldsymbol{J}_{S} \, dS \tag{1.16}$$

där ytan S är en godtycklig del av gränsytan. Notera att enhetsvektorn \hat{n} är riktad från material 2 in i materialet 1. Den sista ytintegralen anger effektutvecklingen, som det elektriska fältet uträttar på de fria laddningsbärarna i skiljeytan. Finns det inga ytströmmar i gränsytan är normalkomponenten av Poyntings vektor kontinuerlig över gränsytan och vi får effektkonservering över gränsytan. Det är egalt vilket elektriskt fält som ingår i den sista ytintegralen i (1.16), eftersom ytströmmen J_S är parallell med ytan S och det elektriska fältets tangentialkomponent är kontinuerlig vid gränsytan, dvs.

$$\iint_{S} \boldsymbol{E}_{1} \cdot \boldsymbol{J}_{S} \, dS = \iint_{S} \boldsymbol{E}_{2} \cdot \boldsymbol{J}_{S} \, dS$$

⁹Effektförbrukningen för att polarisera och magnetisera materialet innefattas i denna term.

¹⁰Egentligen effektbalans.

Vi visar (1.16) lättast genom cyklisk permutation av de ingående vektorerna och genom att använda randvillkoren.

$$\begin{aligned} \hat{\boldsymbol{n}} \cdot \boldsymbol{S}_1 &= \hat{\boldsymbol{n}} \cdot (\boldsymbol{E}_1 \times \boldsymbol{H}_1) = \boldsymbol{H}_1 \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{E}_1) = \boldsymbol{H}_1 \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{E}_2) \\ &= -\boldsymbol{E}_2 \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{H}_1) = -\boldsymbol{E}_2 \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{H}_2 + \boldsymbol{J}_S) \\ &= \hat{\boldsymbol{n}} \cdot (\boldsymbol{E}_2 \times \boldsymbol{H}_2) - \boldsymbol{E}_2 \cdot \boldsymbol{J}_S = \hat{\boldsymbol{n}} \cdot \boldsymbol{S}_2 - \boldsymbol{E}_2 \cdot \boldsymbol{J}_S \end{aligned}$$

Integrerar vi detta uttryck över skiljeytan S får vi ekvation (1.16).

1.2 Tidsharmoniska fält

Fouriertransformen (i tiden) av ett vektorfält, t.ex. det elektriska fältet, $\boldsymbol{E}(\boldsymbol{r},t)$, definieras som

$$\boldsymbol{E}(\boldsymbol{r},\omega) = \int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},t) e^{i\omega t} dt$$

med invers transform

$$\boldsymbol{E}(\boldsymbol{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} \, d\omega$$

På liknande sätt definieras Fouriertransformen av alla de övriga tidsberoende vektoroch skalärfälten. För att undvika klumpiga beteckningar används samma symboler för det fysikaliska fältet $\boldsymbol{E}(\boldsymbol{r},t)$, som för det fouriertransformerade fältet $\boldsymbol{E}(\boldsymbol{r},\omega)$. I de allra flesta fall framgår det av sammanhanget om det fysikaliska eller det fouriertransformerade fältet avses. I tveksamma fall skrivs tidsargumentet t eller (vinkel-)frekvensen ω ut, och på så sätt anges vilket fält som åsyftas. Notera att det fysikaliska fältet $\boldsymbol{E}(\boldsymbol{r},t)$ alltid är en reell storhet, medan det fouriertransformerade fältet $\boldsymbol{E}(\boldsymbol{r},\omega)$ i allmänhet är komplext.

Eftersom de fysikaliska fälten alltid är reella storheter medför detta att Fouriertransformen för negativa ω är relaterad till Fouriertransformen för positiva ω . Att \boldsymbol{E} -fältet är reellvärt innebär att

$$\int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} \, d\omega = \left\{ \int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} \, d\omega \right\}^*$$

där * innebär komplexkonjugering. För reella ω gäller således

$$\int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} \, d\omega = \int_{-\infty}^{\infty} \boldsymbol{E}^*(\boldsymbol{r},\omega) e^{i\omega t} \, d\omega = \int_{-\infty}^{\infty} \boldsymbol{E}^*(\boldsymbol{r},-\omega) e^{-i\omega t} \, d\omega$$

där vi i den sista integralen gjort en variabeltransformation $\omega \to -\omega$. För reella ω gäller därför att

$$\boldsymbol{E}(\boldsymbol{r},\omega) = \boldsymbol{E}^*(\boldsymbol{r},-\omega)$$

När det tidsberoende fältet skall konstrueras från Fouriertransformen räcker det således att endast integrera över de icke-negativa frekvenserna. Genom variabelbytet,

Band	Frekvens	Våglängd	Tillämpning
ELF	$< 3 \; KHz$	$> 100 \ km$	
VLF	330~KHz	$10010\;km$	Navigation
LV	30300~KHz	10–1~km	Navigation
MV	3003000~KHz	$1000 - 100 \ m$	Radio
KV (HF)	$3–30\ MHz$	100–10 m	Radio
VHF	30300~MHz	$101\ m$	FM, TV
UHF	3001000~MHz	$10030\ cm$	Radar, TV, navigation, mobilizatio
\dagger^a	$1–30 \; GHz$	$30–1\ cm$	Radar, satellitkommunikation
\dagger^a	30–300~GHz	101~mm	Radar
	$4.2 7.9 \cdot 10^{14} \ Hz$	$0.380.72\;\mu m$	Synligt ljus

 a Se även tabell 1.2.

Tabell 1.1: Tabell över elektromagnetiska vågors spektrum.

 $\omega \to -\omega$, och utnyttjande av villkoret ovan får vi nämligen

$$\boldsymbol{E}(\boldsymbol{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} d\omega$$

= $\frac{1}{2\pi} \left\{ \int_{-\infty}^{0} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} d\omega + \int_{0}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} d\omega \right\}$
= $\frac{1}{2\pi} \int_{0}^{\infty} \left[\boldsymbol{E}^{*}(\boldsymbol{r},\omega) e^{i\omega t} + \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} \right] d\omega = \frac{1}{\pi} \operatorname{Re} \int_{0}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} d\omega$
(1.17)

där Re anger realdelen av det efterkommande komplexa uttrycket, som i detta fall är hela integralen. Det räcker således att integrera över de positiva frekvenserna och att sedan ta realdelen av integralen. Motsvarande villkor gäller givetvis för alla övriga fouriertransformerade fält som vi använder.

Fält med ett rent harmoniskt tidsberoende är i många tillämpningar speciellt intressanta, se tabell 1.1. Radartillämpningarnas frekvensband ges i tabell 1.2. Tidsharmoniska fält har komponenter vars tidsberoende kan skrivas på formen

$$\cos(\omega_0 t - \alpha)$$

Sådana fält får vi lätt med Fouriertransformen. Tag nämligen

$$\begin{split} \boldsymbol{E}(\boldsymbol{r},\omega) &= \pi \left\{ \delta(\omega - \omega_0) \left[\hat{\boldsymbol{x}} E_x(\boldsymbol{r}) + \hat{\boldsymbol{y}} E_y(\boldsymbol{r}) + \hat{\boldsymbol{z}} E_z(\boldsymbol{r}) \right] \\ &+ \delta(\omega + \omega_0) \left[\hat{\boldsymbol{x}} E_x^*(\boldsymbol{r}) + \hat{\boldsymbol{y}} E_y^*(\boldsymbol{r}) + \hat{\boldsymbol{z}} E_z^*(\boldsymbol{r}) \right] \right\} \\ &= \pi \left\{ \delta(\omega - \omega_0) \left[\hat{\boldsymbol{x}} |E_x(\boldsymbol{r})| e^{i\alpha(\boldsymbol{r})} + \hat{\boldsymbol{y}} |E_y(\boldsymbol{r})| e^{i\beta(\boldsymbol{r})} + \hat{\boldsymbol{z}} |E_z(\boldsymbol{r})| e^{i\gamma(\boldsymbol{r})} \right] \\ &+ \delta(\omega + \omega_0) \left[\hat{\boldsymbol{x}} |E_x(\boldsymbol{r})| e^{-i\alpha(\boldsymbol{r})} + \hat{\boldsymbol{y}} |E_y(\boldsymbol{r})| e^{-i\beta(\boldsymbol{r})} + \hat{\boldsymbol{z}} |E_z(\boldsymbol{r})| e^{-i\gamma(\boldsymbol{r})} \right] \right\} \end{split}$$

Band	Frekvens GHz
L	1 - 2
\mathbf{S}	2 - 4
\mathbf{C}	4-8
Х	8 - 12
K_{u}	12 - 18
Κ	18 - 27
\mathbf{K}_{a}	27 - 40
millimeterband	40-300

 Tabell 1.2:
 Tabell över radarbandens frekvenser.

där $\alpha(\mathbf{r}), \beta(\mathbf{r}) \operatorname{och} \gamma(\mathbf{r})$ är komponenternas komplexa argument (fas), $\omega_0 \geq 0$ och där $\delta(\omega)$ är deltafunktionen. Notera att denna transform uppfyller $\mathbf{E}(\mathbf{r}, \omega) = \mathbf{E}^*(\mathbf{r}, -\omega)$, som är kravet på ett reellt fält. Efter invers Fouriertransform får vi det fysikaliska fältet

$$\begin{aligned} \boldsymbol{E}(\boldsymbol{r},t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} \, d\omega \\ &= \left\{ \hat{\boldsymbol{x}} | E_x(\boldsymbol{r}) | \cos(\omega_0 t - \alpha(\boldsymbol{r})) + \hat{\boldsymbol{y}} | E_y(\boldsymbol{r}) | \cos(\omega_0 t - \beta(\boldsymbol{r})) \right. \\ &+ \left. \hat{\boldsymbol{z}} | E_z(\boldsymbol{r}) | \cos(\omega_0 t - \gamma(\boldsymbol{r})) \right\} \end{aligned}$$

Rent tidsharmoniska fält får vi också enklare genom att utnyttja endast de positiva frekvenserna och sedan ta realdelen

$$\boldsymbol{E}(\boldsymbol{r},t) = \operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{r},\omega)e^{-i\omega t}\right\}$$
(1.18)

Om $\boldsymbol{E}(\boldsymbol{r},\omega)$ skrivs som

$$\begin{split} \boldsymbol{E}(\boldsymbol{r},\omega) &= \hat{\boldsymbol{x}} E_x(\boldsymbol{r},\omega) + \hat{\boldsymbol{y}} E_y(\boldsymbol{r},\omega) + \hat{\boldsymbol{z}} E_z(\boldsymbol{r},\omega) \\ &= \hat{\boldsymbol{x}} |E_x(\boldsymbol{r},\omega)| e^{i\alpha(\boldsymbol{r})} + \hat{\boldsymbol{y}} |E_y(\boldsymbol{r},\omega)| e^{i\beta(\boldsymbol{r})} + \hat{\boldsymbol{z}} |E_z(\boldsymbol{r},\omega)| e^{i\gamma(\boldsymbol{r})} \end{split}$$

får vi samma uttryck som ovan (nu utan index på ω).

1.2.1 Maxwells fältekvationer

Ett första steg i vår analys med tidsharmoniska fält blir att fouriertransformera Maxwells ekvationer (1.1) och (1.2) $\left(\frac{\partial}{\partial t} \to -i\omega\right)$

$$\nabla \times \boldsymbol{E}(\boldsymbol{r},\omega) = i\omega \boldsymbol{B}(\boldsymbol{r},\omega) \tag{1.19}$$

$$\nabla \times \boldsymbol{H}(\boldsymbol{r},\omega) = \boldsymbol{J}(\boldsymbol{r},\omega) - i\omega \boldsymbol{D}(\boldsymbol{r},\omega)$$
(1.20)

Det implicita harmoniska tidsberoendet $\exp\{-i\omega t\}$ är underförstått i dessa ekvationer, dvs. de fysikaliska fälten är

$$\boldsymbol{E}(\boldsymbol{r},t) = \operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{r},\omega)e^{-i\omega t}\right\}$$

Samma konvention tillämpas alltid för tidsharmoniska fält. Notera att de elektromagnetiska fälten $E(\mathbf{r}, \omega)$, $B(\mathbf{r}, \omega)$, $D(\mathbf{r}, \omega)$ och $H(\mathbf{r}, \omega)$, jämte strömtätheten $J(\mathbf{r}, \omega)$ i allmänhet är komplexa storheter.

Kontinuitetsekvationen (1.3) blir på liknande sätt

$$\nabla \cdot \boldsymbol{J}(\boldsymbol{r},\omega) - i\omega\rho(\boldsymbol{r},\omega) = 0 \tag{1.21}$$

De två återstående ekvationerna från avsnitt 1.1.1, (1.4) och (1.5), transformeras till

$$\nabla \cdot \boldsymbol{B}(\boldsymbol{r},\omega) = 0 \tag{1.22}$$

$$\nabla \cdot \boldsymbol{D}(\boldsymbol{r},\omega) = \rho(\boldsymbol{r},\omega) \tag{1.23}$$

Båda dessa ekvationer är en konsekvens av (1.19) och (1.20) och kontinuitetsekvationen (1.21) (jämför avsnitt 1.1.1, sidan 3). Tag nämligen divergensen på Maxwells fältekvationer (1.19) och (1.20) vilket ger $(\nabla \cdot (\nabla \times \mathbf{A}) = 0)$

$$\begin{split} &i\omega\nabla\cdot\boldsymbol{B}(\boldsymbol{r},\omega)=0\\ &i\omega\nabla\cdot\boldsymbol{D}(\boldsymbol{r},\omega)=\nabla\cdot\boldsymbol{J}(\boldsymbol{r},\omega)=i\omega\rho(\boldsymbol{r},\omega) \end{split}$$

Division med $i\omega$ (förutsatt att $\omega \neq 0$) ger sedan (1.22) och (1.23).

1.2.2 Poyntings sats

I detta avsnitt undersöker vi vilka speciella förhållanden som gäller för Poyntings sats i det fall vi har tidsharmoniska förlopp.

I avsnitt 1.1.3 härledde vi Poyntings sats, se (1.14) på sidan 9.

$$\nabla \cdot \boldsymbol{S}(t) + \boldsymbol{H}(t) \cdot \frac{\partial \boldsymbol{B}(t)}{\partial t} + \boldsymbol{E}(t) \cdot \frac{\partial \boldsymbol{D}(t)}{\partial t} + \boldsymbol{E}(t) \cdot \boldsymbol{J}(t) = 0$$

Vi har här valt att undertrycka fältens rumsberoende och endast skriva ut tidsberoendet t, eftersom vi betraktar en fix rumspunkt r.

Ekvationen beskriver effektkonservering och innehåller produkter av fält. Vi är här intresserade av att studera tidsharmoniska fält, och den storhet som då är av störst intresse är tidsmedelvärdet över en period.¹¹ Tidsmedelvärdet betecknas med $\langle \cdot \rangle$ och för Poyntings sats får vi

$$<\nabla \cdot \boldsymbol{S}(t)>+<\boldsymbol{H}(t)\cdot \frac{\partial \boldsymbol{B}(t)}{\partial t}>+<\boldsymbol{E}(t)\cdot \frac{\partial \boldsymbol{D}(t)}{\partial t}>+<\boldsymbol{E}(t)\cdot \boldsymbol{J}(t)>=0$$

¹¹Tidsmedelvärdet av produkten av två tidsharmoniska fält $f_1(t)$ och $f_2(t)$ fås lätt genom att bilda medelvärdet över en period $T = 2\pi/\omega$.

$$\langle f_{1}(t)f_{2}(t) \rangle = \frac{1}{T} \int_{0}^{T} f_{1}(t)f_{2}(t) dt = \frac{1}{T} \int_{0}^{T} \operatorname{Re} \left\{ f_{1}(\omega)e^{-i\omega t} \right\} \operatorname{Re} \left\{ f_{2}(\omega)e^{-i\omega t} \right\} dt \\ = \frac{1}{4T} \int_{0}^{T} \left\{ f_{1}(\omega)f_{2}(\omega)e^{-2i\omega t} + f_{1}^{*}(\omega)f_{2}^{*}(\omega)e^{2i\omega t} + f_{1}(\omega)f_{2}^{*}(\omega) + f_{1}^{*}(\omega)f_{2}(\omega) \right\} dt \\ = \frac{1}{4} \left\{ f_{1}(\omega)f_{2}^{*}(\omega) + f_{1}^{*}(\omega)f_{2}(\omega) \right\} = \frac{1}{2} \operatorname{Re} \left\{ f_{1}(\omega)f_{2}^{*}(\omega) \right\}$$

De olika produkttermerna blir efter medelvärdesbildning

$$\begin{cases} <\mathbf{S}(t)>=\frac{1}{2}\operatorname{Re}\left\{\mathbf{E}(\omega)\times\mathbf{H}^{*}(\omega)\right\} \\ <\mathbf{H}(t)\cdot\frac{\partial\mathbf{B}(t)}{\partial t}>=\frac{1}{2}\operatorname{Re}\left\{i\omega\mathbf{H}(\omega)\cdot\mathbf{B}^{*}(\omega)\right\} \\ <\mathbf{E}(t)\cdot\frac{\partial\mathbf{D}(t)}{\partial t}>=\frac{1}{2}\operatorname{Re}\left\{i\omega\mathbf{E}(\omega)\cdot\mathbf{D}^{*}(\omega)\right\} \\ <\mathbf{E}(t)\cdot\mathbf{J}(t)>=\frac{1}{2}\operatorname{Re}\left\{\mathbf{E}(\omega)\cdot\mathbf{J}^{*}(\omega)\right\} \end{cases}$$
(1.24)

Poyntings sats (effektbalans) för tidsharmoniska fält, medelvärdesbildat över en period, får följande utseende ($\langle \nabla \cdot \boldsymbol{S}(t) \rangle = \nabla \cdot \langle \boldsymbol{S}(t) \rangle$):

$$\nabla \cdot \langle \boldsymbol{S}(t) \rangle + \frac{1}{2} \operatorname{Re} \left\{ i\omega \left[\boldsymbol{H}(\omega) \cdot \boldsymbol{B}^{*}(\omega) + \boldsymbol{E}(\omega) \cdot \boldsymbol{D}^{*}(\omega) \right] \right\} + \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}(\omega) \cdot \boldsymbol{J}^{*}(\omega) \right\} = 0$$

Av speciellt intresse är fallet utan strömmar, J = 0. Poyntings sats förenklas då till

$$\nabla \cdot \langle \boldsymbol{S}(t) \rangle = -\frac{1}{2} \operatorname{Re} \left\{ i\omega \left[\boldsymbol{H}(\omega) \cdot \boldsymbol{B}^{*}(\omega) + \boldsymbol{E}(\omega) \cdot \boldsymbol{D}^{*}(\omega) \right] \right\}$$
$$= -\frac{i\omega}{4} \left\{ \boldsymbol{B}^{*}(\omega) \cdot \boldsymbol{H}(\omega) - \boldsymbol{B}(\omega) \cdot \boldsymbol{H}^{*}(\omega) + \boldsymbol{E}(\omega) \cdot \boldsymbol{D}^{*}(\omega) - \boldsymbol{E}(\omega)^{*} \cdot \boldsymbol{D}(\omega) \right\}$$
(1.25)

där vi använt $\operatorname{Re} z = \frac{1}{2}(z + z^*).$

1.2.3 Polarisationsellipsen

Ett tidsharmoniskt fälts polarisation kan beskrivas geometriskt. Vi kommer i detta avsnitt att visa att alla tidsharmoniska fält svänger i ett plan och att fältvektorn följer kurvan av en ellips. Framställningen i detta avsnitt är koordinatoberoende, vilket är en styrka, eftersom vi då kan analysera ett fälts polarisation utan att referera till något specifikt koordinatsystem.

Om vi betraktar det tidsharmoniska fältet E(t) (rumsberoendet av koordinaterna r skrivs inte ut i detta avsnitt) i en fix punkt i rummet så gäller att fältets funktionsberoende av tiden är

$$\boldsymbol{E}(t) = \operatorname{Re}\left\{\boldsymbol{E}_{0}e^{-i\omega t}\right\}$$
(1.26)

 \boldsymbol{E}_0 är en konstant komplex vektor (kan bero på ω) vars kartesiska komponenter är

$$\boldsymbol{E}_{0} = \hat{\boldsymbol{x}} E_{0x} + \hat{\boldsymbol{y}} E_{0y} + \hat{\boldsymbol{z}} E_{0z} = \hat{\boldsymbol{x}} |E_{0x}| e^{i\alpha} + \hat{\boldsymbol{y}} |E_{0y}| e^{i\beta} + \hat{\boldsymbol{z}} |E_{0z}| e^{i\gamma}$$

och α , β och γ är komponenternas komplexa argument (fas).

Det första vi observerar är att vektorn $\boldsymbol{E}(t)$ i (1.26) hela tiden ligger i ett fixt plan i rummet. Vi inser lätt detta om vi uttrycker den komplexa vektorn \boldsymbol{E}_0 i två reella vektorer, \boldsymbol{E}_{0r} och \boldsymbol{E}_{0i} .

$$\boldsymbol{E}_0 = \boldsymbol{E}_{0r} + i \boldsymbol{E}_{0i}$$

De reella vektorerna E_{0r} och E_{0i} är fixa i tiden, och deras explicita form är

$$\begin{aligned} \boldsymbol{E}_{0r} &= \hat{\boldsymbol{x}} |E_{0x}| \cos \alpha + \hat{\boldsymbol{y}} |E_{0y}| \cos \beta + \hat{\boldsymbol{z}} |E_{0z}| \cos \gamma \\ \boldsymbol{E}_{0i} &= \hat{\boldsymbol{x}} |E_{0x}| \sin \alpha + \hat{\boldsymbol{y}} |E_{0y}| \sin \beta + \hat{\boldsymbol{z}} |E_{0z}| \sin \gamma \end{aligned}$$

Vektorn $\boldsymbol{E}(t)$ i (1.26) kan nu skrivas

$$\boldsymbol{E}(t) = \operatorname{Re}\left\{ \left(\boldsymbol{E}_{0r} + i\boldsymbol{E}_{0i} \right) e^{-i\omega t} \right\} = \boldsymbol{E}_{0r} \cos \omega t + \boldsymbol{E}_{0i} \sin \omega t \qquad (1.27)$$

vilket medför att vektorn $\boldsymbol{E}(t)$ ligger i det plan som spänns upp av de reella vektorerna \boldsymbol{E}_{0r} och \boldsymbol{E}_{0i} för alla tider t. Normalen till detta plan är

$$\hat{oldsymbol{n}}=\pmrac{oldsymbol{E}_{0r} imesoldsymbol{E}_{0i}}{|oldsymbol{E}_{0r} imesoldsymbol{E}_{0i}|}$$

förutsatt att $E_{0r} \times E_{0i} \neq 0$. I det fall $E_{0r} \times E_{0i} = 0$, dvs. de två reella vektorerna E_{0r} och E_{0i} är parallella, så svänger E-fältet längs en linje och något plan kan inte definieras.

De reella vektorerna E_{0r} och E_{0i} , som spänner upp det plan i vilket vektorn E(t) svänger, är i allmänhet inte ortogonala mot varann. Det är dock i många sammanhang praktiskt att arbeta med ortogonala vektorer. Vi försöker därför ur vektorerna E_{0r} och E_{0i} konstruera två nya reella vektorer, a och b, som är vinkelräta mot varann och som spänner upp samma plan som vektorerna E_{0r} och E_{0i} . Inför en linjär transformation

$$\begin{cases} \boldsymbol{a} = \boldsymbol{E}_{0r} \cos \chi + \boldsymbol{E}_{0i} \sin \chi \\ \boldsymbol{b} = -\boldsymbol{E}_{0r} \sin \chi + \boldsymbol{E}_{0i} \cos \chi \end{cases}$$

där vinkeln $\chi \in [-\pi/4, \pi/4] + n\pi/2, n = 0, \pm 1, \pm 2, \dots$, definieras av

$$\tan 2\chi = \frac{2E_{0r} \cdot E_{0i}}{|E_{0r}|^2 - |E_{0i}|^2}$$

Genom denna konstruktion är \boldsymbol{a} och \boldsymbol{b} ortogonala, ty

.

$$\boldsymbol{a} \cdot \boldsymbol{b} = (\boldsymbol{E}_{0r} \cos \chi + \boldsymbol{E}_{0i} \sin \chi) \cdot (-\boldsymbol{E}_{0r} \sin \chi + \boldsymbol{E}_{0i} \cos \chi)$$

= $-(|\boldsymbol{E}_{0r}|^2 - |\boldsymbol{E}_{0i}|^2) \sin \chi \cos \chi + \boldsymbol{E}_{0r} \cdot \boldsymbol{E}_{0i} (\cos^2 \chi - \sin^2 \chi)$
= $-\frac{1}{2} (|\boldsymbol{E}_{0r}|^2 - |\boldsymbol{E}_{0i}|^2) \sin 2\chi + \boldsymbol{E}_{0r} \cdot \boldsymbol{E}_{0i} \cos 2\chi = 0$

enligt definitionen på vinkeln χ .

Vi kan lösa ut E_{0r} och E_{0i} ur transformationen ovan. Resultatet blir

$$\begin{cases} \boldsymbol{E}_{0r} = \boldsymbol{a} \cos \chi - \boldsymbol{b} \sin \chi \\ \boldsymbol{E}_{0i} = \boldsymbol{a} \sin \chi + \boldsymbol{b} \cos \chi \end{cases}$$

dvs.

$$\boldsymbol{E}_0 = \boldsymbol{E}_{0r} + i\boldsymbol{E}_{0i} = (\boldsymbol{a}\cos\chi - \boldsymbol{b}\sin\chi) + i(\boldsymbol{a}\sin\chi + \boldsymbol{b}\cos\chi) = e^{i\chi}(\boldsymbol{a} + i\boldsymbol{b}) \quad (1.28)$$

Figur 1.4: Polarisationsellipsen och dess halvaxlar *a* och *b*.

Insatt i (1.27) får vi

$$\boldsymbol{E}(t) = \boldsymbol{E}_{0r} \cos \omega t + \boldsymbol{E}_{0i} \sin \omega t$$

= $(\boldsymbol{a} \cos \chi - \boldsymbol{b} \sin \chi) \cos \omega t + (\boldsymbol{a} \sin \chi + \boldsymbol{b} \cos \chi) \sin \omega t$ (1.29)
= $\boldsymbol{a} \cos(\omega t - \chi) + \boldsymbol{b} \sin(\omega t - \chi)$

Vektorerna a och b kan således användas som ett rätvinkligt koordinatsystem i det plan i vilket E-fältet svänger. Vidare ger en jämförelse med ellipsens ekvation i xy-planet (halvaxlar a och b längs x- respektive y-axeln)

$$\begin{cases} x = a\cos\phi\\ y = b\sin\phi \end{cases}$$

och (1.29) att \boldsymbol{E} -fältet följer en ellips i det plan som spänns upp av vektorerna \boldsymbol{a} och \boldsymbol{b} och att dessa vektorer är ellipsens halvaxlar (både till riktning och längd), se figur 1.4. Från (1.29) ser vi dessutom att \boldsymbol{E} -fältet är riktat längs halvaxeln \boldsymbol{a} då $\omega t = \chi + 2n\pi$, och att \boldsymbol{E} -fältet är riktat längs den andra halvaxeln \boldsymbol{b} då $\omega t = \chi + \pi/2 + 2n\pi$. Vinkeln χ anger var på ellipsen \boldsymbol{E} -fältet är riktat vid tiden t = 0, dvs.

$$\boldsymbol{E}(t=0) = \boldsymbol{a}\cos\chi - \boldsymbol{b}\sin\chi$$

och E-vektorn rör sig längs ellipsen i riktning från a till b (kortaste vägen). Vektorerna a och b beskriver E-vektorns polarisationstillstånd fullständigt, så när som på fasfaktorn χ .

Vi kommer nu att klassificera det tidsharmoniska fältets polarisationstillstånd. Vektorn E(t), som svänger i ett plan längs en elliptisk bana, kan antingen rotera med- eller moturs. Utan en prefererad riktning i rymden blir omloppsriktningen ett relativt begrepp, beroende på vilken sida om svängningsplanet vi betraktar

$i \hat{oldsymbol{e}} \cdot (oldsymbol{E}_0 imes oldsymbol{E}_0^*)$	Polarisation
= 0	Linjär
> 0	Höger elliptisk
< 0	Vänster elliptisk

Tabell 1.3: Tabell över ett tidsharmoniskt fälts olika polarisationstillstånd.

förloppet. Vi kommer att ur det elektromagnetiska fältets effekttransportriktning definiera en prefererad riktning. Hittills har fältet $\boldsymbol{E}(t)$ varit symbol för vilket godtyckligt tidsharmoniskt vektorfält som helst. Nu betraktar vi speciellt de elektriska och magnetiska fälten, $\boldsymbol{E}(t)$ och $\boldsymbol{H}(t)$, som båda roterar i elliptiska banor i två, i allmänhet skilda, plan. Motsvarande komplexa fältvektorer betecknar vi

$$\left\{ egin{array}{ll} m{E}_0 = m{E}_{0r} + i m{E}_{0i} \ m{H}_0 = m{H}_{0r} + i m{H}_{0i} \end{array}
ight.$$

Medelvärdet av Poyntings vektor, (1.24) på sidan 15, ger oss följande uttryck:

$$\langle \boldsymbol{S}(t) \rangle = \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}_0 \times \boldsymbol{H}_0^* \right\} = \frac{\boldsymbol{E}_{0r} \times \boldsymbol{H}_{0r} + \boldsymbol{E}_{0i} \times \boldsymbol{H}_{0i}}{2}$$

Definiera nu en enhetsvektor \hat{e} , med vilken vi kan klassificera rotationsriktningen hos polarisationsellipsen.¹²

$$\hat{m{e}} = rac{m{E}_{0r} imes m{H}_{0r} + m{E}_{0i} imes m{H}_{0i}}{|m{E}_{0r} imes m{H}_{0r} + m{E}_{0i} imes m{H}_{0i}|}$$

Fältets polarisationstillstånd klassificeras nu enligt värdet på $\hat{\boldsymbol{e}}$ -komponenten på $i\boldsymbol{E}_0 \times \boldsymbol{E}_0^* = 2\boldsymbol{E}_{0r} \times \boldsymbol{E}_{0i} = 2\boldsymbol{a} \times \boldsymbol{b}$, se tabell 1.3. Fältvektorn roterar antingen moturs (högerpolarisation) eller medurs (vänsterpolarisation) i \boldsymbol{a} -b-planet om vi antar att $\hat{\boldsymbol{e}}$ pekar mot observatören.¹³ Det degenererade fallet då vektorerna \boldsymbol{E}_{0r} och \boldsymbol{E}_{0i} är parallella innebär att fältvektorn rör sig längs en linje genom origo, därav namnet *linjär polarisation* eller plan polarisation. Den linjära polarisationen kan vi se som ett specialfall av elliptisk polarisation, där en av ellipsens halvaxlar är noll och karakteriseras av att $\boldsymbol{E}_0 \times \boldsymbol{E}_0^* = \boldsymbol{0}$. För höger (vänster) elliptisk polarisation roterar fältet moturs (medurs) runt i \boldsymbol{a} -b-planet om $\hat{\boldsymbol{e}}$ -axeln pekar mot betraktaren, se figur 1.5.

Ett specialfall av elliptisk polarisation är särskilt viktigt. Detta inträffar då ellipsen är en cirkel och vi har i så fall *cirkulär* polarisation. Om polarisationen är cirkulär

 $^{^{12}}$ Vi undantar här det rent patologiska fallet då E_{0r} och H_{0r} respektive E_{0i} och H_{0i} är parallella.

¹³I den tekniska litteraturen förekommer även omvänd definition på höger- respektive vänsterpolarisation. Exempel på omvänd definition är: Born och Wolf [5], Jackson [15], Stratton [26] och Van Bladel [29]. Vi använder samma definition på höger- respektive vänster-polarisation som t.ex. Kong [17], Cheng [8], Cho [10] och Kraus [18]. Vår definition överensstämmer med IEEEstandard.

Figur 1.5: Polarisationsellipsen och definition av höger- och vänster-polarisation. Vektorn $\hat{\boldsymbol{e}}_{\perp}$ är enhetsvektorn $\hat{\boldsymbol{e}}$:s komponent vinkelrätt mot planet i vilket $\boldsymbol{E}(t)$ svänger.

kan kvantitativt avgöras genom att testa om $E_0 \cdot E_0 = 0$. Med hjälp av (1.28) och ortogonaliteten mellan a och b får vi

$$oldsymbol{E}_0 \cdot oldsymbol{E}_0 = e^{2i\chi} \left(oldsymbol{a} + ioldsymbol{b}
ight) \cdot \left(oldsymbol{a} + ioldsymbol{b}
ight) = e^{2i\chi} \left(|oldsymbol{a}|^2 - |oldsymbol{b}|^2
ight)$$

Polarisationsellipsen är således en cirkel, $|\boldsymbol{a}| = |\boldsymbol{b}|$, om och endast om $\boldsymbol{E}_0 \cdot \boldsymbol{E}_0 = 0$. Rotationsriktningen avgörs genom tecknet på $i\hat{\boldsymbol{e}} \cdot (\boldsymbol{E}_0 \times \boldsymbol{E}_0^*)$. Höger (vänster) cirkulär polarisation förkortas ofta RCP (LCP) efter engelskans *Right (Left) Circular Polarization*.

1.3 Materialbeskrivning

I detta avsnitt behandlas endast enkla isotropa material med dispersion. Ett isotropt material har samma (mikroskopiska) egenskaper i alla riktningar. En mer fullständig beskrivning av de konstitutiva relationerna finns t.ex. i Ref. 19.

1.3.1 Konstitutiva relationer

Polarisationen $P(\mathbf{r}, \omega)$ i ett material är ett mått på de bundna laddningarnas jämviktsförskjutningar. I ett isotropt material antar vi att polarisationen $P(\mathbf{r}, \omega)$ är proportionell mot det pålagda makroskopiska elektriska fältet $E(\mathbf{r}, \omega)$. På motsvarande sätt antas att materialets magnetisering M är proportionell mot det magnetiska fältet. De grundläggande antagandena är

$$\begin{cases} \boldsymbol{P}(\boldsymbol{r},\omega) = \epsilon_0 \chi_{\rm e}(\boldsymbol{r},\omega) \boldsymbol{E}(\boldsymbol{r},\omega) \\ \boldsymbol{M}(\boldsymbol{r},\omega) = \chi_{\rm m}(\boldsymbol{r},\omega) \boldsymbol{H}(\boldsymbol{r},\omega) \end{cases}$$

Funktionerna $\chi_{e}(\boldsymbol{r},\omega)$ och $\chi_{m}(\boldsymbol{r},\omega)$ beror i allmänhet på \boldsymbol{r} och ω och kallas för materialets elektriska respektive magnetiska susceptibilitetsfunktion. Notera att materialets isotropa egenskaper är definierade på mikroskopisk nivå och strider inte mot att materialets susceptibilitetsfunktioner (makroskopiskt definierade storheter) är rumsberoende.

De elektriska respektive magnetiska flödestätheterna D och B blir, se (1.6) och (1.7) på sidan 4,

$$\begin{cases} \boldsymbol{D}(\boldsymbol{r},\omega) = \boldsymbol{P}(\boldsymbol{r},\omega) + \epsilon_0 \boldsymbol{E}(\boldsymbol{r},\omega) = \epsilon_0 (1 + \chi_{\rm e}(\boldsymbol{r},\omega)) \boldsymbol{E}(\boldsymbol{r},\omega) \\ \boldsymbol{B}(\boldsymbol{r},\omega) = \mu_0 (\boldsymbol{M}(\boldsymbol{r},\omega) + \boldsymbol{H}(\boldsymbol{r},\omega)) = \mu_0 (1 + \chi_{\rm m}(\boldsymbol{r},\omega)) \boldsymbol{H}(\boldsymbol{r},\omega) \end{cases}$$

eller

$$\begin{cases} \boldsymbol{D}(\boldsymbol{r},\omega) = \epsilon_0 \epsilon(\boldsymbol{r},\omega) \boldsymbol{E}(\boldsymbol{r},\omega) \\ \boldsymbol{B}(\boldsymbol{r},\omega) = \mu_0 \mu(\boldsymbol{r},\omega) \boldsymbol{H}(\boldsymbol{r},\omega) \end{cases}$$
(1.30)

där vi infört dielektricitetsfunktionen (permittivitetsfunktionen) $\epsilon(\mathbf{r}, \omega)$ och permeabilitetsfunktionen $\mu(\mathbf{r}, \omega)$.

$$\left\{ egin{array}{l} \epsilon(m{r},\omega) = 1 + \chi_{
m e}(m{r},\omega) \ \mu(m{r},\omega) = 1 + \chi_{
m m}(m{r},\omega) \end{array}
ight.$$

Dessa samband kallas för de konstitutiva relationerna för det isotropa materialet. Materialets makroskopiska elektriska och magnetiska egenskaper beskrivs således av två funktioner $\epsilon(\mathbf{r}, \omega)$ och $\mu(\mathbf{r}, \omega)$. Notera att funktionerna $\epsilon(\mathbf{r}, \omega)$ och $\mu(\mathbf{r}, \omega)$ i allmänhet är komplexvärda funktioner. Ett material vars dielektricitetsfunktion $\epsilon(\mathbf{r}, \omega)$ eller permeabilitetsfunktion $\mu(\mathbf{r}, \omega)$ beror på ω kallas ett dispersivt material, eller att materialet uppvisar dispersion.

I material med lättrörliga laddningsbärare inför vi en ledningsförmåga $\sigma(\mathbf{r}, \omega)$ för att beskriva dessa lättrörliga laddningsbärares dynamik. Strömtätheten \mathbf{J} är i denna modell proportionell mot det elektriska fältet, och går under namnet Ohms lag.

$$\boldsymbol{J}(\boldsymbol{r},\omega) = \sigma(\boldsymbol{r},\omega)\boldsymbol{E}(\boldsymbol{r},\omega)$$

Enheten på ledningsförmågan σ är S/m eller mhos/m. Det är alltid möjligt att inkludera dessa effekter av lättrörliga laddningsbärare i dielektricitetsfunktionen, genom att införa ett ny dielektricitetsfunktion ϵ_{ny} .

$$\epsilon_{\rm ny} = \epsilon_{\rm gammal} + i \frac{\sigma}{\omega \epsilon_0}$$

Högerledet i Ampères lag (1.20) är nämligen

$$\boldsymbol{J} - i\omega\boldsymbol{D} = \sigma\boldsymbol{E} - i\omega\epsilon_0\epsilon_{\text{gammal}}\boldsymbol{E} = -i\omega\epsilon_0\epsilon_{\text{ny}}\boldsymbol{E}$$

och

$$egin{aligned}
abla imes oldsymbol{H}(oldsymbol{r},\omega) &= -i\omega\epsilon_0\epsilon_{
m ny}oldsymbol{E} \
abla imes oldsymbol{H}(oldsymbol{r},\omega) &= \sigmaoldsymbol{E} - i\omega\epsilon_0\epsilon_{
m gammal}oldsymbol{E} \end{aligned}$$

blir identiska. Ledningsförmågan innebär således ett tillskott till den komplexa dielektricitetsfunktionen ϵ_{gammal} .

Exempel 1.1

I detta exempel beskrivs den s.k. *Lorentzmodellen* eller *resonansmodellen*. Den är mycket använd som modell för fasta ämnen med bundna laddningsbärare.

Vi antar att materialet består av bundna laddningsbärare (vanligtvis elektroner), som växelverkar med sina atomkärnor. Atomerna kan vara ordnade i en gitterstruktur, men behöver inte nödvändigtvis vara det. Amorfa ämnen är således även tänkbara.

Laddningsbärarna, med laddning q och massa m, antas påverkas av tre olika krafter:

- 1. En elektrisk kraft $F_1 = qE$ från ett yttre elektriskt fält E.
- 2. En återförande harmonisk kraft proportionell mot laddningens förskjutning från jämviktsläget, $\mathbf{F}_2 = -m\omega_0^2(\mathbf{r})\mathbf{r}$, där $\omega_0(\mathbf{r}) \ge 0$ är den s k harmoniska frekvensen och \mathbf{r} är laddningens förskjutning från jämviktsläget.
- 3. En friktionskraft proportionell mot laddningens hastighet $\frac{d}{dt}\mathbf{r}$, $\mathbf{F}_3 = -m\nu(\mathbf{r})\frac{d}{dt}\mathbf{r}$, där $\nu(\mathbf{r}) \ge 0$ är kollisionsfrekvensen.

Vi antar att rörelsen hos laddningsbärarna kan beskrivas helt klassiskt med den klassiska mekanikens lagar. Newtons andra lag för laddningsbärarna ger

$$m\frac{d^2}{dt^2}\boldsymbol{r} = \boldsymbol{F}_1 + \boldsymbol{F}_2 + \boldsymbol{F}_3 = q\boldsymbol{E} - m\omega_0^2(\boldsymbol{r})\boldsymbol{r} - m\nu(\boldsymbol{r})\frac{d}{dt}\boldsymbol{r}$$

eller

$$\frac{d^2}{dt^2}\boldsymbol{r} + \nu(\boldsymbol{r})\frac{d}{dt}\boldsymbol{r} + \omega_0^2(\boldsymbol{r})\boldsymbol{r} = \frac{q}{m}\boldsymbol{E}$$

Inför polarisationen P hos materialet definierad genom

$$P(r,t) = N(r)qr$$

där $N({\pmb r})$ är antalet laddningsbärare per volymsenhet. 14 Rörelseekvationen kan nu skrivas om som

$$\frac{d^2}{dt^2}\boldsymbol{P}(\boldsymbol{r},t) + \nu(\boldsymbol{r})\frac{d}{dt}\boldsymbol{P}(\boldsymbol{r},t) + \omega_0^2(\boldsymbol{r})\boldsymbol{P}(\boldsymbol{r},t) = \frac{N(\boldsymbol{r})q^2}{m}\boldsymbol{E}(\boldsymbol{r},t)$$

eller med tidsberoendet $\exp\{-i\omega t\}$

$$-\omega^2 \boldsymbol{P}(\boldsymbol{r},\omega) - i\omega\nu(\boldsymbol{r})\boldsymbol{P}(\boldsymbol{r},\omega) + \omega_0^2(\boldsymbol{r})\boldsymbol{P}(\boldsymbol{r},\omega) = \frac{N(\boldsymbol{r})q^2}{m}\boldsymbol{E}(\boldsymbol{r},\omega)$$
(1.31)

med lösning

$$oldsymbol{P}(oldsymbol{r},\omega)=rac{\epsilon_0\omega_p^2(oldsymbol{r})}{\omega_0^2(oldsymbol{r})-\omega^2-i\omega
u(oldsymbol{r})}oldsymbol{E}(oldsymbol{r},\omega)$$

där $\omega_p(\mathbf{r}) = \sqrt{\frac{N(\mathbf{r})q^2}{m\epsilon_0}}$ är materialets *plasmafrekvens*. Inför nu sambandet mellan polarisation $\mathbf{P}(\mathbf{r}, \omega)$ o

Inför nu sambandet mellan polarisation $P(r, \omega)$ och elektrisk fältstyrka $E(r, \omega)$.

$$P(r,\omega) = D(r,\omega) - \epsilon_0 E(r,\omega) = \epsilon_0 (\epsilon(r,\omega) - 1) E(r,\omega)$$

¹⁴Vi antar att denna storhet är konstant i tiden, vilket är en approximation.

Figur 1.6: Permanent polariserade molekyler med eller utan yttre elektriskt fält.

och vi kan lösa ut dielektricitetsfunktionen $\epsilon(\mathbf{r}, \omega)$ för Lorentzmodellen. Resultatet blir

$$\epsilon(m{r},\omega) = 1 + rac{\omega_p^2(m{r})}{\omega_0^2(m{r}) - \omega^2 - i\omega
u(m{r})}$$

Exempel 1.2

En modell för vätskor vars molekyler har ett permanent elektriskt dipolmoment p, t.ex. vatten och olika alkoholer, är den s.k. Debyemodellen. Denna modell karakteriseras av att det elektriska dipolmomentet i normalt tillstånd är godtyckligt orienterat, pga. att molekylerna (eller atomerna) är oordnad av värmerörelse.

Materialets polarisation ${\boldsymbol{P}}$ definier as som totalt elektriskt dipolmoment per volymsenhet, dvs.

$$\boldsymbol{P} = \lim_{\Delta V \to 0} \frac{\sum_i \boldsymbol{p}_i}{\Delta V}$$

där summan över *i* sker över alla molekyler inuti volymen ΔV . I normalt opåverkat tillstånd är P = 0. Polarisationen P förändras pga. två sinsemellan tävlande processer.

- 1. En process som strävar efter att linjera upp polarisationen P längs ett pålagt yttre elektriskt fält E. Vi antar att tidsförändringarna i P är proportionella mot $\epsilon_0 \alpha E$. Frekvensen $\alpha > 0$ är ett mått på denna förändring.
- 2. En process som strävar efter en slumpartad orientering av polarisationen. Om $\tau > 0$ är *relaxationstiden* för denna process antas tidsförändringarna i \boldsymbol{P} proportionella mot $-\frac{1}{\tau}\boldsymbol{P}$.

Debyes modell för molekyler med permanent elektriskt dipolmoment p åskådliggörs i figur 1.6. Totalt blir tidsförändringarna i P

$$\frac{d}{dt}\boldsymbol{P}(\boldsymbol{r},t) = \epsilon_0 \alpha(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r},t) - \frac{1}{\tau(\boldsymbol{r})} \boldsymbol{P}(\boldsymbol{r},t)$$

Figur 1.7: Experimentella data på dielektricitetsfunktionen $\epsilon(\omega)$ som funktion av frekvensen ω för vatten vid 20° i frekvensområdet upp till 50 *GHz*. (Data är hämtade från Cock *et al.*, *Br. J. Appl. Phys.* **3**, 249 (1952), Grant *et al.*, *J. Chem. Phys.* **26**, 156 (1957), Lane *et al.*, *Proc. R. Soc. Lond.* **A213**, 400 (1952).)

eller med tidsberoendet $\exp\{-i\omega t\}$

$$-i\omega \boldsymbol{P}(\boldsymbol{r},\omega) = \epsilon_0 \alpha(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r},\omega) - \frac{1}{\tau(\boldsymbol{r})} \boldsymbol{P}(\boldsymbol{r},\omega)$$

med lösning

$$\boldsymbol{P}(\boldsymbol{r},\omega) = \frac{\epsilon_0 \alpha(\boldsymbol{r}) \tau(\boldsymbol{r})}{1 - i\omega \tau(\boldsymbol{r})} \boldsymbol{E}(\boldsymbol{r},\omega)$$

Från sambandet mellan polarisationen $\boldsymbol{P}(\boldsymbol{r},\omega)$ och den elektriska fältstyrkan $\boldsymbol{E}(\boldsymbol{r},\omega)$

$$\boldsymbol{P}(\boldsymbol{r},\omega) = \boldsymbol{D}(\boldsymbol{r},\omega) - \epsilon_0 \boldsymbol{E}(\boldsymbol{r},\omega) = \epsilon_0 \left(\epsilon(\boldsymbol{r},\omega) - 1 \right) \boldsymbol{E}(\boldsymbol{r},\omega)$$

kan vi lösa ut dielektricitetsfunktionen $\epsilon(\mathbf{r}, \omega)$ för Debyemodellen. Resultatet blir

$$\epsilon(\boldsymbol{r},\omega) = 1 + \frac{\alpha(\boldsymbol{r})\tau(\boldsymbol{r})}{1 - i\omega\tau(\boldsymbol{r})}$$

I figur 1.7 visas experimentella data på dielektricitetsfunktionen för vatten och en anpassning till en Debyemodell. Vi har i anpassningen använt oss av en Debyemodell med en extra term, ϵ_{∞} , för den optiska responsen.

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_s - \epsilon_{\infty}}{1 - i\omega\tau}$$

I detta uttryck är termerna ordnade så att ϵ_{∞} är dielektricitetsfunktionens värde för höga frekvenser medan ϵ_s är värdet för $\omega = 0$ (statiska värdet). Explicita värden som använts i figur 1.7 är

$$\begin{cases} \tau = 1.0 \cdot 10^{-11} \text{ s} \\ \epsilon_{\infty} = 5.27 \\ \epsilon_{s} = 80.0 \end{cases}$$

Figur 1.8: Real- och imaginärdel av dielektricitetsfunktionen för (rent) vatten som funktion av frekvensen (elektronvolt). 1 eV motsvarar en frekvens på $2.42 \cdot 10^{14}$ Hz eller en våglängd på $1.24 \ \mu m$. Uppförandet hos dielectricitetsfunktionen för lägre frekvenser visas i figur 1.7. Det optiska fönstret svarar mot ca. 1.7–3.3 eV och är skuggat i den högra figuren. (Data är hämtade från Hale och Querry, *Appl. Optics* **12**(3), 555 (1973) och Irvine och Pollack, *Icarus* **8**, 324 (1968).)

Motsvarande värden för etanol som också är en polär vätska är:

$$\begin{cases} \tau = 1.2 \cdot 10^{-10} \\ \epsilon_{\infty} = 4.4 \\ \epsilon_s = 25.1 \end{cases}$$

 \mathbf{S}

Om vattnet även har ett saltinnehåll kan vi modifiera modellen genom att lägga till en ledningsförmåga $\sigma.$

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_s - \epsilon_{\infty}}{1 - i\omega\tau} + i\frac{\sigma}{\omega\epsilon_0}$$

Explicit värde på σ för saltvatten är $\sigma=3\text{--}5$ S/m, medan för sött vatten gäller $\sigma=10^{-3}$ S/m.

För högre frekvenser har dielektricitetsfunktionen för vatten ett mer komplicerat utseende och Debyemodellen stämmer inte längre beroende på att andra processer blir dominerande. Dielektricitetsfunktionens utseende för högre frekvenser visas i figur 1.8. ■

1.3.2 Aktiva, passiva och förlustfria material

I avsnitt 1.2.2 härledde vi Poyntings sats för tidsharmoniska fält, se(1.25)på sidan 15.

Sätt in de konstitutiva relationerna från ekvation (1.30). Vi får

$$\nabla \cdot \langle \boldsymbol{S}(t) \rangle = -\frac{i\omega}{4} \Big\{ \mu_0 \mu^*(\omega) \boldsymbol{H}^*(\omega) \cdot \boldsymbol{H}(\omega) - \mu_0 \mu(\omega) \boldsymbol{H}(\omega) \cdot \boldsymbol{H}^*(\omega) \\ + \epsilon_0 \epsilon^*(\omega) \boldsymbol{E}(\omega) \cdot \boldsymbol{E}^*(\omega) - \epsilon_0 \epsilon(\omega) \boldsymbol{E}^*(\omega) \cdot \boldsymbol{E}(\omega) \Big\}$$
(1.32)
$$= -\frac{\omega \epsilon_0}{2} \Big\{ \operatorname{Im} \epsilon(\omega) |\boldsymbol{E}(\omega)|^2 + \operatorname{Im} \mu(\omega) \eta_0^2 |\boldsymbol{H}(\omega)|^2 \Big\}$$

där vi infört beteckningen $|\boldsymbol{E}(\omega)|^2 = \boldsymbol{E}(\omega) \cdot \boldsymbol{E}^*(\omega)$ och motsvarande för det magnetiska fältet, samt $\eta_0 = \sqrt{\mu_0/\epsilon_0}$ för vågimpedansen i vakuum.

Kvantiteten $-\nabla \cdot \langle \mathbf{S}(t) \rangle$ anger medelvärdet på den effekt som det elektromagnetiska fältet avger till materialet per volymsenhet. Vi använder denna storhet för att klassificera materialet.

Aktiva, passiva samt förlustfria material för tidsharmoniska fält definieras nu.

Passivt material om	$\nabla \cdot \{\langle \boldsymbol{S}(t) \rangle \} < 0$	$\omega \neq 0$
Aktivt material om	$\nabla \cdot \{ < \boldsymbol{S}(t) > \} > 0$	$\omega \neq 0$
Förlustfritt material om	$\nabla \cdot \{\langle \boldsymbol{S}(t) \rangle\} = 0$	

för alla fält $\{E, H\} \neq \{0, 0\}$.

Denna definition har följande fysikaliska implikationer. En volymsintegrering av $\nabla \cdot \langle \mathbf{S}(t) \rangle$ över en volym V med randyta S (utåtriktad normal $\hat{\mathbf{n}}$) ger mha. divergenssatsen följande alternativa definitioner:

Passivt material om	$\iint_{S} < \boldsymbol{S}(t) > \hat{\boldsymbol{n}} dS < 0$
Aktivt material om	$\iint_{S} <\! \boldsymbol{S}(t) \! > \! \cdot \hat{\boldsymbol{n}} dS > 0$
Förlustfritt material om	$\iint_{S} < \boldsymbol{S}(t) > \hat{\boldsymbol{n}} dS = 0$

Dessa definitioner innebär att i ett passivt material är alltid utstrålad effekt i medeltal negativ, $\iint_{S} \langle \mathbf{S}(t) \rangle \cdot \hat{\mathbf{n}} \, dS \langle 0$, medan i ett aktivt är den positiv genom att elektromagnetisk energi skapas (genom icke-elektromagnetiska källor). I ett förlustfritt material förblir den utstrålade effekten över en period noll.

För passiva material måste funktionerna ϵ och μ i de konstitutiva relationerna i (1.30) uppfylla vissa villkor. Från (1.32) ser vi att ett passivt material implicerar att

$$\begin{cases} \omega \operatorname{Im} \epsilon(\omega) > 0\\ \omega \operatorname{Im} \mu(\omega) > 0 \end{cases}$$

eftersom fälten $E(\omega)$ och $H(\omega)$ kan väljas godtyckligt. För positiva ω innebär detta att

$$\begin{cases} \operatorname{Im} \epsilon(\omega) > 0\\ \operatorname{Im} \mu(\omega) > 0 \end{cases} \qquad \omega > 0 \tag{1.33}$$

På samma sätt måste funktionerna ϵ och μ i de konstitutiva relationerna i (1.30) uppfylla vissa villkor för förlustfria material. Resultatet blir i detta fall

$$\begin{cases} \operatorname{Im} \epsilon(\omega) = 0\\ \operatorname{Im} \mu(\omega) = 0 \end{cases}$$
(1.34)

eftersom fälten $E(\omega)$ och $H(\omega)$ kan väljas godtyckligt. I ett förlustfritt material är således ϵ och μ reella storheter. Notera att detta gäller för en specifik frekvens. För en annan frekvens kan samma material vara passivt eller aktivt.
1.3.3 Planvågor

I detta avsnitt kommer vi att studera speciella lösningar till Maxwells fältekvationer i homogena material som kan skrivas som realdelen av ett komplexvärt fält på formen

$$\boldsymbol{E}(\boldsymbol{r},t) = \operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{k},\omega)e^{i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)}\right\}$$

där vektorn \boldsymbol{k} kan tillåtas ha komplexa komponenter. Vi kan uttrycka vektorn \boldsymbol{k} i två reella vektorer, \boldsymbol{k}' och \boldsymbol{k}'' (real- och imaginärdel)

$$k = k' + ik''$$

Det fysikaliska fältet $\boldsymbol{E}(\boldsymbol{r},t)$ blir med dessa beteckningar

$$\boldsymbol{E}(\boldsymbol{r},t) = \operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{k},\omega)e^{-\boldsymbol{k}''\cdot\boldsymbol{r}}e^{i(\boldsymbol{k}'\cdot\boldsymbol{r}-\omega t)}\right\}$$

= $\hat{\boldsymbol{x}}|E_x|e^{-\boldsymbol{k}''\cdot\boldsymbol{r}}\cos(\theta+\alpha) + \hat{\boldsymbol{y}}|E_y|e^{-\boldsymbol{k}''\cdot\boldsymbol{r}}\cos(\theta+\beta)$ (1.35)
+ $\hat{\boldsymbol{z}}|E_z|e^{-\boldsymbol{k}''\cdot\boldsymbol{r}}\cos(\theta+\gamma)$

där fasen θ och den komplexa vektorn $\boldsymbol{E}(\boldsymbol{k},\omega)$ är

$$\begin{cases} \theta = \mathbf{k}' \cdot \mathbf{r} - \omega t \\ \mathbf{E}(\mathbf{k}, \omega) = \hat{\mathbf{x}} E_x + \hat{\mathbf{y}} E_y + \hat{\mathbf{z}} E_z = \hat{\mathbf{x}} |E_x| e^{i\alpha} + \hat{\mathbf{y}} |E_y| e^{i\beta} + \hat{\mathbf{z}} |E_z| e^{i\gamma} \end{cases}$$

Lösningar till Maxwells fältekvationer vilkas rums- och tidsberoende är av typen

$$e^{i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)}$$

kallas *plana vågor*. Beteckningen plana vågor kommer av att alla punkter i rummet som uppfyller

$$\boldsymbol{K}\cdot \boldsymbol{r} = ext{konstant}$$

definierar ett plan i tre dimensioner med normalriktning $\hat{K} = K/K$, där K är en reell vektor med längd K. Från ekvation (1.35) följer att

$$k'' \cdot r = ext{konstant}$$

definierar ett plan på vilket vågen har konstant amplitud, och k'' är vinkelrät mot detta plan.¹⁵ Den plana vågen dämpas exponentiellt i k'':s riktning, medan den växer exponentiellt i motsatt riktning. På samma sätt definierar

$$m{k}'\cdotm{r}= ext{ konstant}$$

ett plan på vilket fasen är konstant och \mathbf{k}' är vinkelrät mot detta plan. Om vektorerna \mathbf{k}' och \mathbf{k}'' är parallella och riktade åt samma håll, sammanfaller plan med konstant amplitud och fas, och den plana vågen kallas *homogen*, vilket även inkluderar fallet $\mathbf{k}'' = \mathbf{0}$. I annat fall kallas den plana vågen *inhomogen*.

¹⁵Med amplitud hos den plana vågen menar vi här amplituden på den komplexa vektorn $E(\mathbf{k},\omega)e^{-\mathbf{k}''\cdot\mathbf{r}}$.

En rad definitioner visar sig nu lämpligt att införa. Vektorn \mathbf{k} kallas vågens *vågvektor* eller \mathbf{k} -vektor. Längden på \mathbf{k} -vektorns real- och imaginärdelar betecknar vi $k' = |\mathbf{k}'|$ respektive $k'' = |\mathbf{k}''|$. För plana homogena vågor (vektorerna \mathbf{k}' och \mathbf{k}'' parallella och riktade åt samma håll) använder vi beteckningen k = k' + ik'' och för dessa vågor gäller

$$\boldsymbol{k} = \hat{\boldsymbol{k}}k = \hat{\boldsymbol{k}}(k' + ik'')$$

där \hat{k} är k' och k'':s gemensamma enhetsvektor. Det komplexa talet k kallas vågens *vågtal.* Notera att med denna definition på homogena plana vågor så är både k' och k'' icke-negativa reella storheter.

Låt r vara avståndet från origo till ett plan med konstant fas vid en viss tid t. Vid en senare tidpunkt $t + \Delta t$ är avståndet till detta plan $r + \Delta r$, och vi har följande samband:

$$k'r - \omega t = k'(r + \Delta r) - \omega(t + \Delta t)$$

vilket betyder att plan med konstant fas utbreder sig i vektorn k':s riktning med en hastighet v definierad av

$$v = \frac{\Delta r}{\Delta t} = \frac{\omega}{k'}$$

Hastigheten v kallas den plana vågens fashastighet.

Plan $\mathbf{k}' \cdot \mathbf{r} = \text{konstant som är separerade med avståndet } \lambda$, där $\lambda = 2\pi/k'$, har också samma fält vid en given tidpunkt, ty

$$\exp i \left[\boldsymbol{k}' \cdot \left(\boldsymbol{r} + \lambda \hat{\boldsymbol{k}}_r \right) - \omega t \right] = e^{i\lambda k'} \exp i \left[\boldsymbol{k}' \cdot \boldsymbol{r} - \omega t \right] = \exp i \left[\boldsymbol{k}' \cdot \boldsymbol{r} - \omega t \right]$$

Avståndet λ kallas den plana vågens *våglängd*. Vågen utbreder sig således i k'-vektorns riktning med hastigheten v, frekvensen $\omega/2\pi$ och våglängden $2\pi/k'$. Den plana vågens dämpning bestäms, som vi sett, av k''-vektorns riktning och storlek.

Införandet av planvågslösningar förenklar Maxwells fältekvationer högst väsentligt, eftersom de partiella derivatorna m.a.p. rumsvariablerna r övergår i algebraiska uttryck. Maxwells fältekvationer för plana, tidsharmoniska vågor, i fallet utan källor J = 0, se (1.19) och (1.20), blir

$$\boldsymbol{k} \times \boldsymbol{E}(\boldsymbol{k}, \omega) = \omega \boldsymbol{B}(\boldsymbol{k}, \omega) \tag{1.36}$$

$$\boldsymbol{k} \times \boldsymbol{H}(\boldsymbol{k}, \omega) = -\omega \boldsymbol{D}(\boldsymbol{k}, \omega) \tag{1.37}$$

ty $\nabla \times \boldsymbol{E}(\boldsymbol{r},t) \rightarrow i\boldsymbol{k} \times \boldsymbol{E}(\boldsymbol{k},\omega) \exp i \left[\boldsymbol{k} \cdot \boldsymbol{r} - \omega t\right]$ och på liknande sätt för $\nabla \times \boldsymbol{H}$.

Genom Maxwells fältekvationer och materialets konstitutiva relationer får vi villkor på vilka vågvektorer som är tillåtna eller möjliga. Vågvektorns funktionsberoende av (vinkel-)frekvensen ω bestäms således av materialet. I ett homogent isotropt material, se (1.30), gäller

$$\left\{ egin{array}{ll} m{D}(m{r},\omega) = \epsilon_0\epsilon(\omega)m{E}(m{r},\omega) \ m{B}(m{r},\omega) = \mu_0\mu(\omega)m{H}(m{r},\omega) \end{array}
ight.$$

Vi får omedelbart från dessa konstitutiva relationer samt Maxwells fältekvationer, (1.36) och (1.37), att

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Vänstra ledet i denna ekvation kan skrivas om mha. BAC-CAB-regeln, som även gäller för komplexa vektorer. Resultatet blir

$$oldsymbol{k} imes (oldsymbol{k} imes oldsymbol{E}) = oldsymbol{k} \left(oldsymbol{k} \cdot oldsymbol{E}
ight) - oldsymbol{E} \left(oldsymbol{k} \cdot oldsymbol{k}
ight) = -oldsymbol{E} \left(oldsymbol{k} \cdot oldsymbol{k}
ight)$$

eftersom $\mathbf{k} \cdot \mathbf{E} = 0$ för isotropa material (följer av de konstitutiva relationerna och (1.37)). Vågvektorn \mathbf{k} måste därför uppfylla

$$\boldsymbol{k}\cdot\boldsymbol{k}=\frac{\omega^2}{c_0^2}\epsilon\mu$$

eller om vi utvecklar skalärprodukten ($\mathbf{k} = \mathbf{k}' + i\mathbf{k}''$)

$$\boldsymbol{k}' \cdot \boldsymbol{k}' - \boldsymbol{k}'' \cdot \boldsymbol{k}'' + 2i\boldsymbol{k}' \cdot \boldsymbol{k}'' = \frac{\omega^2}{c_0^2} \epsilon \mu$$

Notera att ϵ och μ i allmänhet är komplexa funktioner av ω . Detta är den s.k. dispersionsekvationen för ett isotropt material. Om den plana vågen är homogen, dvs. $\mathbf{k} = (k' + ik'')\hat{\mathbf{k}}$, så förenklas dispersionsekvationen till

$${k'}^2 - {k''}^2 + 2ik'k'' = \frac{\omega^2}{c_0^2}\epsilon\mu$$

eller

$$k'(\omega) + ik''(\omega) = \frac{\omega}{c_0} \left(\epsilon(\omega)\mu(\omega)\right)^{1/2}$$

där grenen av den komplexa kvadratroten är vald så att dess imaginärdel är positiv. Om det isotropa materialet är förlustfritt, dvs. ϵ och μ är reella kvantiteter (se (1.34)), är k'' = 0 och vågen utbreder sig utan dämpning i materialet.

Ofta används beteckningen brytningsindex $n(\omega)$ definierat av

$$n(\omega) = \frac{c_0}{v(\omega)} = \frac{c_0 k'(\omega)}{\omega}$$

I exemplet ovan med förlustfria, isotropa material är

$$n(\omega) = \sqrt{\epsilon(\omega)\mu(\omega)}$$

Vi avslutar med att uttrycka sambanden mellan elektriska och magnetiska fält i ett homogent, isotropt material genom att använda de konstitutiva relationerna, samt (1.36) och (1.37). Vi får

$$\begin{cases} \boldsymbol{E} = -\eta_0 \eta \hat{\boldsymbol{k}} \times \boldsymbol{H} \\ \eta_0 \eta \boldsymbol{H} = \hat{\boldsymbol{k}} \times \boldsymbol{E} \end{cases}$$
(1.38)

där vågimpededansen för vakuum är $\eta_0 = \sqrt{\mu_0/\epsilon_0}$ och materialets relativa impedans $\eta = \sqrt{\mu/\epsilon}$. Vidare gäller för effekttransporten av plana homogena vågor, $\mathbf{k} = k\hat{\mathbf{k}}$, i ett isotropt material att

$$\boldsymbol{P} = \frac{1}{2}\operatorname{Re}\left\{\boldsymbol{E}\times\boldsymbol{H}^*\right\} = \frac{1}{2\eta_0}\operatorname{Re}\left\{\frac{1}{\eta^*}\boldsymbol{E}\times(\hat{\boldsymbol{k}}\times\boldsymbol{E}^*)\right\} = \frac{\hat{\boldsymbol{k}}\left|\boldsymbol{E}\right|^2}{2\eta_0}\operatorname{Re}\frac{1}{\eta^*} \qquad (1.39)$$

1.4 Koherens och polarisationsgrad

Vi har hittills analyserat strikt monokromatiska fält, dvs. tidsharmoniska fält med fix vinkelfrekvens ω . Vågen för ett monokromatiskt fält har oändlig utsträckning i rummet och i tiden. I avsnitt 1.2.3 visade vi att fältvektorn för ett monokromatiskt fält rör sig i ett fixt plan längs en elliptisk bana, den s.k. polarisationsellipsen. I realiteten har alla fält ändlig utsträckning i tiden, och därmed är de inte fullständigt monokromatiska, utan en blandning av flera frekvenser. Dessutom förekommer ofta en blandning av olika polarisationtillstånd. Denna situation är speciellt vanlig då vi utnyttjar naturliga strålningskällor, t.ex. radioastronomiska källor eller solljus.

Det allmänna uttrycket för ett icke-tidsharmoniskt fält ges av (1.17) på sidan 12.

$$\boldsymbol{E}(\boldsymbol{r},t) = \frac{1}{\pi} \operatorname{Re} \int_0^\infty \boldsymbol{E}(\boldsymbol{r},\omega) e^{-i\omega t} \, d\omega$$

Vi är här intresserade av fält som är nästan monokromatiska, vilket innebär att fältets spektrum, $E(\mathbf{r}, \omega)$, har en väldefinierad medelfrekvens $\bar{\omega} > 0$ och halvvärdesbredd $\Delta \omega > 0$, och att

$$E(\mathbf{r},\omega) pprox \mathbf{0}, \qquad |\omega - \bar{\omega}| \ge \frac{\Delta \omega}{2}$$

samt att $\Delta \omega / \bar{\omega} \ll 1$. Exempel på en våg med tillhörande frekvensspektrum ges i figur 1.9. Frekvensbredden ger upphov till två nya begrepp, koherenstid τ och koherenslängd l, definierade av

$$\tau = \frac{2\pi}{\Delta\omega}, \qquad l = \frac{2\pi c_0}{\Delta\omega} = c_0 \tau$$

Koherenslängden l är av samma storleksordning som vågens längd.

Vi gör en modell av dessa icke-monokromatiska blandningsfält, och inför ett fält definierat genom,¹⁶ jämför (1.17) och (1.18)

$$\boldsymbol{E}(t) = \operatorname{Re}\left\{\boldsymbol{E}_0(t)e^{-i\bar{\omega}t}\right\}$$

där den komplexvärda, tidsberoende vektorn $\boldsymbol{E}_0(t)$ definieras av

$$\boldsymbol{E}_0(t) = e^{i\bar{\omega}t} \frac{1}{\pi} \int_0^\infty \boldsymbol{E}(\omega) e^{-i\omega t} \, d\omega$$

¹⁶Det kvasi-monokromatiska fältet analyseras i en fix punkt i rummet, varför allt rumsberoende hos fältet är av underordnad betydelse och skrivs ej ut.

Figur 1.9: Exempel på våg och motsvarande frekvensspektrum och halvvärdesbredd $\Delta \omega$.

Vi kallar detta fält *kvasi-monokromatiskt* om antagandena för $E(\omega)$ ovan gäller. Ér vektorn $E_0(t)$ oberoende av tiden har vi det tidigare fallet med fullständigt monokromatiskt fält, se avsnitt 1.2.

Variationen hos den komplexvärda vektorn $E_0(t)$ är långsam under ett tidsintervall $2\pi/\bar{\omega}$. Vi ser detta genom att Fouriertransformera den komlexvärda vektorn $E_0(t)$.

$$\int_{-\infty}^{\infty} \boldsymbol{E}_0(t) e^{i\omega t} dt = \frac{1}{\pi} \int_{-\infty}^{\infty} \int_0^{\infty} \boldsymbol{E}(\omega') e^{i(\omega + \bar{\omega} - \omega')t} d\omega' dt = 2\boldsymbol{E}(\omega + \bar{\omega})$$

Enligt antagandet på fältets spektrum ser vi att Fouriertransformen av $E_0(t)$ är försumbar utanför ett frekvensintervall $[-\Delta\omega/2, \Delta\omega/2]$, och eftersom $\Delta\omega/\bar{\omega} \ll 1$ är $E_0(t)$ långsamt varierade under ett tidsintervall $2\pi/\bar{\omega}$.

I kartesiska komponenter, $\hat{\boldsymbol{e}}_1$ och $\hat{\boldsymbol{e}}_2$, är $\boldsymbol{E}_0(t)$

$$\boldsymbol{E}_{0}(t) = \hat{\boldsymbol{e}}_{1} E_{01}(t) + \hat{\boldsymbol{e}}_{2} E_{02}(t) = \hat{\boldsymbol{e}}_{1} |E_{01}(t)| e^{i\alpha(t)} + \hat{\boldsymbol{e}}_{2} |E_{02}(t)| e^{i\beta(t)}$$

och $\alpha(t)$ och $\beta(t)$ är komponenternas komplexa argument (fas), som kan bero på tiden. Vi antar här att det kvasi-monokromatiska fältet svänger i ett fixt plan, $\hat{e}_1-\hat{e}_2$ -planet. Detta visades vara fallet för ett fullständigt monokromatiskt fält (E_0 oberoende av tiden) i avsnitt 1.2. För ett kvasi-monokromatiskt fält är detta ett antagande.

Ett kvasi-monokromatiskt fälts egenskaper undersöker vi lämpligast genom att studera dess egenskaper längs en fix riktning. Fältets projektion längs en riktning \hat{e} ges av

$$\hat{\boldsymbol{e}} \cdot \boldsymbol{E}_0(t)$$

Vi parametriserar riktningen \hat{e} med vinkeln θ , se figur 1.10. Representationen är explicit

$$\hat{\boldsymbol{e}} = \hat{\boldsymbol{e}}_1 \cos\theta + \hat{\boldsymbol{e}}_2 e^{i\delta} \sin\theta \tag{1.40}$$

där vi fört in en fasvinkel δ , som retarderar \hat{e}_2 -komponentens fas med vinkeln δ jämfört med fasen hos fältets \hat{e}_1 -komponent. Experimentellt kan man åstadkomma en

Figur 1.10: Intensitetsmätning längs en fix riktning θ .

projektion längs en fix riktning mha. en polarisator, och retardationen kan realiseras med en s.k. retardationsplatta. Notera att \hat{e} är en komplex vektor, men att $\hat{e} \cdot \hat{e}^* = 1$. Endast om $\delta = 0$ är \hat{e} en reell vektor.

Intensiteten hos fältet med en polarisator riktad längs en riktning \hat{e} , definierad av (1.40), är proportionell mot den reella storheten $I(\theta, \delta)$ definierad av¹⁷

$$I(\theta, \delta) = \langle (\hat{\boldsymbol{e}} \cdot \boldsymbol{E}_0(t)) (\hat{\boldsymbol{e}} \cdot \boldsymbol{E}_0(t))^* \rangle = \langle |\hat{\boldsymbol{e}} \cdot \boldsymbol{E}_0(t)|^2 \rangle$$
(1.41)

Medelvärdet av två komplexa storheter $f_1(t)$ och $f_2(t)$ över ett tidsintervall T' ges av

$$\langle f_1(t)f_2(t) \rangle = \frac{1}{2T'} \int_{-T'}^{T'} f_1(t)f_2(t) dt$$

Tiden T' antas vara lång jämfört med fältets variationer.

Definiera 2×2 koherensmatrisen [J] genom

$$\begin{bmatrix} \mathbf{J} \end{bmatrix} = \begin{pmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{pmatrix} = \begin{pmatrix} \langle E_{01}(t)E_{01}^{*}(t) \rangle & \langle E_{01}(t)E_{02}^{*}(t) \rangle \\ \langle E_{02}(t)E_{01}^{*}(t) \rangle & \langle E_{02}(t)E_{02}^{*}(t) \rangle \end{pmatrix}$$
(1.42)

Med hjälp av rad- och kolonnvektorer kan vi skriva koherensmatrisen som (Hermitekonjugering anges med "dolktecknet" $(^{\dagger})$)

$$[\mathbf{J}] = < \begin{pmatrix} E_{01}(t) \\ E_{02}(t) \end{pmatrix} \begin{pmatrix} E_{01}(t)^* & E_{02}(t)^* \end{pmatrix} > = < \begin{pmatrix} E_{01}(t) \\ E_{02}(t) \end{pmatrix} \begin{pmatrix} E_{01}(t) \\ E_{02}(t) \end{pmatrix}^{\dagger} >$$

där vi med tidsmedelvärdet av en matris $[\mathbf{A}]$ menar en matris vars element är tidsmedelvärdet av matrisen $[\mathbf{A}]$:s element. Koherensmatrisen kvantifierar tidskorrelationen mellan de olika kartesiska komponenterna av det elektriska fältet. Diagonalelementen J_{11} och J_{22} är positiva, reella storheter, medan J_{12} och J_{21} är komplexa tal.

 $^{^{17}}$ I avsnitt 1.3.3, (1.39), visade vi att intensiteten för plana vågor är proportionell mot kvadraten på det elektriska fältet.

Notera att matrisen $[\mathbf{J}]$ är Hermitesk, $[\mathbf{J}] = [\mathbf{J}]^*$, eftersom

 $J_{12}^* = < E_{01}(t)E_{02}^*(t) >^* = < E_{02}(t)E_{01}^*(t) > = J_{21}$

Schwartz olikhet för integraler på de icke-diagonala elementen i koherensmatrisen ger att

$$|J_{12}| = |\langle E_{01}(t)E_{02}^{*}(t)\rangle| \le \sqrt{\langle |E_{01}(t)|^{2}\rangle}\sqrt{\langle |E_{02}(t)|^{2}\rangle} = \sqrt{J_{11}J_{22}}$$

Matrisen [J]:s determinant är därför alltid icke-negativ.

$$\det \left[\mathbf{J}\right] = J_{11}J_{22} - J_{12}J_{21} = J_{11}J_{22} - \left|J_{12}\right|^2 \ge 0$$

Fältets totala intensitet, se (1.39), är proportionell mot summan av diagonalelementen i koherensmatrisen, dvs. spåret av koherensmatrisen

Tr
$$[\mathbf{J}] = J_{11} + J_{22} = \langle |E_{01}(t)|^2 \rangle + \langle |E_{02}(t)|^2 \rangle = \langle |\mathbf{E}_0(t)|^2 \rangle$$

Intensiteten längs en i tiden fix riktning \hat{e} , se (1.40), ges av (1.41), och detta uttryck skriver vi om mha. koherensmatrisen [**J**]. Resultatet är

$$I(\theta, \delta) = J_{11} \cos^2 \theta + J_{22} \sin^2 \theta + J_{12} e^{-i\delta} \cos \theta \sin \theta + J_{21} e^{i\delta} \cos \theta \sin \theta$$
$$= J_{11} \cos^2 \theta + J_{22} \sin^2 \theta + 2 \operatorname{Re}(J_{12} e^{-i\delta}) \cos \theta \sin \theta$$

eftersom $J_{12} = J_{21}^*$. För att se hur denna storhet varierar som funktion av vinkeln θ skriver vi om uttrycket.

$$I(\theta, \delta) = \frac{1}{2} \underbrace{(J_{11} + J_{22})}_{<|\mathbf{E}_0(t)|^2>} + R\cos(2\theta - \alpha)$$
(1.43)

där

$$\begin{cases} R = \frac{1}{2}\sqrt{(J_{11} - J_{22})^2 + (2\operatorname{Re}(J_{12}e^{-i\delta}))^2} \\ \tan \alpha = \frac{2\operatorname{Re}(J_{12}e^{-i\delta})}{J_{11} - J_{22}} \end{cases}$$

Från dessa uttryck ser vi att intensiteten $I(\theta,\delta)$ varierar, som funktion av vinklarna θ och $\delta,$ mellan^{18}

$$\frac{1}{2} \left(J_{11} + J_{22} \right) - R_{\max} \le I(\theta, \delta) \le \frac{1}{2} \left(J_{11} + J_{22} \right) + R_{\max}$$

¹⁸Detta resultat kan också fås genom att skriva om intensiteten $I(\theta, \delta)$ på matrisform.

$$I(\theta, \delta) = \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} J_{11} & J_{12}e^{-i\delta} \\ J_{21}e^{i\delta} & J_{22} \end{pmatrix} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

Matrisens två egenvärden, $\lambda = \frac{1}{2} (J_{11} + J_{22}) \pm R_{\text{max}}$, ger största och minsta värdet hos intensiteten.

där

$$R_{\max} = \frac{1}{2}\sqrt{(J_{11} - J_{22})^2 + 4|J_{12}|^2} = \frac{1}{2}(J_{11} + J_{22})\sqrt{1 - \frac{4\det[\mathbf{J}]}{(J_{11} + J_{22})^2}}$$

Storheten R_{max} utgör ett mått på intensitetens variation då vinklarna θ och δ varierar. Det visar sig lämpligt att definiera en dimensionslös storhet som kvantifierar denna variation. Inför polarisationsgraden P definierad genom

$$P = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} = \frac{2R_{\max}}{J_{11} + J_{22}}$$
$$= \sqrt{1 - \frac{4\det[\mathbf{J}]}{(J_{11} + J_{22})^2}} = \sqrt{1 - \frac{4\det[\mathbf{J}]}{(\langle |\mathbf{E}_0(t)|^2 \rangle)^2}}$$

Denna kvantitet kan variera mellan 0 och 1, eftersom den antar sitt minsta värde då $I_{\text{max}} = I_{\text{min}}$ och är maximal då $I_{\text{min}} = 0$. Vi har därför att

$$P \in [0,1]$$

1.4.1 Opolariserat fält

Det elektromagnetiska fältet från många naturliga källor är opolariserat eller naturligt, vilket innebär att intensiteten $I(\theta, \delta)$ är lika stor i alla riktningar \hat{e} , dvs. den är oberoende av vinkeln θ och retardationen δ . Detta innebär att storheten R_{max} är noll för alla vinklar δ , vilket medför

$$\begin{cases} J_{11} = J_{22} \\ J_{12} = J_{21} = 0 \end{cases}$$

Koherensmatrisen för opolariserade fält får sålunda följande utseende:

$$[\mathbf{J}] = \begin{pmatrix} J_{11} & 0\\ 0 & J_{22} \end{pmatrix} = \frac{\langle |\mathbf{E}_0(t)|^2 \rangle}{2} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$
(1.44)

eftersom $\langle |\boldsymbol{E}_0(t)|^2 \rangle = J_{11} + J_{22} = 2J_{11}.$

Determinanten av koherensmatrisen blir för opolariserade fält

$$\det \left[\mathbf{J} \right] = J_{11}J_{22} - J_{12}J_{21} = |J_{11}|^2 = \frac{\langle |\mathbf{E}_0(t)|^2 \rangle^2}{4} > 0$$

och polarisationsgraden för ett opolariserat fält blir

$$P = \sqrt{1 - \frac{4 \det [\mathbf{J}]}{(J_{11} + J_{22})^2}} = \sqrt{1 - \frac{4 \det [\mathbf{J}]}{\langle |\mathbf{E}_0(t)|^2 \rangle^2}} = 0$$

1.4.2 Fullständigt polariserat fält

Den andra ytterligheten utgör ett monokromatiskt fält. Den komplexa vektorn E_0 är då konstant i tiden och koherensmatrisens element är

$$[\mathbf{J}] = \begin{pmatrix} E_{01}E_{01}^* & E_{01}E_{02}^* \\ E_{02}E_{01}^* & E_{02}E_{02}^* \end{pmatrix}$$
(1.45)

Notera att tidsmedelvärdena nu försvunnit.

Determinanten på koherensmatrisen blir

$$\det \left[\mathbf{J}\right] = \left|E_{01}\right|^2 \left|E_{02}\right|^2 - E_{01}E_{02}^*E_{02}E_{01}^* = 0$$

Polarisationsgraden för ett fullständigt polariserat fält blir sålunda

$$P = \sqrt{1 - \frac{4 \det \left[\mathbf{J}\right]}{\left(J_{11} + J_{22}\right)^2}} = 1$$

1.4.3 Allmän polarisationsgrad

De två ytterligheterna av polarisationsgraden, opolariserat respektive fullständigt polariserat fält, karakteriseras, som vi sett, av koherensmatriser av följande form:

$$\begin{bmatrix} \mathbf{J} \end{bmatrix}_{\text{opol}} = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}, \qquad \begin{bmatrix} \mathbf{J} \end{bmatrix}_{\text{pol}} = \begin{pmatrix} B & D \\ D^* & C \end{pmatrix}$$

där A, B och C är icke-negativa reella tal, $A \ge 0, B \ge 0, C \ge 0$, och D ett komplext tal, sådana att $BC - DD^* = 0$.

Vi kommer nu att visa att varje koherensmatris $[\mathbf{J}]$ entydigt kan skrivas som en summa av ett opolariserat och ett fullständigt polariserat fält, dvs.

$$[\mathbf{J}] = \begin{pmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} + \begin{pmatrix} B & D \\ D^* & C \end{pmatrix} = [\mathbf{J}]_{\text{opol}} + [\mathbf{J}]_{\text{pol}}$$

Vi visar detta genom att explicit beräkna matriselementen A, B, C och D. Följande samband gäller:

$$\begin{cases} J_{11} = A + B \\ J_{12} = D \\ J_{21} = D^* \\ J_{22} = A + C \end{cases}$$

Eliminera med dessa samband B och C ur $BC - DD^* = 0$. Vi får

$$(J_{11} - A)(J_{22} - A) - J_{12}J_{12}^* = 0$$

De två rötterna till denna andragradsekvation i A är

$$A = \frac{1}{2} \left(J_{11} + J_{22} \right) \pm \frac{1}{2} \sqrt{\left(J_{11} + J_{22} \right)^2 - 4 \det \left[\mathbf{J} \right]}$$

där det $[\mathbf{J}] = J_{11}J_{22} - J_{12}J_{12}^*$. Båda dessa rötter är reella och positiva, eftersom

$$\det \left[\mathbf{J} \right] = J_{11}J_{22} - |J_{12}|^2 \le J_{11}J_{22} \le \frac{1}{4} \left(J_{11} + J_{22} \right)^2$$

Den senare olikheten visas lätt genom kvadratkomplettering. Endast en av dessa rötter ger positiva värden på B och C. Lösningen på den unika uppdelningen blir således

$$\begin{cases}
A = \frac{1}{2} (J_{11} + J_{22}) - \frac{1}{2} \sqrt{(J_{11} + J_{22})^2 - 4 \det [\mathbf{J}]} \\
B = \frac{1}{2} (J_{11} - J_{22}) + \frac{1}{2} \sqrt{(J_{11} + J_{22})^2 - 4 \det [\mathbf{J}]} \\
C = \frac{1}{2} (J_{22} - J_{11}) + \frac{1}{2} \sqrt{(J_{11} + J_{22})^2 - 4 \det [\mathbf{J}]} \\
D = J_{12}
\end{cases}$$

Med hjälp av denna uppdelning får vi ytterligare ett sätt att definiera polarisationsgraden P på. Intensiteten hos matrisen $[\mathbf{J}]_{pol}$ ges av summan av diagonalelementen.

Tr
$$[\mathbf{J}]_{pol} = B + C = \sqrt{(J_{11} + J_{22})^2 - 4 \det[\mathbf{J}]}$$

Kvoten $\operatorname{Tr}[\mathbf{J}]_{\text{pol}}/\operatorname{Tr}[\mathbf{J}]$ blir

$$P = \frac{\operatorname{Tr} \left[\mathbf{J} \right]_{\text{pol}}}{\operatorname{Tr} \left[\mathbf{J} \right]} = \sqrt{1 - \frac{4 \operatorname{det} \left[\mathbf{J} \right]}{\left(J_{11} + J_{22} \right)^2}}$$

vilket överensstämmer med vår tidigare definition av polarisationsgraden P. Detta uttryck visar att polarisationsgraden P för ett allmänt kvasi-monokromatiskt fält ges av kvoten mellan intensiteten för den fullständigt polariserade delen, $[\mathbf{J}]_{pol}$, och hela fältets intensitet.

1.4.4 Stokes-parametrarna

Intimt sammankopplat med polarisationstillståndet hos ett tidsharmoniskt eller ett kvasi-monokromatiskt svängande elektromagnetiskt fält är Stokes-parametrarna¹⁹ s_i , i = 0, 1, 2, 3. I detta avsnitt definierar vi dessa parametrar för ett monokromatiskt eller kvasi-monokromatiskt fält.

Stokes-parametrarna, vilka är reella tal, definieras enklast genom koherensmatrisens komponenter.

$$\begin{cases} s_0 = J_{11} + J_{22} \\ s_1 = J_{11} - J_{22} \\ s_2 = J_{12} + J_{21} = 2 \operatorname{Re} J_{12} \\ s_3 = i (J_{21} - J_{12}) = 2 \operatorname{Im} J_{12} \end{cases}$$
(1.46)

¹⁹Ofta förekommande beteckningar på dessa parametrar är I, Q, U och V, definierade så att $I = s_0, Q = s_1, U = s_2$ och $V = s_3$. Dessa parametrar introducerades av G. G. Stokes år 1852 för att beskriva ljus som inte var fullständigt polariserat.

Eftersom koherensmatrisens element är definierade mha. intensitetsmätningar $I(\theta, \delta)$ längs vissa riktningar θ och med viss retardation δ , kan Stokes-parametrarna uppmätas experimentellt med polarisator och retardationsplatta. Sambandet mellan storheterna ges av, se övning 1.8

$$\begin{cases} s_0 = I(0,0) + I(\pi/2,0) \\ s_1 = I(0,0) - I(\pi/2,0) \\ s_2 = I(\pi/4,0) - I(3\pi/4,0) \\ s_3 = I(\pi/4,\pi/2) - I(3\pi/4,\pi/2) \end{cases}$$

Från uttrycken på parametrarna s_i , i = 0, 1, 2, 3, (1.46), finner vi att

$$s_1^2 + s_2^2 + s_3^2 = (J_{11} - J_{22})^2 + (J_{12} + J_{21})^2 - (J_{12} - J_{21})^2 = (J_{11} + J_{22})^2 - 4\det[\mathbf{J}]$$

och vi har skapat oss ytterligare ett sätt att uttrycka polarisationsgraden Ppå, nämligen

$$P = \frac{\sqrt{s_1^2 + s_2^2 + s_3^2}}{s_0}$$

I avsnitt 1.4.3 fann vi att ett allmänt polarisationstillstånd entydigt kan uppdelas i en summa av ett opolariserat tillstånd, P = 0, och ett fullständigt polariserat tillstånd, P = 1. För det opolariserade tillståndet gäller att $s_0 = \langle |\mathbf{E}_0(t)|^2 \rangle$ och $s_i = 0$, i = 1, 2, 3. Det fullständigt polariserade tillståndet kan ges en geometrisk tolkning, i den s.k. Poincaré-sfären, se avsnitt 1.4.5. Innan vi gör denna tolkning skriver vi om det fullständigt polariserade fältets representation i Stokesparametrarna. Stokes-parametrarna för ett fullständigt polariserat fält blir, se (1.45)

$$\begin{cases}
s_0 = |E_{01}|^2 + |E_{02}|^2 \\
s_1 = |E_{01}|^2 - |E_{02}|^2 \\
s_2 = 2 \operatorname{Re} E_{01} E_{02}^* \\
s_3 = 2 \operatorname{Im} E_{01} E_{02}^*
\end{cases}$$
(1.47)

där tidsmedelvärdena saknas eftersom E_0 är oberoende av tiden. I avsnitt 1.2.3 analyserades ett godtyckligt monokromatiskt elektromagnetiskt fälts polarisationstillstånd, och vi fann att det definierades entydigt av den komplexa vektorn E_0 , se (1.26) på sidan 15. Den fysikaliska tidsharmoniska vektorn, E(t), rör sig längs en ellips i ett fixt plan, som vi liksom tidigare väljer till \hat{e}_1 - \hat{e}_2 -planet. I avsnitt 1.2.3 införde vi två reella vektorer a och b som var vinkelräta mot varann, dvs. $a \cdot b = 0$. Dessa vektorer var halvaxlarna i polarisationsellipsen. Längden på ellipsens båda halvaxlar betecknar vi a = |a| och b = |b| och ellipsens lutning beskrivs av vinkeln ψ (vinkeln mellan \hat{e}_1 -riktningen och a), se figur 1.11. Sambandet mellan den komplexa vektorn E_0 och vektorerna a och b ges av (1.28) på sidan 16.

$$\boldsymbol{E}_0 = e^{i\chi}(\boldsymbol{a} + i\boldsymbol{b})$$

Sambandet mellan de kartesiska komponenterna E_{0i} , i = 1, 2 och vektorerna \boldsymbol{a} och \boldsymbol{b} är

$$\begin{cases} E_{01} = e^{i\chi} (a\cos\psi \mp ib\sin\psi) \\ E_{02} = e^{i\chi} (a\sin\psi \pm ib\cos\psi) \end{cases}$$

Figur 1.11: Polarisationsellipsen och definition av lutningsvinkeln ψ .

där plustecknet gäller om vektorerna a och b ligger som i figuren 1.11, medan minustecknet gäller om vektorn b har motsatt riktning.

Stokes-parametrarna s_i , i = 0, 1, 2, 3 för det fullständigt polariserade tillståndet kan nu omskrivas mha. (1.47).

$$\begin{cases} s_0 = a^2 + b^2 \\ s_1 = (a^2 - b^2) \cos 2\psi \\ s_2 = (a^2 - b^2) \sin 2\psi \\ s_3 = \mp 2ab \end{cases}$$
(1.48)

Alla dessa parametrar är inte oberoende. Man visar lätt att

$$s_0^2 = s_1^2 + s_2^2 + s_3^2 \tag{1.49}$$

Två av Stokes-parametrar är invarianter, dvs. de är inte relaterade till något speciellt koordinatsystem. Man kan visa att (se övning 1.9)

$$\begin{cases} s_0 = |\boldsymbol{a}|^2 + |\boldsymbol{b}|^2 = |\boldsymbol{E}_0|^2 = a^2 + b^2 \\ s_1^2 + s_2^2 = (|\boldsymbol{a}|^2 + |\boldsymbol{b}|^2)^2 - 4 |\boldsymbol{a} \times \boldsymbol{b}|^2 = (a^2 - b^2)^2 \\ s_3 = -2\hat{\boldsymbol{e}} \cdot (\boldsymbol{a} \times \boldsymbol{b}) = -i\hat{\boldsymbol{e}} \cdot (\boldsymbol{E}_0 \times \boldsymbol{E}_0^*) \end{cases}$$

där $\hat{\boldsymbol{e}} = \hat{\boldsymbol{e}}_1 \times \hat{\boldsymbol{e}}_2$. Vi ser nu direkt att s_3 :s tecken avgör om fältet är höger- eller vänsterpolariserat, se tabell 1.3 på sidan 18. Ett negativt (positivt) värde ger höger- polarisation (vänsterpolarisation).

1.4.5 Poincaré-sfären

Stokes-parametrarna, som definierades i ekvation (1.48), kan för ett fullständigt polariserat fält representeras geometriskt genom att definiera en tredimensionell

Figur 1.12: Poincaré-sfären.

vektor (s_1, s_2, s_3) . Sambandet (1.49) visar att denna vektor ligger på en sfär med radie s_0 . De sfäriska vinklarna för denna vektor är relaterade till ellipsens lutning och polarisation. Azimutvinkeln för vektorn (s_1, s_2, s_3) är 2ψ och vinkeln 2χ definieras genom

$$\sin 2\chi = \frac{s_3}{s_0} = -\frac{2\hat{e} \cdot (a \times b)}{a^2 + b^2} = \mp \frac{2ab}{a^2 + b^2}$$

Notera att vinkeln $\pi/2 - 2\chi$ är polvinkeln för vektorn, se figur 1.12.

Genom denna geometriska tolkning av Stokes-parametrarna ser vi att den övre (nedre) delen av sfären svarar mot ett vänsterelliptiskt (högerelliptiskt) polariserat fält. Ekvatorn $\chi = 0$ svarar mot ett linjärpolariserat fält. Polerna svarar mot LCP eller RCP (nord- respektive sydpolen). Denna geometriska tolkning har stort värde vid utvärderingen av ett fälts polarisationstillstånd.

Övningar till kapitel 1

1.1 Det elektriska fältet i en punkt i rummet ges av

$$\boldsymbol{E}(t) = \hat{\boldsymbol{e}}_1 a \cos \omega t + \hat{\boldsymbol{e}}_2 b \sin \omega t$$

där *a* och *b* är positiva, reella tal. Analysera polarisationstillståndet hos detta fält om $\langle \mathbf{S}(t) \rangle$ antas vara riktad längs $\hat{\mathbf{e}}_3 = \hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2$. Vi förutsätter att $\hat{\mathbf{e}}_1 \perp \hat{\mathbf{e}}_2$.

1.2 Det elektriska fältet i en punkt i rummet ges av

$$\boldsymbol{E}(t) = a\left(\hat{\boldsymbol{e}}_1 \cos \omega t + \hat{\boldsymbol{e}}_2 \cos(\omega t - \pi/4)\right)$$

där *a* är ett positivt, reellt tal. Analysera polarisationstillståndet hos detta fält om $\langle \mathbf{S}(t) \rangle$ antas vara riktad längs $\hat{\mathbf{e}}_3 = \hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_2$. Vi förutsätter att $\hat{\mathbf{e}}_1 \perp \hat{\mathbf{e}}_2$.

1.3 Låt A vara en komplex vektor och k vågvektorn för en homogen planvåg, dvs.

$$A = A' + iA''$$
$$k = (k' + ik'')\hat{k}$$

Om A och k uppfyller $A \cdot k = 0$, visa att vektorn A:s real- och imaginärdel är vinkelräta mot \hat{k} , dvs.

$$A' \cdot \hat{k} = 0$$
$$A'' \cdot \hat{k} = 0$$

1.4 Finn två komplexa vektorer A och B så att $A \cdot B = 0$ och

$$\mathbf{A}' \cdot \mathbf{B}' \neq 0$$
$$\mathbf{A}'' \cdot \mathbf{B}'' \neq 0$$

där A' och B' är vektorernas realdelar samt A'' och B'' deras imaginärdelar.

1.5 Låt A och k vara två godtyckliga komplex vektorer. Visa att

$$\boldsymbol{k} \cdot (\boldsymbol{k} \times \boldsymbol{A}) = 0$$

1.6 Beräkna effektutvecklingen per volymsenhet för en planvåg i ett isotropt material med materialparametrar $\epsilon(\omega)$ och $\mu(\omega)$. Planvågen antas vara homogen, och med en reell utbredningsriktning \hat{k} , dvs.

$$\boldsymbol{E}(\boldsymbol{r},\omega) = \boldsymbol{E}_0(\boldsymbol{k},\omega)e^{ik\boldsymbol{k}\cdot\boldsymbol{r}}$$

- 1.7 Genomför beräkningarna som leder till uttrycket (1.43).
- **1.8** Visa att Stokes-parametrarna s_i , i = 0, 1, 2, 3, är relaterade till intensitetsmätningar $I(\theta, \delta)$ genom

$$\begin{cases} s_0 = I(0,0) + I(\pi/2,0) \\ s_1 = I(0,0) - I(\pi/2,0) \\ s_2 = I(\pi/4,0) - I(3\pi/4,0) \\ s_3 = I(\pi/4,\pi/2) - I(3\pi/4,\pi/2) \end{cases}$$

1.9 Visa att Stokes-parametrarna, s_i , i = 0, 1, 2, 3, kan uttryckas i vektorerna a och b eller E_0 på följande sätt:

$$\begin{cases} s_0 = |\boldsymbol{a}|^2 + |\boldsymbol{b}|^2 = |\boldsymbol{E}_0|^2 = a^2 + b^2 \\ s_1^2 + s_2^2 = (|\boldsymbol{a}|^2 + |\boldsymbol{b}|^2)^2 - 4 |\boldsymbol{a} \times \boldsymbol{b}|^2 = (a^2 - b^2)^2 \\ s_3 = -2\hat{\boldsymbol{e}} \cdot (\boldsymbol{a} \times \boldsymbol{b}) = -i\hat{\boldsymbol{e}} \cdot (\boldsymbol{E}_0 \times \boldsymbol{E}_0^*) \end{cases}$$

där $\hat{\boldsymbol{e}} = \hat{\boldsymbol{e}}_1 \times \hat{\boldsymbol{e}}_2.$

Sammanfattning av kapitel 1

Allmänt tidsberoende fält

Maxwells ekvationer

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$
$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$
$$\nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \cdot \boldsymbol{D} = \rho$$

Laddningskonservering

$$\nabla \cdot \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0$$

Lorentz-kraften

 $oldsymbol{F} = q\left\{oldsymbol{E} + oldsymbol{v} imes oldsymbol{B}
ight\}$

Randvillkor, allmänt och ledare

$$\hat{\boldsymbol{n}} \times (\boldsymbol{E}_1 - \boldsymbol{E}_2) = \boldsymbol{0} \\ \hat{\boldsymbol{n}} \times (\boldsymbol{H}_1 - \boldsymbol{H}_2) = \boldsymbol{J}_S \\ \hat{\boldsymbol{n}} \cdot (\boldsymbol{B}_1 - \boldsymbol{B}_2) = \boldsymbol{0} \\ \hat{\boldsymbol{n}} \cdot (\boldsymbol{D}_1 - \boldsymbol{D}_2) = \rho_S$$

$$\hat{\boldsymbol{n}} \cdot \boldsymbol{D}_1 = \rho_S$$

Poyntings sats

$$\nabla \cdot \boldsymbol{S} + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{E} \cdot \boldsymbol{J} = 0$$
$$\boldsymbol{S} = \boldsymbol{E} \times \boldsymbol{H}$$

Tidsharmoniska fält
$$\exp\{-i\omega t\}$$

Maxwells fältekvationer

$$\begin{aligned} \nabla \times \boldsymbol{E}(\boldsymbol{r}, \omega) &= i \omega \boldsymbol{B}(\boldsymbol{r}, \omega) \\ \nabla \times \boldsymbol{H}(\boldsymbol{r}, \omega) &= \boldsymbol{J}(\boldsymbol{r}, \omega) - i \omega \boldsymbol{D}(\boldsymbol{r}, \omega) \end{aligned}$$

Laddningskonservering

 $\nabla\cdot\boldsymbol{J}(\boldsymbol{r},\omega)=i\omega\rho(\boldsymbol{r},\omega)$

Polarisationstillstånd

 $\begin{aligned} \boldsymbol{E}(t) &= \operatorname{Re} \left\{ \boldsymbol{E}_0 e^{-i\omega t} \right\} \\ \boldsymbol{E}_0 &= e^{i\chi} (\boldsymbol{a} + i\boldsymbol{b}) \\ i\hat{\boldsymbol{e}} \cdot (\boldsymbol{E}_0 \times \boldsymbol{E}_0^*) &= \begin{cases} = 0 & \text{linjär polarisation} \\ > 0 & \text{höger elliptisk polarisation} \\ < 0 & \text{vänster elliptisk polarisation} \end{cases} \\ \boldsymbol{E}_0 \cdot \boldsymbol{E}_0 &= 0 \text{ cirkulär polarisation} \end{cases}$

Konstitutiva relationer

$$\begin{array}{|c|c|} \hline \boldsymbol{D}(\boldsymbol{r},\omega) = \epsilon_0 \left(1 + \chi_{\rm e}(\boldsymbol{r},\omega)\right) \boldsymbol{E}(\boldsymbol{r},\omega) = \epsilon_0 \epsilon(\boldsymbol{r},\omega) \boldsymbol{E}(\boldsymbol{r},\omega) \\ \hline \boldsymbol{B}(\boldsymbol{r},\omega) = \mu_0 \left(1 + \chi_{\rm m}(\boldsymbol{r},\omega)\right) \boldsymbol{H}(\boldsymbol{r},\omega) = \mu_0 \mu(\boldsymbol{r},\omega) \boldsymbol{H}(\boldsymbol{r},\omega) \end{array}$$

Poyntings sats

$$\nabla \cdot \langle \boldsymbol{S}(\boldsymbol{r},t) \rangle = -\frac{\omega\epsilon_0}{2} \left\{ \operatorname{Im} \epsilon(\boldsymbol{r},\omega) |\boldsymbol{E}(\boldsymbol{r},\omega)|^2 + \operatorname{Im} \mu(\boldsymbol{r},\omega)\eta_0^2 |\boldsymbol{H}(\boldsymbol{r},\omega)|^2 \right\}$$
$$\langle \boldsymbol{S}(\boldsymbol{r},t) \rangle = \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}(\boldsymbol{r},\omega) \times \boldsymbol{H}(\boldsymbol{r},\omega)^* \right\}$$

Exempel

$$\epsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 - \omega_0^2 + i\omega\nu} \qquad \text{(Lorentz)}$$
$$\epsilon(\omega) = 1 + \frac{\alpha\tau}{1 - i\omega\tau} \qquad \text{(Debye)}$$

Passiva material

$$\begin{array}{c} \operatorname{Im} \epsilon(\omega) > 0 \\ \operatorname{Im} \mu(\omega) > 0 \end{array} \quad \omega > 0 \end{array}$$

Förlustfria material

$$\operatorname{Im} \epsilon(\omega) = 0$$
$$\operatorname{Im} \mu(\omega) = 0$$

Plana vågor

$$\begin{split} \boldsymbol{E} &= -\eta_0 \eta \hat{\boldsymbol{k}} \times \boldsymbol{H} \\ \eta_0 \eta \boldsymbol{H} &= \hat{\boldsymbol{k}} \times \boldsymbol{E} \\ k &= k' + ik'' \quad \text{vågtal} \\ v &= \frac{\omega}{k'} \quad \text{fashastighet} \\ \lambda &= \frac{2\pi}{k'} \quad \text{våglängd} \\ n &= \frac{c_0}{v} \quad \text{brytningsindex} \\ k'(\omega) &+ ik''(\omega) &= \frac{\omega}{c_0} \left(\epsilon(\omega)\mu(\omega)\right)^{1/2} \\ &\quad (\text{dispersionsrelation}) \end{split}$$

Koherensmatris

$$\begin{bmatrix} \mathbf{J} \end{bmatrix} = \begin{pmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{pmatrix} = \begin{pmatrix} \langle E_{01}(t)E_{01}^{*}(t) \rangle & \langle E_{01}(t)E_{02}^{*}(t) \rangle \\ \langle E_{02}(t)E_{01}^{*}(t) \rangle & \langle E_{02}(t)E_{02}^{*}(t) \rangle \end{pmatrix}$$

Polarisationsgrad

$$P = \sqrt{1 - \frac{4 \det \left[\mathbf{J}\right]}{\left(J_{11} + J_{22}\right)^2}} = \frac{\operatorname{Tr}\left[\mathbf{J}\right]_{\text{pol}}}{\operatorname{Tr}\left[\mathbf{J}\right]}$$

Opolariserat och fullständigt polariserat fält

$$\begin{cases} J_{11} = J_{22} \\ J_{12} = J_{21} = 0 \\ P = 0 \end{cases}$$
 (Opolariserat fält)
$$\begin{cases} \det [\mathbf{J}] = J_{11}J_{22} - J_{12}J_{21} = 0 \\ P = 1 \end{cases}$$
 (Fullständigt polariserat fält)

Stokes-parametrar, allmän polarisationsgrad

$$s_{0} = J_{11} + J_{22} = I(0,0) + I(\pi/2,0)$$

$$s_{1} = J_{11} - J_{22} = I(0,0) - I(\pi/2,0)$$

$$s_{2} = J_{12} + J_{21} = 2 \operatorname{Re} J_{12} = I(\pi/4,0) - I(3\pi/4,0)$$

$$s_{3} = i (J_{21} - J_{12}) = 2 \operatorname{Im} J_{12} = I(\pi/4,\pi/2) - I(3\pi/4,\pi/2)$$

Stokes-parametrar, fullständigt polariserat fält

$$s_{0} = |E_{01}|^{2} + |E_{02}|^{2} = a^{2} + b^{2}$$

$$s_{1} = |E_{01}|^{2} - |E_{02}|^{2} = (a^{2} - b^{2})\cos 2\psi$$

$$s_{2} = 2 \operatorname{Re} E_{01}E_{02}^{*} = (a^{2} - b^{2})\sin 2\psi$$

$$s_{3} = 2 \operatorname{Im} E_{01}E_{02}^{*} = -2\hat{\boldsymbol{e}} \cdot (\boldsymbol{a} \times \boldsymbol{b})$$

Kapitel 2

Integralframställningar

T detta kapitel kommer de mycket användbara integralrepresentationerna av fälten att härledas. Dessa resultat utgör grunden för mer generella studier och analys av spridnings- och vågutbredningsproblem.

Vi kommer att visa att de elektromagnetiska fälten i ett homogent isotropt område bestäms av fältens värden på randen till området. Denna gränsyta kan vara en fiktiv yta eller en verklig skiljeyta mellan två material.

För att kunna genomföra denna analys behöver vi en del resultat från Greenfunktionstekniken och olika potentialfält. Vi exemplifierar resultaten med Čerenkovstrålning.

2.1 Källor och Greenfunktioner

Vi kommer nu, i detta avsnitt, att analysera hur elektromagnetiska vågor kan genereras och representeras.

Vi begränsar analysen till vågutbredningsproblem i homogena material och till tidsharmoniska fält. Maxwells fältekvationer ges då av (1.19) och (1.20)

$$\begin{cases} \nabla \times \boldsymbol{E} = i\omega \boldsymbol{B} \\ \nabla \times \boldsymbol{H} = \boldsymbol{J} - i\omega \boldsymbol{D} \end{cases}$$

Vårt mål är att lösa dessa ekvationer för en given strömtäthetsfördelning J. Vi skall visa att detta är möjligt om vi kan bestämma problemets Greenfunktion. En ytterligare begränsning som vi inför är att materialet är isotropt, dvs. de konstitutiva relationerna är

$$\begin{cases} \boldsymbol{D} = \epsilon_0 \epsilon \boldsymbol{E} \\ \boldsymbol{B} = \mu_0 \mu \boldsymbol{H} \end{cases}$$
(2.1)

Kombinerar vi dessa ekvationer ovan får vi

$$abla imes (
abla imes oldsymbol{E}) = i\omega\mu_0\mu
abla imes oldsymbol{H}$$

= $i\omega\mu_0\mu(oldsymbol{J} - i\omegaoldsymbol{D}) = i\omega\mu_0\muoldsymbol{J} + \omega^2\epsilon_0\mu_0\epsilon\muoldsymbol{E}$

eller

$$\nabla \times (\nabla \times \boldsymbol{E}) - k^2 \boldsymbol{E} = i\omega \mu_0 \mu \boldsymbol{J}$$
(2.2)

där

$$k = \omega \left(\epsilon_0 \mu_0 \epsilon \mu\right)^{1/2} = \frac{\omega}{c_0} \left(\epsilon \mu\right)^{1/2}$$

2.1.1 Potentialer och gaugetransformationer

Ekvation (2.2) är den partiella differentialekvation som det elektriska fältet uppfyller för givna källor J. Lösningen till denna ekvation ger sedan de övriga fälten D, Boch H genom Maxwells fältekvationer och de konstitutiva relationerna (2.1). Denna vektorekvation är ett system av tre kopplade ekvationer; en ekvation för varje kartesisk komponent. Vi söker nu ett sätt att skriva om denna kopplade vektorekvation (2.2) så att ingen koppling sker mellan de olika kartesiska komponenterna. Ett sätt att göra detta är att införa *vektorpotentialen* A definierad av

$$\boldsymbol{B} = \nabla \times \boldsymbol{A} \tag{2.3}$$

Vektorpotentialens existens följer av att $\nabla \cdot \boldsymbol{B} = 0$. Den *skalära potentialen* ϕ definieras genom Faradays lag.

$$abla imes \boldsymbol{E} = i\omega \boldsymbol{B} = i\omega \nabla \times \boldsymbol{A}$$

Vi får

$$abla imes (\boldsymbol{E} - i\omega \boldsymbol{A}) = \boldsymbol{0}$$

vilket medför att det finns en funktion ϕ så att¹

$$\boldsymbol{E} - i\omega\boldsymbol{A} = -\nabla\phi$$

eller

$$\boldsymbol{E} = i\omega\boldsymbol{A} - \nabla\phi \tag{2.4}$$

Den magnetiska flödestätheten \boldsymbol{B} och det elektriska fältet \boldsymbol{E} kan således beräknas ur vektorpotentialen \boldsymbol{A} och den skalära potentialen ϕ .

Vektorpotentialen \boldsymbol{A} och den skalära potentialen ϕ är ej entydigt definierade. Om \boldsymbol{A} och ϕ byts ut mot (en s.k. gaugetransformation²)

$$\left\{ \begin{array}{l} {\bm A}' = {\bm A} + \nabla \psi \\ \phi' = \phi + i \omega \psi \end{array} \right.$$

där ψ är en godtycklig (differentierbar) funktion förblir den magnetiska flödestätheten och det elektriska fältet desamma eftersom

$$abla imes oldsymbol{A}' =
abla imes oldsymbol{A} +
abla imes
abla \psi =
abla imes oldsymbol{A}$$

¹För att ϕ säkert skall existera antar vi att området som vi betraktar är enkelt sammanhängande.

²Namnet gauge väcker ofta undran. Matematikern Hermann Weyl myntade namnet 1921 i en teori om laddade partiklar. I teorin, som inte visade sig så användbar, kunde längder ändras godtyckligt från punkt till punkt i rummet. Namnet, som ursprungligen hade betydelsen mäta eller skala, har dock levt kvar.

och

$$i\omega \mathbf{A}' - \nabla \phi' = i\omega \mathbf{A} + i\omega \nabla \psi - \nabla \phi - i\omega \nabla \psi = i\omega \mathbf{A} - \nabla \phi$$

Vi får således samma fysikaliska fält E och B från både oprimmade och primmade potentialer.

Friheten vid val av vektorpotential \boldsymbol{A} och skalär potential ϕ kan hjälpa oss att finna en enklare ekvation för \boldsymbol{A} än ekvationen (2.2) för \boldsymbol{E} ovan. Vi ställer därför upp bivillkor som \boldsymbol{A} och ϕ måste uppfylla. Det mest använda är *Lorenz bivillkor*³ eller *Lorenz gaugen*.

$$\nabla \cdot \boldsymbol{A} = \frac{ik^2}{\omega}\phi \tag{2.5}$$

Det är alltid möjligt att konstruera \mathbf{A} och ϕ så att denna ekvation är uppfylld. Vi visar detta genom att antaga att vi har en vektorpotential \mathbf{A}_0 och en skalär potential ϕ_0 som satisfierar

$$\left\{ egin{array}{ll} m{B} =
abla imes m{A}_0 \ m{E} = i \omega m{A}_0 -
abla \phi_0 \end{array}
ight.$$

men som inte uppfyller (2.5). Definiera nu en ny vektor
potential \boldsymbol{A} och en ny skalär potential ϕ genom

$$\left\{ egin{array}{ll} oldsymbol{A} = oldsymbol{A}_0 -
abla \psi \ \phi = \phi_0 - i\omega\psi \end{array}
ight.$$

där funktionen ψ är en godtycklig lösning till den inhomogena Helmholtzekvationen.⁴

$$\nabla^2 \psi + k^2 \psi = \nabla \cdot \boldsymbol{A}_0 - \frac{ik^2}{\omega} \phi_0$$

Notera att det högra ledet i denna ekvation är känt och skilt från noll, eftersom vi från början antog att A_0 och ϕ_0 inte uppfyllde Lorenz bivillkor. De fysikaliska fälten E och B påverkas inte av detta byte av vektorpotential och skalär potential eftersom bytet $A_0 \longrightarrow A$ och $\phi_0 \longrightarrow \phi$ är en gaugetransformation.

De nya potentialerna A och ϕ uppfyller däremot Lorenz bivillkor, vilket inses genom följande räkningar

$$\nabla \cdot \boldsymbol{A} - \frac{ik^2}{\omega} \phi = \nabla \cdot (\boldsymbol{A}_0 - \nabla \psi) - \frac{ik^2}{\omega} (\phi_0 - i\omega\psi)$$
$$= \nabla \cdot \boldsymbol{A}_0 - \frac{ik^2}{\omega} \phi_0 - \nabla^2 \psi - k^2 \psi = 0$$

enligt definitionen på funktionen ψ . Det är således alltid möjligt att välja vektorpotential A och skalär potential ϕ så att Lorenz bivillkor är uppfyllt.

³Notera att det var den danske fysikern Ludvig Valentin Lorenz som först formulerade detta bivillkor i en uppsats från 1867. Den holländske fysikern Hendrik Antoon Lorentz gjorde en motsvarande upptäckt, men senare. Därför bör bivillkoret bära Lorenz namn, och inte Lorentz. Ytterligare fakta kan hämtas från J. Van Bladel, "Lorenz or Lorentz," *IEEE Antenn. Propagat. Magazine*, **33**(2), 69 (1991).

⁴Att en sådan lösning alltid existerar visas senare i detta avsnitt (i vektorfallet).

Även om vektorpotential \mathbf{A} och skalär potential ϕ uppfyller Lorenz bivillkor är de ändå inte entydigt definierade, vilket inses genom att genomföra resonemanget ovan i det speciella fall då $\mathbf{A}_0 = \mathbf{0}$ och $\phi_0 = 0$. Lorenz bivillkor är visserligen då från början trivialt uppfyllt men inget hindrar oss från att byta potentialer genom att välja ett ψ som uppfyller den homogena Helmholtzekvationen

$$\nabla^2 \psi + k^2 \psi = 0$$

Den partiella differentialekvation som A uppfyller blir speciellt enkel om vi kräver att Lorenz bivillkor skall vara uppfyllt. Sätt in (2.4) i (2.2).

$$\nabla \times [\nabla \times (i\omega \boldsymbol{A} - \nabla \phi)] - k^2 [i\omega \boldsymbol{A} - \nabla \phi] = i\omega \mu_0 \mu \boldsymbol{J}$$

Utnyttja att $\nabla \times \nabla \phi = \mathbf{0}$ och sätt in Lorenz villkoret (2.5).

$$abla imes (
abla imes oldsymbol{A}) - k^2 oldsymbol{A} -
abla (
abla \cdot oldsymbol{A}) = \mu_0 \mu oldsymbol{J}$$

Vidare gäller att

$$abla^2 \boldsymbol{A} =
abla \left(
abla \cdot \boldsymbol{A} \right) -
abla imes \left(
abla imes \boldsymbol{A} \right)$$

vilket lätt visas i kartesiska koordinater. Till slut får vi vektorpotentialens differentialekvation.

$$\nabla^2 \boldsymbol{A} + k^2 \boldsymbol{A} = -\mu_0 \mu \boldsymbol{J} \tag{2.6}$$

Kan vi lösa denna ekvation, kan sedan ϕ bestämmas av (2.5) och fälten E och B av (2.4), respektive (2.3), samt därefter fälten D och H via de konstitutiva relationerna. Den elektriska fältstyrkan E fås alternativt ur Ampères lag.

$$i\omega\epsilon_0\epsilon E = J - \nabla \times H = J - \frac{1}{\mu_0\mu}\nabla \times (\nabla \times A)$$

Ekvation (2.6) är i allmänhet lättare att lösa än (2.2), ty de olika kartesiska komponenterna är ej blandade i (2.6).

2.1.2 Kanoniskt problem

Ett vanligt sätt att lösa (2.6) är att finna lösningen till ett kanoniskt problem där källan är speciell. Antag att vi känner lösningen $g(k, \boldsymbol{r}, \boldsymbol{r}')$ till följande ekvation:

$$\nabla^2 g(k, \boldsymbol{r}, \boldsymbol{r}') + k^2 g(k, \boldsymbol{r}, \boldsymbol{r}') = -\delta(\boldsymbol{r} - \boldsymbol{r}')$$
(2.7)

där differentieringen sker map variabeln \mathbf{r} och där $\delta(\mathbf{r} - \mathbf{r}')$ är den tredimensionella deltafunktionen, dvs.

$$\delta(\boldsymbol{r} - \boldsymbol{r}') = \delta(x - x')\delta(y - y')\delta(z - z')$$

i det kartesiska koordinatsystemet. Funktionen $g(k, \boldsymbol{r}, \boldsymbol{r}')$ kallas problemets Greenfunktion. Lösningen till vårt ursprungliga problem (2.6) blir då

$$\boldsymbol{A}(\boldsymbol{r}) = \mu_0 \mu \iiint_V g(k, \boldsymbol{r}, \boldsymbol{r}') \boldsymbol{J}(\boldsymbol{r}') \, dv'$$
(2.8)

där dv' är volymselementet dx'dy'dz' (integration över variabeln r') och integrationen sker över hela rymden eller effektivt de delar där $J \neq 0$.

Formellt ser vi att (2.8) är en lösning till (2.6) genom insättning och växling av differentiering och integrering

$$\nabla^{2} \boldsymbol{A}(\boldsymbol{r}) + k^{2} \boldsymbol{A}(\boldsymbol{r}) = \mu_{0} \mu \iiint_{V} \left[\nabla^{2} g(k, \boldsymbol{r}, \boldsymbol{r}') + k^{2} g(k, \boldsymbol{r}, \boldsymbol{r}') \right] \boldsymbol{J}(\boldsymbol{r}') \, dv'$$
$$= -\mu_{0} \mu \iiint_{V} \delta(\boldsymbol{r} - \boldsymbol{r}') \boldsymbol{J}(\boldsymbol{r}') \, dv' = -\mu_{0} \mu \boldsymbol{J}(\boldsymbol{r})$$

enligt definitionen på deltafunktionen $\delta(\mathbf{r} - \mathbf{r'})$. Det bör poängteras att dessa räkningar ovan med deltafunktionen är formella, men kan göras matematiskt mer stringenta. Vi kommer, för enkelhets skull, att utföra våra räkningar som om deltafunktionen var en "vanlig" funktion.

Det återstår således att lösa det kanoniska problemet (2.7). Detta är ett problem med sfärisk symmetri (källan är rotationssymmetrisk), vilket medför att vi kan anta att $g(k, \boldsymbol{r}, \boldsymbol{r}')$ endast beror på avståndet $R = |\boldsymbol{r} - \boldsymbol{r}'|$. Vi translaterar källan till origo och får problemet

$$\nabla^2 g(k,r) + k^2 g(k,r) = -\delta(\mathbf{r}) \tag{2.9}$$

att lösa, där $r = |\mathbf{r}|$. För $r \neq 0$ gäller

$$\nabla^2 g(k,r) + k^2 g(k,r) = 0$$

Uttryck Laplace-operatorn ∇^2 i sfäriska koordinater, se Appendix D. Vi får

$$\frac{1}{r}\frac{d^2}{dr^2}(rg(k,r)) + k^2g(k,r) = 0$$

eller

$$\frac{d^2}{dr^2}\left(rg(k,r)\right) + k^2 rg(k,r) = 0$$

med allmän lösning

$$rg(k,r) = Ae^{ikr} + Be^{-ikr}$$

dvs.

$$g(k,r) = A \frac{e^{ikr}}{r} + B \frac{e^{-ikr}}{r}$$

Greenfunktionen g(k, r), som utgör lösningen för en enhetsladdning i origo, skall svara mot en utåtgående sfärisk våg

$$\frac{e^{ikr-i\omega t}}{r}$$

Detta leder till att konstanten B = 0. Den återstående konstanten A bestäms om vi integrerar (2.9) över ett klot med radie ε kring origo.⁵

$$\iiint_{r \le \varepsilon} \nabla^2 g(k, r) \, dv + k^2 \iiint_{r \le \varepsilon} g(k, r) \, dv = - \iiint_{r \le \varepsilon} \delta(\mathbf{r}) \, dv = -1$$

Nu är

$$\iiint_{r \le \varepsilon} g(k, r) \, dv = 4\pi A \int_0^\varepsilon \frac{e^{ikr}}{r} r^2 \, dr = 4\pi A \int_0^\varepsilon e^{ikr} r \, dr \to 0$$

då $\varepsilon \to 0$. Vidare gäller med divergenssatsen

$$\begin{split} \iiint_{r \le \varepsilon} \nabla^2 g(k, r) \, dv &= \iiint_{r \le \varepsilon} \nabla \cdot \nabla g(k, r) \, dv = \iint_{r = \varepsilon} \hat{\boldsymbol{n}} \cdot \nabla g(k, r) \, dS \\ &= \iint_{r = \varepsilon} \frac{dg(k, r)}{dr} \, dS = 4\pi \varepsilon^2 \frac{dg(k, r)}{dr}|_{r = \varepsilon} \\ &= 4\pi \varepsilon^2 A e^{ik\varepsilon} \left\{ \frac{ik}{\varepsilon} - \frac{1}{\varepsilon^2} \right\} \to -4\pi A \end{split}$$

då $\varepsilon \to 0$. Vi får således att $-4\pi A = -1$, och $g(k,r) = e^{ikr}/4\pi r$. Translation av källpunkten tillbaka till r' ger

$$g(k, |\boldsymbol{r} - \boldsymbol{r}'|) = \frac{e^{ik|\boldsymbol{r} - \boldsymbol{r}'|}}{4\pi|\boldsymbol{r} - \boldsymbol{r}'|}$$
(2.10)

Lösningen till vektorpotentialen A blir därför enligt (2.8)

$$\boldsymbol{A}(\boldsymbol{r}) = \mu_0 \mu \iiint_V \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \boldsymbol{J}(\boldsymbol{r}') \, dv'$$
(2.11)

 $^5\mathrm{En}$ mer distributionsbaserad behandling för att bestämma konstanten A får vi från

$$\iiint g(k,r)\nabla^2 \phi(\mathbf{r}) \, dv + k^2 \iiint g(k,r)\phi(\mathbf{r}) \, dv = -\iiint \delta(\mathbf{r})\phi(\mathbf{r}) \, dv = -\phi(\mathbf{0})$$

där ϕ är en o
ändligt deriverbar funktion som är noll utanför ett begränsat område. Använd Greens formel på område
t $r \ge \varepsilon$.

$$\begin{aligned} -\phi(\mathbf{0}) &= \lim_{\varepsilon \to 0} \left\{ \iiint_{r \ge \varepsilon} g(k, r) \nabla^2 \phi(\mathbf{r}) \, dv + k^2 \iiint_{r \ge \varepsilon} g(k, r) \phi(\mathbf{r}) \, dv \right\} \\ &= \lim_{\varepsilon \to 0} \left\{ \iiint_{r \ge \varepsilon} \nabla^2 g(k, r) \phi(\mathbf{r}) \, dv + k^2 \iiint_{r \ge \varepsilon} g(k, r) \phi(\mathbf{r}) \, dv \right\} \\ &+ \lim_{\varepsilon \to 0} \iiint_{r = \varepsilon} \left(\frac{\partial g(k, r)}{\partial r} \phi(\mathbf{r}) - \frac{\partial \phi(\mathbf{r})}{\partial r} g(k, r) \right) \, dS \\ &= \lim_{\varepsilon \to 0} \iiint_{r = \varepsilon} \frac{\partial g(k, r)}{\partial r} \phi(\mathbf{r}) \, dS = \lim_{\varepsilon \to 0} A4\pi\varepsilon^2 \phi(\mathbf{0}) \frac{e^{ik\varepsilon}}{\varepsilon} \left(ik - \frac{1}{\varepsilon}\right) = -4\pi A\phi(\mathbf{0}) \end{aligned}$$

Det elektriska fältet \boldsymbol{E} blir enligt (2.4) och (2.5)

$$\boldsymbol{E}(\boldsymbol{r}) = i\omega \left[\boldsymbol{A}(\boldsymbol{r}) + \frac{1}{k^2} \nabla \left(\nabla \cdot \boldsymbol{A}(\boldsymbol{r}) \right) \right]$$

= $i\omega \mu_0 \mu \left[\mathbf{I} + \frac{1}{k^2} \nabla \nabla \right] \cdot \iiint_V \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi |\boldsymbol{r}-\boldsymbol{r}'|} \boldsymbol{J}(\boldsymbol{r}') \, dv'$ (2.12)

där I är enhetsoperatorn för vektorer. Det magnetiska fältet H blir enligt (2.3)

$$\boldsymbol{H}(\boldsymbol{r}) = \frac{1}{\mu_0 \mu} \nabla \times \boldsymbol{A}(\boldsymbol{r}) = \nabla \times \iiint_V \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \boldsymbol{J}(\boldsymbol{r}') \, dv' \quad \boldsymbol{r} \notin V$$
(2.13)

Sammanfattningsvis kan vi säga att känner vi strömfördelningen överallt i rummet, kan vi beräkna det elektriska fältet (eller det magnetiska fältet) och därmed också alla andra fält.

2.1.3 Icke-strålande källor

Vi har sett att en strömfördelning J ger upphov till ett elektromagnetiskt fält. Ekvationerna (2.12) och (2.13) uttrycker detta mera kvantitativt. Den fråga vi nu ställer oss är; finns det strömfördelningar som i något område i rummet (inte hela rummet) inte ger något elektromagnetiskt fält. Som vi snart skall se finns det sådana.

Om en strömfördelning J_{IS} ger ett elektriskt fält E som är noll (och därmed även ett magnetiskt fält H som är noll via induktionslagen) i en volym V_{IS} säger vi att källorna J_{IS} är *icke-strålande* i volymen V_{IS} . Sambandet mellan det elektriska fältet E och strömtätheten J ges generellt av (2.2)

$$abla imes (
abla imes oldsymbol{E}) - k^2 oldsymbol{E} = i \omega \mu_0 \mu oldsymbol{J}$$

Vårt påstående är nu att det mest generella uttrycket på en icke-strålande strömfördelning J_{IS} i V_{IS} är

$$\boldsymbol{J}_{IS}(\boldsymbol{r}) = \nabla \times (\nabla \times \boldsymbol{F}) - k^2 \boldsymbol{F}$$
(2.14)

där \mathbf{F} är en vektorvärd (differentierbar) funktion som är noll i volymen V_{IS} och antar värden skilda från noll i ett område utanför V_{IS} . Vi antar att detta område (området utanför V_{IS}) är ändligt, dvs. källorna finns i ett begränsat område i rummet.

$$oldsymbol{F}(oldsymbol{r}) egin{cases} = oldsymbol{0}, & oldsymbol{r} \in V_{IS} \
eq oldsymbol{0}, & oldsymbol{r}
otin V_{IS} \
eq oldsymbol{0}, & oldsymbol{r}
otin V_{IS} \
eq oldsymbol{0}, \
eq oldsymbol{V}_{IS} \
eq oldsymbol{0}, \
eq oldsymbol{V}_{IS} \
eq oldsymbol{0}, \
e$$

Vi antar först att strömfördelningen J_{IS} är på formen (2.14). Då satisfierar det elektriska fältet E som genereras av dessa källor

$$\nabla \times (\nabla \times \boldsymbol{E}) - k^2 \boldsymbol{E} = i \omega \mu_0 \mu \left(\nabla \times (\nabla \times \boldsymbol{F}) - k^2 \boldsymbol{F} \right)$$

dvs.

$$\nabla \times (\nabla \times (\boldsymbol{E} - i\omega\mu_0\mu\boldsymbol{F})) - k^2(\boldsymbol{E} - i\omega\mu_0\mu\boldsymbol{F}) = \boldsymbol{0}$$

i alla punkter i hela rummet. Vi antar att detta problem är entydigt lösbart. 6 Entydig lösbarhet medför att

$$\boldsymbol{E}(\boldsymbol{r}) - i\omega\mu_0\mu\boldsymbol{F}(\boldsymbol{r}) = \boldsymbol{0}, \qquad \text{för alla } \boldsymbol{r}$$

Detta medför att $\mathbf{E} = \mathbf{0}$ i volymen V_{IS} eftersom \mathbf{F} är noll i V_{IS} (endast värden skilda från noll i området utanför till V_{IS}). Detta visar tillräckligheten hos (2.14) att ge ett icke-strålande fält. Nödvändigheten visar nu genom att anta att $\mathbf{E} = \mathbf{0}$ i en volym V_{IS} . Då gäller

$$\nabla \times (\nabla \times \boldsymbol{E}) - k^2 \boldsymbol{E} = i \omega \mu_0 \mu \boldsymbol{J}_{IS}$$

Detta uttryck är dock på formen (2.14) om vi tar

$$F = \frac{1}{i\omega\mu_0\mu}E$$

där F = 0 i V_{IS} , eftersom E = 0 där. De mest generella icke-strålande strömfördelningarna ges därför av (2.14).

Ett exempel får illustrera detta resultat. Låt strömfördelningen J vara en gradient av en skalär funktion ϕ , dvs.

$$\boldsymbol{J}_{IS} = \nabla \phi$$

där ϕ = konstant i volymen V_{IS} . Vi kan då välja

$$\boldsymbol{F} = -\frac{1}{k^2} \nabla \phi$$

Detta ger nämligen

$$\nabla \times (\nabla \times \boldsymbol{F}) - k^2 \boldsymbol{F} = \boldsymbol{0} + \nabla \phi = \boldsymbol{J}_{IS}$$

Funktionen F är också noll i volymen V_{IS} , eftersom ϕ är konstant där. Dessa källor ger därför icke-strålande fält i volymen V_{IS} . Varje strömfördelning J, som är en gradient av en skalär funktion, ger således icke-strålande fält i det område där den skalära funktionen är konstant.

2.2 Čerenkovstrålning

I föregående avsnitt visades att, om vi känner strömfördelningen överallt i rummet kan det elektriska fältet (eller det magnetiska fältet) beräknas, och därmed också alla andra fält. Ett exempel på detta är Čerenkovstrålning som kommer att behandlas i detta avsnitt.

När en laddad partikel (t.ex. en elektron) rör sig med hög hastighet i ett dielektriskt material emitteras elektromagnetisk strålning. Detta observerades på 1930talet experimentellt först av P. A. Čerenkov och S. I. Vavilov, och fick sin teoretiska

⁶Beviset för entydigheten visas inte här.

Figur 2.1: *E*-fältets polarisation vid Čerenkovstrålning. Laddningens hastighet är v och strålningens riktning \hat{k} .

förklaring några år senare av I. E. Tamm och I. M. Frank. Strålningen beror ej på några kollisionsprocesser med materialets atomer (som den s.k. Bremsstrahlung gör) utan kan förklaras som ett rent elektromagnetiskt fenomen av makroskopisk natur. Čerenkovstrålning används som partikeldetektor i kärnfysik och elementarpartikelfysik.⁷ I detta avsnitt kommer vi att analysera denna strålning och samtidigt får vi ett exempel på användning av analysen i avsnitt 2.1.

Experimentella observationer visar att den elektromagnetiska strålningen har följande egenskaper:

- 1. Den laddade partikeln måste röra sig mycket snabbt i materialet, annars ingen strålning.
- 2. Strålningens riktning är relaterad till partikelns hastighet.
- 3. Strålningens polarisation är sådan att E-fältet är parallellt med det plan som spänns upp av partikels hastighet v och strålningens riktning \hat{k} . Vidare är E-fältet vinkelrätt mot \hat{k} , se figur 2.1.

Vi analyserar nu detta problem genom att undersöka vilket elektromagnetiskt fält den laddade partikeln ger upphov till.

Antag att partikeln har laddning q och att den rör sig med hastigheten \boldsymbol{v} längs z-axeln i ett isotropt, homogent material med materialparametrar ϵ och μ , se figur 2.2. Dessa parametrar är i allmänhet funktioner av ω , dvs. materialet uppvisar dispersion.

Strömtätheten J på grund av partikelns rörelse är

$$\boldsymbol{J}(\boldsymbol{r},t) = \hat{\boldsymbol{z}}qv\delta(\boldsymbol{r}-\hat{\boldsymbol{z}}vt) = \hat{\boldsymbol{z}}qv\delta(x)\delta(y)\delta(z-vt)$$

Detta är strömtätheten som funktion av rums- och tidsvariablerna. En Fouriertransform ger oss motsvarande storhet i frekvensplanet.⁸

$$\begin{aligned} \boldsymbol{J}(\boldsymbol{r},\omega) &= \int_{-\infty}^{\infty} \boldsymbol{J}(\boldsymbol{r},t) e^{i\omega t} \, dt = \hat{\boldsymbol{z}} q v \delta(x) \delta(y) \int_{-\infty}^{\infty} \delta(z-vt) e^{i\omega t} \, dt \\ &= \hat{\boldsymbol{z}} q v \delta(x) \delta(y) \int_{-\infty}^{\infty} \frac{1}{v} \delta(t-\frac{z}{v}) e^{i\omega t} \, dt = \hat{\boldsymbol{z}} q \delta(x) \delta(y) e^{i\frac{\omega z}{v}} \end{aligned}$$

⁷Čerenkoveffektens tillämpningar finns sammanfattade i G. Ekspong, Kosmos 1958, s. 6–29.

⁸Vi antar att hastigheten v är oberoende av tiden t. Detta är en approximation.

Figur 2.2: Partikelns bana längs z-axeln.

Vektorpotentialen ges sedan av (2.11).

$$\boldsymbol{A}(\boldsymbol{r},\omega) = \mu_0 \mu \iiint_V \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \boldsymbol{J}(\boldsymbol{r}',\omega) \, dv'$$

där $k = \omega \sqrt{\epsilon \mu}/c_0$. Insättning av strömtätheten ger följande vektorpotential

$$\boldsymbol{A}(\boldsymbol{r},\omega) = \mu_0 \mu \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} dy' \int_{-\infty}^{\infty} dz' \frac{e^{ikR}}{4\pi R} \hat{\boldsymbol{z}} q \delta(x') \delta(y') e^{i\frac{\omega z'}{v}}$$

där $R = |\mathbf{r} - \mathbf{r}'| = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$. Integrationen över x'- och y'-variablerna är lätt.

$$\boldsymbol{A}(\boldsymbol{r},\omega) = \hat{\boldsymbol{z}} \frac{\mu_0 \mu q}{4\pi} \int_{-\infty}^{\infty} \frac{e^{ik \left(\rho^2 + (z-z')^2\right)^{\frac{1}{2}} + i\frac{\omega z'}{v}}}{\left(\rho^2 + (z-z')^2\right)^{\frac{1}{2}}} \, dz'$$

där $\rho = \sqrt{x^2 + y^2}$ är avståndet från observationspunkten r till partikelbanan längs z-axeln, se figur 2.2. Genom variabelbyte får vi

$$\boldsymbol{A}(\boldsymbol{r},\omega) = \hat{\boldsymbol{z}} \frac{\mu_0 \mu q}{4\pi} e^{i\frac{\omega z}{v}} \int_{-\infty}^{\infty} \frac{e^{ik(\rho^2 + {z'}^2)^{\frac{1}{2}} + i\frac{\omega z'}{v}}}{\left(\rho^2 + {z'}^2\right)^{\frac{1}{2}}} dz'$$

Den återstående integralen, som är en funktion av ρ , kan visas vara en Hankelfunktion av första slaget av ordning noll. Följande integral är användbar, se Appendix E.

$$\int_{-\infty}^{\infty} \frac{e^{ik(\rho^2 + {z'}^2)^{\frac{1}{2}} + i\frac{\omega z'}{v}}}{\left(\rho^2 + {z'}^2\right)^{\frac{1}{2}}} \, dz' = i\pi H_0^{(1)}(k_\rho\rho)$$

där

$$\begin{cases} k_{\rho} = \left(k^2 - \frac{\omega^2}{v^2}\right)^{\frac{1}{2}} \\ \operatorname{Im} k_{\rho} \ge 0 \end{cases}$$

Kvadratroten som förekommer i högerledet är definierad som den gren som fås då det komplexa talplanet är uppskuret längs den positiva realaxeln. Vektorpotentialen för den laddade partikeln blir således

$$\boldsymbol{A}(\boldsymbol{r},\omega) = i\hat{\boldsymbol{z}}\frac{\mu_0\mu q}{4}e^{i\frac{\omega z}{v}}H_0^{(1)}(k_\rho\rho)$$
(2.15)

Det elektriska respektive magnetiska fältet kan sedan beräknas från (2.12) och (2.13).

$$\begin{aligned} \boldsymbol{E}(\boldsymbol{r},\omega) &= i\omega \frac{\mu_0 \mu q}{4\pi} \left[\mathbf{I} + \frac{1}{k^2} \nabla \nabla \right] \cdot \hat{\boldsymbol{z}} e^{i\frac{\omega z}{v}} \int_{-\infty}^{\infty} \frac{e^{ik\left(\rho^2 + {z'}^2\right)^{\frac{1}{2}} + i\frac{\omega z'}{v}}}{\left(\rho^2 + {z'}^2\right)^{\frac{1}{2}}} \, dz' \\ &= -\frac{\mu_0 \mu \omega q}{4} \left[\mathbf{I} + \frac{1}{k^2} \nabla \nabla \right] \cdot \hat{\boldsymbol{z}} e^{i\frac{\omega z}{v}} H_0^{(1)}(k_\rho \rho) \\ \boldsymbol{H}(\boldsymbol{r},\omega) &= \frac{q}{4\pi} \nabla \times \hat{\boldsymbol{z}} e^{i\frac{\omega z}{v}} \int_{-\infty}^{\infty} \frac{e^{ik\left(\rho^2 + {z'}^2\right)^{\frac{1}{2}} + i\frac{\omega z'}{v}}}{\left(\rho^2 + {z'}^2\right)^{\frac{1}{2}}} \, dz' \\ &= i\frac{q}{4} \nabla \times \left(\hat{\boldsymbol{z}} e^{i\frac{\omega z}{v}} H_0^{(1)}(k_\rho \rho) \right) \end{aligned}$$
(2.16)

Det är av speciellt intresse för oss i detta avsnitt att beräkna fältet långt från partikelbanan, dvs. ρ stort. Vi låter därför $k_{\rho}\rho \gg 1$ i (2.15) och ersätter Hankelfunktionen med funktionens asymptotiska uttryck. För stora argument gäller nämligen, se Appendix A.1 sidan 187 eller [1, sidan 618].

$$H_0^{(1)}(z) = \sqrt{\frac{2}{\pi z}} e^{iz - i\frac{\pi}{4}}, \quad |z| \gg 1, \quad -\pi < \arg z < 2\pi$$

Insättning i (2.15) ger vektorpotentialen på stort avstånd från partikelbanan (z-axeln).

$$\boldsymbol{A}(\boldsymbol{r},\omega) = i\hat{\boldsymbol{z}}\frac{\mu_{0}\mu q}{4}\sqrt{\frac{2}{\pi k_{\rho}\rho}}e^{i\left(k_{\rho}\rho + \frac{\omega z}{v}\right) - i\frac{\pi}{4}}$$

De elektriska och magnetiska fälten kan sedan bildas med (2.16) och (2.17).

$$\boldsymbol{E}(\boldsymbol{r},\omega) = i\omega \left[\boldsymbol{A}(\boldsymbol{r},\omega) + \frac{1}{k^2} \nabla \left(\nabla \cdot \boldsymbol{A}(\boldsymbol{r},\omega) \right) \right] = \sqrt{\frac{2}{\pi k_\rho \rho}} \boldsymbol{E}_0 e^{i \left(k_\rho \rho + \frac{\omega z}{v}\right) - i\frac{\pi}{4}} \quad (2.18)$$

$$\boldsymbol{H}(\boldsymbol{r},\omega) = \frac{1}{\mu_0\mu} \nabla \times \boldsymbol{A}(\boldsymbol{r},\omega) = \sqrt{\frac{2}{\pi k_\rho \rho}} \boldsymbol{H}_0 e^{i\left(k_\rho \rho + \frac{\omega z}{v}\right) - i\frac{\pi}{4}}$$
(2.19)

där

$$oldsymbol{E}_{0} = rac{qk_{
ho}}{4\omega\epsilon_{0}\epsilon} \left[\hat{oldsymbol{
ho}} rac{\omega}{v} - \hat{oldsymbol{z}}k_{
ho}
ight]
onumber \ oldsymbol{H}_{0} = rac{1}{i\omega\mu_{0}\mu} i \left(k_{
ho}\hat{oldsymbol{
ho}} + rac{\omega}{v}\hat{oldsymbol{z}}
ight) imes oldsymbol{E}_{0} = rac{qk_{
ho}}{4}\hat{oldsymbol{\phi}}$$

Figur 2.3: Vinkeln θ och dess variation som funktion av hastigheten v. Materialparametrarna ϵ och μ är valda så att $\epsilon \mu = 25$.

Notera att alla termer i (2.18) och (2.19) som går snabbare mot noll då $\rho \to \infty$ än $\rho^{-1/2}$ har försummats. Uttrycken i (2.18) och (2.19) är cylindriska vågor, för vilka amplituden avtar som $\rho^{-1/2}$. Så när som på denna faktor $(k_{\rho}\rho)^{-1/2}$ är formen på (2.18) och (2.19) planvågor. Notera också att om vågen inte skall dämpas ut exponentiellt i ρ -led krävs att k_{ρ} är reell, dvs.

$$k \ge \frac{\omega}{v}$$

eller

$$v \ge \frac{\omega}{k} = \frac{c_0}{\sqrt{\epsilon\mu}} \tag{2.20}$$

och $\epsilon \mu$ reellt. Čerenkovstrålning kan således endast ske om partikels hastighet är större än fashastigheten $\omega/k = c_0/\sqrt{\epsilon \mu}$ i materialet.

Utbredningsriktningen \hat{k} hos den cylindriska vågen är

$$\hat{oldsymbol{k}} = rac{\hat{oldsymbol{
ho}} k_
ho + \hat{oldsymbol{z}} rac{\omega}{v}}{\left(k_
ho^2 + \left(rac{\omega}{v}
ight)^2
ight)^{rac{1}{2}}} = rac{1}{k}\left(\hat{oldsymbol{
ho}} k_
ho + \hat{oldsymbol{z}} rac{\omega}{v}
ight)$$

och det elektriska fältets polarisation \hat{p} är

$$\hat{\boldsymbol{p}} = rac{\hat{oldsymbol{
ho}} rac{\omega}{v} - \hat{oldsymbol{z}} k_{
ho}}{\left(k_{
ho}^2 + \left(rac{\omega}{v}
ight)^2
ight)^{rac{1}{2}}} = rac{1}{k} \left(\hat{oldsymbol{
ho}} rac{\omega}{v} - \hat{oldsymbol{z}} k_{
ho}
ight)$$

Vi ser att Čerenkovstrålningens polarisation \hat{p} är sådan att \hat{p} är vinkelrät mot utbredningsriktningen \hat{k} , ty

$$\hat{\boldsymbol{p}} \cdot \hat{\boldsymbol{k}} = \frac{1}{k} \left(\hat{\boldsymbol{\rho}} \frac{\omega}{v} - \hat{\boldsymbol{z}} k_{\rho} \right) \cdot \frac{1}{k} \left(\hat{\boldsymbol{\rho}} k_{\rho} + \hat{\boldsymbol{z}} \frac{\omega}{v} \right) = 0$$

Figur 2.4: Cylinderytan S_{ρ} som används vid integration av energiutflödet.

Vidare ligger \hat{p} i \hat{k} - \hat{z} -planet, ty

$$egin{aligned} \hat{oldsymbol{p}} \cdot \left(\hat{oldsymbol{k}} imes \hat{oldsymbol{z}}
ight) &= rac{1}{k} \left(\hat{oldsymbol{
ho}} rac{\omega}{v} - \hat{oldsymbol{z}} k_{
ho}
ight) \cdot \left[rac{1}{k} \left(\hat{oldsymbol{
ho}} k_{
ho} + \hat{oldsymbol{z}} rac{\omega}{v}
ight) imes \hat{oldsymbol{z}}
ight] \ &= rac{k_{
ho}}{k^2} \left(\hat{oldsymbol{
ho}} rac{\omega}{v} - \hat{oldsymbol{z}} k_{
ho}
ight) \cdot (\hat{oldsymbol{
ho}} imes \hat{oldsymbol{z}}) = 0 \end{aligned}$$

Vinkeln θ mellan vågens utbredningsriktning \hat{k} och partikelns hastighet $v = v\hat{z}$ är

$$\cos\theta = \hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{z}} = \frac{\omega}{kv} = \frac{c_0}{v\sqrt{\epsilon\mu}}$$

Ju större hastighet v desto större vinkel θ . Åter ser vi att villkoret (2.20) måste gälla för att vinkeln θ skall vara reell, se figur 2.3.

De experimentella observationerna, som Čerenkov och Vavilov gjorde på 1930talet, och som presenterades i punkterna 1-3 på sidan 53 i början av avsnittet kan således förklaras och kvantifieras med den makroskopiska fältteorin.

2.2.1 Energiutflöde

Avslutningsvis beräknar vi den elektromagnetiska vågens utstrålade energi. Den storhet som är intressant i detta sammanhang är den totala energi, som strålar bort med vågen, per längdenhet av partikelbanan. Energin E är

$$E = \int_{-\infty}^{\infty} \lim_{\rho \to \infty} \iint_{S_{\rho}} \boldsymbol{S}(t) \cdot \hat{\boldsymbol{\rho}} \, dS \, dt = \int_{-\infty}^{\infty} \lim_{\rho \to \infty} \iint_{S_{\rho}} \left(\boldsymbol{E}(t) \times \boldsymbol{H}(t) \right) \cdot \hat{\boldsymbol{\rho}} \, dS \, dt$$

där ytan S_{ρ} är mantelytan på en cylinder med radie ρ och enhetshöjd kring z-axeln. se figur 2.4.

Endast E_z och H_{ϕ} komponenterna behövs för att beräkna ρ -komponenten av Poyntings vektor, se (2.18) och (2.19). Vi får således

$$E = \int_{-\infty}^{\infty} \lim_{\rho \to \infty} \iint_{S_{\rho}} \left(\boldsymbol{E}(t) \times \boldsymbol{H}(t) \right) \cdot \hat{\boldsymbol{\rho}} \, dS \, dt = -\lim_{\rho \to \infty} \iint_{S_{\rho}} \int_{-\infty}^{\infty} E_{z}(t) H_{\phi}(t) \, dt \, dS$$

Det är nu lämpligt att använda Parsevals identitet 9 för att skriva om detta energiuttryck till motsvarande fouriertransformerade storheter. Resultatet blir

$$E = -\frac{1}{2\pi} \lim_{\rho \to \infty} \iint_{S_{\rho}} \int_{-\infty}^{\infty} E_z(\omega) H_{\phi}(\omega)^* \, d\omega \, dS$$

Vi använder nu (2.18) och (2.19).¹⁰

$$E = \frac{1}{2\pi} \lim_{\rho \to \infty} \int_{-\infty}^{\infty} 2\pi\rho \left(\frac{2}{\pi k_{\rho}\rho}\right)^{1/2} \frac{qk_{\rho}^2}{4\omega\epsilon_0\epsilon} \left(\left(\frac{2}{\pi k_{\rho}\rho}\right)^{1/2}\right)^* \frac{qk_{\rho}^*}{4} e^{i\rho(k_{\rho}-k_{\rho}^*)} d\omega$$
$$= \frac{q^2}{8\pi\epsilon_0} \lim_{\rho \to \infty} \int_{-\infty}^{\infty} \frac{k_{\rho}^2 k_{\rho}^*}{|k_{\rho}|\omega\epsilon} e^{i\rho(k_{\rho}-k_{\rho}^*)} d\omega$$

Eftersom endast (positiva) reella k_{ρ} -värden kan bidra till strålningsfältet blir integrationen i variabeln ω endast över värden då k_{ρ} är reell.

$$E = \frac{q^2}{8\pi\epsilon_0} \int_{k_{\rho} \text{ reell}}^{\infty} \frac{k_{\rho}^2(\omega)}{\omega\epsilon(\omega)} d\omega$$

Villkoret att k_{ρ} skall vara reell ges av (2.20). Ekvationen ovan kan därför skrivas om som

$$E = \frac{q^2}{8\pi\epsilon_0 c_0^2} \int_{-\infty}^{-\infty} \frac{\omega}{\epsilon(\omega)} \left(\epsilon(\omega)\mu(\omega) - \left(\frac{c_0}{v}\right)^2\right) d\omega$$
$$\epsilon(\omega)\mu(\omega) \ge \left(\frac{c_0}{v}\right)^2$$

eller

$$E = \frac{q^2}{4\pi\epsilon_0 c_0^2} \int_{0}^{\infty} \frac{\omega}{\epsilon(\omega)} \left(\epsilon(\omega)\mu(\omega) - \left(\frac{c_0}{v}\right)^2\right) d\omega$$
$$\epsilon(\omega)\mu(\omega) \ge \left(\frac{c_0}{v}\right)^2$$

där $\epsilon \mu$ är reellt. I praktiken är integrationen i ω alltid ändlig. För mycket höga frekvenser går $\epsilon(\omega)\mu(\omega) \to 1$. Notera också att hela härledningen ovan är gjord under förutsättning att hastigheten v är konstant. I verkligheten saktar partikeln in pga. energiutstrålningen.

⁹Parsevals identitet för reella fält f(t) och g(t) är

$$\int_{-\infty}^{\infty} f(t)g(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\omega)g(\omega)^* d\omega$$

där $f(\omega)$ och $g(\omega)$ är respektive Fouriertransform av f(t) och g(t), dvs

$$f(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t} dt, \qquad g(\omega) = \int_{-\infty}^{\infty} g(t)e^{i\omega t} dt$$

¹⁰Vi använder här de uttryck som vi härlett för fälten i fjärrzonen. Notera att vi erhöll dessa uttryck under antagandet att $k_{\rho}\rho \gg 1$. Detta är nu inte alltid fallet eftersom k_{ρ} nu kan anta godtyckligt små värden vid integrationen över ω . En mer utförlig analys visar dock att denna operation är tillåten.

Figur 2.5: Geometri för integration i avsnitt 2.3.

2.3 Integralframställning av fälten

I detta avsnitt kommer vi att visa att det elektriska fältet E och det magnetiska fältet H kan representeras som volyms- och ytintegraler. Det enklare skalära fallet behandlas först, därefter vektorfallet.

Låt $\phi(\mathbf{r})$ och $\psi(\mathbf{r})$ vara två skalära fält som är definierade i ett område V med ändlig volym.¹¹ Området V har en begränsningsyta S med utåtriktad normal $\hat{\mathbf{n}}$, se figur 2.5. Ytan S behöver inte vara sammanhängande utan kan bestå av flera disjunkta delar, som var och en är styckvis glatta.¹² Ytan S behöver inte heller vara en skiljeyta mellan två material utan är än så länge en godtycklig yta i rymden.

Bilda följande uttryck

$$\nabla \cdot [\phi(\boldsymbol{r}) \nabla \psi(\boldsymbol{r}) - \psi(\boldsymbol{r}) \nabla \phi(\boldsymbol{r})] = \phi(\boldsymbol{r}) \nabla^2 \psi(\boldsymbol{r}) - \psi(\boldsymbol{r}) \nabla^2 \phi(\boldsymbol{r})$$

Detta samband verifieras lätt med räknereglerna för Nabla-operatorn. Om detta uttryck integreras över volymen V får vi med hjälp av divergenssatsen.

$$\iint_{S} [\phi(\boldsymbol{r})\nabla\psi(\boldsymbol{r}) - \psi(\boldsymbol{r})\nabla\phi(\boldsymbol{r})] \cdot \hat{\boldsymbol{n}} \, dS$$
$$= \iiint_{V} \left[\phi(\boldsymbol{r})\nabla^{2}\psi(\boldsymbol{r}) - \psi(\boldsymbol{r})\nabla^{2}\phi(\boldsymbol{r})\right] \, dv$$

¹¹Antag att $\phi(\mathbf{r})$ och $\psi(\mathbf{r})$ är två gånger kontinuerligt differentierbara i V.

 $^{12}\mathrm{En}$ yta kallas glattom den har en kontinuerligt differentierbar parameterframställning

$$\boldsymbol{r} = \boldsymbol{r}(u, v), \ (u, v) \in \mathcal{D} \subseteq \mathbb{R}^2$$

och om

$$\frac{\partial \boldsymbol{r}}{\partial u} \times \frac{\partial \boldsymbol{r}}{\partial v} \neq \boldsymbol{0}$$

En styckvis glatt yta är sammansatt av ett ändligt antal glatta ytor.

Detta är Greens andra formel och kommer att vara utgångspunkten för integralframställningen av skalära fält.

Vi låter nu det skalära fältet ϕ vara $\boldsymbol{a} \cdot \boldsymbol{F}$, där \boldsymbol{a} är en godtycklig konstant vektor och \boldsymbol{F} ett två gånger kontinuerligt deriverbart vektorfält¹³. Resultatet blir

$$\iint_{S} [(\boldsymbol{a} \cdot \boldsymbol{F}) \nabla \psi - \psi \nabla (\boldsymbol{a} \cdot \boldsymbol{F})] \cdot \hat{\boldsymbol{n}} \, dS$$

=
$$\iint_{V} \int [(\boldsymbol{a} \cdot \boldsymbol{F}) \nabla^{2} \psi - \psi \nabla^{2} (\boldsymbol{a} \cdot \boldsymbol{F})] \, dv$$
 (2.21)

Vårt mål blir nu att skriva om detta uttryck som

$$\boldsymbol{a} \cdot \iint_{S} \dots dS = \boldsymbol{a} \cdot \iiint_{V} \dots dv$$
 (2.22)

Eftersom $\nabla^2(\boldsymbol{a} \cdot \boldsymbol{F}) = \boldsymbol{a} \cdot \nabla^2 \boldsymbol{F}$ och $\nabla \times (\nabla \times \boldsymbol{F}) = \nabla (\nabla \cdot \boldsymbol{F}) - \nabla^2 \boldsymbol{F}$ kan volymintegralen i högra ledet av (2.21) enkelt skrivas om som

$$\iiint_{V} \left[(\boldsymbol{a} \cdot \boldsymbol{F}) \nabla^{2} \psi + \psi \boldsymbol{a} \cdot \left(\nabla \times (\nabla \times \boldsymbol{F}) - \nabla (\nabla \cdot \boldsymbol{F}) \right) \right] dv$$
$$= \boldsymbol{a} \cdot \iiint_{V} \left[\boldsymbol{F} \nabla^{2} \psi + \psi \left(\nabla \times (\nabla \times \boldsymbol{F}) - \nabla (\nabla \cdot \boldsymbol{F}) \right) \right] dv$$

Ytintegralens integrand i (2.21) skriver vi lämpligen om genom att använda räknereglerna för Nabla-operatorn

$$(\boldsymbol{a} \cdot \boldsymbol{F}) \nabla \psi - \psi \nabla (\boldsymbol{a} \cdot \boldsymbol{F}) = 2(\boldsymbol{a} \cdot \boldsymbol{F}) \nabla \psi - \nabla (\boldsymbol{a} \cdot (\psi \boldsymbol{F}))$$
$$= 2(\boldsymbol{a} \cdot \boldsymbol{F}) \nabla \psi + \nabla \times (\boldsymbol{a} \times (\psi \boldsymbol{F})) - \boldsymbol{a} \times (\nabla \times (\psi \boldsymbol{F})) - \boldsymbol{a} (\nabla \cdot (\psi \boldsymbol{F}))$$

Ytterligare förenklingar ger

$$\begin{split} & [(\boldsymbol{a}\cdot\boldsymbol{F})\nabla\psi-\psi\nabla(\boldsymbol{a}\cdot\boldsymbol{F})]\cdot\hat{\boldsymbol{n}} \\ &= 2(\boldsymbol{a}\cdot\boldsymbol{F})(\hat{\boldsymbol{n}}\cdot\nabla\psi)+\hat{\boldsymbol{n}}\cdot[\nabla\times(\boldsymbol{a}\times(\psi\boldsymbol{F}))] \\ &+\boldsymbol{a}\cdot\left[\hat{\boldsymbol{n}}\times\underbrace{(\psi(\nabla\times\boldsymbol{F})+(\nabla\psi)\times\boldsymbol{F})}_{\nabla\times(\psi\boldsymbol{F})}\right] \\ &-(\boldsymbol{a}\cdot\hat{\boldsymbol{n}})\underbrace{[\psi(\nabla\cdot\boldsymbol{F})+(\nabla\psi)\cdot\boldsymbol{F}]}_{\nabla\cdot(\psi\boldsymbol{F})} \end{split}$$

 13 En vektorvärd version av Greens andra formel får vi lätt genom att tillämpa formeln på varje kartesisk komponent i ett motsvarande vektorvärt uttryck och på så sätt får vi

$$\iint_{S} \left[\boldsymbol{A}(\boldsymbol{r}) \frac{\partial \psi(\boldsymbol{r})}{\partial n} - \psi(\boldsymbol{r}) \frac{\partial \boldsymbol{A}(\boldsymbol{r})}{\partial n} \right] dS = \iiint_{V} \left[\boldsymbol{A}(\boldsymbol{r}) \nabla^{2} \psi(\boldsymbol{r}) - \psi(\boldsymbol{r}) \nabla^{2} \boldsymbol{A}(\boldsymbol{r}) \right] dv$$

Nackdelen med detta uttryck är att ytintegralen inte är anpassad till de naturliga randvillkor som uppkommer i våra tillämpningar. Vi utvecklar därför en alternativ vektorvärd integralrepresentation, som i ytintegralen innehåller de naturliga uttrycken på våra randvillkor.

Ytintegralen i vänstra ledet i (2.21) kan således skrivas om genom att använda BAC-CAB-regeln ($\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c}) - \boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})$)

$$\iint_{S} \left[(\boldsymbol{a} \cdot \boldsymbol{F}) \nabla \psi - \psi \nabla (\boldsymbol{a} \cdot \boldsymbol{F}) \right] \cdot \hat{\boldsymbol{n}} \, dS$$

= $\boldsymbol{a} \cdot \iint_{S} \left[(\hat{\boldsymbol{n}} \cdot \nabla \psi) \boldsymbol{F} + \psi \left(\hat{\boldsymbol{n}} \times (\nabla \times \boldsymbol{F}) \right) + (\nabla \psi) (\hat{\boldsymbol{n}} \cdot \boldsymbol{F}) - \hat{\boldsymbol{n}} \psi (\nabla \cdot \boldsymbol{F}) - \hat{\boldsymbol{n}} \left((\nabla \psi) \cdot \boldsymbol{F} \right) \right] dS + \iint_{S} \left[\nabla \times (\boldsymbol{a} \times (\psi \boldsymbol{F})) \right] \cdot \hat{\boldsymbol{n}} \, dS$

Med divergenssatsen ser vi att den sista ytintegralen inte bidrar eftersom sambandet $\nabla \cdot (\nabla \times \mathbf{A}) = \mathbf{0}$ för ett godtyckligt vektorfält \mathbf{A} . Vi har således till slut skrivit om både volyms- och ytintegralen i (2.21) på formen (2.22). Eftersom vektorn \mathbf{a} är godtycklig (tag t.ex. $\mathbf{a} = \hat{\mathbf{x}}, \hat{\mathbf{y}}$ och $\hat{\mathbf{z}}$) får vi Greens vektorformel genom att åter använda BAC-CAB-regeln

$$\iint_{S} \left[\psi \left(\hat{\boldsymbol{n}} \times (\nabla \times \boldsymbol{F}) \right) + (\nabla \psi) (\hat{\boldsymbol{n}} \cdot \boldsymbol{F}) - \hat{\boldsymbol{n}} \psi (\nabla \cdot \boldsymbol{F}) - (\nabla \psi) \times (\hat{\boldsymbol{n}} \times \boldsymbol{F}) \right] dS$$

$$= \iiint_{V} \left[\boldsymbol{F} \nabla^{2} \psi + \psi \left(\nabla \times (\nabla \times \boldsymbol{F}) - \nabla (\nabla \cdot \boldsymbol{F}) \right) \right] dv$$
(2.23)

Ytintegralens integrand innehåller vektorfältet och dess derivator evaluerade på randytan S. Rent formellt utgör de gränsvärden av vektorfältet \mathbf{F} och dess derivator tagna som gränsen då gränspunkten närmar sig ytan S från volymen V (dvs. inifrån).

Låt fältet ψ nu vara den skalära Green funktionen,¹⁴ se (2.10).

$$g(k, |\boldsymbol{r} - \boldsymbol{r}'|) = \frac{e^{ik|\boldsymbol{r} - \boldsymbol{r}'|}}{4\pi|\boldsymbol{r} - \boldsymbol{r}'|}$$

som uppfyller, se (2.7)

$$\nabla^2 g(k, |\boldsymbol{r} - \boldsymbol{r}'|) + k^2 g(k, |\boldsymbol{r} - \boldsymbol{r}'|) = -\delta(\boldsymbol{r} - \boldsymbol{r}')$$

¹⁴Denna funktion uppfyller naturligtvis inte vårt antagande om att vara två gånger differentierbar i punkten $\mathbf{r} = \mathbf{r}'$. Singulariteten kan behandlas på olika sätt. Klassiskt utesluter man en liten sfär S_{ϵ} med radie ϵ runt den singulära punkten, och sedan låter vi sfären krympa. Alternativt kan man, som här, göra formella räkningar med delta-funktionen. Resultaten blir i båda fallen de samma, se även fotnot 5 på sidan 50.
Greens vektorformel¹⁵ (2.23) blir om punkten r inte ligger på randytan S

$$\begin{split} \iint\limits_{S} & \left[g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \left(\nabla' \times \boldsymbol{F}(\boldsymbol{r}') \right) \right) + \left(\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \right) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{F}(\boldsymbol{r}') \right) \right] \\ & - \hat{\boldsymbol{n}}(\boldsymbol{r}') g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\nabla' \cdot \boldsymbol{F}(\boldsymbol{r}') \right) - \left(\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \right) \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{F}(\boldsymbol{r}') \right) \right] dS' \\ & = \iiint\limits_{V} \left[g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\nabla' \times \left(\nabla' \times \boldsymbol{F}(\boldsymbol{r}') \right) - \nabla' \left(\nabla' \cdot \boldsymbol{F}(\boldsymbol{r}') \right) \right) \right. \\ & + \left. \boldsymbol{F}(\boldsymbol{r}') \nabla'^2 g(k, |\boldsymbol{r} - \boldsymbol{r}'| \right) \right] dv' \\ & = \iiint\limits_{V} \left[g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\nabla' \times \left(\nabla' \times \boldsymbol{F}(\boldsymbol{r}') \right) - \nabla' \left(\nabla' \cdot \boldsymbol{F}(\boldsymbol{r}') \right) - k^2 \boldsymbol{F}(\boldsymbol{r}') \right) \right] dv' \\ & - \iiint\limits_{V} \left. \boldsymbol{F}(\boldsymbol{r}') \delta(\boldsymbol{r} - \boldsymbol{r}') dv' \right] \end{split}$$

Den andra volymintegralen på höger sida beror på om punkten ${\pmb r}$ tillhör volymenVeller inte.¹⁶

$$\iiint_{V} \left[g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\nabla' \times (\nabla' \times \boldsymbol{F}(\boldsymbol{r}')) - \nabla' (\nabla' \cdot \boldsymbol{F}(\boldsymbol{r}')) - k^{2} \boldsymbol{F}(\boldsymbol{r}') \right) \right] dv'
- \iint_{S} \left[g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times (\nabla' \times \boldsymbol{F}(\boldsymbol{r}')) \right) + \left(\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \right) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{F}(\boldsymbol{r}') \right)
- \hat{\boldsymbol{n}}(\boldsymbol{r}') g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\nabla' \cdot \boldsymbol{F}(\boldsymbol{r}') \right) - \left(\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \right) \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{F}(\boldsymbol{r}') \right) \right] dS'
= \begin{cases} \boldsymbol{F}(\boldsymbol{r}), & \boldsymbol{r} \in V \\ \boldsymbol{0}, & \boldsymbol{r} \notin V \end{cases}$$
(2.24)

Detta är en allmän representation av ett vektorfält i en volymintegral och en ytintegral över volymens begränsningsyta. Fältet $F(\mathbf{r})$ i volymen V är framställt i en volymintegral över fälten i V och en ytintegral över fälten på volymen V:s begränsningsyta S. Evalueras dessa integraler utanför V blir resultatet att dessa integraler tar ut varann (utsläckning). Det är viktigt att notera att detta inte innebär att fältet $F(\mathbf{r})$ nödvändigtvis är noll utanför V.

2.3.1 Ytintegralframställning

Hittills har fältet F varit ett godtyckligt vektorfält. Vi låter nu detta fält vara det elektriska fältet E som satisfierar Maxwells källfria fältekvationer (1.19) och (1.20).

$$\begin{cases} \nabla \times \boldsymbol{E} = i\omega \boldsymbol{B} \\ \nabla \times \boldsymbol{H} = -i\omega \boldsymbol{D} \end{cases}$$

¹⁵Det är enklare och bättre att byta integrationsvariabel i (2.23) till \mathbf{r}' . Variabeln \mathbf{r} blir då den fria variabeln.

 $^{^{16}}$ Vi avstår här att behandla det fall d
å $\pmb{r}\in S.$

Vi antar dessutom att material
et i volymenVär ett isotropt, homogent material, dvs.

$$\left\{ egin{array}{ll} m{D} = \epsilon_0 \epsilon m{E} \ m{B} = \mu_0 \mu m{H} \end{array}
ight.$$

där ϵ och μ kan tillåtas bero på ω , dvs. materialet kan vara dispersivt, men vi antar att inget rumsberoende finns (homogent material). Maxwells fältekvationer och de konstitutiva relationerna ger att

$$\begin{cases} \nabla \times \boldsymbol{E} = i\omega\mu_0\mu\boldsymbol{H} = ik\eta_0\eta\boldsymbol{H} \\ \nabla \times \boldsymbol{H} = -i\omega\epsilon_0\epsilon\boldsymbol{E} = -i\frac{k}{\eta_0\eta}\boldsymbol{E} \end{cases}$$

där

$$\eta = \sqrt{\frac{\mu}{\epsilon}} \tag{2.25}$$

är (relativa) vågimpedansen för materialet, η_0 vakuums vågimpedans och vågtalet $k = \omega \sqrt{\epsilon_0 \mu_0 \epsilon \mu}$.

Det är nu enkelt att från dessa ekvationer eliminera H-fältet så att en ekvation endast för det elektriska fältet erhålls. Detta har redan utförts i (2.2) på sidan 45.

$$abla imes (
abla imes oldsymbol{E}) - k^2 oldsymbol{E} = oldsymbol{0}$$

På liknande sätt härleds lätt ekvationen som H-fältet uppfyller

$$\nabla \times (\nabla \times \boldsymbol{H}) - k^2 \boldsymbol{H} = \boldsymbol{0}$$

Dessutom gäller från Maxwells fältekvationer att

$$\begin{cases} \nabla \cdot \boldsymbol{E} = 0\\ \nabla \cdot \boldsymbol{H} = 0 \end{cases}$$

Tillämpar vi dessa resultat på (2.24) får vi en representation av E-fältet i enbart en ytintegral av fältet på volymen V:s begränsningsyta.¹⁷ Som redan påpekats, behöver ytan S inte vara en skiljeyta mellan två olika material utan en allmän yta inom vilken materialets elektriska och magnetiska egenskaper är homogena.

$$-\iint_{S} \left[ik\eta_{0}\eta g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}') \right) + \left(\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \right) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{E}(\boldsymbol{r}') \right) \right. \\ \left. - \left(\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \right) \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}') \right) \right] dS' = \begin{cases} \boldsymbol{E}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S \\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S \end{cases}$$

Den analoga integralrepresentationen för H-fältet blir (ges av bytet $E \leftrightarrow i\eta_0 \eta H$, eftersom Maxwells fältekvationer förblir oförändrade under detta byte, medan det

¹⁷Ytintegralen antas evalueras i ett källfritt område så att $\nabla \cdot \boldsymbol{E} = \nabla \cdot \boldsymbol{H} = 0$ på ytan S.

elektriska och det magnetiska fältet byts)

$$-\iint_{S} \left[-i\frac{k}{\eta_{0}\eta} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}')) + (\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|)) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{H}(\boldsymbol{r}')) \right]$$
$$- (\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|)) \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) dS' = \begin{cases} \boldsymbol{H}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S \\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S \end{cases}$$
$$(2.26)$$

Dessa båda ekvationer innehåller i ytintegralen de elektriska respektive magnetiska fältens normalkomponenter på ytan S. Vårt mål nu blir att ytterligare förenkla de båda uttrycken så att endast tangentialfälten ingår i vardera ytintegralen. För att kunna genomföra detta noterar vi att

$$\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|) = -\nabla g(k, |\boldsymbol{r} - \boldsymbol{r}'|)$$

som leder till att

$$\iint_{S} (\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|)) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{H}(\boldsymbol{r}')) \, dS' = -\nabla \iint_{S} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{H}(\boldsymbol{r}')) \, dS'$$

samt att

$$\iint_{S} (\nabla' g(k, |\boldsymbol{r} - \boldsymbol{r}'|)) \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \, dS'$$

= $-\iint_{S} (\nabla g(k, |\boldsymbol{r} - \boldsymbol{r}'|)) \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \, dS'$
= $-\nabla \times \iint_{S} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \, dS'$

Tag nu rotationen på (2.26) och vi får eftersom $\nabla\times (\nabla \iint\limits_S \ldots \, dS') = \mathbf{0}$

$$\begin{split} &-\nabla \times \left\{ \nabla \times \iint_{S} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \, dS' \right\} \\ &+ i \frac{k}{\eta_0 \eta} \nabla \times \iint_{S} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}') \right) \, dS' \\ &= \begin{cases} \nabla \times \boldsymbol{H}(\boldsymbol{r}) = -i \frac{k}{\eta_0 \eta} \boldsymbol{E}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S \\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S \end{cases} \end{split}$$

där vi använt $\nabla \times \boldsymbol{H}(\boldsymbol{r}) = -ik\boldsymbol{E}(\boldsymbol{r})/\eta_0\eta$.

Vi får till slut integralrepresentationen för det elektriska fältet genom division

av ekvationen ovan med $-ik/\eta_0\eta$.

$$-i\frac{\eta_{0}\eta}{k}\nabla\times\left\{\nabla\times\iint_{S}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}(\boldsymbol{r}'))\,dS'\right\}$$
$$-\nabla\times\iint_{S}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}(\boldsymbol{r}'))\,dS' = \begin{cases}\boldsymbol{E}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S\\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S\end{cases}$$
(2.27)

Helt analogt med ovan erhålls det magnetiska fältets integralrepresentation som ytintegral

$$\begin{split} &i\frac{1}{k\eta_0\eta}\nabla\times\left\{\nabla\times\iint_{S}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}(\boldsymbol{r}'))\,dS'\right\}\\ &-\nabla\times\iint_{S}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)\left(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}(\boldsymbol{r}')\right)\,dS'=\begin{cases}\boldsymbol{H}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S\\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S\end{cases} \end{split}$$

Dessa båda ekvationer kommer sedan att ligga till grund för analys av spridningsproblemet.

Övningar till kapitel 2

2.1 Inuti en sfär med radie *a* finns källor som genererar en strömtäthet $J(r, \omega)$ med endast en radiell komponent och som endast beror på radien *r*, dvs.

$$oldsymbol{J}(oldsymbol{r},\omega) = egin{cases} \hat{oldsymbol{r}}f(r,\omega), & r\leq a \ oldsymbol{0}, & r>a \end{cases}$$

Bestäm de elektriska och magnetiska fälten utanför källfördelningen, dv
s för r > a. Källorna kan antas befinna sig i vakuum.

Anmärkning: En strömfördelning, som beskrivs i övningen, kan tänkas uppstå vid plötslig laddningsseparation, t.ex. vid en kärnvapenexplosion.

*2.2 Strömfördelningen för en dipol i origo med styrkan p orienterad längs \hat{z} är

$$\boldsymbol{J}(\boldsymbol{r}) = -i\omega p \hat{\boldsymbol{z}} \delta(\boldsymbol{r})$$

Bestäm de elektriska och magnetiska fälten utanför dipolen, dvs. i området r > 0. Beräkna dessutom fältens effekt
täthet (Poyntings vektor) i området utanför dipolen samt den totala effekt
 P som transporteras genom en sfärisk yta kring dipolen.
Området utanför dipolen antas vara fri rymd ($\epsilon = \mu = 1$).

2.3 Hur snabbt måste en partikel röra sig i ett homogent Lorentzmaterial för att Čerenkovstrålningen skall falla inom det synliga området $\lambda > \lambda(violett) \approx 0.4 \ \mu m$ (vakuumvåglängd). Materialet antas förlustfritt och $\mu = 1$, $\omega_0 = \omega_p = 10^{16} \ rad/s$. **2.4** Visa att den totalt utstrålade energin E vid Čerenkovstrålningen från en laddad partikel med laddning q som rör sig med en hastighet v i ett material vars konstitutiva relationer kan approximeras med ett förlustfritt Lorentzmaterial ($\mu = 1$) är

$$E = -\frac{q^2 \omega_p^2}{8\pi\epsilon c_0^2} \left\{ \left(\frac{c_0}{v}\right)^2 \ln\left(1 - \left(\frac{v}{c_0}\right)^2\right) + 1 \right\}$$

Visa att för en långsam partikel så gäller

$$E = \frac{q^2 \omega_p^2}{16\pi\epsilon_0 c_0^2} \left(\frac{v}{c_0}\right)^2$$

Ledning: Lämplig integral är

$$\int \frac{x^2 + a}{x^2 + b} x \, dx = \frac{1}{2}x^2 + \frac{1}{2}(a - b)\ln(x^2 + b)$$

2.5 Låt vektorfältet E satisfiera

$$\begin{cases} \nabla \times \boldsymbol{E} = \boldsymbol{0} \\ \nabla \cdot \boldsymbol{E} = \boldsymbol{0} \end{cases}$$

i en volym V med begränsningsyta S och utåtriktad normal \hat{n} . Dessa ekvationer är de statiska ($\omega \to 0$) gränsvärdena av Maxwells fältekvationer i ett källfritt område (isotropt material), se (1.19) och (1.23). Visa att detta fält satisfierar den statiska analogin till ytintegralrepresentationen (2.27).

$$-\iint_{S} \nabla' g(|\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \boldsymbol{E}(\boldsymbol{r}')) \, dS' + \iint_{S} \nabla' g(|\boldsymbol{r} - \boldsymbol{r}'|) \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}')) \, dS' = \begin{cases} \boldsymbol{E}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S \\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S \end{cases}$$
(2.28)

där

$$g(r) = \frac{1}{4\pi r}$$

Ledning: Det är lämpligt att börja med integralidentiteten (2.23) med $\psi(\mathbf{r}) = g(|\mathbf{r} - \mathbf{r}'|)$ och $\mathbf{F} = \mathbf{E}$.

***2.6** Visa att resultatet i övning 2.5, dvs. (2.28), följer av integralrepresentationen i det dynamiska fallet, (2.27) i gränsen då $k \to 0$ ($\omega \to 0$) för varje E- och H-fält som satisfierar

$$\left\{egin{array}{ll}
abla imes oldsymbol{E} = ik\eta_0\etaoldsymbol{H} \
abla imes oldsymbol{H} = -irac{k}{\eta_0\eta}oldsymbol{E} & oldsymbol{r} \in V \end{array}
ight.$$

där V är den volym som innesluts av den slutna ytan S.

Sammanfattning av kapitel 2

Potentialer

Gauge transformation

Lorenz bivillkor

$$abla \cdot oldsymbol{A} = rac{ik^2}{\omega} \phi$$

Greenfunktion

$$\begin{aligned} \nabla^2 g(k, \boldsymbol{r}, \boldsymbol{r}') + k^2 g(k, \boldsymbol{r}, \boldsymbol{r}') &= -\delta(\boldsymbol{r} - \boldsymbol{r}') \\ g(k, |\boldsymbol{r} - \boldsymbol{r}'|) &= \frac{e^{ik|\boldsymbol{r} - \boldsymbol{r}'|}}{4\pi|\boldsymbol{r} - \boldsymbol{r}'|} \end{aligned}$$

Volymintegral representation av E- och H-fälten

$$\boldsymbol{E}(\boldsymbol{r}) = i\omega\mu_0\mu\left[\mathbf{I} + \frac{1}{k^2}\nabla\nabla\right] \cdot \iiint_V \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \boldsymbol{J}(\boldsymbol{r}') \, dv'$$
$$\boldsymbol{H}(\boldsymbol{r}) = \frac{1}{\mu_0\mu}\nabla\times\boldsymbol{A}(\boldsymbol{r}) = \nabla\times\iiint_V \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \boldsymbol{J}(\boldsymbol{r}') \, dv'$$

Ytintegral representation av $E\mbox{-}{\rm f\ddot{a}ltet}$

$$-i\frac{\eta_0\eta}{k}\nabla \times \left\{\nabla \times \iint_S g(k, |\boldsymbol{r} - \boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \, dS'\right\}$$
$$-\nabla \times \iint_S g(k, |\boldsymbol{r} - \boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}')) \, dS' = \begin{cases} \boldsymbol{E}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S\\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S \end{cases}$$

Ytintegral representation av $H\mathchar`$ fältet

$$\begin{split} i\frac{1}{k\eta_0\eta} \nabla \times \left\{ \nabla \times \iint_S g(k, |\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}')) \, dS' \right\} \\ - \nabla \times \iint_S g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}') \right) \, dS' = \begin{cases} \boldsymbol{H}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S \\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S \end{cases} \end{split}$$

Čerenkovstrålning

$$E = \frac{q^2}{4\pi\epsilon_0 c_0^2} \int_0^\infty \frac{\omega}{\epsilon(\omega)} \left(\epsilon(\omega)\mu(\omega) - \left(\frac{c_0}{v}\right)^2\right) d\omega$$
$$\epsilon(\omega)\mu(\omega) \ge \left(\frac{c_0}{v}\right)^2$$

Kapitel 3 Inledande spridningsteori

N är en tidsharmonisk elektromagnetisk våg¹ utbreder sig i ett homogent, förlustfritt, isotropt material, karakteriserat av materialparametrarna² ϵ och μ , fortplantas vågen helt utan störningar. Finns däremot i materialet ett område med avvikande elektriska eller magnetiska egenskaper kommer vågens utbredning att påverkas. Man säger att vågen sprids. Spridningsteorins mål är att kvantitativt analysera detta problem och att beräkna denna störning i vågens utbredning. Ett typiskt exempel på en spridningsgeometri finns avbildat i figur 3.1. Volymerna V_i och V_s antas vara disjunkta, dvs. $V_i \cap V_s = \emptyset$. V_i är sändarnas eller källornas region, och V_s är spridarnas område, som i sig kan innehålla flera enskilda spridare. En situation som uppträder i många tillämpningar är att V_i innehåller en sändarantenn eller någon annan typ av källa, medan V_s innehåller en passiv spridare, t.ex. en reflektorantenn eller en kropp med avvikande elektriska eller magnetiska materialegenskaper.

Den ursprungliga opåverkade vågen kallas infallande fält och indiceras med i, t.ex. det infallande elektriska fältet E_i , och detta fält har sina källor inuti volymen V_i . Utanför V_i är detta fält källfritt, dvs.

$$\begin{cases} \nabla \times \boldsymbol{E}_{i} = i\omega\mu_{0}\mu\boldsymbol{H}_{i} = ik\eta_{0}\eta\boldsymbol{H}_{i} \\ \nabla \times \boldsymbol{H}_{i} = -i\omega\epsilon_{0}\epsilon\boldsymbol{E}_{i} = -i\frac{k}{\eta_{0}\eta}\boldsymbol{E}_{i} \end{cases} \boldsymbol{r} \notin V_{i} \tag{3.1}$$

där vågimpedansen η för materialet är definierat av (2.25) och där vågtalet ges av $k = \omega \sqrt{\epsilon_0 \mu_0 \epsilon \mu}$. Detta fält är det totala fältet i avsaknad av spridare.

De avvikande elektriska eller magnetiska egenskaperna antar vi finns inom ett begränsat område V_s . Störningen av det elektromagnetiska fältet kallas det spridda fältet och indiceras med s, t.ex. det spridda elektriska fältet E_s , och detta fält har sina källor (genererade av källorna i V_i) inuti volymen V_s . Utanför V_s är fältet

¹Andra mer generella tidsförlopp, såsom allmänna transienta elektromagnetiska vågor, är väsentligt mer komplicerade att analysera. Vi kommer i denna bok uteslutande att behandla tidsharmoniska förlopp.

²Materialparametrarna ϵ och μ antas vara reella (förlustfritt material) och positiva.

Figur 3.1: Typexempel på spridningsgeometri. Källorna finns i V_i . Volymen V_s innehåller den passiva spridaren.

källfritt, dvs.

$$\begin{cases} \nabla \times \boldsymbol{E}_{s} = i k \eta_{0} \eta \boldsymbol{H}_{s} \\ \nabla \times \boldsymbol{H}_{s} = -i \frac{k}{\eta_{0} \eta} \boldsymbol{E}_{s} \end{cases} \quad \boldsymbol{r} \notin V_{s} \tag{3.2}$$

Det totala elektriska fältet E, som uppmäts i ett fysikaliskt experiment, utgör summan av dessa båda fält, dvs.

$$E = E_i + E_s$$

I det allmänna fallet kommer närvaron av spridaren i volymen V_s att påverka det infallande fältets källor i V_i . Det sker en återkoppling från det spridda fältet på källorna till det infallande fältet. Denna återkoppling leder till en komplikation när man skall finna lösningen på spridningsproblemet. Oftast kan dock denna återkoppling försummas. Så är t.ex. fallet i många situationer när avståndet mellan V_i och V_s är stort.

Vi kommer i delar av detta kapitel inte att specificera på vilket sätt materialet i V_s avviker från omgivningen. I ett allmänt fall kan till och med materialet i V_s utgöras av ett icke-linjärt material. Det enda antagande vi gör just nu är att området V_s är begränsat. Vi kommer också att försumma återkopplingen på det infallande fältets källor och följaktligen antar vi problemets källor i V_i givna och opåverkade av spridarens närvaro.

I detta kapitel använder vi resultaten från kapitel 2. Speciellt användbara kommer integralrepresentationerna, både volym- och ytintegralframställningarna, av de elektriska eller magnetiska fälten att vara. I första avsnittet i detta kapitel analyseras det spridda fältet på stort avstånd från spridaren, det s.k. fjärrfältet. I avsnitt 3.2 och 3.3 införs ett antal fundamentala definitioner, såsom spridningstvärsnitt och spridningsmatris, som används flitigt inom spridningsteorin. Avsnitt 3.4 visar det s.k. optiska teoremet. Två avsnitt, 3.5 och 3.6, behandlar spridning i kort-, respektive långvågsapproximationen (Rayleigh-spridning). Flera exempel med antenntillämpningar illustrerar metoderna. Spridning mot flera objekt analyseras i avsnitt 3.7, och avslutningsvis presenteras i avsnitt 3.8 några numeriska exempel,

Figur 3.2: Fjärrfältet från en spridare i V_s .

som illustrerar teorin i detta kapitel.

Teorin som behandlas i detta kapitel har, som redan påpekats, flera tillämpningar inom antennteori. Även andra tillämpningsområden är aktuella, t.ex. inom radar, fjärranalys och optiska fibrer.

3.1 Fjärrfält

Av särskilt intresse inom spridningsteorin är hur fälten ser ut på stort avstånd från spridaren, i den s.k. *fjärrzonen*. Begreppet "stort avstånd" är relaterat till spridarens storlek och till våglängden $\lambda = 2\pi/k$. Om r är avståndet från ett origo i volymen V_s till observationspunkten, se figur 3.2, innebär stort avstånd att

$$\begin{cases} r \gg d & (a) \\ r \gg kd^2 & (b) \\ r \gg \lambda & (c) \end{cases}$$
(3.3)

där spridarens maximala utsträckning d ges av

$$d = \max_{\boldsymbol{r}' \in V_s} |\boldsymbol{r}'|$$

I ett spridningsproblem finns tre längdskalor—spridarens maximala utsträckning d, våglängden λ och observationsavståndet r. Fjärrzonen innebär att observationsavståndet r är mycket större än de övriga två längdskalorna d och λ ($kr \gg 1$), samt att $r \gg kd^2$.

I detta avsnitt kommer vi att behandla två olika formuleringar av fjärrfältsanalysen. Den första är en formulering med de inducerade strömmar som det infallande fältet genererar i spridaren. Detta ger oss en volymformulering av problemet. Analysen från avsnitt 2.1 kan användas i detta fall.

Ett mer allmänt angreppssätt ger dock en formulering som bygger på ytintegralframställningen från avsnitt 2.3.1. Denna formulering bygger mycket lite på vad det spridande materialet inuti volymen V_s består av och är därför mer generell.

3.1.1 Volymformulering

I avsnitt 2.1 härledde vi att det elektriska fältet från en given strömtäthetsfördelning ges av (2.12). Om den, av det infallande fältet, inducerade strömtätheten³ är J_s kommer det spridda fältet E_s att bli

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = i\omega\mu_{0}\mu\left[\mathbf{I} + \frac{1}{k^{2}}\nabla\nabla\right] \cdot \iiint_{V_{s}} \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \boldsymbol{J}_{s}(\boldsymbol{r}') \, dv'$$
(3.4)

Strömtätheten J_s induceras av det infallande fältet, men vi behöver inte specificera den närmare. Vårt första mål i detta avsnitt blir att bestämma det dominerande bidraget hos det spridda elektriska fältet i fjärrzonen.

Avståndet $|\mathbf{r} - \mathbf{r}'|$ mellan källpunkt \mathbf{r}' och observationspunkt \mathbf{r} skriver vi först om som en skalärprodukt.

$$|r - r'| = \sqrt{(r - r') \cdot (r - r')} = \sqrt{r^2 + r'^2 - 2r \cdot r'}$$

där $r = |\mathbf{r}|$ och $r' = |\mathbf{r}'|$. Inför enhetsvektorn $\hat{\mathbf{r}} = \mathbf{r}/r$ som pekar från origo mot mätpunkten. Avståndet $|\mathbf{r} - \mathbf{r}'|$ kan vi, med hjälp av $\sqrt{1+x} = 1 + x/2 + \ldots$, approximera med det ledande bidraget.

$$|\boldsymbol{r} - \boldsymbol{r}'| = r\sqrt{1 + \left(\frac{r'}{r}\right)^2 - 2\hat{\boldsymbol{r}} \cdot \frac{\boldsymbol{r}'}{r}} = r\left\{1 + \frac{1}{2}\left[\left(\frac{r'}{r}\right)^2 - 2\hat{\boldsymbol{r}} \cdot \frac{\boldsymbol{r}'}{r}\right] + \ldots\right\}$$
(3.5)
= $r - \hat{\boldsymbol{r}} \cdot \boldsymbol{r}' + O(d^2/r), \text{ då } r \to \infty$

där spridarens maximala utsträckning d ges av

$$d = \max_{\boldsymbol{r}' \in V_s} |\boldsymbol{r}'|$$

Greenfunktionen kan nu skrivas som

$$\frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} = \frac{1}{4\pi r \left(1+O(d/r)\right)} \exp\left\{ik\left(r-\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'+O(d^2/r)\right)\right\} \\ = \frac{e^{ikr}}{4\pi r} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \left(1+O(kd^2/r)\right) \left(1+O(d/r)\right)$$

Det dominerande bidraget till det spridda elektriska fältet i (3.4) blir

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = i\omega\mu_{0}\mu\left[\mathbf{I} + \frac{1}{k^{2}}\nabla\nabla\right] \cdot \frac{e^{ikr}}{4\pi r} \iiint_{V_{s}} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\boldsymbol{J}_{s}(\boldsymbol{r}') \, dv'$$

Notera att vi här har använt villkoren (3.3)(a) och (b) men ännu ej villkor (c).

³Skilj på strömtätheten J_s , som genererar det spridda fältet, och J_S , som används som beteckning på ytströmtätheten vid en skiljeyta, se (1.12) och (1.13).

Det är nu lämpligt att införa vektorfältet $K(\hat{r})$ definierat av

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{ik^2\eta_0\eta}{4\pi} \iiint_{V_s} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \boldsymbol{J}_s(\boldsymbol{r}') \, dv'$$

Notera att K väsentligen är Fouriertransformen i rummet av strömtätheten J_s evaluerad i punkten $k\hat{r}$. Detta fält är endast en funktion av r:s riktning, \hat{r} , till mätpunkten och inte på avståndet r. Det elektriska fältet kan nu skrivas som

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = \left[\mathbf{I} + \frac{1}{k^{2}}\nabla\nabla\right] \cdot \left(\frac{e^{ikr}}{kr}\boldsymbol{K}(\hat{\boldsymbol{r}})\right)$$

Med räknereglerna för ∇ -operatorn får vi

$$\nabla \cdot \left[\frac{e^{ikr}}{kr}\boldsymbol{K}(\hat{\boldsymbol{r}})\right] = \frac{e^{ikr}}{kr}\nabla \cdot \boldsymbol{K}(\hat{\boldsymbol{r}}) + \boldsymbol{K}(\hat{\boldsymbol{r}}) \cdot \nabla \left(\frac{e^{ikr}}{kr}\right)$$

Eftersom $\mathbf{K}(\hat{\mathbf{r}})$ endast är en funktion av riktningen $\hat{\mathbf{r}}$, som vi anger med de sfäriska vinklarna θ och ϕ , och ej på avståndet r, så blir, se appendix D

$$\nabla \cdot \boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta K_{\theta} \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(K_{\phi} \right)$$

och avtar därför som 1/r. K_{θ} och K_{ϕ} är **K**:s θ - och ϕ -komponenter. Vi får

$$\frac{1}{k}\nabla\cdot\left[\frac{e^{ikr}}{kr}\boldsymbol{K}(\hat{\boldsymbol{r}})\right] = \frac{1}{k}\boldsymbol{K}(\hat{\boldsymbol{r}})\cdot\nabla\left(\frac{e^{ikr}}{kr}\right)\left(1+O((kr)^{-1})\right)$$
$$=i\hat{\boldsymbol{r}}\cdot\boldsymbol{K}(\hat{\boldsymbol{r}})\frac{e^{ikr}}{kr}\left(1+O((kr)^{-1})\right)$$

och på liknande sätt får vi

$$\frac{1}{k^2} \nabla \left\{ \nabla \cdot \left[\frac{e^{ikr}}{kr} \boldsymbol{K}(\hat{\boldsymbol{r}}) \right] \right\} = \nabla \left\{ \frac{i}{k} \hat{\boldsymbol{r}} \cdot \boldsymbol{K}(\hat{\boldsymbol{r}}) \frac{e^{ikr}}{kr} \left(1 + O((kr)^{-1}) \right) \right\}$$
$$= -\hat{\boldsymbol{r}} \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{K}(\hat{\boldsymbol{r}}) \right) \frac{e^{ikr}}{kr} \left(1 + O((kr)^{-1}) \right)$$

Det dominerande bidraget till det spridda elektriska fältet i fjärrzonen blir därför

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = \left[\boldsymbol{K}(\hat{\boldsymbol{r}}) - \hat{\boldsymbol{r}}K_{r}(\hat{\boldsymbol{r}})\right] \frac{e^{ikr}}{kr} = \hat{\boldsymbol{r}} \times \left(\boldsymbol{K}(\hat{\boldsymbol{r}}) \times \hat{\boldsymbol{r}}\right) \frac{e^{ikr}}{kr}$$

där K_r är K:s *r*-komponent och där vi i andra likheten använt BAC-CAB regeln⁴. Notera att vi här har använt det återstående villkoret för fjärrzonen (3.3)(c). Till slut får vi

$$oldsymbol{E}_s(oldsymbol{r}) = rac{e^{ikr}}{kr}oldsymbol{F}(\hat{oldsymbol{r}})$$

$$\boldsymbol{A}_{\perp} = \hat{\boldsymbol{n}} \times (\boldsymbol{A} imes \hat{\boldsymbol{n}})$$

 $^{^4}$ Generellt fås projektionen av en vektor A i ett plan vinkelrätt mot en riktning \hat{n} genom

där

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{r}} \times (\boldsymbol{K}(\hat{\boldsymbol{r}}) \times \hat{\boldsymbol{r}}) = \frac{ik^2 \eta_0 \eta}{4\pi} \hat{\boldsymbol{r}} \times \left(\iiint_{V_s} e^{-ik\hat{\boldsymbol{r}} \cdot \boldsymbol{r}'} \boldsymbol{J}_s(\boldsymbol{r}') \, dv' \times \hat{\boldsymbol{r}} \right)$$
(3.6)

Vektorn $F(\hat{r})$ kallas vågens fjärrfältsamplitud och är alltid vinkelrät mot \hat{r} . Det spridda elektriska fältet i fjärrzonen är således en sfärisk våg med en polarisation som är vinkelrät mot sin utbredningsriktning \hat{r} .

För att beräkna effektflödestätheten behöver vi även det spridda magnetiska fältet H_s som är associerat med E_s . Faradays lag ger

$$oldsymbol{H}_s(oldsymbol{r}) = rac{1}{ik\eta_0\eta}
abla imes oldsymbol{E}_s(oldsymbol{r})$$

Det dominerande bidraget i fjärrzonen blir

$$\begin{split} \boldsymbol{H}_{s}(\boldsymbol{r}) = & \frac{1}{ik\eta_{0}\eta} \nabla \times \left\{ \frac{e^{ikr}}{kr} \boldsymbol{F}(\hat{\boldsymbol{r}}) \right\} = \frac{1}{\eta_{0}\eta} \frac{e^{ikr}}{kr} \hat{\boldsymbol{r}} \times \boldsymbol{F}(\hat{\boldsymbol{r}}) \\ = & \frac{1}{\eta_{0}\eta} \frac{e^{ikr}}{kr} \left[\hat{\boldsymbol{\phi}} F_{\theta}(\hat{\boldsymbol{r}}) - \hat{\boldsymbol{\theta}} F_{\phi}(\hat{\boldsymbol{r}}) \right] \end{split}$$

Vi har här infört komponenterna $F_{\theta} = \mathbf{F} \cdot \hat{\boldsymbol{\theta}}$ och $F_{\phi} = \mathbf{F} \cdot \hat{\boldsymbol{\phi}}$, och bidrag som avtar snabbare än 1/kr har försummats. Notera att även \mathbf{H}_s är vinkelrät mot $\hat{\boldsymbol{r}}$ i fjärrzonen.

Effektflödestätheten för det spridda fältet får vi sedan lätt ur Poyntings vektor

$$\langle \boldsymbol{S}_{s}(t) \rangle = \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}_{s} \times \boldsymbol{H}_{s}^{*} \right\} = \frac{1}{2\eta_{0}\eta k^{2}r^{2}} \boldsymbol{F}(\hat{\boldsymbol{r}}) \times (\hat{\boldsymbol{r}} \times \boldsymbol{F}^{*}(\hat{\boldsymbol{r}}))$$

vilket ger med BAC-CAB regeln

$$< \mathbf{S}_{s}(t) > = \frac{\hat{\mathbf{r}}}{2\eta_{0}\eta k^{2}r^{2}} |\mathbf{F}(\hat{\mathbf{r}})|^{2} = \frac{\hat{\mathbf{r}}}{2\eta_{0}\eta k^{2}r^{2}} \left[|F_{\theta}(\hat{\mathbf{r}})|^{2} + |F_{\phi}(\hat{\mathbf{r}})|^{2} \right]$$

eftersom F är vinkelrät mot \hat{r} . Som väntat är effektflödestätheten riktad radiellt ut längs utbredningsriktningen \hat{r} .

3.1.2 Ytformulering

Ytformuleringen som presenteras i detta avsnitt är i flera avseenden mer allmän än den föregående volymformuleringen. Den kanske viktigaste skillnaden ligger i att inga explicita antaganden om materialet inuti spridaren eller det spridande området behöver göras i denna ytformulering, utan materialen kan t.o.m. vara icke-linjära, dvs. material som är mer generella än de vi behandlar i denna bok.

De ytintegralframställningar av E- och H-fälten som utvecklades i avsnitt 2.3.1 var härledda under förutsättning att E- och H-fälten uppfyller Maxwells fältekvationer utan källtermer i ett område V, se figur 2.5 på sidan 59, där materialet är

Figur 3.3: Geometri för användning av ytintegralframställningen av fälten.

homogent och isotropt, dvs. fälten satisfierar

$$\left\{egin{array}{l}
abla imes oldsymbol{E} = ik\eta_0\etaoldsymbol{H} \
abla imes oldsymbol{H} = -irac{k}{\eta_0\eta}oldsymbol{E} \end{array}
ight.$$

Dessa integralframställningar ger E- eller H-fältet i volymen V uttryckt i tangentialkomponenterna av E och H på begränsningsytan S till V. Utanför volymen Vger dessa ytintegraler värdet noll. Som redan påpekats behöver ytan S inte vara en skiljeyta mellan två olika material, utan den kan vara en godtycklig yta. Ytintegralframställningen kan vi t.ex. tillämpa på det infallande fältet E_i i volymen V_s eftersom E_i uppfyller (3.1) i V_s . Ekvation (2.27) ger ($r \notin S_s$)

$$-i\frac{\eta_{0}\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_{s}}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}_{i}(\boldsymbol{r}'))\,dS'\right\}$$
$$-\nabla\times\iint_{S_{s}}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}_{i}(\boldsymbol{r}'))\,dS'=\begin{cases}\boldsymbol{E}_{i}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S_{s}\\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } S_{s}\end{cases}$$
(3.7)

där normalriktningen är utåtriktad som anges i figur 3.3. Notera att fälten, $\hat{\boldsymbol{n}} \times \boldsymbol{E}_i$ och $\hat{\boldsymbol{n}} \times \boldsymbol{H}_i$, i integranden ovan är gränsvärden tagna från insidan av S_s . Vidare påminner vi om att den nedre ekvationen inte innebär att det infallande fältet \boldsymbol{E}_i är noll utanför S_s , utan endast innebär att integralerna på vänstra sidan tar ut varann, se diskussionen i anslutning till (2.24) på sidan 62.

Vi kan också använda ytintegralframställning på ett annat sätt i vårt spridningsproblem. Tillämpa integralframställningen på det spridda fältet E_s utanför volymen V_s . Det är då lämpligt att starta med en begränsad volym V bestående av ett område *utanför* volymen V_s men *innanför* ytan S_R , som är en sfär med radie R,

Kapitel 3

se figur 3.3. Ytan S_R , som vi antar ha tillräckligt stor radie så att V_s omsluts, är här en fiktiv begränsningsyta, alltså ingen gräns mellan två material. Ytan S_s däremot är skiljeyta till volymen V_s . Fältens värden är här gränsvärdena tagna från utsidan på S_s (svarar mot gränsvärdena i volymen V). Med de normalriktningar som anges i figur 3.3 (utåtriktad från volymen V_s och utåtriktad från ytan S_R) får vi följande framställningar av \mathbf{E}_s -fältet, som uppfyller (3.2).

$$-i\frac{\eta_{0}\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_{R}}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}_{s}(\boldsymbol{r}'))\,dS'\right\}$$
$$-\nabla\times\iint_{S_{R}}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}_{s}(\boldsymbol{r}'))\,dS'$$
$$+i\frac{\eta_{0}\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_{s}}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}_{s}(\boldsymbol{r}'))\,dS'\right\}$$
$$+\nabla\times\iint_{S_{s}}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}_{s}(\boldsymbol{r}'))\,dS' = \begin{cases}\boldsymbol{E}_{s}(\boldsymbol{r}), & \boldsymbol{r} \text{ utanför } S_{s} \\ & \text{men innanför } S_{R} \\ \boldsymbol{0}, & \text{annars} \end{cases}$$
(3.8)

Notera att integralframställningen nu är tillämpad på ett yttre område så att innanför, respektive utanför ytan S_s är omvänt mot tidigare.

De två integralerna över ytan S_R är oberoende av radien R, vilket lätt ses genom att åter använda integralrepresentationen på volymen mellan två koncentriska sfärer S_{R_1} och S_{R_2} med radier R_1 och R_2 . Sfärerna S_{R_1} och S_{R_2} antas båda omsluta volymen V_s . För ett \boldsymbol{r} innanför båda ytorna S_{R_1} och S_{R_2} gäller då

$$\boldsymbol{I}_{S_{R_1}}(\boldsymbol{r}) = \boldsymbol{I}_{S_{R_2}}(\boldsymbol{r})$$

där

$$\begin{split} \boldsymbol{I}_{S_{R}}(\boldsymbol{r}) &= -i\frac{\eta_{0}\eta}{k} \nabla \times \left\{ \nabla \times \iint_{S_{R}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{s}(\boldsymbol{r}')) \, dS' \right\} \\ &- \nabla \times \iint_{S_{R}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{s}(\boldsymbol{r}') \right) \, dS' \end{split}$$

Värdet på de båda ytintegralerna över ytan S_R är därför oberoende av R för tillräckligt stora värden på R. Fysikaliskt innebär detta konstanta bidrag en reaktion på det spridda fältet E_s från stora avstånd. Ett sådant bidrag är ofysikaliskt och därför väljs detta konstanta bidrag till noll. Tillräckliga villkor på det spridda fältet för att detta skall vara uppfyllt skall vi nu diskutera.

Elektromagnetiska randvärdesproblem, såsom spridningsproblem, är inte entydigt bestämda med enbart Maxwells fältekvationer utan vi behöver specificera fältens värden på områdets randytor. Det spridda fältets uppförande långt från origo, de s.k. utstrålningsvillkoren,⁵ definieras av⁶

$$\begin{cases} (\hat{\boldsymbol{r}} \times \boldsymbol{E}_s(\boldsymbol{r})) - \eta_0 \eta \boldsymbol{H}_s(\boldsymbol{r}) = o((kr)^{-1}) \\ \eta_0 \eta (\hat{\boldsymbol{r}} \times \boldsymbol{H}_s(\boldsymbol{r})) + \boldsymbol{E}_s(\boldsymbol{r}) = o((kr)^{-1}) \end{cases} \quad \text{då } \boldsymbol{r} \to \infty$$
(3.9)

Dessa relationer antas hålla likformigt i \hat{r} då $r \to \infty$. Namnet utstrålningsvillkor är uppenbart om vi beräknar den effektflödestäthet, $\langle S_s(t) \rangle$, som ett sådant fält åstadkommer.

$$\langle \boldsymbol{S}_{s}(t) \rangle = \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}_{s} \times \boldsymbol{H}_{s}^{*} \right\} = \frac{1}{2\eta_{0}\eta} \operatorname{Re} \left\{ \boldsymbol{E}_{s} \times (\hat{\boldsymbol{r}} \times \boldsymbol{E}_{s}^{*}) \right\} + o((kr)^{-1})$$
$$= \frac{1}{2\eta_{0}\eta} \operatorname{Re} \left\{ \hat{\boldsymbol{r}} |\boldsymbol{E}_{s}|^{2} - \boldsymbol{E}_{s}^{*} (\hat{\boldsymbol{r}} \cdot \boldsymbol{E}_{s}) \right\} + o((kr)^{-1})$$
$$= \frac{\hat{\boldsymbol{r}}}{2\eta_{0}\eta} |\boldsymbol{E}_{s}|^{2} + o((kr)^{-1})$$

Här har vi använt BAC-CAB regeln, $\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c}) - \boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})$, samt båda utstrålningsvillkoren. Vi ser att det dominerande bidraget till effektflödestätheten genom ytan S_R på stora avstånd är $\langle \boldsymbol{S}_s(t) \rangle \cdot \hat{\boldsymbol{r}} \geq 0$, dvs. effekten strömmar ut ur ytan S_R .

Vi skall nu visa att utstrålningsvillkoren i (3.9) implicerar att

$$\begin{cases} \iint\limits_{S_R} |\boldsymbol{E}_s(\boldsymbol{r}')|^2 \, dS' \\ \iint\limits_{S_R} |\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}')|^2 \, dS' \end{cases}$$

är begränsade i gränsen $R \to \infty$. Den totala effekten som det spridda fältet transporterar bort till oändligt avstånd är därför en ändlig storhet. För att visa detta utgår vi från följande identitet:

$$\begin{split} &\iint_{S_R} |\eta_0 \eta \left(\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}') \right) + \boldsymbol{E}_s(\boldsymbol{r}')|^2 \, dS' \\ &= \iint_{S_R} \left\{ \eta_0^2 \eta^2 | \hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}')|^2 + |\boldsymbol{E}_s(\boldsymbol{r}')|^2 + 2 \operatorname{Re} \left[\eta_0 \eta \boldsymbol{E}_s^*(\boldsymbol{r}') \cdot \left(\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}') \right) \right] \right\} dS' \end{split}$$

⁵Dessa villkor kallas ofta Silver-Müllers utstrålningsvillkor, se S. Silver, "*Microwave Antenna Theory and Design*", M.I.T. Radiation Laboratory Series Vol. 12, McGraw-Hill, New York (1949) och C. Müller, "*Foundations of the Mathematical Theory of Electromagnetic Waves*", Springer-Verlag, Berlin Heidelberg (1969).

⁶Vänstra ledet är en vektor och *o*-symbolen betyder här att varje kartesisk komponent av vektorn går som $o((kr)^{-1})$. Liknande betydelse kommer att användas för *O*-symbolen tillämpad på vektorer.

Den sista integralen skriver vi om med hjälp av divergenssatsen applicerad på volymen V mellan S_R och S_s .

$$\iint_{S_R} \operatorname{Re} \left[\boldsymbol{E}_s^*(\boldsymbol{r}') \cdot \left(\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}') \right) \right] dS' = \operatorname{Re} \iint_{S_R} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \left(\boldsymbol{H}_s(\boldsymbol{r}') \times \boldsymbol{E}_s^*(\boldsymbol{r}') \right) \right] dS'$$
$$= \operatorname{Re} \left\{ \iint_{S_s} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \left(\boldsymbol{H}_s(\boldsymbol{r}') \times \boldsymbol{E}_s^*(\boldsymbol{r}') \right) \right] dS' + \iint_{V} \nabla' \cdot \left(\boldsymbol{H}_s(\boldsymbol{r}') \times \boldsymbol{E}_s^*(\boldsymbol{r}') \right) dv' \right\}$$

Vi använder Maxwells fältekvationer (3.2) i volymintegralen.

$$\operatorname{Re}\left\{\nabla' \cdot \left(\boldsymbol{H}_{s}(\boldsymbol{r}') \times \boldsymbol{E}_{s}^{*}(\boldsymbol{r}')\right)\right\}$$
$$= \operatorname{Re}\left\{\boldsymbol{E}_{s}^{*}(\boldsymbol{r}') \cdot \left(\nabla' \times \boldsymbol{H}_{s}(\boldsymbol{r}')\right) - \boldsymbol{H}_{s}(\boldsymbol{r}') \cdot \left(\nabla' \times \boldsymbol{E}_{s}^{*}(\boldsymbol{r}')\right)\right\}$$
$$= -\operatorname{Re}\left\{i\frac{k}{\eta_{0}\eta}|\boldsymbol{E}_{s}(\boldsymbol{r}')|^{2} - ik\eta_{0}\eta|\boldsymbol{H}_{s}(\boldsymbol{r}')|^{2}\right\} = 0$$

Vi får således att utstrålningsvillkoret (3.9) medför

$$0 = \lim_{R \to \infty} \iint_{S_R} |\eta_0 \eta \left(\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}') \right) + \boldsymbol{E}_s(\boldsymbol{r}')|^2 \, dS'$$

$$= \lim_{R \to \infty} \iint_{S_R} \left\{ \eta_0^2 \eta^2 |\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}')|^2 + |\boldsymbol{E}_s(\boldsymbol{r}')|^2 \right\} \, dS'$$

$$+ 2\eta_0 \eta \operatorname{Re} \left\{ \iint_{S_s} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \left(\boldsymbol{H}_s(\boldsymbol{r}') \times \boldsymbol{E}_s^*(\boldsymbol{r}') \right) \right] \, dS' \right\}$$

Eftersom integranden i integralen över S_R är icke-negativ och den sista integralen (över S_s) är oberoende av R får vi

$$\begin{cases} \iint\limits_{S_R} |\boldsymbol{E}_s(\boldsymbol{r}')|^2 \, dS' = O(1) \\ \iint\limits_{S_R} |\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}')|^2 \, dS' = O(1) \end{cases} \quad d\mathring{a} \ R \to \infty \tag{3.10}$$

dvs. begränsade i gränsen $R \to \infty$.

Vi övergår nu till att visa att utstrålningsvillkoren utgör tillräckliga villkor för att integralbidragen från S_R i (3.8) försvinner. På stort avstånd från observationspunkten $\boldsymbol{r}, \, \boldsymbol{r}' \gg \boldsymbol{r}$, och för fixt \boldsymbol{r} uppskattar vi de dominerande bidragen till termerna i integranden (\boldsymbol{a} är en av \boldsymbol{r} oberoende vektor och $\hat{\boldsymbol{e}} = (\boldsymbol{r}' - \boldsymbol{r})/|\boldsymbol{r} - \boldsymbol{r}'| = -\nabla |\boldsymbol{r} - \boldsymbol{r}'|$).

$$\begin{aligned} \nabla \times \left(g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \boldsymbol{a} \right) &= \nabla g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \times \boldsymbol{a} \\ &= -ik(\hat{\boldsymbol{e}} \times \boldsymbol{a}) \frac{e^{ik|\boldsymbol{r} - \boldsymbol{r}'|}}{4\pi |\boldsymbol{r} - \boldsymbol{r}'|} \left[1 + O((k|\boldsymbol{r} - \boldsymbol{r}'|)^{-1}) \right] \\ \nabla \times \left(\nabla g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \times \boldsymbol{a} \right) &= -k^2 \frac{e^{ik|\boldsymbol{r} - \boldsymbol{r}'|}}{4\pi |\boldsymbol{r} - \boldsymbol{r}'|} \hat{\boldsymbol{e}} \times \left(\hat{\boldsymbol{e}} \times \boldsymbol{a} \right) \left[1 + O((k|\boldsymbol{r} - \boldsymbol{r}'|)^{-1}) \right] \end{aligned}$$

eftersom $\frac{1}{k}\nabla \times (\hat{\boldsymbol{e}} \times \boldsymbol{a}) = O((k|\boldsymbol{r} - \boldsymbol{r}'|)^{-1})$. Notera att differentieringen sker med avseende på de oprimmade variablerna. Vidare gäller att, se (3.5) (byt primmade och oprimmade variabler)

$$\begin{aligned} |\boldsymbol{r} - \boldsymbol{r}'| &= r' - \hat{\boldsymbol{r}}' \cdot \boldsymbol{r} + O(r^2/r') \\ \hat{\boldsymbol{e}} &= (\boldsymbol{r}' - \boldsymbol{r})/|\boldsymbol{r} - \boldsymbol{r}'| = \hat{\boldsymbol{r}}'(1 + O(r/r')) \end{aligned}$$

Det asymptotiska bidraget till I_{S_R} i (3.8) blir ($\hat{n} = \hat{r}'$ och r' = R på ytan S_R).

$$\begin{split} &ik \iint_{S_R} \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \Big\{ \eta_0 \eta \hat{\boldsymbol{r}}' \times \left(\hat{\boldsymbol{r}}' \times (\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}')) \right) + \hat{\boldsymbol{r}}' \times \left(\hat{\boldsymbol{r}}' \times \boldsymbol{E}_s(\boldsymbol{r}') \right) \Big\} \, dS' \\ &+ \iint_{S_R} \Big\{ O((kR)^{-2}) \hat{\boldsymbol{r}}' \times \left(\hat{\boldsymbol{r}}' \times (\hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}')) \right) \Big\} \, dS' \\ &+ \iint_{S_R} \Big\{ O((kR)^{-2}) \hat{\boldsymbol{r}}' \times \left(\hat{\boldsymbol{r}}' \times \boldsymbol{E}_s(\boldsymbol{r}') \right) \Big\} \, dS' \end{split}$$

Genom att använda Schwartz olikhet⁷ på de sista två integralerna, och genom att använda (3.10) finner vi att integralerna bidrar med $O((kR)^{-1})$. Utstrålningsvillkoren (3.9) ger till slut att det asymptotiska bidraget till I_{S_R} blir

$$ik \iint_{S_R} \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \hat{\boldsymbol{r}}' \times \left\{ \hat{\boldsymbol{r}}' \times \left[\eta_0 \eta \hat{\boldsymbol{r}}' \times \boldsymbol{H}_s(\boldsymbol{r}') + \boldsymbol{E}_s(\boldsymbol{r}') \right] \right\} \, dS' + O((kR)^{-1}) \to \mathbf{0},$$
då $R \to \infty$

Ekvation (3.8) förenklas därför till

$$i\frac{\eta_{0}\eta}{k}\nabla \times \left\{\nabla \times \iint_{S_{s}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{s}(\boldsymbol{r}')) \, dS'\right\}$$
$$+ \nabla \times \iint_{S_{s}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{s}(\boldsymbol{r}')) \, dS' = \begin{cases} \boldsymbol{E}_{s}(\boldsymbol{r}), & \boldsymbol{r} \text{ utanför } S_{s} \\ \boldsymbol{0}, & \boldsymbol{r} \text{ innanför } S_{s} \end{cases}$$
(3.11)

Notera att det spridda elektriska och magnetiska fälten ingår i ytintegralerna. I många sammanhang är det mer lämpligt att ha integraler där det totala fältet $\boldsymbol{E} = \boldsymbol{E}_i + \boldsymbol{E}_s$ ingår. Vi kan få detta genom att kombinera ekvationerna (3.7) och

$$\left| \iint_{S} f(\boldsymbol{r}) \boldsymbol{F}(\boldsymbol{r}) \, dS \right| \leq \sqrt{\iint_{S} |f(\boldsymbol{r})|^2 \, dS} \sqrt{\iint_{S} |\boldsymbol{F}(\boldsymbol{r})|^2 \, dS}$$

⁷Schwartz olikhet för ytintegraler är

(3.11). Detta uttryck blir en ytintegral i totala fältet över ytan S_s .

$$i\frac{\eta_{0}\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_{s}}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}(\boldsymbol{r}'))\,dS'\right\}$$
$$+\nabla\times\iint_{S_{s}}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)\left(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}(\boldsymbol{r}')\right)\,dS'=\left\{\begin{array}{cc}\boldsymbol{E}_{s}(\boldsymbol{r}), & \boldsymbol{r} \text{ utanför } S_{s}\\ -\boldsymbol{E}_{i}(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S_{s}\end{array}\right.$$
(3.12)

Detta uttryck och (3.11) utgör huvudresultaten i detta avsnitt. Dessa båda uttryck ger en allmän framställning av det spridda fältet i fältets randvärden på S_s .

Vi söker nu ett uttryck för fjärrfältsamplituden med hjälp av (3.11). I fjärrzonen, se (3.3), erhåller vi följande dominerande bidrag till integrandens termer

$$\frac{1}{k}g(k,|\boldsymbol{r}-\boldsymbol{r}'|) = \frac{e^{ikr}}{4\pi kr}e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\left(1+O(kd^2/r)\right)\left(1+O(d/r)\right)$$
$$\frac{1}{k^2}\nabla g(k,|\boldsymbol{r}-\boldsymbol{r}'|) = i\hat{\boldsymbol{r}}\frac{e^{ikr}}{4\pi kr}e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\left(1+O(kd^2/r)\right)\left(1+O(d/r)\right)\left(1+O((kr)^{-1})\right)$$

eftersom $1/k\nabla f(\hat{\boldsymbol{r}}) = O((kr)^{-1})$. Vidare gäller att

$$\frac{1}{k^3} \nabla \times \left(\nabla g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \times \boldsymbol{a} \right)$$
$$= \frac{e^{ikr}}{4\pi kr} e^{-ik\hat{\boldsymbol{r}} \cdot \boldsymbol{r}'} \hat{\boldsymbol{r}} \times \left(\boldsymbol{a} \times \hat{\boldsymbol{r}} \right) \left(1 + O(kd^2/r) \right) \left(1 + O(d/r) \right) \left(1 + O((kr)^{-1}) \right)$$

där \boldsymbol{a} ej beror på \boldsymbol{r} . Fjärrfältet blir därför med (3.11)

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = ik \frac{e^{ikr}}{4\pi r} \hat{\boldsymbol{r}} \times \iint_{S_{s}} \left[\eta_{0} \eta \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{s}(\boldsymbol{r}') \right) \times \hat{\boldsymbol{r}} + \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{s}(\boldsymbol{r}') \right) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS'$$

Vi kan skriva detta som

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = rac{e^{ikr}}{kr} \boldsymbol{F}(\hat{\boldsymbol{r}})$$

där

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_s} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_s(\boldsymbol{r}') - \eta_0 \eta \hat{\boldsymbol{r}} \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_s(\boldsymbol{r}')) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS' \quad (3.13)$$

Detta är ett alternativt uttryck på fjärrfältsamplituden formulerad i endast det spridda fältets värden på begränsningsytan till spridaren. Några antaganden om materialet innanför S_s har inte gjorts. Detta uttryck på fjärrfältsamplituden är således mer generellt än det som härleddes i volymintegralformuleringen. Vi ser också direkt att \boldsymbol{F} i denna formulering endast har $\hat{\boldsymbol{\theta}}$ - och $\hat{\boldsymbol{\phi}}$ -komponenter och ingen $\hat{\boldsymbol{r}}$ -komponent.

Om (3.12) används som utgångspunkt för fjärrfältet får vi helt i analogi med härledningen av (3.13) följande uttryck i de totala fälten:

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_s} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}') - \eta_0 \eta \hat{\boldsymbol{r}} \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS' \quad (3.14)$$

Detta uttryck är också användbart i många sammanhang.

3.2 Spridningstvärsnitt

Om de elektromagnetiska egenskaperna varierar i rummet, abrupt, som t.ex. vid randytor, eller kontinuerligt, kommer det elektromagnetiska fältet att påverkas av denna variation. I ett elektromagnetiskt spridningsproblem delas det elektriska fältet upp i summan av två delar.

$$\boldsymbol{E} = \boldsymbol{E}_i + \boldsymbol{E}_s$$

Den första fältet, E_i , är det infallande fältet som man experimentellt har kontroll över. Detta fält antar vi här är en plan våg⁸ med utbredningsriktningen \hat{k}_i , dvs.

$$oldsymbol{E}_i(oldsymbol{r}) = oldsymbol{E}_0 e^{ik \hat{oldsymbol{k}}_i \cdot oldsymbol{r}}$$

Styrkan och polarisationen av det infallande fältet ges av den komplexa vektorn E_0 , som är fältets värde i origo. Det infallande magnetiska fältet är, se (3.1)

$$\boldsymbol{H}_{i}(\boldsymbol{r}) = \frac{1}{ik\eta_{0}\eta} \nabla \times \boldsymbol{E}_{i}(\boldsymbol{r}) = \frac{1}{\eta_{0}\eta} \left(\hat{\boldsymbol{k}}_{i} \times \boldsymbol{E}_{0} \right) e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}} = \frac{1}{\eta_{0}\eta} \hat{\boldsymbol{k}}_{i} \times \boldsymbol{E}_{i}(\boldsymbol{r})$$

Den komplexa vektorn E_0 är vinkelrät mot \mathbf{k}_i (polarisationen är vinkelrät mot utbredningsriktningen) eftersom, se (3.1)

$$\hat{\boldsymbol{k}}_{i} \cdot \boldsymbol{E}_{i} = \frac{i\eta_{0}\eta}{k} \hat{\boldsymbol{k}}_{i} \cdot \nabla \times \boldsymbol{H}_{i} = \frac{i}{k} \hat{\boldsymbol{k}}_{i} \cdot \nabla \times \left[\left(\hat{\boldsymbol{k}}_{i} \times \boldsymbol{E}_{0} \right) e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}} \right] \\ = -\hat{\boldsymbol{k}}_{i} \cdot \left[\hat{\boldsymbol{k}}_{i} \times \left(\hat{\boldsymbol{k}}_{i} \times \boldsymbol{E}_{0} \right) \right] e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}} = 0$$

Om den plana vågen är linjärt polariserad har den komplexa vektorn E_0 formen $E_0 = \hat{p}_0 E_0$ och fältet E_i förenklas till

$$\boldsymbol{E}_i(\boldsymbol{r}) = \hat{\boldsymbol{p}}_0 E_0 e^{ik\hat{\boldsymbol{k}}_i\cdot\boldsymbol{r}}$$

där den reella enhetsvektorn \hat{p}_0 uppfyller $\hat{p}_0 \cdot \hat{k}_i = 0$ och E_0 är ett komplext tal.

Det andra fältet, det spridda fältet E_s , är störningen i det elektriska fältet till följd av avvikelserna i de elektromagnetiska egenskaperna i V_s mot omgivningen. Detta fält är noll om V_s saknas, dvs. ingen störning finns. Från tidigare avsnitt har vi sett att detta spridda fält på stort avstånd från V_s är en sfärisk våg med transversell polarisation.

$$oldsymbol{E}_s(oldsymbol{r}) = rac{e^{ikr}}{kr}oldsymbol{F}(\hat{oldsymbol{r}})$$

där vi tidigare härlett explicita uttryck på fjärrfältsamplituden $F(\hat{r})$. I volymintegralformuleringen gäller, se (3.6)

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \frac{ik^2\eta_0\eta}{4\pi}\hat{\boldsymbol{r}} \times \left(\iiint_{V_s} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\boldsymbol{J}_s(\boldsymbol{r}')\,dv'\times\hat{\boldsymbol{r}}\right)$$

⁸Detta fält har sina källor i oändligheten och kan fås genom lämplig gränsprocess av källor på ändligt avstånd.

medan i ytfältsframställningen, se (3.13)

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_s} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_s(\boldsymbol{r}') - \eta_0 \eta \hat{\boldsymbol{r}} \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_s(\boldsymbol{r}')) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS'$$

Den effektflödestäthet (effekt per ytenhet) som det spridda fältet för med sig bort från V_s visades också vara, se sidan 74

$$\langle \boldsymbol{S}_{s}(t) \rangle = \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}_{s} \times \boldsymbol{H}_{s}^{*} \right\} = \frac{\hat{\boldsymbol{r}}}{2\eta_{0}\eta k^{2}r^{2}} |\boldsymbol{F}(\hat{\boldsymbol{r}})|^{2}$$

med vågimpedansen η för materialet givet av (2.25).

På liknande sätt kan effektflödestätheten för den infallande vågen beräknas. Vi får

$$\langle \boldsymbol{S}_{i}(t) \rangle = \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}_{i} \times \boldsymbol{H}_{i}^{*} \right\} = \frac{1}{2\eta_{0}\eta} \operatorname{Re} \left\{ \boldsymbol{E}_{i} \times \left(\hat{\boldsymbol{k}}_{i} \times \boldsymbol{E}_{i}^{*} \right) \right\}$$

Förenkling med BAC-CAB regeln och $\mathbf{k}_i \cdot \mathbf{E}_i = 0$ ger

$$\langle \boldsymbol{S}_{i}(t) \rangle = \frac{\hat{\boldsymbol{k}}_{i}}{2\eta_{0}\eta} \boldsymbol{E}_{0} \cdot \boldsymbol{E}_{0}^{*} = \frac{\hat{\boldsymbol{k}}_{i}}{2\eta_{0}\eta} |\boldsymbol{E}_{0}|^{2}$$

$$(3.15)$$

Ett mått på hur mycket volymen V_s sprider uttrycks av det differentiella spridningstvärsnittet⁹

$$\frac{d\sigma}{d\Omega} = r^2 \frac{\langle \boldsymbol{S}_s(t) \rangle \cdot \hat{\boldsymbol{r}}}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i}$$

Denna storheten är kvoten mellan den spridda vågens effektflödestäthet och motsvarande storhet för den infallande vågen. Storheten är normaliserad med r^2 , där r är radien på den sfär där det spridda fältet beräknas. För vi in effektflödestätheterna från ovan får vi

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2}$$
(3.16)

Den totala effekt P_s som volymen V_s sprider är integralen av $\langle S_s(t) \rangle \cdot \hat{r}$ över en sfär¹⁰ med radie r. Vi får

$$P_s = \iint_{\text{Sfär radie } r} \langle \boldsymbol{S}_s(t) \rangle \cdot \hat{\boldsymbol{r}} \, dS = \frac{1}{2\eta_0 \eta k^2} \iint |\boldsymbol{F}(\hat{\boldsymbol{r}})|^2 \, d\Omega \tag{3.17}$$

där integrationen i den andra integralen sker över enhetssfären och $d\Omega = \sin \theta \, d\theta \, d\phi$. Det totala spridningstvärsnittet σ_s definieras som den totala effekten P_s dividerat med $\langle \mathbf{S}_i(t) \rangle \cdot \hat{\mathbf{k}}_i$, dvs.

$$\sigma_s(\hat{\boldsymbol{k}}_i) = \frac{P_s}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i} = \frac{1}{k^2 |\boldsymbol{E}_0|^2} \iint |\boldsymbol{F}(\hat{\boldsymbol{r}})|^2 \, d\Omega$$

⁹Storheten $4\pi \frac{d\sigma}{d\Omega}$ går ofta under namnet *bistatic cross section* i teknisk litteratur. Symbolen $\frac{d\sigma}{d\Omega}$ är inte att betrakta som en differential i matematisk mening, utan endast en beteckning på en kvot mellan två storheter. Notera att det differentiella spridningstvärsnittet har enheten area.

¹⁰På sidan 87 visar vi att det är egalt vilken yta som effekten P_s beräknas på, bara den omsluter V_s . Vi väljer här en sfär med tillräckligt stor radie och använder fjärrfältsuttrycken.

eller om det differentiella spridningstvärsnitte
t $\frac{d\sigma}{d\Omega}$ införs

$$\sigma_s = \iint \frac{d\sigma}{d\Omega} \, d\Omega$$

Spridaren, som begränsas av ytan S_s , absorberar i de flesta fall elektromagnetisk energi. Den totala effekt som spridaren absorberar kan uttryckas med hjälp av Poyntings vektor.

$$P_a = -\iint_{S_s} \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}(\boldsymbol{r}') \times \boldsymbol{H}^*(\boldsymbol{r}') \right\} \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}') \, dS'$$
(3.18)

Detta är den totala elektromagnetiska effekten som går in i volymen V_s och som absorberas där (omvandlas till andra energiformer). Den totala absorberade effekten definierar det totala absorptionstvärsnittet σ_a .

$$\sigma_a(\hat{\boldsymbol{k}}_i) = \frac{P_a}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i}$$

Det totala spridningstvärsnittet och det totala absorptionstvärsnittet kombineras ofta till det totala tvärsnittet¹¹ σ_t som definieras som

$$\sigma_t(\hat{\boldsymbol{k}}_i) = \sigma_a(\hat{\boldsymbol{k}}_i) + \sigma_s(\hat{\boldsymbol{k}}_i) = \frac{P_a + P_s}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i}$$
(3.19)

3.3 Spridningsdyaden

Vi låter för tillfället infallsriktningen \hat{k}_i och observationsriktningen \hat{r} vara fixa och ej parallella. Det plan som definieras av enhetsvektorerna \hat{k}_i och \hat{r} kallas spridningsplanet. Definiera två enhetsvektorer $\hat{e}_{i\perp} = \hat{e}_{s\perp}$, som är vinkelräta mot detta plan, samt två enhetsvektorer, $\hat{e}_{i\parallel}$ och $\hat{e}_{s\parallel}$ i spridningsplanet, som är vinkelräta mot \hat{k}_i respektive \hat{r} , se figur 3.4. Definitionen på dessa enhetsvektorer är

$$\left\{egin{array}{ll} \hat{m{e}}_{i\perp} = rac{\hat{m{k}}_i imes \hat{m{r}}}{|\hat{m{k}}_i imes \hat{m{r}}|} & \left\{egin{array}{ll} \hat{m{e}}_{s\perp} = rac{\hat{m{k}}_i imes \hat{m{r}}}{|\hat{m{k}}_i imes \hat{m{r}}|} \ \hat{m{e}}_{s\parallel} = \hat{m{e}}_{s\perp} imes \hat{m{k}}_i & \left\{egin{array}{ll} \hat{m{e}}_{s\perp} = rac{\hat{m{k}}_i imes \hat{m{r}}}{|\hat{m{k}}_i imes \hat{m{r}}|} \ \hat{m{e}}_{s\parallel} = \hat{m{e}}_{s\perp} imes \hat{m{r}} \end{array}
ight. \end{array}
ight.$$

En godtycklig polarisation, E_0 , hos det infallande fältet

$$\boldsymbol{E}_i(\boldsymbol{r},\omega) = \boldsymbol{E}_0 e^{ik\hat{\boldsymbol{k}}_i\cdot\boldsymbol{r}}$$

kan skrivas som en linjärkombination av basvektorerna $\hat{\boldsymbol{e}}_{i\parallel}$ och $\hat{\boldsymbol{e}}_{i\perp}$

$$\boldsymbol{E}_{0} = \hat{\boldsymbol{e}}_{i\parallel} E_{i\parallel} + \hat{\boldsymbol{e}}_{i\perp} E_{i\perp}$$
(3.20)

¹¹Även benämningen *utsläckningstvärsnitt* förekommer.

Figur 3.4: Definition av spridningsriktningar. I figuren är den infallande vågens utbredningsriktning vald till \hat{z} , vilket leder till att $\hat{e}_{i\perp} = \hat{e}_{s\perp} = \hat{\phi}$, $\hat{e}_{s\parallel} = \hat{\theta}$ och $\hat{e}_{i\parallel} = \hat{\rho}$.

eftersom E_0 är vinkelrät mot \hat{k}_i . Vektorfältet E_0 är det infallande fältets värde i origo.

På samma sätt kan fjärrfältsamplituden, $F(\hat{r})$, skrivas som en linjärkombination av $\hat{e}_{s\parallel}$ och $\hat{e}_{s\perp}$

$$oldsymbol{F}(\hat{oldsymbol{r}}) = \hat{oldsymbol{e}}_{s\parallel}F_{\parallel}(\hat{oldsymbol{r}}) + \hat{oldsymbol{e}}_{s\perp}F_{\perp}(\hat{oldsymbol{r}})$$

eftersom F är vinkelrät mot \hat{r} .

Avbildningen från det infallande fältets värde i origo, E_0 , till det spridda fältets fjärrfältsamplitud, F, kan skrivas som en linjär transformation (eller en dyad) **S** verkande på vektorn E_0 .¹²

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \boldsymbol{S}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0 \tag{3.21}$$

Denna linjära transformation kallas spridningsdyaden, spridningsmatrisen eller Smatrisen. Spridningsdyaden, $\mathbf{S}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i)$, beror på spridaren och på $\hat{\boldsymbol{k}}_i$ och $\hat{\boldsymbol{r}}$, men är oberoende av koordinatsystem och det infallande fältets värde i origo (endast dess infallsriktning).¹³

$$\boldsymbol{E}_{0}^{a} \cdot \mathbf{S}(-\hat{\boldsymbol{k}}_{i}^{a}, \hat{\boldsymbol{k}}_{i}^{b}) \cdot \boldsymbol{E}_{0}^{b} = \boldsymbol{E}_{0}^{b} \cdot \mathbf{S}(-\hat{\boldsymbol{k}}_{i}^{b}, \hat{\boldsymbol{k}}_{i}^{a}) \cdot \boldsymbol{E}_{0}^{a}, \qquad \text{för alla fält } \boldsymbol{E}_{0}^{a}, \boldsymbol{E}_{0}^{b}$$

 $^{^{12}\}mathrm{Vi}$ antar att spridaren består av ett linjärt, passivt material.

¹³Under vissa svaga antaganden på spridaren, t.ex. linjärt, passivt, isotropt material, kan man visa att spridningsdyaden satisfierar följande symmetriegenskap:

Transformationen $\mathbf{S}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i)$ representeras naturligt i basvektorerna som definierades ovan. Den infallande vågen karakteriseras av amplituderna $\{E_{i\parallel}, E_{i\perp}\}$ och det spridda fältet av $\{F_{\parallel}(\hat{\boldsymbol{r}}), F_{\perp}(\hat{\boldsymbol{r}})\}$. Vi skriver transformationen på följande form:

$$\begin{pmatrix} F_{\parallel}(\hat{\boldsymbol{r}}) \\ F_{\perp}(\hat{\boldsymbol{r}}) \end{pmatrix} = \begin{pmatrix} S_{\parallel\parallel} & S_{\parallel\perp} \\ S_{\perp\parallel} & S_{\perp\perp} \end{pmatrix} \begin{pmatrix} E_{i\parallel} \\ E_{i\perp} \end{pmatrix} = [\mathbf{S}] (\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_{i}) \begin{pmatrix} E_{i\parallel} \\ E_{i\perp} \end{pmatrix}$$
(3.22)

Elementen i spridningsmatrisen, $S_{\parallel\parallel}$, $S_{\parallel\perp}$, $S_{\perp\parallel}$ och $S_{\perp\perp}$, är fyra komplexa tal som karakteriserar det spridda fältet i fjärrzonen, givet det infallande fältets värde i origo, E_0 .

Det differentiella spridningstvärsnittet, (3.16), kan uttryckas i spridningsdyaden på följande sätt:

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2} = \frac{\boldsymbol{E}_0^* \cdot \mathbf{S}^{\dagger}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \cdot \mathbf{S}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0}{k^2 |\boldsymbol{E}_0|^2}$$

Hermitekonjugering av dyader anges med "dolktecknet" (†).

I avsnitt 1.4 definierade vi koherensmatrisen för ett kvasi-monokromatiskt fält. Med $\{\hat{\boldsymbol{e}}_{i\parallel}, \hat{\boldsymbol{e}}_{i\perp}\}$, respektive $\{\hat{\boldsymbol{e}}_{s\parallel}, \hat{\boldsymbol{e}}_{s\perp}\}$ som basvektorer definierar vi koherensmatriserna för det infallande och det spridda fältet, se (1.42) på sidan 31.

$$[\mathbf{J}_{i}] = \begin{pmatrix} J_{i\parallel\parallel} & J_{i\parallel\perp} \\ J_{i\perp\parallel} & J_{i\perp\perp} \end{pmatrix} = \begin{pmatrix} \langle E_{i\parallel}E_{i\parallel}^{*} \rangle & \langle E_{i\parallel}E_{i\perp}^{*} \rangle \\ \langle E_{i\perp}E_{i\parallel}^{*} \rangle & \langle E_{i\perp}E_{i\perp}^{*} \rangle \end{pmatrix} = \langle \begin{pmatrix} E_{i\parallel}(t) \\ E_{i\perp}(t) \end{pmatrix} \begin{pmatrix} E_{i\parallel}(t) \\ E_{i\perp}(t) \end{pmatrix}^{\dagger} \rangle$$

och

$$[\mathbf{J}_{s}] = \begin{pmatrix} J_{s\parallel\parallel} & J_{s\parallel\perp} \\ J_{s\perp\parallel} & J_{s\perp\perp} \end{pmatrix} = \begin{pmatrix} \langle F_{\parallel}F_{\parallel}^{*} \rangle & \langle F_{\parallel}F_{\perp}^{*} \rangle \\ \langle F_{\perp}F_{\parallel}^{*} \rangle & \langle F_{\perp}F_{\perp}^{*} \rangle \end{pmatrix} = \langle \begin{pmatrix} F_{\parallel}(t) \\ F_{\perp}(t) \end{pmatrix} \begin{pmatrix} F_{\parallel}(t) \\ F_{\perp}(t) \end{pmatrix}^{\dagger} \rangle$$

Med hjälp av definitionen på spridningsmatrisen, (3.22), får vi

$$\begin{aligned} [\mathbf{J}_{s}] = <[\mathbf{S}] \begin{pmatrix} E_{i\parallel}(t) \\ E_{i\perp}(t) \end{pmatrix} \left([\mathbf{S}] \begin{pmatrix} E_{i\parallel}(t) \\ E_{i\perp}(t) \end{pmatrix} \right)^{\dagger} > = <[\mathbf{S}] \begin{pmatrix} E_{i\parallel}(t) \\ E_{i\perp}(t) \end{pmatrix} \begin{pmatrix} E_{i\parallel}(t) \\ E_{i\perp}(t) \end{pmatrix}^{\dagger} [\mathbf{S}]^{\dagger} > \\ = [\mathbf{S}] < \begin{pmatrix} E_{i\parallel}(t) \\ E_{i\perp}(t) \end{pmatrix} \begin{pmatrix} E_{i\parallel}(t) \\ E_{i\perp}(t) \end{pmatrix}^{\dagger} > [\mathbf{S}]^{\dagger} = [\mathbf{S}] [\mathbf{J}_{i}] [\mathbf{S}]^{\dagger} \end{aligned}$$

eftersom spridningsmatrisen $[\mathbf{S}]$ antas vara tidsoberoende.

Polarisationen av en infallande planvåg, planpolariserad med en vinkel α mot spridningsplanet, och amplitud E_0 ges av, se figur 3.5

$$\boldsymbol{E}_{0} = E_{0} \left(\hat{\boldsymbol{e}}_{i\parallel} \cos \alpha + \hat{\boldsymbol{e}}_{i\perp} \sin \alpha \right)$$

Koherensmatrisen för det infallande fältet blir i detta specialfall

$$[\mathbf{J}_i] = |E_0|^2 \begin{pmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \sin \alpha \cos \alpha & \sin^2 \alpha \end{pmatrix}$$

eller

$$\mathbf{S}(-\hat{oldsymbol{k}}_{i}^{a},\hat{oldsymbol{k}}_{i}^{b})=\mathbf{S}^{t}(-\hat{oldsymbol{k}}_{i}^{b},\hat{oldsymbol{k}}_{i}^{a})$$

Denna egenskap är en följd av att spridarens material är reciprokt.

Figur 3.5: Definition av vinkeln α .

Motsvarande fjärrfältsamplitud blir

$$\begin{pmatrix} F_{\parallel}(\hat{\boldsymbol{r}}) \\ F_{\perp}(\hat{\boldsymbol{r}}) \end{pmatrix} = E_0 \begin{pmatrix} S_{\parallel\parallel} & S_{\parallel\perp} \\ S_{\perp\parallel} & S_{\perp\perp} \end{pmatrix} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = E_0 \begin{pmatrix} S_{\parallel\parallel} \cos \alpha + S_{\parallel\perp} \sin \alpha \\ S_{\perp\parallel} \cos \alpha + S_{\perp\perp} \sin \alpha \end{pmatrix}$$

och det differentiella spridningstvärsnittet i ekvation (3.16) blir

$$\begin{aligned} \frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}) &= \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2} = \frac{\left|F_{\parallel}(\hat{\boldsymbol{r}})\right|^2 + \left|F_{\perp}(\hat{\boldsymbol{r}})\right|^2}{k^2 |\boldsymbol{E}_0|^2} = \frac{\mathrm{Tr}\left[\mathbf{J}_s\right]}{k^2 |\boldsymbol{E}_0|^2} \\ &= \frac{1}{k^2} \Big\{ \left[\left|S_{\parallel\parallel}\right|^2 + \left|S_{\perp\parallel}\right|^2\right] \cos^2 \alpha + \left[\left|S_{\parallel\perp}\right|^2 + \left|S_{\perp\perp}\right|^2\right] \sin^2 \alpha \\ &+ 2 \operatorname{Re}\left[S_{\parallel\parallel}S_{\parallel\perp}^* + S_{\perp\parallel}S_{\perp\perp}^*\right] \sin \alpha \cos \alpha \Big\} \end{aligned}$$

I många sammanhang har den infallande vågen ingen bestämd polarisation. Koherensmatrisen för den infallande vågen är i detta fall diagonal, se (1.44) på sidan 33

$$[\mathbf{J}_i] = \frac{\langle |\boldsymbol{E}_0(t)|^2 \rangle}{2} [\mathbf{I}]$$

och motsvarande koherensmatris för det spridda fältet blir

$$\begin{bmatrix} \mathbf{J}_{s} \end{bmatrix} = \frac{\langle |\mathbf{E}_{0}(t)|^{2} \rangle}{2} \begin{bmatrix} \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{S} \end{bmatrix}^{\dagger} \\ = \frac{\langle |\mathbf{E}_{0}(t)|^{2} \rangle}{2} \begin{pmatrix} |S_{\parallel\parallel}|^{2} + |S_{\parallel\perp}|^{2} & S_{\parallel\parallel}S_{\perp\parallel}^{*} + S_{\parallel\perp}S_{\perp\perp}^{*} \\ S_{\perp\parallel}S_{\parallel\parallel}^{*} + S_{\perp\perp}S_{\parallel\perp}^{*} & |S_{\perp\parallel}|^{2} + |S_{\perp\perp}|^{2} \end{pmatrix}$$

Uttrycket för det differentiella spridningstvärsnittet för en opolariserad infallande planvåg blir

$$\frac{d\sigma}{d\Omega}\Big|_{\text{opol}} \left(\hat{\boldsymbol{r}}\right) = \frac{\text{Tr}\left[\mathbf{J}_{s}\right]}{k^{2} < |\boldsymbol{E}_{0}(t)|^{2} >} = \frac{1}{2k^{2}} \left\{ \left|S_{\parallel\parallel}\right|^{2} + \left|S_{\parallel\perp}\right|^{2} + \left|S_{\perp\parallel}\right|^{2} + \left|S_{\perp\perp}\right|^{2} \right\}$$

och polarisationsgraden hos det spridda fältet för infallande opolariserat fält blir

$$P|_{\text{opol}} = \sqrt{1 - \frac{4 \det [\mathbf{J}_s]}{(\text{Tr} [\mathbf{J}_s])^2}} = \sqrt{1 - \frac{4 |\det [\mathbf{S}]|^2}{\left(\left|S_{\parallel\parallel}\right|^2 + \left|S_{\parallel\perp}\right|^2 + \left|S_{\perp\parallel}\right|^2 + \left|S_{\perp\perp}\right|^2\right)^2}$$

$$= \sqrt{1 - \frac{4 |S_{\parallel\parallel}S_{\perp\perp} - S_{\parallel\perp}S_{\perp\parallel}|^2}{\left(\left|S_{\parallel\parallel}\right|^2 + \left|S_{\parallel\perp}\right|^2 + \left|S_{\perp\parallel}\right|^2 + \left|S_{\perp\perp}\right|^2\right)^2}$$
(3.23)

3.4 Optiska teoremet

I detta avsnitt kommer vi att härleda det optiska teoremet för elektromagnetisk spridning. Det infallande fältet, E_i , antas, liksom i avsnitt 3.2, vara en plan våg. Vi kommer först att härleda en enkel version av teoremet baserad på en volymintegralformulering. Senare kommer en mer allmän härledning baserad på en ytintegralformulering att presenteras. I båda fallen kan resultatet tolkas som energikonservering.¹⁴

3.4.1 Volymformulering

Vi låter som vanligt spridaren vara innesluten i volymen V_s med begränsningsyta S_s , se figur 3.1. Det totala tvärsnittet σ_t definierades i (3.19).

$$\sigma_t = \sigma_a + \sigma_s = \frac{P_a + P_s}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i}$$

där P_a och P_s är den totala absorberade, respektive spridda effekten, se (3.18) och (3.17) och $\langle S_i(t) \rangle \cdot \hat{k}_i$ den infallande vågens effektflödestäthet, se (3.15).

 P_s kan beräknas som normalytintegralen av $\frac{1}{2}$ Re $(\boldsymbol{E}_s \times \boldsymbol{H}_s^*)$ över vilken yta som helst bara den omsluter V_s . Detta inses genom att tillämpa divergenssatsen på ett område V mellan två ytor S_1 och S_2 som båda omsluter V_s , se figur 3.6. Vi får (jämför även liknande analys på sidan 78)

$$\begin{split} &\iint_{S_2} \left(\boldsymbol{E}_s \times \boldsymbol{H}_s^* \right) \cdot \hat{\boldsymbol{n}} \, dS' - \iint_{S_1} \left(\boldsymbol{E}_s \times \boldsymbol{H}_s^* \right) \cdot \hat{\boldsymbol{n}} \, dS' \\ &= \iiint_V \nabla' \cdot \left(\boldsymbol{E}_s \times \boldsymbol{H}_s^* \right) \, dv' = \iiint_V \left\{ \left(\nabla' \times \boldsymbol{E}_s \right) \cdot \boldsymbol{H}_s^* - \boldsymbol{E}_s \cdot \left(\nabla' \times \boldsymbol{H}_s^* \right) \right\} \, dv' \\ &= \iiint_V \left\{ i k \eta_0 \eta \left| \boldsymbol{H}_s \right|^2 - i \frac{k}{\eta_0 \eta} \left| \boldsymbol{E}_s \right|^2 \right\} \, dv' \end{split}$$

 $^{^{14}}$ Den intressanta historiken bakom det optiska teoremet är utförligt skildrat i R.G. Newton, "Optical theorem and beyond," Am. J. Phys., 44(7), 639–642 (1976).

Figur 3.6: Två ytor som omsluter V_s .

Tag nu realdelen av detta uttryck och vi konstaterar att

$$\iint_{S_2} < \boldsymbol{S}_s(t) > \hat{\boldsymbol{n}} \, dS' = \iint_{S_1} < \boldsymbol{S}_s(t) > \hat{\boldsymbol{n}} \, dS'$$

Vi kan därför beräkna P_s genom att integrera över ytan S_s (gränsvärdena på fälten tagna utifrån). Vi får därför med (3.18)

$$P_a + P_s = \frac{1}{2} \operatorname{Re} \iint_{S_s} \{ \boldsymbol{E}_s \times \boldsymbol{H}_s^* - \boldsymbol{E} \times \boldsymbol{H}^* \} \cdot \hat{\boldsymbol{n}} \, dS'$$
(3.24)

Divergenssatsen medför

$$P_{a} + P_{s} = \frac{1}{2} \operatorname{Re} \iiint_{V_{s}} \nabla \cdot \left[\boldsymbol{E}_{s} \times \boldsymbol{H}_{s}^{*} - \boldsymbol{E} \times \boldsymbol{H}^{*} \right] dv'$$
$$= \frac{1}{2} \operatorname{Re} \iiint_{V_{s}} \left\{ (\nabla \times \boldsymbol{E}_{s}) \cdot \boldsymbol{H}_{s}^{*} - \boldsymbol{E}_{s} \cdot (\nabla \times \boldsymbol{H}_{s}^{*}) - (\nabla \times \boldsymbol{E}) \cdot \boldsymbol{H}^{*} + \boldsymbol{E} \cdot (\nabla \times \boldsymbol{H}^{*}) \right\} dv'$$

Vi använder nu Maxwells fältekvationer i volymen V_s .

$$abla imes oldsymbol{E}_s = i\omega oldsymbol{B}_s$$

 $abla imes oldsymbol{H}_s = oldsymbol{J}_s - i\omega oldsymbol{D}_s$

och motsvarande ekvationer för det totala fälten. Eftersom det infallande fältet inte har några källor i V_s , blir $J = J_s$ i V_s . Om materialet antas vara isotropt inuti V_s

(vilket är en kraftig inskränkning) får vi

$$P_{a} + P_{s} = \frac{1}{2} \operatorname{Re} \iiint_{V_{s}} \left\{ i\omega \boldsymbol{B}_{s} \cdot \boldsymbol{H}_{s}^{*} - \boldsymbol{E}_{s} \cdot [\boldsymbol{J}_{s}^{*} + i\omega \boldsymbol{D}_{s}^{*}] - i\omega \boldsymbol{B} \cdot \boldsymbol{H}^{*} + \boldsymbol{E} \cdot [\boldsymbol{J}^{*} + i\omega \boldsymbol{D}^{*}] \right\} dv'$$

$$= \frac{1}{2} \operatorname{Re} \iiint_{V_{s}} \left\{ ik\eta_{0}\eta_{1} \left(|\boldsymbol{H}_{s}|^{2} - |\boldsymbol{H}|^{2} \right) - i\frac{k}{\eta_{0}\eta_{1}} \left(|\boldsymbol{E}_{s}|^{2} - |\boldsymbol{E}|^{2} \right) - \boldsymbol{E}_{s} \cdot \boldsymbol{J}_{s}^{*} + \boldsymbol{E} \cdot \boldsymbol{J}^{*} \right\} dv'$$

$$= \frac{1}{2} \operatorname{Re} \iiint_{V_{s}} \left\{ \boldsymbol{E} \cdot \boldsymbol{J}^{*} - \boldsymbol{E}_{s} \cdot \boldsymbol{J}_{s}^{*} \right\} dv' = \frac{1}{2} \operatorname{Re} \iiint_{V_{s}} \boldsymbol{E}_{i} \cdot \boldsymbol{J}^{*} dv'$$

eftersom $J = J_s$ i V_s . Vi har dessutom använt beteckningen η_1 , som kan tillåtas variera, på den relativa vågimpedansen för materialet inuti V_s .

Det infallande fältet antas vara en plan våg

$$\boldsymbol{E}_i(\boldsymbol{r}) = \boldsymbol{E}_0 e^{ik\hat{\boldsymbol{k}}_i\cdot\boldsymbol{r}}$$

Insatt i vårt uttryck för $P_a + P_s$ får vi

$$P_{a} + P_{s} = \frac{1}{2} \operatorname{Re} \iiint_{V_{s}} \boldsymbol{E}_{i}^{*} \cdot \boldsymbol{J} \, dv' = \frac{1}{2} \operatorname{Re} \iiint_{V_{s}} e^{-ik\hat{\boldsymbol{k}}_{i} \cdot \boldsymbol{r}'} \boldsymbol{E}_{0}^{*} \cdot \boldsymbol{J} \, dv'$$
$$= \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E}_{0}^{*} \cdot \hat{\boldsymbol{k}}_{i} \times \left(\iiint_{V_{s}} \boldsymbol{J} e^{-ik\hat{\boldsymbol{k}}_{i} \cdot \boldsymbol{r}'} \, dv' \times \hat{\boldsymbol{k}}_{i} \right) \right\}$$
$$\underbrace{-\frac{1}{k^{2}\eta_{0}\eta} \mathbf{F}(\hat{\boldsymbol{k}}_{i})}_{= -\frac{2\pi}{k^{2}\eta_{0}\eta} \operatorname{Re} \left\{ i \boldsymbol{E}_{0}^{*} \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_{i}) \right\}$$

där vi använt (3.6) för fjärrfältsamplituden och att $\boldsymbol{E}_0 \cdot \hat{\boldsymbol{k}}_i = 0$.

Det totala tvärsnittet kan således skrivas som

$$\sigma_t = \frac{P_a + P_s}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i} = \frac{-\frac{2\pi}{k^2 \eta_0 \eta} \operatorname{Re}\left\{i\boldsymbol{E}_0^* \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)\right\}}{\frac{|\boldsymbol{E}_0|^2}{2\eta_0 \eta}}$$
$$= -\frac{4\pi}{k^2} \operatorname{Re}\left\{\frac{i}{|\boldsymbol{E}_0|^2} \boldsymbol{E}_0^* \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)\right\}$$

Till slut får vi det optiska teoremet

$$\sigma_t = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{\boldsymbol{E}_0^* \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)}{|\boldsymbol{E}_0|^2} \right\} = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{\boldsymbol{E}_0^* \cdot \mathbf{S}(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0}{|\boldsymbol{E}_0|^2} \right\}$$

där vi använt (3.21) för att skriva om fjärrfältsamplituden i spridningsdyaden **S**. Specialfallet med linjärt polariserad infallande våg $\boldsymbol{E}_0 = \hat{\boldsymbol{p}}_0 E_0$ ger följande förenkling:

$$\sigma_t = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{\hat{\boldsymbol{p}}_0 \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)}{E_0} \right\} = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \hat{\boldsymbol{p}}_0 \cdot \mathbf{S}(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \hat{\boldsymbol{p}}_0 \right\}$$

3.4.2 Ytformulering

En härledning av optiska teoremet baserat på en ytintegralformulering är mer generell än volymintegralformuleringen. Vi kommer, som vi snart skall se, inte att behöva göra några antaganden om materialet inuti volymen V_s .

Härledningen startar på samma sätt som i volymintegralformuleringen ovan med ekvation (3.24).

$$P_a + P_s = \frac{1}{2} \operatorname{Re} \iint_{S_s} \{ \boldsymbol{E}_s \times \boldsymbol{H}_s^* - \boldsymbol{E} \times \boldsymbol{H}^* \} \cdot \hat{\boldsymbol{n}} \, dS'$$

Nu är

$$\operatorname{Re} \iint_{S_s} \boldsymbol{E}_i \times \boldsymbol{H}_i^* \cdot \hat{\boldsymbol{n}} \, dS' = 0$$

Detta inses lätt genom att använda divergensteoremet på normalytintegralen och utnyttja att det infallande fältet är källfritt i V_s , se (3.1), dvs.

$$\operatorname{Re} \iint_{S_s} \boldsymbol{E}_i \times \boldsymbol{H}_i^* \cdot \hat{\boldsymbol{n}} \, dS' = \operatorname{Re} \iiint_{V_s} \nabla' \cdot (\boldsymbol{E}_i \times \boldsymbol{H}_i^*) \, dv'$$
$$= \operatorname{Re} \iiint_{V_s} \{ \boldsymbol{H}_i^* \cdot (\nabla' \times \boldsymbol{E}_i) - \boldsymbol{E}_i \cdot (\nabla' \times \boldsymbol{H}_i^*) \} \, dv'$$
$$= \operatorname{Re} \iiint_{V_s} \{ ik\eta_0 \eta \, |\boldsymbol{H}_i|^2 - i\frac{k}{\eta_0 \eta} \, |\boldsymbol{E}_i|^2 \} \, dv' = 0$$

Vi kan därför skriva om uttrycket på $P_a + P_s$ genom att addera denna integral över det infallande fältet.

$$P_{a} + P_{s} = \frac{1}{2} \operatorname{Re} \iint_{S_{s}} \{ \boldsymbol{E}_{s} \times \boldsymbol{H}_{s}^{*} - \boldsymbol{E} \times \boldsymbol{H}^{*} \} \cdot \hat{\boldsymbol{n}} \, dS'$$

$$= \frac{1}{2} \operatorname{Re} \iint_{S_{s}} \{ \boldsymbol{E}_{s} \times \boldsymbol{H}_{s}^{*} - \boldsymbol{E} \times \boldsymbol{H}_{i}^{*} - \boldsymbol{E} \times \boldsymbol{H}_{s}^{*} + \boldsymbol{E}_{i} \times \boldsymbol{H}_{i}^{*} \} \cdot \hat{\boldsymbol{n}} \, dS'$$

$$= -\frac{1}{2} \operatorname{Re} \iint_{S_{s}} \{ \boldsymbol{E}_{i} \times \boldsymbol{H}_{s}^{*} + \boldsymbol{E} \times \boldsymbol{H}_{i}^{*} - \boldsymbol{E}_{i} \times \boldsymbol{H}_{i}^{*} \} \cdot \hat{\boldsymbol{n}} \, dS'$$

$$= -\frac{1}{2} \operatorname{Re} \iint_{S_{s}} \{ \boldsymbol{E}_{i} \times \boldsymbol{H}_{s}^{*} + \boldsymbol{E}_{s} \times \boldsymbol{H}_{i}^{*} \} \cdot \hat{\boldsymbol{n}} \, dS'$$

Det infallande fältets explicita uttryck sätts nu in

$$\begin{cases} \boldsymbol{E}_{i}(\boldsymbol{r}) = \boldsymbol{E}_{0}e^{ik\boldsymbol{k}_{i}\cdot\boldsymbol{r}} \\ \boldsymbol{H}_{i}(\boldsymbol{r}) = \frac{1}{ik\eta_{0}\eta}\nabla\times\boldsymbol{E}_{i} = \frac{1}{\eta_{0}\eta}(\hat{\boldsymbol{k}}_{i}\times\boldsymbol{E}_{0})e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}} \end{cases}$$

och vi får

$$P_{a} + P_{s} = -\frac{1}{2} \operatorname{Re} \iint_{S_{s}} \left\{ e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}'}\boldsymbol{E}_{0} \times \boldsymbol{H}_{s}^{*} + \frac{1}{\eta_{0}\eta}\boldsymbol{E}_{s} \times (\hat{\boldsymbol{k}}_{i} \times \boldsymbol{E}_{0}^{*})e^{-ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}'} \right\} \cdot \hat{\boldsymbol{n}} \, dS'$$
$$= -\frac{1}{2} \operatorname{Re} \iint_{S_{s}} \left\{ \boldsymbol{E}_{0}^{*} \times \boldsymbol{H}_{s} + \frac{1}{\eta_{0}\eta}\boldsymbol{E}_{s} \times (\hat{\boldsymbol{k}}_{i} \times \boldsymbol{E}_{0}^{*}) \right\} \cdot \hat{\boldsymbol{n}} \, e^{-ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}'} \, dS'$$

Användning av cyklisk permutation, BAC-CAB-regel
n och $\boldsymbol{E}_0\cdot \hat{\boldsymbol{k}}_i=0$ ger

$$\begin{bmatrix} \boldsymbol{E}_s \times (\hat{\boldsymbol{k}}_i \times \boldsymbol{E}_0^*) \end{bmatrix} \cdot \hat{\boldsymbol{n}} = (\hat{\boldsymbol{n}} \times \boldsymbol{E}_s) \cdot (\hat{\boldsymbol{k}}_i \times \boldsymbol{E}_0^*) = -\boldsymbol{E}_0^* \cdot \left[\hat{\boldsymbol{k}}_i \times (\hat{\boldsymbol{n}} \times \boldsymbol{E}_s) \right]$$
$$(\boldsymbol{E}_0^* \times \boldsymbol{H}_s) \cdot \hat{\boldsymbol{n}} = -\boldsymbol{E}_0^* \cdot (\hat{\boldsymbol{n}} \times \boldsymbol{H}_s) = \boldsymbol{E}_0^* \cdot \left\{ \hat{\boldsymbol{k}}_i \times \left[\hat{\boldsymbol{k}}_i \times (\hat{\boldsymbol{n}} \times \boldsymbol{H}_s) \right] \right\}$$

Uttrycket för ${\cal P}_a + {\cal P}_s$ blir

$$P_{a} + P_{s}$$

$$= \frac{1}{2\eta_{0}\eta} \operatorname{Re} \left\{ \boldsymbol{E}_{0}^{*} \cdot \iint_{S_{s}} \hat{\boldsymbol{k}}_{i} \times \left\{ \hat{\boldsymbol{n}} \times \boldsymbol{E}_{s}(\boldsymbol{r}') - \eta_{0}\eta \hat{\boldsymbol{k}}_{i} \times (\hat{\boldsymbol{n}} \times \boldsymbol{H}_{s}(\boldsymbol{r}')) \right\} e^{-ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}'} \, dS' \right\}$$

Vi ser att detta uttryck nu kan identifieras med fjärrfältsamplituden F i ekvation (3.13) evaluerat i framåtriktningen $\hat{r} = \hat{k}_i$. Resultatet blir

$$P_a + P_s = \frac{1}{2\eta_0 \eta} \operatorname{Re}\left\{\frac{4\pi}{ik^2} \boldsymbol{E}_0^* \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)\right\}$$

och vi får till slut

$$\sigma_t = \frac{P_a + P_s}{\frac{|\boldsymbol{E}_0|^2}{2\eta_0 \eta}} = \frac{4\pi}{k^2} \operatorname{Im}\left\{\frac{\boldsymbol{E}_0^* \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)}{|\boldsymbol{E}_0|^2}\right\} = \frac{4\pi}{k^2} \operatorname{Im}\left\{\frac{\boldsymbol{E}_0^* \cdot \mathbf{S}(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0}{|\boldsymbol{E}_0|^2}\right\}$$
(3.25)

vilket är identiskt samma uttryck som i volymformuleringen, men med betydligt svagare antaganden om spridaren. Specialfallet med linjärt polariserad infallande våg $\boldsymbol{E}_0 = \hat{\boldsymbol{p}}_0 E_0$ ger

$$\sigma_t = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{\hat{\boldsymbol{p}}_0 \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)}{E_0} \right\} = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \hat{\boldsymbol{p}}_0 \cdot \mathbf{S}(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \hat{\boldsymbol{p}}_0 \right\}$$

Figur 3.7: Exempel på geometri vid antenntillämpning.

3.5 Kortvågsapproximationer

De spridningsproblem vi analyserat hittills har varit allmänna och utan några approximationer. Spridningsproblemet innebär att ett randvärdesproblem, ofta utomordentligt komplicerat, måste lösas. I många situationer är man därför, pga. problemets komplexitet, hänvisad till olika approximativa lösningsmetoder. I detta avsnitt kommer vi att introducera några approximationer som har störst användningsområde vid höga frekvenser, dvs. för våglängder som är korta jämfört med spridarens karakteristiska längdskala. Analysen är inte begränsad till en infallande planvåg. När resultat endast gäller för planvågsinfall påpekas detta särskilt.

Till utgångspunkt väljer vi ytintegralframställningen av det spridda fältet i en ytintegral i totala fältet,¹⁵ se (3.12).

$$\begin{split} &i\frac{\eta_0\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_s}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}(\boldsymbol{r}'))\,dS'\right\}\\ &+\nabla\times\iint_{S_s}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)\left(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}(\boldsymbol{r}')\right)\,dS'=\left\{\begin{array}{cc}\boldsymbol{E}_s(\boldsymbol{r}), & \boldsymbol{r} \text{ utanför } S_s\\ -\boldsymbol{E}_i(\boldsymbol{r}), & \boldsymbol{r} \text{ innanför } S_s\end{array}\right.$$

Kortvågsapproximationer är ofta använda i antenntillämpningar, och en typisk sådan geometri är avbildad i figur 3.7. Det infallande fältet (matande fältet) är här genererat av ett matarhorn. Spridaren består av en metallisk reflektor. Normalvektorn $\hat{\boldsymbol{n}}$ på spridaren är definierad i figur 3.7. Randvillkoret på den metalliska reflektorn är, se (1.13)

$$\hat{m{n}} imes m{E} = m{0}$$

Med detta randvillkor blir det spridda fältet (utanför spridaren)

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = i \frac{\eta_{0} \eta}{k} \nabla \times \left\{ \nabla \times \iint_{S_{s}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \, dS' \right\}$$

¹⁵Framställningen i detta avsnitt följer i stort A.D. Yaghjian, *IEEE Trans. Antennas Propag.*, **32**(12), 1355–1358 (1984).

Figur 3.8: Belyst sida S_s^+ , skuggsida S_s^- och aperturyta S_a .

Det okända fältet $\hat{\boldsymbol{n}} \times \boldsymbol{H}$ på spridaren identifierar vi som ytströmtätheten \boldsymbol{J}_S , se (1.13). Vi kan därför skriva om det spridda fältet som

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = i \frac{\eta_{0} \eta}{k} \nabla \times \left\{ \nabla \times \iint_{S_{s}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \boldsymbol{J}_{S}(\boldsymbol{r}') \, dS' \right\}$$

Matarhornet, som fungerar som källa, genererar ett infallande fält E_i , vilket genererar ytströmmar J_S på reflektorn så att randvillkoret uppfylls. Vid korta våglängder, som det är fråga om i detta avsnitt, kan spridaren indelas i två zoner; en belyst sida och en skuggsida. Skiljelinjen mellan dessa båda zoner konstrueras med geometrisk optik, dvs. strålar som i optiken. I figur 3.8 betecknas skuggzonen med S_s^- och den belysta sidan S_s^+ . Dessa ytor är i allmänhet öppna ytor. Normalvektorerna för respektive yta anges i figuren.

På skuggsidan är de elektromagnetiska fälten svaga, och kan approximeras till noll. Denna approximation gäller bättre ju kortare våglängden är. Det spridda fältet kan därför approximeras med endast en ytintegral över den belysta sidan S_s^+ .

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = i \frac{\eta_{0} \eta}{k} \nabla \times \left\{ \nabla \times \iint_{S_{s}^{+}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \boldsymbol{J}_{S}(\boldsymbol{r}') \, dS' \right\}$$
(3.26)

Det spridda fältet E_s kan beräknas så snart ytströmtätheten J_S på den belysta sidan är känd. Ytströmtätheten J_S är i de flesta tillämpningar så komplicerad att beräkna att man får nöja sig med att använda goda approximationer av densamma. Vi skall strax presentera några vanliga approximationer, som med god noggrannhet förenklar lösningen av randvärdesproblemet för korta våglängder, men först söker vi ytterligare uttryck på det spridda fältet i ytintegraler över andra ytor än S_s . Vi kan uppnå detta genom att tillämpa integralrepresentationen (2.27) på volymen V, som begränsas av ytorna S_a och S_s^+ , se figur 3.8. Lägg märke till att det infallande fältets källor antas ligga utanför volymen V så att Maxwells fältekvationer är uppfyllda utan källterm i V. Med de normalriktningar som är angivna i figuren (notera att \hat{n} från S_s^+ pekar in i volymen V) får vi

$$\begin{split} &-i\frac{\eta_0\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_a}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}(\boldsymbol{r}'))\,dS'\right\}\\ &-\nabla\times\iint_{S_a}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)\left(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}(\boldsymbol{r}')\right)\,dS'\\ &+i\frac{\eta_0\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_s^+}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}(\boldsymbol{r}'))\,dS'\right\}\\ &+\nabla\times\iint_{S_s^+}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)\left(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}(\boldsymbol{r}')\right)\,dS' = \left\{\begin{array}{cc}\boldsymbol{E}(\boldsymbol{r}), & \boldsymbol{r} \text{ inuti } V\\ \boldsymbol{0}, & \boldsymbol{r} \text{ utanför } V\end{array}\right. \end{split}$$

För ett \boldsymbol{r} utanför V får vi

$$\begin{split} &i\frac{\eta_0\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_s^+}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)\boldsymbol{J}_S(\boldsymbol{r}')\,dS'\right\}\\ =&i\frac{\eta_0\eta}{k}\nabla\times\left\{\nabla\times\iint_{S_a}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{H}(\boldsymbol{r}'))\,dS'\right\}\\ &+\nabla\times\iint_{S_a}g(k,|\boldsymbol{r}-\boldsymbol{r}'|)\left(\hat{\boldsymbol{n}}(\boldsymbol{r}')\times\boldsymbol{E}(\boldsymbol{r}')\right)\,dS' \end{split}$$

där randvillkoret $\hat{\boldsymbol{n}} \times \boldsymbol{E} = \boldsymbol{0}$ och $\hat{\boldsymbol{n}} \times \boldsymbol{H} = \boldsymbol{J}_S$ använts på ytan S_s^+ . Detta leder till att vi kan uttrycka det spridda fältet i (3.26) på ett alternativt sätt (\boldsymbol{r} utanför V).

$$\begin{split} \boldsymbol{E}_{s}(\boldsymbol{r}) = & i \frac{\eta_{0} \eta}{k} \nabla \times \left\{ \nabla \times \iint_{S_{a}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \, dS' \right\} \\ &+ \nabla \times \iint_{S_{a}} g(k, |\boldsymbol{r} - \boldsymbol{r}'|) \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}') \right) \, dS' \end{split}$$

En fördel med denna formulering är att aperturytan S_a är godtycklig och kan väljas på ett sådant sätt att fälten E och H på aperturytan S_a är lätta att approximera.

Vi är här intresserade av fjärrfältet från reflektorn och låter därför $r \to \infty$. På samma sätt som vid härledningen av (3.13) och (3.14) får vi

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = -i\frac{k^2\eta_0\eta}{4\pi}\hat{\boldsymbol{r}} \times \left[\hat{\boldsymbol{r}} \times \iint_{S_s^+} \boldsymbol{J}_S(\boldsymbol{r}')e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\,dS'\right]$$
(3.27)

 och

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_a} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}') - \eta_0 \eta \hat{\boldsymbol{r}} \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS' \quad (3.28)$$

för de två alternativa ytformuleringarna. Vilken framställning man väljer beror på vilken approximation som används.

Figur 3.9: Planvågsreflektion mot plan metallisk yta.

3.5.1 Planvågsreflektion mot plan metallyta

I detta avsnitt skall vi härleda ett koordinatoberoende uttryck för reflektion mot en plan metalyta. Planvågsreflektion utgör basen till flera kortvågsapproximationer som behandlas i denna bok, och det är därför motiverat att studera den i detalj.

Låt \hat{k}_i och \hat{k}_s vara den infallande respektive den spridda (reflekterade) planvågens utbredningsriktningar, samt \hat{n} metallytans normalriktning, se figur 3.9. Vi antar att $\hat{n} \cdot \hat{k}_i < 0$, så att den infallande vågen verkligen faller in mot metallytan.

Det infallande fälten E_i och H_i , samt de spridda fälten E_s och H_s är relaterade till varann genom planvågssambanden, se (1.38) på sidan 28

$$\begin{cases} \boldsymbol{E}_{i} = -\eta_{0}\eta\hat{\boldsymbol{k}}_{i} \times \boldsymbol{H}_{i} \\ \eta_{0}\eta\boldsymbol{H}_{i} = \hat{\boldsymbol{k}}_{i} \times \boldsymbol{E}_{i} \end{cases} \begin{cases} \boldsymbol{E}_{s} = -\eta_{0}\eta\hat{\boldsymbol{k}}_{s} \times \boldsymbol{H}_{s} \\ \eta_{0}\eta\boldsymbol{H}_{s} = \hat{\boldsymbol{k}}_{s} \times \boldsymbol{E}_{s} \end{cases}$$
(3.29)

Den reflekterade (spridda) vågens riktning ges av

$$\hat{\boldsymbol{k}}_{s} = \hat{\boldsymbol{k}}_{i} - 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)$$
(3.30)

som innebär ett byte av tecknet på normalkomponenten jämfört med den infallande riktningen \hat{k}_i . Notera att \hat{k}_s har enhetslängd genom denna konstruktion. Koordinatoberoende räkningar ger

$$\hat{\boldsymbol{k}}_{s} \cdot \hat{\boldsymbol{k}}_{s} = \left(\hat{\boldsymbol{k}}_{i} - 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)\right) \cdot \left(\hat{\boldsymbol{k}}_{i} - 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)\right)$$
$$= \hat{\boldsymbol{k}}_{i} \cdot \hat{\boldsymbol{k}}_{i} - 2\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)^{2} - 2\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)^{2} + 4\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)^{2} = \hat{\boldsymbol{k}}_{i} \cdot \hat{\boldsymbol{k}}_{i} = 1$$

Framställning av den reflekterade riktningen i (3.30) är oberoende av koordinatrepresentation. Vi kan även uttrycka detta med reflektionsdyaden **R**, som definieras genom

$$\mathbf{R} = \mathbf{I} - 2\hat{\boldsymbol{n}}\hat{\boldsymbol{n}}$$

Den reflekterade vågens riktning med denna dyad är

$$\hat{\boldsymbol{k}}_{s} = \mathbf{R} \cdot \hat{\boldsymbol{k}}_{i} = (\mathbf{I} - 2\hat{\boldsymbol{n}}\hat{\boldsymbol{n}}) \cdot \hat{\boldsymbol{k}}_{i} = \hat{\boldsymbol{k}}_{i} - 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{k}}_{i}\right)$$

Vi övergår nu till att undersöka de reflekterade fältens polarisation. På metallytan gäller att det totala fältet, $E_i + E_s$, skall satisfiera

$$\hat{\boldsymbol{n}} imes (\boldsymbol{E}_i + \boldsymbol{E}_s) = \boldsymbol{0}$$

Av detta ser vi genast att vektor
n $\boldsymbol{E}_i + \boldsymbol{E}_s$ måste vara riktad i $\hat{\boldsymbol{n}}$:s riktning.

$$\boldsymbol{E}_i + \boldsymbol{E}_s = A\hat{\boldsymbol{n}}$$

Storheten A bestäms enkelt m
ha. (3.29) och (3.30) och villkoren att $\hat{k}_i \cdot E_i = \hat{k}_s \cdot E_s = 0$. Vi får

$$0 = \hat{\boldsymbol{k}}_{s} \cdot \boldsymbol{E}_{s} = \left(\hat{\boldsymbol{k}}_{i} - 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)\right) \cdot \left(-\boldsymbol{E}_{i} + A\hat{\boldsymbol{n}}\right)$$
$$= 2\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)\left(\hat{\boldsymbol{n}}\cdot\boldsymbol{E}_{i}\right) + A\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right) - 2A\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right)$$

vilket ger (notera att vi antagit att $\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{k}}_i \neq 0$)

$$A = 2\hat{\boldsymbol{n}} \cdot \boldsymbol{E}_i$$

och en koordinat
oberoende framställning av det reflekterade elektriska fälte
t ${\pmb E}_s$ ges av

$$\boldsymbol{E}_{s} = -\boldsymbol{E}_{i} + 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}}\cdot\boldsymbol{E}_{i}\right) \tag{3.31}$$

Motsvarande koordinatoberoende framställning av det magnetiska fältet fås på samma sätt ur (3.29), (3.30) och (3.31).

$$\begin{split} \eta_0 \eta \boldsymbol{H}_s = & \hat{\boldsymbol{k}}_s \times \boldsymbol{E}_s = \left(\hat{\boldsymbol{k}}_i - 2\hat{\boldsymbol{n}} \left(\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{k}}_i \right) \right) \times \left(-\boldsymbol{E}_i + 2\hat{\boldsymbol{n}} \left(\hat{\boldsymbol{n}} \cdot \boldsymbol{E}_i \right) \right) \\ = & -\eta_0 \eta \boldsymbol{H}_i + 2 \left(\hat{\boldsymbol{k}}_i \times \hat{\boldsymbol{n}} \right) \left(\hat{\boldsymbol{n}} \cdot \boldsymbol{E}_i \right) + 2 \left(\hat{\boldsymbol{n}} \times \boldsymbol{E}_i \right) \left(\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{k}}_i \right) \\ = & -\eta_0 \eta \boldsymbol{H}_i + 2\hat{\boldsymbol{n}} \times \left(\boldsymbol{E}_i \left(\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{k}}_i \right) - \hat{\boldsymbol{k}}_i \left(\hat{\boldsymbol{n}} \cdot \boldsymbol{E}_i \right) \right) \\ = & -\eta_0 \eta \boldsymbol{H}_i + 2\hat{\boldsymbol{n}} \times \left(\hat{\boldsymbol{n}} \times \left(\boldsymbol{E}_i \times \hat{\boldsymbol{k}}_i \right) \right) = -\eta_0 \eta \boldsymbol{H}_i - 2\eta_0 \eta \hat{\boldsymbol{n}} \times \left(\hat{\boldsymbol{n}} \times \boldsymbol{H}_i \right) \end{split}$$

Vi får sålunda det reflekterade magnetiska fältet \boldsymbol{H}_s

$$\boldsymbol{H}_{s} = -\boldsymbol{H}_{i} - 2\hat{\boldsymbol{n}} \times (\hat{\boldsymbol{n}} \times \boldsymbol{H}_{i}) = \boldsymbol{H}_{i} - 2\hat{\boldsymbol{n}} (\hat{\boldsymbol{n}} \cdot \boldsymbol{H}_{i})$$

Sammanfattningsvis får vi följande koordinatoberoende samband:

$$\begin{cases} \hat{\boldsymbol{k}}_{s} = \hat{\boldsymbol{k}}_{i} - 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}}\cdot\hat{\boldsymbol{k}}_{i}\right) \\ \boldsymbol{E}_{s} = -\boldsymbol{E}_{i} + 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}}\cdot\boldsymbol{E}_{i}\right) \\ \boldsymbol{H}_{s} = \boldsymbol{H}_{i} - 2\hat{\boldsymbol{n}}\left(\hat{\boldsymbol{n}}\cdot\boldsymbol{H}_{i}\right) \end{cases}$$

eller med reflektionsdyaden ${\bf R}$

$$\begin{cases} \hat{\boldsymbol{k}}_{s} = \mathbf{R} \cdot \hat{\boldsymbol{k}}_{i} \\ \boldsymbol{E}_{s} = -\mathbf{R} \cdot \boldsymbol{E}_{i} \\ \boldsymbol{H}_{s} = \mathbf{R} \cdot \boldsymbol{H}_{i} \end{cases}$$
(3.32)

Från dessa relationer får vi omedelbart ytströmtätheten på metallytan.

$$\boldsymbol{J}_{S} = \hat{\boldsymbol{n}} \times \boldsymbol{H} = \hat{\boldsymbol{n}} \times (\boldsymbol{H}_{i} + \boldsymbol{H}_{s}) = 2\hat{\boldsymbol{n}} \times \boldsymbol{H}_{i}$$
(3.33)

Vi kommer att använda dessa resultat i fysikalisk- och geometrisk-optik-approximationen i avsnitten 3.5.2 och 3.5.3.

3.5.2 Fysikalisk-optik-approximationen

Fysikalisk-optik-approximationen (fo) kan användas om krökningsradien på reflektorn (spridaren) är stor jämfört med våglängden. Vi kan i så fall anta att reflektionen mot reflektorn lokalt sker som vid reflektion av en plan våg mot en plan metallisk yta. Detta fall behandlade vi i avsnitt 3.5.1. Vi fann att ytströmtätheten på metallytan S_s i fysikalisk-optik-approximationen är, se (3.33)

$$\boldsymbol{J}_{S} = \hat{\boldsymbol{n}} \times \boldsymbol{H} = \hat{\boldsymbol{n}} \times (\boldsymbol{H}_{i} + \boldsymbol{H}_{s}) = 2\hat{\boldsymbol{n}} \times \boldsymbol{H}_{i}$$

Detta leder till att fjärrfältsamplituden i (3.27) blir

$$\boldsymbol{F}_{fo}(\hat{\boldsymbol{r}}) = -i\frac{k^2\eta_0\eta}{2\pi}\hat{\boldsymbol{r}} \times \left[\hat{\boldsymbol{r}} \times \iint_{S_s^+} \hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_i(\boldsymbol{r}')e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\,dS'\right]$$
(3.34)

vilket kan beräknas så snart det infallande (mat
ande) fältet kan beräknas på ytan ${\cal S}_s.$

Uttrycket för fjärrfältsamplituden med fysikalisk-optik-approximationen ovan gäller även om den infallande vågen inte är en plan våg. Approximationen innebär endast att reflektionen lokalt sker som vid planvågsreflektion mot en plan metallisk yta. Denna approximation stämmer bäst för korta våglängder och förutsätter att spridarens (reflektorns) krökningsradie skall vara stor. Vi kan därför förvänta oss sämre noggrannhet om reflektorn har kanter eller hörn. Nära kanter och hörn är fälten singulära. Ett approximationsförfarande som inkluderar även kant- och hörneffekter är den s.k. geometriska diffraktionsteorin (GTD).

Vi avslutar nu fysikalisk-optik-approximationen med att explicit anta att det infallande fältet är en plan våg. Vi kan då tala om en explicit bakåtriktning för spridningen, dvs. $\hat{\boldsymbol{r}} = -\hat{\boldsymbol{k}}_i$. I många tekniska tillämpningar, t.ex. radar, kan man endast observera rakt bakåt. I bakåtriktningen kan vi förenkla fjärrfältsamplituden ytterligare. Använd BAC-CAB-regeln på integranden ovan med $\hat{\boldsymbol{r}} = -\hat{\boldsymbol{k}}_i$.

$$egin{aligned} \hat{m{r}} imes [\hat{m{r}} imes (\hat{m{n}}(m{r}') imes m{H}_i(m{r}'))] &= \hat{m{k}}_i imes \left[\hat{m{k}}_i imes (\hat{m{n}}(m{r}') imes m{H}_i(m{r}'))
ight] \ &= -\left(\hat{m{k}}_i imes m{H}_i(m{r}')
ight) \left(\hat{m{k}}_i \cdot \hat{m{n}}(m{r}')
ight) &= rac{1}{\eta_0\eta} m{E}_i(m{r}') \left(\hat{m{k}}_i \cdot \hat{m{n}}(m{r}')
ight) \end{aligned}$$

eftersom $\hat{k}_i \cdot H_i(\mathbf{r}') = 0$ och $\eta_0 \eta \hat{k}_i \times H_i(\mathbf{r}') = -E_i(\mathbf{r}')$ för en planvåg i ett isotropt material. Låter vi det infallande elektriska fältet ha formen

$$\boldsymbol{E}_i(\boldsymbol{r}) = \boldsymbol{E}_0 e^{ik\boldsymbol{k}_i\cdot\boldsymbol{r}}$$
blir fjärrfältsamplituden i bakåtriktningen

$$\boldsymbol{F}_{fo}(-\hat{\boldsymbol{k}}_i) = -i\frac{k^2}{2\pi}\boldsymbol{E}_0 \iint_{S_s^+} \left(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}')\right) e^{2ik\hat{\boldsymbol{k}}_i \cdot \boldsymbol{r}'} \, dS' \tag{3.35}$$

Vi noterar genast att med denna approximation är fjärrfältsamplitudens polarisation parallell med det infallande elektriska fältets polarisation E_0 , dvs. inga korspolarisationseffekter uppstår i bakåtriktningen med fysikalisk-optik-approximationen. Det differentiella spridningstvärsnittet, (3.16), evaluerat i bakåtriktningen $\hat{r} = -\hat{k}_i$, blir

$$\frac{d\sigma}{d\Omega}(-\hat{\boldsymbol{k}}_{i},\hat{\boldsymbol{k}}_{i}) = \frac{k^{2}}{4\pi^{2}} \left| \iint_{S_{s}^{+}} \left(\hat{\boldsymbol{k}}_{i} \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}') \right) e^{2ik\hat{\boldsymbol{k}}_{i} \cdot \boldsymbol{r}'} \, dS' \right|^{2}$$

Exempel 3.1

Vi skall i detta exempel beräkna det total spridningstvärsnittet σ_t mha. fysikalisk-optikapproximationen och det optiska teoremet. Som utgångspunkt väljer vi (3.34)

$$\boldsymbol{F}_{fo}(\hat{\boldsymbol{r}}) = -i\frac{k^2\eta_0\eta}{2\pi}\hat{\boldsymbol{r}} \times \left[\hat{\boldsymbol{r}} \times \iint_{S_s^+} \hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_i(\boldsymbol{r}')e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\,dS'\right]$$

med infallande planvåg

$$oldsymbol{E}_i(oldsymbol{r}) = oldsymbol{E}_0 e^{ik\hat{oldsymbol{k}}_i\cdotoldsymbol{r}}$$

Vi evaluerar detta uttryck i framåtriktningen för att senare kunna utnyttja det optiska teoremet. Eftersom

$$\eta_0 \eta oldsymbol{H}_i(oldsymbol{r}) = \hat{oldsymbol{k}}_i imes oldsymbol{E}_i(oldsymbol{r}) = \hat{oldsymbol{k}}_i imes oldsymbol{E}_0 e^{ikoldsymbol{k}_i \cdot oldsymbol{r}}$$

gäller för plana vågor, får vi

$$oldsymbol{F}_{fo}(\hat{oldsymbol{k}}_i) = -irac{k^2}{2\pi}\hat{oldsymbol{k}}_i imes \left[\hat{oldsymbol{k}}_i imes \iint_{S_s^+} \hat{oldsymbol{n}}(oldsymbol{r}') imes \left(\hat{oldsymbol{k}}_i imes oldsymbol{E}_0
ight) \, dS'
ight]$$

Vi förenklar nu integranden mha. BAC-CAB-regeln

$$\hat{m{k}}_i imes \left\{ \hat{m{k}}_i imes \left[\underbrace{\hat{m{n}} imes \left(\hat{m{k}}_i imes m{E}_0
ight)}_{\hat{m{k}}_i (\hat{m{n}} \cdot m{E}_0) - m{E}_0 (\hat{m{n}} \cdot \hat{m{k}}_i)}
ight]
ight\} = - \underbrace{\hat{m{k}}_i imes \left(\hat{m{k}}_i imes m{E}_0
ight)}_{\hat{m{k}}_i (\hat{m{k}}_i \cdot m{E}_0) - m{E}_0} (\hat{m{n}} \cdot \hat{m{k}}_i) = m{E}_0 (\hat{m{n}} \cdot \hat{m{k}}_i)$$

ty $\hat{\boldsymbol{k}}_i \cdot \boldsymbol{E}_0 = 0$. Vi får

$$\boldsymbol{F}_{fo}(\hat{\boldsymbol{k}}_i) = -i\frac{k^2}{2\pi}\boldsymbol{E}_0 \iint_{S_s^+} \hat{\boldsymbol{n}}(\boldsymbol{r}') \cdot \hat{\boldsymbol{k}}_i \, dS'$$

Integralen i detta uttryck är den projicerade tvärsnittsarean, $A(\hat{k}_i)$, av den belysta delen, se figur 3.10. Definitionsmässigt har vi

$$A(\hat{k}_i) = -\iint_{S_s^+} \hat{n}(\mathbf{r}') \cdot \hat{k}_i \, dS'$$
(3.36)

Figur 3.10: Spridaren med belyst och skuggsida.

och

$$\boldsymbol{F}_{fo}(\hat{\boldsymbol{k}}_i) = i \frac{k^2}{2\pi} \boldsymbol{E}_0 A(\hat{\boldsymbol{k}}_i)$$

Det optiska teoremet, (3.25), ger nu

$$\sigma_t = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{\boldsymbol{E}_0^* \cdot \boldsymbol{F}_{fo}(\hat{\boldsymbol{k}}_i)}{|\boldsymbol{E}_0|^2} \right\} = 2A(\hat{\boldsymbol{k}}_i)$$

Detta generella resultat gäller, trots att det har härletts med fysikalisk-optik-approximationen, för en stor klass spridare. Resultatet kallas ibland för utsläckningsparadoxen, pga. att det totala spridningstvärsnittet är dubbla tvärsnittsarean $A(\hat{k}_i)$. Med geometrisk optik (strålar) och reflektion av dessa kan man förklara en faktor $A(\hat{k}_i)$ —svarande mot spridarens tvärsnittsarea—till det totalt spridningstvärsnittet. Man kunde förvänta sig att detta värde skulle gälla bättre och bättre för allt högre frekvenser. Istället visar fysikalisk-optik-approximationen att det totala spridningstvärsnittet närmar sig det dubbla värdet. Förklaringen ligger i att geometrisk optik inte tar med de diffraktionsfenomen som bygger upp skuggzonsgränsen. Dessa diffraktionseffekter för små spridningsvinklar nära skuggzonsgränsen bidrar med ytterligare en faktor $A(\hat{k}_i)$ till utsläckningen, vilket också fysikalisk-optik-approximationen visar.

Exempel 3.2

En perfekt ledande reflektor har formen av en parabelformad cylindersektor. Orienteringen av den cylindriska reflektorn illustreras i figur 3.11. Mediet utanför reflektorn är luft, vilket vi approximerar med $\epsilon = \mu = 1$. Reflektorn skall generera en huvudlob vars lobbredd (definieras som vinkeln mellan de punkter i huvudloben där effektflödestätheten halverats jämfört med lobens maximala effektflödestäthet) är mindre än 4° i x-z-planet (H-planet) och i y-z-planet (E-planet) vid frekvensen 4 GHz. Vi kommer att använda fysikalisk-optikapproximationen för att lösa detta problem. Motsvarande beräkningar med geometriskoptik-approximationen ges i exempel 3.6 på sidan 113.

Reflektorn matas med en "in phase line source". Denna består av ett stort antal korta linjära antenner upplinjerade i parabelns fokallinje, se figur 3.11. Antennerna drivs i fas och därmed kan en cylindrisk våg genereras, vars elektriska fält är riktat i y-riktningen.

Figur 3.11: Geometrin hos den cylindriska reflektorn i exempel 3.2.

De elektriska och magnetiska fälten från matningen ges av

$$\begin{cases} \boldsymbol{E}_{i}(\boldsymbol{r}) = E_{0}H_{0}^{(1)}(k\sqrt{x^{2}+z^{2}})\hat{\boldsymbol{y}} \\ \boldsymbol{H}_{i}(\boldsymbol{r}) = -i\frac{E_{0}}{k\eta_{0}}\nabla \times \left(H_{0}^{(1)}(k\sqrt{x^{2}+z^{2}})\hat{\boldsymbol{y}}\right) = i\frac{E_{0}}{\eta_{0}}H_{0}^{(1)'}(k\sqrt{x^{2}+z^{2}})\frac{\hat{\boldsymbol{x}}z-\hat{\boldsymbol{z}}x}{\sqrt{x^{2}+z^{2}}} \end{cases}$$

där funktionen $H_0^{(1)}$ är Hankelfunktionen av första slaget, se appendix A.1. Dipolernas fjärrfält $(kr \gg 1)$ ges av (se appendix A.1 för de asymptotiska utvecklingarna av Hankelfunktioner av första slaget)

$$\begin{cases} \boldsymbol{E}_{i}(\boldsymbol{r}) = E_{0}\sqrt{\frac{2}{i\pi k\sqrt{x^{2}+z^{2}}}}e^{ik\sqrt{x^{2}+z^{2}}}\hat{\boldsymbol{y}} \\ \boldsymbol{H}_{i}(\boldsymbol{r}) = -\frac{E_{0}}{\eta_{0}}\sqrt{\frac{2}{i\pi k\sqrt{x^{2}+z^{2}}}}e^{ik\sqrt{x^{2}+z^{2}}}\frac{\hat{\boldsymbol{x}}z-\hat{\boldsymbol{z}}x}{\sqrt{x^{2}+z^{2}}} \end{cases}$$
(3.37)

Vi väljer F = 1 m. Då gäller vid f = 4 GHz att $kF = 2\pi fF/c_0 \approx 84 \gg 1$, dvs. approximationen ovan är giltig.

Parabolreflektorn är orienterad så att dess ekvation är $x^2 = 4F(z+F)$, där F > 0 är reflektorns fokalavstånd. Den projicerade ytan i x-y-planet är en rektangel, parametriserad av $-b/2 \le x \le b/2$, $-h/2 \le y \le h/2$. Vi definierar den vektorvärda funktionen S(x,y) = r' som beskriver ytan S_s^+ genom

$$\boldsymbol{S}(x,y) = \hat{\boldsymbol{x}}x + \hat{\boldsymbol{y}}y + \hat{\boldsymbol{z}}\left(\frac{x^2}{4F} - F\right), \qquad \begin{cases} -b/2 \le x \le b/2\\ -h/2 \le y \le h/2 \end{cases}$$

För varje (x, y)-värde utgör värdet av S(x, y), tolkat som en punkt i rummet, en punkt på reflektorytan.

Då vi deriverar S(x, y) med avseende på parametrarna x och y får vi tangentvektorerna till reflektorytan.

$$\begin{cases} \boldsymbol{\tau}_1(x,y) = \frac{\partial \boldsymbol{S}}{\partial x}(x,y) = \hat{\boldsymbol{x}} + \hat{\boldsymbol{z}}\frac{x}{2F} \\ \boldsymbol{\tau}_2(x,y) = \frac{\partial \boldsymbol{S}}{\partial y}(x,y) = \hat{\boldsymbol{y}} \end{cases}$$

Normerar vi vektorprodukten av dessa tangentvektorer erhåller vi normalvektorn till ytan,

$$\hat{\boldsymbol{n}}(x,y) = \frac{\boldsymbol{\tau}_1(x,y) \times \boldsymbol{\tau}_2(x,y)}{|\boldsymbol{\tau}_1(x,y) \times \boldsymbol{\tau}_2(x,y)|} = \frac{-\hat{\boldsymbol{x}}x + \hat{\boldsymbol{z}}2F}{\sqrt{x^2 + 4F^2}}$$
(3.38)

Avståndet från mataren till reflektorn ges av

$$\rho(x) = |\mathbf{S}(x,0)| = \sqrt{x^2 + \left(\frac{x^2}{4F} - F\right)^2} = \frac{x^2 + 4F^2}{4F}$$
(3.39)

Vidare är parabelns ytelement dS lika med

$$dS = \left| \frac{\partial \mathbf{S}}{\partial x}(x, y) \times \frac{\partial \mathbf{S}}{\partial y}(x, y) \right| \, dxdy = \frac{\sqrt{x^2 + 4F^2}}{2F} \, dxdy \tag{3.40}$$

Den infallande riktningen, $\hat{k}_i(x)$, som träffar en punkt på ytan, parametriserad av (x, y), är

$$\hat{\boldsymbol{k}}_{i}(x) = \frac{\boldsymbol{S}(x,0)}{|\boldsymbol{S}(x,0)|} = \frac{\hat{\boldsymbol{x}}x + \hat{\boldsymbol{z}}\left(\frac{x^{2}}{4F} - F\right)}{\sqrt{\left(\frac{x^{2}}{4F} - F\right)^{2} + x^{2}}} = \frac{\hat{\boldsymbol{x}}4Fx + \hat{\boldsymbol{z}}\left(x^{2} - 4F^{2}\right)}{x^{2} + 4F^{2}}$$
(3.41)

vilken är oberoende av y.

Vi skall dimensionera reflektorn, dvs. b och h, så att lobbredden blir 4° i både x-z- och y-z-planet. Fysikalisk-optik-approximationen av fjärrfältsamplituden ges av (3.34) ($\eta = 1$)

$$\boldsymbol{F}_{fo}\left(\hat{\boldsymbol{r}}\right) = -i\frac{k^{2}\eta_{0}}{2\pi}\hat{\boldsymbol{r}} \times \left[\hat{\boldsymbol{r}} \times \iint_{S_{s}^{+}} \hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{i}\left(\boldsymbol{r}'\right)e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\,dS'\right]$$
(3.42)

där integrationen sker över reflektorytans belysta del. Vi inför beteckningen I för ytintegralen i (3.42). Från (3.40) får vi

$$\begin{split} \boldsymbol{I} &= \iint_{S_s^+} \hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_i(\boldsymbol{r}') e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS' \\ &= \int_{-b/2}^{b/2} dx \int_{-h/2}^{h/2} dy \frac{\sqrt{x^2 + 4F^2}}{2F} \left(\hat{\boldsymbol{n}}(x,y) \times \boldsymbol{H}_i \left(\boldsymbol{S}(x,y) \right) \right) e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{S}(x,y)} \end{split}$$

Från (3.37) och (3.38) får vi

$$\hat{\boldsymbol{n}}(x,y) \times \boldsymbol{H}_{i}\left(\boldsymbol{S}(x,y)\right) = -\frac{E_{0}}{\eta_{0}}\sqrt{\frac{2}{i\pi k\rho(x)}}e^{ik\rho(x)}\frac{-\hat{\boldsymbol{x}}x + \hat{\boldsymbol{z}}2F}{\sqrt{x^{2} + 4F^{2}}} \times \frac{\hat{\boldsymbol{x}}\left(x^{2}/4F - F\right) - \hat{\boldsymbol{z}}x}{x^{2}/4F + F}$$

Resultatet av vektorprodukten blir

$$\hat{\boldsymbol{n}}(x,y) \times \boldsymbol{H}_{i}\left(\boldsymbol{S}(x,y)\right) = \frac{E_{0}}{\eta_{0}} \sqrt{\frac{2}{i\pi k\rho(x)}} e^{ik\rho(x)} \frac{2F}{\sqrt{x^{2}+4F^{2}}} \hat{\boldsymbol{y}}$$

Återstår argumentet i exponentialfunktionen. Denna blir

$$\hat{\boldsymbol{r}} \cdot \boldsymbol{S}(x,y) = x \sin \theta \cos \phi + y \sin \theta \sin \phi + \left(\frac{x^2}{4F} - F\right) \cos \theta$$

där observationsriktningen ges av $\hat{\boldsymbol{r}} = \hat{\boldsymbol{x}} \sin \theta \cos \phi + \hat{\boldsymbol{y}} \sin \theta \sin \phi + \hat{\boldsymbol{z}} \cos \theta.$

Ytintegralen I kan nu beräknas med (3.39)

$$\mathbf{I} = \hat{\mathbf{y}} \frac{E_0}{\eta_0} \int_{-b/2}^{b/2} dx \int_{-h/2}^{h/2} dy \sqrt{\frac{8F}{i\pi k(x^2 + 4F^2)}} e^{ik((\frac{x^2}{4F} + F) - x\sin\theta\cos\phi - y\sin\theta\sin\phi - (\frac{x^2}{4F} - F)\cos\theta)}$$

och fjärrfältsamplituden i fysikalisk-optik-approximationen, (3.42), blir

$$\boldsymbol{F}_{fo}\left(\hat{\boldsymbol{r}}\right) = -i\frac{k^{2}E_{0}}{2\pi}e^{ikF(1+\cos\theta)}\hat{\boldsymbol{r}}\times\left(\hat{\boldsymbol{r}}\times\hat{\boldsymbol{y}}\right)$$
$$\cdot\int_{-b/2}^{b/2}dx\int_{-h/2}^{h/2}dy\sqrt{\frac{8F}{i\pi k(x^{2}+4F^{2})}}e^{ik\left(\frac{x^{2}}{4F}(1-\cos\theta)-x\sin\theta\cos\phi-y\sin\theta\sin\phi\right)}$$

och genom förenklingen $\hat{\boldsymbol{r}} \times (\hat{\boldsymbol{r}} \times \hat{\boldsymbol{y}}) = -\hat{\boldsymbol{\theta}} \cos \theta \sin \phi - \hat{\boldsymbol{\phi}} \cos \phi$ får vi

$$\boldsymbol{F}_{fo}\left(\hat{\boldsymbol{r}}\right) = i\frac{k^{2}E_{0}}{2\pi}e^{ikF(1+\cos\theta)}\left(\hat{\boldsymbol{\theta}}\cos\theta\sin\phi + \hat{\boldsymbol{\phi}}\cos\phi\right)$$
$$\cdot \int_{-b/2}^{b/2} dx \int_{-h/2}^{h/2} dy \sqrt{\frac{8F}{i\pi k(x^{2}+4F^{2})}}e^{ik(\frac{x^{2}}{4F}(1-\cos\theta)-x\sin\theta\cos\phi-y\sin\theta\sin\phi)}$$

Integrationen i y-led görs lätt analytiskt mha.

$$\int_{-h/2}^{h/2} e^{-i\alpha y} dy = h \frac{\sin \frac{h\alpha}{2}}{\frac{h\alpha}{2}}$$
(3.43)

Vi får

$$\boldsymbol{F}_{fo}\left(\hat{\boldsymbol{r}}\right) = i\frac{k^{2}E_{0}h}{2\pi}e^{ikF\left(1+\cos\theta\right)}\left(\hat{\boldsymbol{\theta}}\cos\theta\sin\phi + \hat{\boldsymbol{\phi}}\cos\phi\right)\frac{\sin\left(\frac{kh}{2}\sin\theta\sin\phi\right)}{\frac{kh}{2}\sin\theta\sin\phi}$$
$$\cdot \int_{-b/2}^{b/2}\sqrt{\frac{8F}{i\pi k(x^{2}+4F^{2})}}e^{ik\left(\frac{x^{2}}{4F}\left(1-\cos\theta\right)-x\sin\theta\cos\phi\right)}dx$$

I framåtriktningen för reflektorn, $\theta=0,$ kan fjärrfältsamplituden beräknas analytiskt. Resultatet är

$$\begin{split} \mathbf{F}_{fo}\left(\hat{\mathbf{z}}\right) =&i\hat{\mathbf{y}}\frac{k^{2}E_{0}h}{2\pi}e^{i2kF}\sqrt{\frac{8F}{i\pi k}}\int_{-kb/2}^{kb/2}\frac{dt}{\sqrt{t^{2}+4k^{2}F^{2}}}\\ =&i\hat{\mathbf{y}}\frac{k^{2}E_{0}h}{2\pi}e^{i2kF}\sqrt{\frac{8F}{i\pi k}}\ln\frac{\sqrt{k^{2}b^{2}+16k^{2}F^{2}}+kb}{\sqrt{k^{2}b^{2}+16k^{2}F^{2}}-kb}\\ =&i\hat{\mathbf{y}}\frac{k^{2}E_{0}h}{\pi}e^{i2kF}\sqrt{\frac{8F}{i\pi k}}\ln\left(\frac{b}{4F}+\sqrt{\frac{b^{2}}{16F^{2}}+1}\right) \end{split}$$

Figur 3.12: Lobbredd i grader som funktion av b och h för en cylindrisk reflektor i exempel 3.2. Beräkningarna är gjorda med fysikalisk-optik-approximationen. I Hplanet (x-z-planet) bestäms b med h = F = 1 m, medan i E-planet (y-z-planet) bestäms h med b = F = 1 m. Frekvensen f = 4 GHz. Jämför figur 3.20 där beräkningarna är utförda med geometrisk-optik-approximationen.

För en godtycklig riktning, måste integrationen i x-variabeln utföras numeriskt. Beloppet av fjärrfältsamplituden i kvadrat blir

$$\begin{aligned} |\boldsymbol{F}_{fo}\left(\hat{\boldsymbol{r}}\right)|^{2} = & \frac{2k^{3}|E_{0}|^{2}h^{2}F}{\pi^{3}}(\cos^{2}\theta\sin^{2}\phi + \cos^{2}\phi) \left|\frac{\sin(\frac{kh}{2}\sin\theta\sin\phi)}{\frac{kh}{2}\sin\theta\sin\phi}\right|^{2} \\ & \cdot \left|\int_{-kb/2}^{kb/2}\frac{dt}{\sqrt{t^{2} + 4k^{2}F^{2}}}e^{i(\frac{t^{2}}{4kF}(1 - \cos\theta) - t\sin\theta\cos\phi)}\right|^{2} \end{aligned}$$

I framåtriktningen för reflektorn, $\theta = 0$, får vi

$$|\boldsymbol{F}_{fo}(\hat{\boldsymbol{z}})|^2 = \frac{8k^3|E_0|^2h^2F}{\pi^3} \left| \ln\left(\frac{b}{4F} + \sqrt{\frac{b^2}{16F^2} + 1}\right) \right|^2$$

Halvvärdesbredden eller lobbredden undersöks numeriskt. I *H*-planet (*x*-*z*-planet) bestäms halva halvvärdesbredden, θ_{hv} , genom lösning av följande ekvation:

$$|\boldsymbol{F}_{fo}(\theta_{\rm hv},\phi=0)|^2 = 0.5 |\boldsymbol{F}_{fo}(\hat{\boldsymbol{z}})|^2$$

medan i $E\mbox{-planet}$ gäller på samma sätt att halva halvvärdesbredden bestäms av

$$|\boldsymbol{F}_{fo}(\theta_{\rm hv},\phi=\pi/2)|^2 = 0.5 |\boldsymbol{F}_{fo}(\hat{\boldsymbol{z}})|^2$$

Resultaten finns illustrerade i figur 3.12, vilket visar att b = h = 1 m ger en lobbredd som är ungefär 4° vid f = 4 GHz. Vi noterar att skillnaderna mellan halvvärdesbredderna i E- och H-planen inte är stor.

Numeriska beräkningar på fjärrfältsamplituden har utförts för h = b = 1 m och F = 1 m, vid frekvensen 4 GHz. I figur 3.13 är beloppet av fjärrfältsamplituden i kvadrat

Figur 3.13: Jämförelse av fjärrfältsamplituden mellan fysikalisk-optik-approximationen och geometrisk-optik-approximationen i *E*-planet (*y*-*z*-planet) respektive *H*-planet (*x*-*z*-planet). Heldragen kurva representerar fysikalisk-optik-approximationen, se exempel 3.2, medan bruten kurva representerar geometrisk-optik-approximationen, se exempel 3.6. h = b = F = 1 m, och frekvensen f = 4 GHz.

(normerad med amplituden i framåtriktningen) uppritad som funktion av θ i både E- och H-planen. \blacksquare

Exempel 3.3

En cirkulär, perfekt ledande reflektor har formen av en axialsymmetrisk parabol, se figur 3.14. Den projicerade cirkulära ytan i x-y-planet har radien a. Parabolen belyses med en kort dipolantenn som är monterad i reflektorns fokalpunkt. Dipolen är orienterad längs \hat{y} . Mediet utanför reflektorn är luft, vilket vi approximerar med $\epsilon = \mu = 1$. Vi skall bestämma fjärrfältet från parabolreflektorn med fysikalisk-optik-approximationen. Motsvarande beräkning med geometrisk-optik-approximationen ges i exempel 3.7 på sidan 116.

Fjärrfältet från dipolen är, se övning 2.2,

$$\boldsymbol{E}_{i} = \frac{pk^{2}}{\epsilon_{0}} \frac{e^{ikr}}{4\pi r} \left(\hat{\boldsymbol{r}}_{0} \times \left(\hat{\boldsymbol{y}} \times \hat{\boldsymbol{r}}_{0} \right) \right)$$
(3.44)

där p är styrkan hos dipolen, $k = \omega/c_0$, och \hat{r}_0 är observationsriktningen från antennen. Det magnetiska fjärrfältet ges i sin tur av

$$\boldsymbol{H}_{i} = k\omega p \frac{e^{ikr}}{4\pi r} \left(\hat{\boldsymbol{r}}_{0} \times \hat{\boldsymbol{y}} \right)$$
(3.45)

Parabolreflektorn är orienterad så att dess ekvation är $x^2 + y^2 = 4F(z+F)$, där F > 0är reflektorns fokalavstånd. Vi definierar den vektorvärda funktionen $S(\rho, \alpha) = r'$ såsom

$$\boldsymbol{S}(\rho,\alpha) = \hat{\boldsymbol{\rho}}\rho + \hat{\boldsymbol{z}}\left(\rho^2/4F - F\right)$$
(3.46)

där vi infört de polära koordinaterna ρ och α i x-y-planet så att vinkeln α mäts positiv från x-axeln mot y-axeln, dvs.

$$\begin{cases} \hat{\boldsymbol{\rho}}\rho = \hat{\boldsymbol{x}}x + \hat{\boldsymbol{y}}y\\ \hat{\boldsymbol{\rho}} = \hat{\boldsymbol{x}}\cos\alpha + \hat{\boldsymbol{y}}\sin\alpha\\ \hat{\boldsymbol{\alpha}} = -\hat{\boldsymbol{x}}\sin\alpha + \hat{\boldsymbol{y}}\cos\alpha \end{cases}$$

Figur 3.14: Geometri över parabolreflektorn i exempel 3.3.

Denna vektorvärda funktion $\boldsymbol{S}(\rho, \alpha)$ beskriver reflektorytan. Varje (ρ, α) -värde ger en punkt på reflektorytan. Då vi deriverar $\boldsymbol{S}(\rho, \alpha)$ med avseende på ρ och α får vi tangentvektorerna till reflektorytan.

$$\begin{cases} \boldsymbol{\tau}_{1}\left(\rho,\alpha\right) = \frac{\partial \boldsymbol{S}}{\partial\rho}\left(\rho,\alpha\right) = \hat{\boldsymbol{\rho}} + \hat{\boldsymbol{z}}\rho/2F\\ \boldsymbol{\tau}_{2}\left(\rho,\alpha\right) = \frac{\partial \boldsymbol{S}}{\partial\alpha}\left(\rho,\alpha\right) = \hat{\boldsymbol{\alpha}}\rho \end{cases}$$

Normerar vi vektorprodukten av dessa tangentvektorer erhåller vi normalvektorn till reflektorytan,

$$\hat{\boldsymbol{n}}(\rho,\alpha) = \frac{\frac{\partial \boldsymbol{S}}{\partial \rho} \times \frac{\partial \boldsymbol{S}}{\partial \alpha}}{\left|\frac{\partial \boldsymbol{S}}{\partial \rho} \times \frac{\partial \boldsymbol{S}}{\partial \alpha}\right|} = \frac{\hat{\boldsymbol{z}}\rho - \hat{\boldsymbol{\rho}}\rho^2/2F}{\sqrt{\rho^2 + \rho^4/4F^2}} = \frac{-\hat{\boldsymbol{\rho}}\rho + \hat{\boldsymbol{z}}2F}{\sqrt{\rho^2 + 4F^2}}$$
(3.47)

Avståndet från dipolen till reflektorn är

$$r'(\rho) = |\mathbf{S}(\rho, \alpha)| = \sqrt{\rho^2 + (\rho^2/4F - F)^2} = \rho^2/4F + F$$
(3.48)

som är oberoende av α .

Fysikalisk-optik-approximationen av fjärrfältsamplituden ges av (3.34) ($\eta = 1$)

$$\boldsymbol{F}_{fo}\left(\hat{\boldsymbol{r}}\right) = -i\frac{k^{2}\eta_{0}}{2\pi}\hat{\boldsymbol{r}} \times \left[\hat{\boldsymbol{r}} \times \iint_{S_{s}^{+}} \hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{i}(\boldsymbol{r}')e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}\,dS'\right]$$
(3.49)

där integrationen sker över reflektorytans belysta del. Vi inför beteckningen I för ytintegralen i (3.49). Definitionsmässigt har vi

$$\begin{split} \boldsymbol{I} &= \iint_{S_s^+} \hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_i(\boldsymbol{r}') e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} dS' \\ &= \int_0^a d\rho \int_0^{2\pi} d\alpha \; \hat{\boldsymbol{n}}(\rho,\alpha) \times \boldsymbol{H}_i\left(\boldsymbol{S}\left(\rho,\alpha\right)\right) e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{S}(\rho,\alpha)} \left| \frac{\partial \boldsymbol{S}}{\partial \rho} \times \frac{\partial \boldsymbol{S}}{\partial \alpha} \right| \end{split}$$

Enkla räkningar ger ytelementet på parabolen

$$\left|\frac{\partial \boldsymbol{S}}{\partial \rho} \times \frac{\partial \boldsymbol{S}}{\partial \alpha}\right| = \sqrt{\rho^2 + \rho^4/4F^2} = \rho \sqrt{r'(\rho)/F} \tag{3.50}$$

Vi noterar att, se (3.45)

$$\boldsymbol{H}_{i}\left(\boldsymbol{S}\left(\boldsymbol{\rho},\boldsymbol{\alpha}\right)\right) = k\omega p \frac{e^{ikr'(\boldsymbol{\rho})}}{4\pi r'(\boldsymbol{\rho})} \left(\hat{\boldsymbol{k}}_{i} \times \hat{\boldsymbol{y}}\right) = k\omega p \frac{e^{ikr'(\boldsymbol{\rho})}}{4\pi r'(\boldsymbol{\rho})} \left(\hat{\boldsymbol{k}}_{i} \times \left(\hat{\boldsymbol{\rho}}\sin\alpha + \hat{\boldsymbol{\alpha}}\cos\alpha\right)\right)$$

där den infallande riktningen är

$$\hat{\boldsymbol{k}}_{i}\left(\rho,\alpha\right) = \frac{\boldsymbol{S}\left(\rho,\alpha\right)}{\left|\boldsymbol{S}\left(\rho,\alpha\right)\right|} = \frac{\hat{\boldsymbol{\rho}}4F\rho + \hat{\boldsymbol{z}}\left(\rho^{2} - 4F^{2}\right)}{\rho^{2} + 4F^{2}}$$
(3.51)

Det är naturligtvis väsentligt att skilja på enhetsvektorerna \hat{r} och \hat{k}_i . Enhetsvektorn \hat{r} är riktningsvektorn för fjärrfältets observationspunkt, medan \hat{k}_i är riktningsvektorn från origo (antennen) till en punkt på reflektorn (reflektionspunkt). Det magnetiska fältet kan nu skrivas

$$\boldsymbol{H}_{i}\left(\boldsymbol{S}\left(\boldsymbol{\rho},\boldsymbol{\alpha}\right)\right) = k\omega p \frac{e^{ikr'\left(\boldsymbol{\rho}\right)}}{4\pi r'\left(\boldsymbol{\rho}\right)} \frac{\hat{\boldsymbol{z}}4F\boldsymbol{\rho}\cos\boldsymbol{\alpha} - \hat{\boldsymbol{x}}\left(\boldsymbol{\rho}^{2} - 4F^{2}\right)}{\boldsymbol{\rho}^{2} + 4F^{2}}$$
(3.52)

Genom att utveckla vektorprodukten $\hat{\boldsymbol{n}} \times \boldsymbol{H}_i$ mha. (3.47) får vi

$$\hat{\boldsymbol{n}}(\rho,\alpha) \times \boldsymbol{H}_{i}\left(\boldsymbol{S}\left(\rho,\alpha\right)\right) = \frac{k\omega p}{\left(4F\right)^{3/2}} \frac{e^{ikr'(\rho)}}{4\pi \left(r'(\rho)\right)^{5/2}} \left[\hat{\boldsymbol{y}}\left(4F\rho^{2}\cos^{2}\alpha - 2F(\rho^{2} - 4F^{2})\right) - \hat{\boldsymbol{x}}4F\rho^{2}\sin\alpha\cos\alpha - \hat{\boldsymbol{z}}\rho\sin\alpha(\rho^{2} - 4F^{2})\right]$$

eller förenklat genom att identifiera komponenter av S, se (3.46) får vi

$$\hat{\boldsymbol{n}}(\rho,\alpha) \times \boldsymbol{H}_{i}\left(\boldsymbol{S}\left(\rho,\alpha\right)\right) = \frac{k\omega p}{\sqrt{4F}} \frac{e^{ikr'(\rho)}}{4\pi \left(r'(\rho)\right)^{5/2}} \\ \cdot \left[\hat{\boldsymbol{y}}\left(S_{x}^{2}(\rho,\alpha) - 2FS_{z}(\rho,\alpha)\right) - \hat{\boldsymbol{x}}S_{x}(\rho,\alpha)S_{y}(\rho,\alpha) - \hat{\boldsymbol{z}}S_{y}(\rho,\alpha)S_{z}(\rho,\alpha)\right]$$

Ytintegralen I kan nu skrivas

$$\boldsymbol{I} = \frac{k\omega p}{2F} \int_0^a \rho \, d\rho \int_0^{2\pi} d\alpha \frac{e^{ik(r'(\rho) - \hat{\boldsymbol{r}} \cdot \boldsymbol{S}(\rho, \alpha))}}{4\pi \left(r'(\rho)\right)^2} \\ \cdot \left[\hat{\boldsymbol{y}} \left(S_x^2(\rho, \alpha) - 2FS_z(\rho, \alpha) \right) - \hat{\boldsymbol{x}} S_x(\rho, \alpha) S_y(\rho, \alpha) - \hat{\boldsymbol{z}} S_y(\rho, \alpha) S_z(\rho, \alpha) \right]$$

De komplexa talen I_x , I_y och I_z bestäms mha. numerisk integration för varje riktning $\hat{r} = \hat{x} \sin \theta \cos \phi + \hat{y} \sin \theta \sin \phi + \hat{z} \cos \theta$. När väl ytintegralen I är känd bestäms fjärrfälts-amplituden enkelt mha. (3.49).

Numeriska beräkningar har utförts för a = 0.4 m och F = 0.5 m, vid frekvensen 11 GHz. I figur 3.15 är beloppet av fjärrfältsamplituden i kvadrat (med lämplig normering) uppritad som funktion av θ . Amplituden i framåtriktningen kan beräknas analytiskt, se övning 3.11.

Figur 3.15: Jämförelse mellan fysikalisk-optik-approximationen och geometriskoptik-approximationen i *H*-planet (*x*-*z*-planet eller $\phi = 0$ -planet) och *E*-planet (*y*-*z*-planet eller $\phi = \pi/2$ -planet). Heldragen kurva representerar fysikalisk-optikapproximationen, se exempel 3.3, medan bruten kurva representerar geometriskoptik-approximationen, se exempel 3.7. a = 0.4 m, F = 0.5 m, och frekvensen f = 11 GHz.

3.5.3 Geometrisk-optik-approximationen

Vi kommer nu att använda den alternativa representationen av fjärrfältet, se (3.28) på sidan 94, över aperturytan S_a . Konstruktionen av fälten på aperturytan sker i denna approximation mha. strålgångsoptik, därav namnet geometrisk-optik-approximationen (go). På samma sätt som i fysikalisk-optik-approximationen antas här att reflektionen på spridarens yta sker med planvågssambanden (strålgångsoptik). I fysikalisk-optik-approximationen användes integral representationen för att beskriva vågutbredningen från spridaren till mätpunkten. I geometrisk-optik-approximationen sker vågutbredningen i rummet från spridaren till aperturytan S_a med strålgångsoptik. Från aperturytan S_a beräknas sedan fältet i mätpunkten mha. integralrepresentationen av fältet.

Vi väljer att illustrera metoden med ett infallande planvågsfält eller ett antennhorn som matar en reflektor. Fältet från mataren på ett avstånd R approximeras med

$$\boldsymbol{E}_i = \boldsymbol{E}_0(\hat{\boldsymbol{R}}) \frac{e^{ikR}}{R}$$

där $E_0(\hat{R})$ är fältfördelningen i matarhornets öppning. Det infallande fältet till reflektorn utbreder sig som en sfärisk våg.¹⁶ De spridda fälten från reflektorn antas

$$E(s) = E(0) \sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + s)(\rho_2 + s)}} e^{iks}$$

där s är längdparametern längs strålen, och där E(0) är fältstyrkan vid s = 0.

 $^{^{16}}$ Detta är en förenkling. I strålgångsoptik kan våg
fronten har två olika krökningsradier. Det fullständiga uttrycket för en våg med två krökningsradier
 $\rho_i,\ i=1,2$ (astigmatism) i strålgångsoptik
en är:

Figur 3.16: Konstruktion av det spridda fältet i geometrisk-optik-approximationen.

satisfiera planvågssambanden

$$oldsymbol{E}_{sgo} = -\eta_0\etaoldsymbol{k}_{go} imesoldsymbol{H}_{sgo}
onumber oldsymbol{H}_{sgo}
onumber oldsymbol{H}_{sgo}
onumber oldsymbol{E}_{sgo}
onumber oldsymbol{E}_{sgo}
onumber oldsymbol{E}_{sgo}$$

och fås genom geometrisk konstruktion i enlighet med de stråloptiska lagarna (infallsvinkel = reflektionsvinkel, och $\hat{n} \times (E_i + E_{sgo}) = 0$ på ytan S_s^+), se figur 3.16. Lägg märke till att ingen integration krävs för att konstruera det spridda fältet.

Vidare antar vi att det infallande fältets bidrag till ytintegralen i (3.28) kan försummas jämfört med det spridda fältets bidrag. Det infallande fältet interfererar destruktivt i reflektorns framåtriktning, \hat{k}_{go} , om \hat{k}_{go} är motsatt riktad mot det infallande fältets utbredningsriktning \hat{k}_i , se exempel 3.4 för ytterligare detaljer i fallet med en infallande planvåg. Det spridda fältet däremot förstärks i reflektorns framåtriktning. Fjärrfältet i (3.28) blir då endast en integral över det spridda fältet.

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_a} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{sgo}(\boldsymbol{r}') - \eta_0 \eta \hat{\boldsymbol{r}} \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{sgo}(\boldsymbol{r}') \right) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS'$$
(3.53)

Vi kan förenkla detta uttryck genom att införa ytterligare approximationer. Reflektorn är vanligtvis konstruerad så att det spridda fältets riktning, \hat{k}_{go} , som är konstruerad genom strålgångsoptik, varierar mycket litet. Därför kan vi i de flesta fall låta \hat{k}_{go} vara en konstant vektor. Vidare är fältstyrkan intensivast i denna riktning, dvs. i riktningen $\hat{r} = \hat{k}_{go}$. Då gäller

$$oldsymbol{H}_{sgo} pprox rac{1}{\eta_0 \eta} \hat{oldsymbol{r}} imes oldsymbol{E}_{sgo}$$

Avsnitt 3.5

Upprepad användning av BAC-CAB-regeln ger $(\hat{\boldsymbol{r}} \cdot \boldsymbol{E}_{sgo} \approx 0)$

$$egin{aligned} \hat{m{r}} imes ig\{ \hat{m{r}} imes ig[\hat{m{n}} imes ig(\hat{m{r}} imes m{E}_{sgo} ig) ig] ig\} &= \hat{m{r}} imes ig\{ \hat{m{r}} imes ig[\hat{m{r}} ig(\hat{m{n}} \cdot m{E}_{sgo} ig) - m{E}_{sgo} ig(\hat{m{n}} \cdot m{\hat{r}} ig) ig] ig\} \ &= - \hat{m{r}} imes ig\{ \hat{m{r}} imes m{E}_{sgo} ig(\hat{m{n}} \cdot m{\hat{r}} ig) ig\} = - ig\{ \hat{m{r}} ig(\hat{m{r}} \cdot m{E}_{sgo} ig) - m{E}_{sgo} ig\} ig(m{\hat{n}} \cdot m{\hat{r}} ig) ig] ig\} \ &= E_{sgo} ig(m{\hat{n}} \cdot m{\hat{r}} ig) ig] = - ig\{ \hat{m{r}} ig(m{\hat{r}} \cdot m{E}_{sgo} ig) - m{E}_{sgo} ig\} ig(m{\hat{n}} \cdot m{\hat{r}} ig) \ &= m{E}_{sgo} ig(m{\hat{n}} \cdot m{\hat{r}} ig) = - m{\hat{r}} imes ig(m{\hat{n}} imes m{E}_{sgo} ig) \end{split}$$

Fjärrfältet kan därför approximeras till

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i \frac{k^2}{2\pi} \hat{\boldsymbol{r}} \times \iint_{S_a} \hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{sgo}(\boldsymbol{r}') e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS', \qquad \hat{\boldsymbol{r}} \approx \hat{\boldsymbol{k}}_{go}$$
(3.54)

Fördelen med detta uttryck och (3.53) är att vi kan välja aperturyta fritt, så att integralen blir lätt att beräkna. Geometrisk-optik-approximationen kräver vanligen högre frekvenser än fysikalisk-optik-approximationen för motsvarande noggrannhet, eftersom approximationen är grövre. Notera också att dessa uttryck på fjärrfältsamplituden inte kan användas i det optiska teoremet, eftersom uttrycket på $F_{go}(\hat{r})$ inte gäller i det infallande fältets framåtriktning, utan endast för $\hat{r} = \hat{k}_{go}$, som ofta sammanfaller med infallande fältets bakåtriktning.

Exempel 3.4

Vi skall här visa att det infallande fältets bidrag till integralen (3.28) över aperturytan S_a är försumbart utom i framåtriktningen $\hat{r} = \hat{k}_i$. Vi skall med andra ord visa att

$$\boldsymbol{I}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_a} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_i(\boldsymbol{r}') - \eta_0 \eta \hat{\boldsymbol{r}} \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_i(\boldsymbol{r}') \right) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS'$$

där

$$\begin{cases} \boldsymbol{E}_{i}(\boldsymbol{r}) = \boldsymbol{E}_{0}e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}}\\ \eta_{0}\eta\boldsymbol{H}_{i}(\boldsymbol{r}) = \hat{\boldsymbol{k}}_{i}\times\boldsymbol{E}_{i}(\boldsymbol{r}) \end{cases}$$

är försumbar utom då $\hat{\boldsymbol{r}} \approx \hat{\boldsymbol{k}}_i$. Insättning av fälten \boldsymbol{E}_i och \boldsymbol{H}_i ger

$$\boldsymbol{I}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_a} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_0 - \hat{\boldsymbol{r}} \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times [\hat{\boldsymbol{k}}_i \times \boldsymbol{E}_0] \right) \right] e^{ik(\hat{\boldsymbol{k}}_i - \hat{\boldsymbol{r}}) \cdot \boldsymbol{r}'} \, dS'$$

För höga frekvenser, $kd \gg 1$ (d spridarens diameter), oscillerar integranden kraftigt pga. exponentialtermen utom då $\hat{\boldsymbol{r}} \approx \hat{\boldsymbol{k}}_i$, vilket är framåtriktningen. Oscillationen medför att integrandens olika bidrag tar ut varann; en effekt som stämmer bättre och bättre ju högre frekvensen är. Sålunda är $\boldsymbol{I}(\hat{\boldsymbol{r}})$ försumbar utom i framåtriktningen $\hat{\boldsymbol{r}} = \hat{\boldsymbol{k}}_i$.

Vi beräknar nu värdet på $I(\hat{r})$ i framåtrikningen, och skriver om integranden mha. BAC-CAB-regeln. Använder vi $\hat{k}_i \cdot E_0 = 0$ kan vi skriva om integranden på följande sätt:

$$\underbrace{ \hat{\boldsymbol{k}}_i \times (\hat{\boldsymbol{n}} \times \boldsymbol{E}_0)}_{-\boldsymbol{E}_0(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}})} - \hat{\boldsymbol{k}}_i \times \left(\hat{\boldsymbol{k}}_i \times \left(\underbrace{\hat{\boldsymbol{n}} \times [\hat{\boldsymbol{k}}_i \times \boldsymbol{E}_0]}_{\hat{\boldsymbol{k}}_i(\hat{\boldsymbol{n}} \cdot \boldsymbol{E}_0) - \boldsymbol{E}_0(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}})} \right) \right)$$

$$= -\boldsymbol{E}_0(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}}) + \hat{\boldsymbol{k}}_i \times (\hat{\boldsymbol{k}}_i \times \boldsymbol{E}_0)(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}}) = -2\boldsymbol{E}_0(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}})$$

Tvärsnittsarean, se (3.36), kan skrivas om enligt (se figur 3.8 för definition av ytnormalerna på S_s^+ och S_a):

$$A(\hat{k}_i) = -\iint_{S_s^+} \hat{n}(\mathbf{r}') \cdot \hat{k}_i \, dS' = -\iint_{S_a} \hat{n}(\mathbf{r}') \cdot \hat{k}_i \, dS'$$

eftersom $\nabla' \cdot \hat{k}_i = 0$. Vi får

$$\boldsymbol{I}(\hat{\boldsymbol{k}}_i) = -i\frac{k^2}{2\pi}\boldsymbol{E}_0 \iint_{S_a} \hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}') \, dS' = i\frac{k^2}{2\pi}\boldsymbol{E}_0 A(\hat{\boldsymbol{k}}_i)$$

I en omgivning nära framåtriktningen $\hat{r} = \hat{k}_i$ approximerar vi integranden med

$$\hat{m{r}} imes \left[\hat{m{n}}(m{r}') imes m{E}_0 - \hat{m{r}} imes \left(\hat{m{n}}(m{r}') imes [\hat{m{k}}_i imes m{E}_0]
ight)
ight] pprox -2 m{E}_0(\hat{m{k}}_i \cdot \hat{m{n}}(m{r}'))$$

enligt räkningarna ovan. Exponenten skriver vi om genom att införa en transversell koordinat till riktningen \hat{k}_i enligt:

$$\mathbf{r}' = \mathbf{r}_{\perp}' + z' \hat{\mathbf{k}}_i, \qquad \hat{\mathbf{k}}_i \cdot \mathbf{r}_{\perp}' = 0$$

Följande approximation är lämplig:

$$(\hat{k}_i - \hat{r}) \cdot r' = z' - \hat{r} \cdot r'_{\perp} - z' \underbrace{\hat{r} \cdot \hat{k}_i}_{pprox 1} pprox - \hat{r} \cdot r'_{\perp}$$

Vi får följande approximation nära framåtriktningen $\hat{r} \approx \hat{k}_i$:

$$\boldsymbol{I}(\hat{\boldsymbol{r}}) = -i\frac{k^2}{2\pi}\boldsymbol{E}_0 \iint_{S_a} (\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}'))e^{-ik\hat{\boldsymbol{r}} \cdot \boldsymbol{r}'_{\perp}} dS'$$

Notera att integralen i höger led ger samma värde för alla spridare med samma belysta yta S_s^+ , eftersom $\nabla' \cdot (\hat{k}_i e^{-ik\hat{r} \cdot r'_{\perp}}) = 0$.

Exempel 3.5

Vi skall i detta exempel studera geometrisk-optik-approximationen för en hörnreflektor (dieder), som belyses av en vinkelrätt infallande planvåg. Geometrin och koordinataxlarna visas i figur 3.17. Höjden betecknas med h och den projecerade bredden med b.

I detta speciella exempel kan vi lätt få aperturfältet genom en enkel geometrisk betraktelse med spegling, men det kan vara värdefullt att i detta enkla fall gå igenom det allmänna konstruktionsförfarandet, även om vissa moment nu blir onödigt krångliga.

Vi börjar med att notera att alla vågor förblir plana vågor efter reflektion i hörnreflektorns plana ytor. Vidare inför vi hörnreflektorns två ytor S_1 och S_2 , vars koordinatframställningar är

$$\begin{cases} \boldsymbol{S}_{1}(x,y) = \hat{\boldsymbol{x}}x + \hat{\boldsymbol{y}}y + \hat{\boldsymbol{z}}(l+x), & 0 \le x \le b/2, \quad -h/2 \le y \le h/2 \\ \boldsymbol{S}_{2}(x,y) = \hat{\boldsymbol{x}}x + \hat{\boldsymbol{y}}y + \hat{\boldsymbol{z}}(l-x), & -b/2 \le x \le 0, \quad -h/2 \le y \le h/2 \end{cases}$$

Figur 3.17: Hörnreflektorgeometri för exempel 3.5.

där lär en parameter som anger ytans läge jämfört med origo. Normalvektorerna till ytorna är

$$\left\{egin{array}{l} \hat{m{n}}_1 = rac{-\hat{m{x}}+\hat{m{z}}}{\sqrt{2}} \ \hat{m{n}}_2 = rac{\hat{m{x}}+\hat{m{z}}}{\sqrt{2}} \end{array}
ight.$$

För att kunna använda geometrisk-optik-approximationen, skall vi först bestämma det spridda fältet på aperturytan S_a med strålgångsoptik. Till aperturyta väljer vi ett plan $z = \xi$.

Det infallande fältet är i vårt fall $(\hat{k}_i = -\hat{z}, E_0 \cdot \hat{k}_i = 0),$

$$\boldsymbol{E}_{i}(\boldsymbol{r}) = \boldsymbol{E}_{0}e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}} = \boldsymbol{E}_{0}e^{-ikz}$$

Detta fält reflekteras mha. reflektionssambanden i avsnitt 3.5.1, se (3.32)

$$\left\{egin{aligned} \hat{m{k}}_s = {f R} \cdot \hat{m{k}}_i \ E_s = -{f R} \cdot E_i \ H_s = {f R} \cdot H_i \end{aligned}
ight.$$

I vårt fall delar vi upp reflektionen i två delar, beroende på om reflektionen först sker i ytan S_1 eller S_2 . Reflektionsdyaden är olika för de båda ytorna.

$$\mathbf{R}_i = \mathbf{I} - 2\hat{\boldsymbol{n}}_i \hat{\boldsymbol{n}}_i, \qquad i = 1, 2$$

Vi kommer nu till konstruktion av aperturfältet. I det första fallet sker reflektionen först i ytan S_1 . Reflektionen sker enligt följande sekvens av reflektioner:¹⁷

Infallande fält
$$\longrightarrow S_1 \longrightarrow S_2 \longrightarrow$$
 Aperturfält på S_a

För varje delmoment gäller:

¹⁷I mer komplicerade fall av strålgång måste man bestämma reflektionspunkterna i omvänd ordning.

1. Det infallande fältet propagerar till ytan S_1 där fältet är

$$E_0 e^{ik\hat{k}_i\cdot S_1}$$

Reflectionspuncten beskrivs av $S_1(x_0, y_0), 0 \le x_0 \le b/2, -h/2 \le y_0 \le h/2.$

2. Detta fält reflekteras i ytan S_1 mha. reflektionsdyaden \mathbf{R}_1 . Resultatet blir

$$(-\mathbf{R}_1) \cdot \boldsymbol{E}_0 e^{ik\hat{\boldsymbol{k}}_i \cdot \boldsymbol{S}_1}$$

3. Detta fält propagerar i riktningen $\hat{k}_1 = \mathbf{R}_1 \cdot \hat{k}_i = -\hat{x}$ till ytan S_2 (reflektionspunkt $S_2(-x_0, y_0)$) där fältet har värdet

$$e^{ik\hat{m k}_1\cdot(m S_2-m S_1)}\cdot(-{f R}_1)\cdotm E_0e^{ik\hat{m k}_i\cdotm S_2}$$

där $k\hat{k}_1 \cdot (S_2 - S_1)$ är fasdifferensen mellan strålarna på respektive yta.

4. Reflektionen i ytan S_2 sker med reflektionsdyaden \mathbf{R}_2 .

$$(-\mathbf{R}_2) \cdot e^{ik\hat{\boldsymbol{k}}_1 \cdot (\boldsymbol{S}_2 - \boldsymbol{S}_1)} \cdot (-\mathbf{R}_1) \cdot \boldsymbol{E}_0 e^{ik\hat{\boldsymbol{k}}_1 \cdot \boldsymbol{S}_1}$$

5. Den slutliga propagationen till punkten \boldsymbol{r} på aperturytan S_a sker i riktningen $\hat{\boldsymbol{k}}_{go} = \mathbf{R}_2 \cdot \hat{\boldsymbol{k}}_1 = \mathbf{R}_2 \cdot \mathbf{R}_1 \cdot \hat{\boldsymbol{k}}_i = \hat{\boldsymbol{z}}.$

$$e^{ik\hat{\boldsymbol{k}}_{go}\cdot(\boldsymbol{r}-\boldsymbol{S}_{2})}\cdot(-\mathbf{R}_{2})\cdot e^{ik\hat{\boldsymbol{k}}_{1}\cdot(\boldsymbol{S}_{2}-\boldsymbol{S}_{1})}\cdot(-\mathbf{R}_{1})\cdot\boldsymbol{E}_{0}e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{S}_{1}}$$

Aperturfältet $\boldsymbol{E}_{a}(\boldsymbol{r}) = \boldsymbol{E}_{sgo}(\boldsymbol{r})$ blir sålunda:

$$\boldsymbol{E}_{a}(\boldsymbol{r}) = e^{ik\hat{\boldsymbol{k}}_{go}\cdot(\boldsymbol{r}-\boldsymbol{S}_{2})} \cdot (-\mathbf{R}_{2}) \cdot e^{ik\hat{\boldsymbol{k}}_{1}\cdot(\boldsymbol{S}_{2}-\boldsymbol{S}_{1})} \cdot (-\mathbf{R}_{1}) \cdot \boldsymbol{E}_{0}e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{S}_{1}}$$

Vektordelarna kan förenklas med

$$\mathbf{R}_2 \cdot \mathbf{R}_1 \cdot \boldsymbol{E}_0 = \boldsymbol{E}_0 - 2\hat{\boldsymbol{x}}(\boldsymbol{E}_0 \cdot \hat{\boldsymbol{x}}) = \boldsymbol{E}_0 - 2\hat{\boldsymbol{x}}E_{0x}$$

eftersom $\mathbf{R}_2 \cdot \mathbf{R}_1 = \mathbf{I} - 2\hat{\mathbf{x}}\hat{\mathbf{x}} - 2\hat{\mathbf{z}}\hat{\mathbf{z}}$ och $\mathbf{E}_0 \cdot \hat{\mathbf{z}} = 0$. Hela reflektionen blir därför

$$\boldsymbol{E}_a(x,y) = \left(\boldsymbol{E}_0 - 2\hat{\boldsymbol{x}}E_{0x}\right)e^{ik(\xi-2l)}$$

eftersom

$$e^{ik\hat{k}_{go}\cdot(r-S_2)}e^{ik\hat{k}_1\cdot(S_2-S_1)}e^{ik\hat{k}_i\cdot S_1} = e^{ik(\xi-(l+x_0)-(-x_0-x_0)-(l+x_0))} = e^{ik(\xi-2l)}e^{ik(\xi-2l)}$$

Konstruktionen av den andra delen i aperturfältet där reflektionen först sker i ytan S_2 , dvs.

Infallande fält $\longrightarrow \mathbf{S}_2 \longrightarrow \mathbf{S}_1 \longrightarrow$ Aperturfält på S_a

blir identisk med det första fallet eftersom de båda reflektionsdyaderna \mathbf{R}_i , i = 1, 2 kommuterar (gäller då $\hat{\boldsymbol{n}}_1 \cdot \hat{\boldsymbol{n}}_2 = 0$).

Den allmänna formeln på fjärrfältsamplituden för geometrisk-optik-approximationen, se (3.53) ($\eta = 1$)

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_a} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{sgo}(\boldsymbol{r}') - \eta_0 \hat{\boldsymbol{r}} \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{sgo}(\boldsymbol{r}') \right) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS'$$

förenklas för hörnreflektorn. Vi börjar med att skriva om integranden (notera att på S_a gäller att $z=\xi$ och $\hat{n}=\hat{z})$

$$\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{sgo}(\boldsymbol{r}') - \eta_0 \hat{\boldsymbol{r}} \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{sgo}(\boldsymbol{r}') \right) = (\hat{\boldsymbol{z}} + \hat{\boldsymbol{r}}) \times \boldsymbol{E}_a(x, y)$$

eftersom $\eta_0 \hat{\boldsymbol{z}} \times \boldsymbol{H}_{sgo} = -\boldsymbol{E}_{sgo} = -\boldsymbol{E}_a$. Vi får

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} e^{ik(\xi(1-\cos\theta)-2l)} \hat{\boldsymbol{r}} \times \left[(\hat{\boldsymbol{z}}+\hat{\boldsymbol{r}}) \times (\boldsymbol{E}_0 - 2\hat{\boldsymbol{x}}E_{0x}) \right]$$
$$\cdot \int_{-b/2}^{b/2} dx \int_{-h/2}^{h/2} dy \, e^{-ik(x\sin\theta\cos\phi+y\sin\theta\sin\phi)}$$

där de sfäriska vinklarna θ och ϕ som vanligt definieras av riktningsvektorn \hat{r}

$$\hat{\boldsymbol{r}} = \hat{\boldsymbol{x}}\sin\theta\cos\phi + \hat{\boldsymbol{y}}\sin\theta\sin\phi + \hat{\boldsymbol{z}}\cos\theta$$

Med hjälp av (3.43) får vi

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i \frac{k^2 b h}{4\pi} e^{i k (\xi (1 - \cos \theta) - 2l)} \hat{\boldsymbol{r}} \times [(\hat{\boldsymbol{z}} + \hat{\boldsymbol{r}}) \times (\boldsymbol{E}_0 - 2\hat{\boldsymbol{x}} E_{0x})] \\ \cdot \frac{\sin\left(\frac{k b}{2} \sin \theta \cos \phi\right)}{\frac{k b}{2} \sin \theta \cos \phi} \frac{\sin\left(\frac{k h}{2} \sin \theta \sin \phi\right)}{\frac{k h}{2} \sin \theta \sin \phi}$$
(3.55)

Det är intressant att jämföra detta uttryck med det förenklade uttrycket vi beräknade i nära framåtriktningen, se (3.54).

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i \frac{k^2 b h}{2\pi} e^{i k (\xi (1 - \cos \theta) - 2l)} \hat{\boldsymbol{r}} \times [\hat{\boldsymbol{z}} \times (\boldsymbol{E}_0 - 2 \hat{\boldsymbol{x}} E_{0x})] \\ \cdot \frac{\sin\left(\frac{k b}{2} \sin \theta \cos \phi\right)}{\frac{k b}{2} \sin \theta \cos \phi} \frac{\sin\left(\frac{k h}{2} \sin \theta \sin \phi\right)}{\frac{k h}{2} \sin \theta \sin \phi}, \quad \hat{\boldsymbol{r}} \approx \hat{\boldsymbol{z}}$$

Det differentiella spridningstvärsnittet är

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2}$$

vilket förenklas mha. (3.55) till, se övning 3.10,

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = \frac{k^2 b^2 h^2}{4\pi^2} \frac{(1+\cos\theta)^2}{4} \left| \frac{\sin\left(\frac{kb}{2}\sin\theta\cos\phi\right)}{\frac{kb}{2}\sin\theta\cos\phi} \right|^2 \left| \frac{\sin\left(\frac{kh}{2}\sin\theta\sin\phi\right)}{\frac{kh}{2}\sin\theta\sin\phi} \right|^2$$

vilket är oberoende av polarisationen på det infallande fältet.

Vid den numeriska beräkningen är det lämpligt att normera det differentiella spridningstvärsnittet med $(kbh/2\pi)^2$. Halvvärdesbredden på huvudloben som funktion av frekvensen visas i figur 3.18. Det differentiella spridningstvärsnittet (antenndiagrammet) visas i figur 3.19.

Exempel 3.6

Vi genomför här i detta exempel beräkningarna med geometrisk-optik-approximationen för den cylindriska reflektorn i exempel 3.2 på sidan 99. Många av uttrycken som behövs för dessa beräkningar liksom definitioner hämtar vi från exempel 3.2.

Figur 3.18: Halvvärdesbredd för hörnreflektorn i exempel 3.5. Huvudlobens halvvärdesbredd visas i x-z-planet ($\phi = 0$). Numeriska data är $b = 20/\sqrt{2}$ cm, och h = 20 cm.

Det generella uttrycket för fjärrfältsamplituden i geometrisk-optik-approximationen är, se (3.53) ($\eta = 1$)

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_a} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{sgo}(\boldsymbol{r}') - \eta_0 \hat{\boldsymbol{r}} \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{sgo}(\boldsymbol{r}')) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} dS' \quad (3.56)$$

där integrationen sker över aperturytan S_a .

För att bestämma fjärrfältet från reflektorn beräknar vi först det elektriska fältet i aperturplanet, som vi låter sammanfalla med planet $z = \xi > b^2/16F - F$ (egentligen en rektangulär skiva $z = \xi$, $-b/2 \le x \le b/2$, $-h/2 \le y \le h/2$) framför reflektorn. För varje punkt i aperturplanet finns en entydig strålgångsväg till origo, där antennen är placerad.

Den reflekterade (spridda) riktningen ges av

$$\hat{\boldsymbol{k}}_{s}(x,y) = \hat{\boldsymbol{k}}_{i}(x) - 2\hat{\boldsymbol{n}}(x,y)\left(\hat{\boldsymbol{n}}(x,y)\cdot\hat{\boldsymbol{k}}_{i}(x)\right)$$

där $\hat{k}_i(x)$ ges av (3.41) och $\hat{n}(x,y)$ av (3.38). Enkla räkningar ger

$$\hat{k}_s(x,y) = \hat{k}_s = \frac{\hat{x}4Fx + \hat{z}\left(x^2 - 4F^2\right)}{x^2 + 4F^2} + 2\frac{-\hat{x}x + \hat{z}2F}{\sqrt{x^2 + 4F^2}}\frac{2F}{\sqrt{x^2 + 4F^2}} = \hat{z}$$

dvs. vi har en planvåg efter reflektionen i reflektorn, precis som vi föreskrivit.

Det reflekterade (eller spridda) fälten $E_s(S(x, y))$ och $H_s(S(x, y))$ på reflektorytan kan enkelt bestämmas mha. reflektionssambanden i avsnitt 3.5.1, se (3.32).

$$\begin{cases} \boldsymbol{E}_{s}(\boldsymbol{S}(x,y)) = -\boldsymbol{E}_{i}(\boldsymbol{S}(x,y)) + 2\hat{\boldsymbol{n}}(x,y) \left(\hat{\boldsymbol{n}}(x,y) \cdot \boldsymbol{E}_{i}(\boldsymbol{S}(x,y)) \right) \\ \boldsymbol{H}_{s}(\boldsymbol{S}(x,y)) = \boldsymbol{H}_{i}(\boldsymbol{S}(x,y)) - 2\hat{\boldsymbol{n}}(x,y) \left(\hat{\boldsymbol{n}}(x,y) \cdot \boldsymbol{H}_{i}(\boldsymbol{S}(x,y)) \right) \end{cases}$$

där $E_i(S(x,y))$ och $H_i(S(x,y))$ ges av (3.37). Avståndet från mataren till reflektorn,

Figur 3.19: Differentiella spridningstvärsnittet för hörnreflektorn i exempel 3.5. Det differentiella spridningstvärsnittet normerat med $(kbh/2\pi)^2$, kb = 50, kh = 100.

 $\rho(x)$, ges av (3.39). Resultatet blir

$$\begin{cases} \boldsymbol{E}_{s}(\boldsymbol{S}(x,y)) = -E_{0}\sqrt{\frac{8F}{i\pi k(x^{2}+4F^{2})}}e^{ik(x^{2}+4F^{2})/4F}\hat{\boldsymbol{y}} \\ \boldsymbol{H}_{s}(\boldsymbol{S}(x,y)) = \frac{E_{0}}{\eta_{0}}\sqrt{\frac{8F}{i\pi k(x^{2}+4F^{2})}}e^{ik(x^{2}+4F^{2})/4F}\hat{\boldsymbol{x}} \end{cases}$$
(3.57)

ty, $\hat{\boldsymbol{n}}(x,y) \cdot \hat{\boldsymbol{y}} = 0$, och

$$\frac{\hat{\boldsymbol{x}}(x^2 - 4F^2) - \hat{\boldsymbol{z}}4F\boldsymbol{x}}{x^2 + 4F^2} - 2\frac{-\hat{\boldsymbol{x}}\boldsymbol{x} + \hat{\boldsymbol{z}}2F}{\sqrt{x^2 + 4F^2}} \left(\frac{-\hat{\boldsymbol{x}}\boldsymbol{x} + \hat{\boldsymbol{z}}2F}{\sqrt{x^2 + 4F^2}} \cdot \frac{\hat{\boldsymbol{x}}(x^2 - 4F^2) - \hat{\boldsymbol{z}}4F\boldsymbol{x}}{x^2 + 4F^2}\right) = -\hat{\boldsymbol{x}}$$

Nu återstår endast att bestämma sträckan från reflektionspunkten till aperturplanet. Denna sträcka är $\xi - (x^2/4F - F)$ och fälten i aperturplanet, $E_a = E_{sgo}$ och $H_a = H_{sgo}$, kan skrivas

$$\begin{cases} \boldsymbol{E}_{a}(x,y) = \boldsymbol{E}_{s}(\boldsymbol{S}(x,y))e^{ik\left(\xi - \left(x^{2}/4F - F\right)\right)} \\ \boldsymbol{H}_{a}(x,y) = \boldsymbol{H}_{s}(\boldsymbol{S}(x,y))e^{ik\left(\xi - \left(x^{2}/4F - F\right)\right)} \end{cases}$$

där $\boldsymbol{E}_s(\boldsymbol{S}(x,y))$ och $\boldsymbol{H}_s(\boldsymbol{S}(x,y))$ ges av (3.57).

På aperturytan S_a i (3.56) är $\hat{\boldsymbol{n}} = \hat{\boldsymbol{z}}$. Vi har dessutom att

$$\eta_0 \hat{\boldsymbol{z}} imes \boldsymbol{H}_a(x, y) = -\boldsymbol{E}_a(x, y)$$

vilket ger följande förenklingar i (3.56):

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i\frac{k^2}{4\pi}\hat{\boldsymbol{r}} \times \int_{-b/2}^{b/2} dx \int_{-h/2}^{h/2} dy \left[(\hat{\boldsymbol{z}} + \hat{\boldsymbol{r}}) \times \boldsymbol{E}_a(x, y) \right] e^{-ik(x\sin\theta\cos\phi + y\sin\theta\sin\phi + \xi\cos\theta)}$$

där vi infört de sfäriska vinklarna θ och ϕ för observationspunkten, dvs. $\hat{r} = \hat{x} \sin \theta \cos \phi + \hat{y} \sin \theta \sin \phi + \hat{z} \cos \theta$. Insättning av alla uttryck ger

$$F_{go}(\hat{r}) = -iE_0 \frac{k^2}{4\pi} e^{ik\xi(1-\cos\theta)+2ikF} \hat{r} \times [(\hat{z}+\hat{r})\times\hat{y}] \\ \cdot \int_{-b/2}^{b/2} dx \int_{-h/2}^{h/2} dy \sqrt{\frac{8F}{i\pi k(x^2+4F^2)}} e^{-ik(x\sin\theta\cos\phi+y\sin\theta\sin\phi)}$$

Integralen i y-variabeln utförs analytiskt, se (3.43). Resultatet blir

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = -iE_0 \frac{k^2 h}{4\pi} e^{ik\xi(1-\cos\theta)+2ikF} \frac{\sin(\frac{kh}{2}\sin\theta\sin\phi)}{\frac{kh}{2}\sin\theta\sin\phi} \hat{\boldsymbol{r}} \times [(\hat{\boldsymbol{z}}+\hat{\boldsymbol{r}}) \times \hat{\boldsymbol{y}}] \\ \cdot \int_{-b/2}^{b/2} \sqrt{\frac{8F}{i\pi k(x^2+4F^2)}} e^{-ikx\sin\theta\cos\phi} dx$$
(3.58)

Integrationen i *x*-variabeln måste utföras numeriskt. Liksom för fysikalisk-optik-approximationen kan framåtriktningen lösas analytiskt. Vi får identiskt samma värde som i fysikalisk-optik-approximationen.

$$\begin{aligned} \boldsymbol{F}_{go}(\hat{\boldsymbol{z}}) =& i\hat{\boldsymbol{y}} E_0 \frac{k^2 h}{2\pi} \sqrt{\frac{8F}{i\pi k}} e^{2ikF} \int_{-kb/2}^{kb/2} \frac{dt}{\sqrt{t^2 + 4k^2 F^2}} \\ =& i\hat{\boldsymbol{y}} \frac{k^2 E_0 h}{\pi} \sqrt{\frac{8F}{i\pi k}} e^{2ikF} \ln\left(\frac{b}{4F} + \sqrt{\frac{b^2}{16F^2} + 1}\right) \end{aligned}$$

Beloppet av fjärrfältsamplituden (3.58) i kvadrat kan skrivas

$$|\mathbf{F}_{go}(\hat{\mathbf{r}})|^{2} = \frac{k^{3}|E_{0}|^{2}h^{2}F}{2\pi^{3}} \left| \frac{\sin(\frac{kh}{2}\sin\theta\sin\phi)}{\frac{kh}{2}\sin\theta\sin\phi} \right|^{2} (1+\cos\theta)^{2} \\ \cdot \left| \int_{-kb/2}^{kb/2} \frac{dt}{\sqrt{t^{2}+4k^{2}F^{2}}} e^{-it\sin\theta\cos\phi} \right|^{2}$$

genom förenklingen, se övning 3.10, $|\hat{\boldsymbol{r}} \times [(\hat{\boldsymbol{z}} + \hat{\boldsymbol{r}}) \times \hat{\boldsymbol{y}}]|^2 = (1 + \cos \theta)^2$. I framåtriktningen för reflektorn, $\theta = 0$, får vi

$$\begin{aligned} |\mathbf{F}_{go}\left(\hat{\mathbf{z}}\right)|^{2} &= \frac{2k^{3}|E_{0}|^{2}h^{2}F}{\pi^{3}} \left| \int_{-kb/2}^{kb/2} \frac{dt}{\sqrt{t^{2} + 4k^{2}F^{2}}} \right|^{2} \\ &= \frac{8k^{3}|E_{0}|^{2}h^{2}F}{\pi^{3}} \left| \ln\left(\frac{b}{4F} + \sqrt{\frac{b^{2}}{16F^{2}} + 1}\right) \right|^{2} \end{aligned}$$

Halvvärdesbredden beräknad med geometrisk-optik-approximationen finns illustrerad i figur 3.20, vilken kan jämföras med motsvarande beräkningar med fysikalisk-optik-approximationen i figur 3.12. Beräkningar på fjärrfältsamplituden visas i figur 3.13. Resultatet visar att de båda metoderna i stort sett ger samma resultat. Det är först när vinkeln mellan huvudloben och observationspunkten är 45°, eller större, någon nämnvärd skillnad uppstår. Sidlobsnivån är ca. -13 dB i både E- och H-planet.

Exempel 3.7

I detta exempel genomför vi motsvarande beräkningar som i exempel 3.3 på sidan 104 för geometrisk-optik-approximationen. Beteckningar och beräkningar hämtar vi från exempel 3.3.

För att bestämma fjärrfältet från parabolreflektorn med geometrisk-optik-approximationen bestämmer vi först det elektriska fältet över ett tänkt aperturplan (egentligen en cirkulär skiva med radie a) framför reflektorn. För varje punkt i aperturplanet finns en

Figur 3.20: Lobbredd i grader som funktion av b och h för en cylindrisk reflektor i exempel 3.6. Beräkningarna är gjorda med geometrisk-optik-approximationen. I H-planet (x-z-planet) bestäms b med h = F = 1 m, medan i E-planet (y-z-planet) bestäms h med b = F = 1 m. Frekvensen f = 4 GHz. Jämför figur 3.12 där beräkningarna är utförda med fysikalisk-optik-approximationen.

entydig strålgångsväg till origo, där antennen är placerad. Vi låter aperturplanet sammanfalla med planet $z=\xi>a^2/4F-F.$

Vi känner både det infallande fältet och normalvektorn till reflektorytan, se (3.44), (3.52) och (3.47).

$$\begin{cases} \boldsymbol{E}_{i}\left(\boldsymbol{S}\left(\boldsymbol{\rho},\boldsymbol{\alpha}\right)\right) = -\frac{k}{\epsilon_{0}\omega}\hat{\boldsymbol{k}}_{i}\times\boldsymbol{H}_{i}\left(\boldsymbol{S}\left(\boldsymbol{\rho},\boldsymbol{\alpha}\right)\right) \\ \boldsymbol{H}_{i}\left(\boldsymbol{S}\left(\boldsymbol{\rho},\boldsymbol{\alpha}\right)\right) = k\omega p \frac{e^{ikr'(\boldsymbol{\rho})}}{4\pi r'(\boldsymbol{\rho})} \frac{\hat{\boldsymbol{z}}4F\boldsymbol{\rho}\cos\boldsymbol{\alpha} - \hat{\boldsymbol{x}}\left(\boldsymbol{\rho}^{2} - 4F^{2}\right)}{\boldsymbol{\rho}^{2} + 4F^{2}} \\ \hat{\boldsymbol{n}}(\boldsymbol{\rho},\boldsymbol{\alpha}) = \frac{-\hat{\boldsymbol{\rho}}\boldsymbol{\rho} + \hat{\boldsymbol{z}}2F}{\sqrt{\boldsymbol{\rho}^{2} + 4F^{2}}} \end{cases}$$

där \hat{k}_i och $r'(\rho)$ är, se (3.51) och (3.48)

$$\begin{cases} \hat{\boldsymbol{k}}_{i}\left(\boldsymbol{\rho},\boldsymbol{\alpha}\right) = \frac{\hat{\boldsymbol{\rho}}4F\boldsymbol{\rho} + \hat{\boldsymbol{z}}\left(\boldsymbol{\rho}^{2} - 4F^{2}\right)}{\boldsymbol{\rho}^{2} + 4F^{2}}\\ r'(\boldsymbol{\rho}) = \boldsymbol{\rho}^{2}/4F + F \end{cases}$$

Det reflekterade (eller spridda) fältet ${\pmb E}_s$ på reflektorytan kan enkelt bestämmas mha. relationen

$$\boldsymbol{E}_{s}(\boldsymbol{S}(\rho,\alpha)) = -\boldsymbol{E}_{i}(\boldsymbol{S}(\rho,\alpha)) + 2\hat{\boldsymbol{n}}(\rho,\alpha)\left(\hat{\boldsymbol{n}}(\rho,\alpha)\cdot\boldsymbol{E}_{i}(\boldsymbol{S}(\rho,\alpha))\right)$$

Nu återstår endast sträckan från reflektionspunkten till aperturplanet. Denna sträcka är $\xi - (\rho^2/4F - F)$ och fältet i aperturplanet, E_a , kan skrivas

$$\boldsymbol{E}_{a}(\boldsymbol{\rho},\boldsymbol{\alpha}) = \boldsymbol{E}_{s}(\boldsymbol{S}(\boldsymbol{\rho},\boldsymbol{\alpha}))e^{ik\left(\boldsymbol{\xi} - \left(\boldsymbol{\rho}^{2}/4F - F\right)\right)}$$

Figur 3.21: Olika approximationers frekvensområden. Spridarens typiska längdskala är a, och $k = 2\pi/\lambda$.

Geometrisk-optik-approximationen av fjärrfältsamplituden ges av

$$\boldsymbol{F}_{go}\left(\hat{\boldsymbol{r}}\right) = i\frac{k^{2}}{4\pi}\hat{\boldsymbol{r}} \times \left[\left(\hat{\boldsymbol{z}}+\hat{\boldsymbol{r}}\right) \times \iint_{S_{a}} \boldsymbol{E}_{a}\left(\boldsymbol{r}'\right)e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'}dS'\right]$$
(3.59)

eftersom $\eta_0 \hat{\boldsymbol{z}} \times \boldsymbol{H}_a(\rho, \alpha) = -\boldsymbol{E}_a(\rho, \alpha)$ och där integrationen sker över aperturskivan S_a . Vi inför de sfäriska vinklarna θ och ϕ för observationspunkten. Integrationen i (3.59) måste utföras numeriskt. Vi noterar att \boldsymbol{E}_a inte har någon z-komponent i aperturplanet och definierar $G_x(\hat{\boldsymbol{r}})$ och $G_y(\hat{\boldsymbol{r}})$ enligt

$$\iint_{S_a} \boldsymbol{E}_a\left(\boldsymbol{r}'\right) e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} dS' = \hat{\boldsymbol{x}} G_x(\hat{\boldsymbol{r}}) + \hat{\boldsymbol{y}} G_y(\hat{\boldsymbol{r}})$$

där de komplexa funktionerna $G_x(\hat{r})$ och $G_y(\hat{r})$ bestäms med hjälp av numerisk integration för varje θ och ϕ . Vi har, se övning 3.10,

$$|\hat{\boldsymbol{r}} \times [(\hat{\boldsymbol{z}} + \hat{\boldsymbol{r}}) \times (\hat{\boldsymbol{x}} G_x(\hat{\boldsymbol{r}}) + \hat{\boldsymbol{y}} G_y(\hat{\boldsymbol{r}}))]|^2 = \left(|G_x(\hat{\boldsymbol{r}})|^2 + |G_y(\hat{\boldsymbol{r}})|^2\right) (1 + \cos\theta)^2$$

och beloppet av fjärrfältsamplituden (3.59) i kvadrat kan skrivas

$$|\mathbf{F}_{go}(\hat{\mathbf{r}})|^{2} = \left(\frac{k^{2}}{4\pi}\right)^{2} \left(|G_{x}(\hat{\mathbf{r}})|^{2} + |G_{y}(\hat{\mathbf{r}})|^{2}\right) (1 + \cos\theta)^{2}$$

Beräkningar på fjärrfältsamplituden visas i figur 3.15. Resultatet visar att de båda metoderna väsentligen ger samma resultat för små observationsvinklar. Amplituden i framåtriktningen kan beräknas analytiskt, se övning 3.12. ■

3.6 Långvågsapproximation

I avsnitt 3.5 analyserade vi olika kortvågsapproximationer av spridningsproblemet. Vi fokuserar oss nu på en annan del av frekvensspektrumet, och antar att spridaren är liten jämfört med våglängden. Dessa spridningsproblem har stor praktisk användning, t.ex. vågutbredning i jordatmosfären, optik och atomfysik.

Spridaren i detta avsnitt antas vara passiv och frekvensen låg, eller mer precist uttryckt; våglängden λ är stor jämfört med spridarens utsträckning. Detta leder till användbara approximationer för fjärrfälten i långvågsgränsen, s.k. Rayleighspridning.¹⁸ En grov bild av de olika approximationernas användningsområden återges i figur 3.21, där *a* är spridarens typiska längdskala.

Som utgångspunkt för vår analys väljer vi volymformuleringen från avsnitt 3.1.1. Vi fann att det spridda elektriska fältet $E_s(r)$ i fjärrzonen ges av

$$\boldsymbol{E}_s(\boldsymbol{r}) = rac{e^{ikr}}{kr} \boldsymbol{F}(\hat{\boldsymbol{r}})$$

där, se (3.6)

$$oldsymbol{F}(\hat{oldsymbol{r}})=\hat{oldsymbol{r}} imes(oldsymbol{K}(\hat{oldsymbol{r}}) imes\hat{oldsymbol{r}})$$

och

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{ik^2\eta_0\eta}{4\pi} \iiint_{V_s} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \boldsymbol{J}_s(\boldsymbol{r}') \, dv'$$

Volymen V_s omsluter källorna till det spridda fältet helt, men integralens värde förändras inte om V_s utsträcks till en större volym (t.ex. hela rummet) eftersom $J_s = \mathbf{0}$ utanför V_s .

Vi serieutvecklar exponentialfunktionen i integranden till $K(\hat{r})$.

$$e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} = \sum_{l=0}^{\infty} \frac{(-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}')^l}{l!}$$

Detta ger

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{ik^2\eta_0\eta}{4\pi} \sum_{l=0}^{\infty} \frac{(-ik)^l}{l!} \iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}'\right)^l \, dv'$$

Denna serieutveckling ger långvågsutvecklingen av $K(\hat{r})$ i potenser av vågtalet k. För låga frekvenser förväntar vi oss att endast ett fåtal termer i denna serie skall dominera. Vi studerar de första termerna explicit för att se vilka termer som ger det dominerande bidraget och försöker samtidigt skriva om dessa termer i storheter som är mer välkända, och som på ett enkelt sätt karakteriserar spridaren.

Första termen är l = 0 och följande integral ingår:

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \, dv'$$

 $x\mbox{-}{\rm komponenten}$ av detta uttryck kan skrivas om med hjälp av följande vektoridentitet:

$$\nabla' \cdot (x' \boldsymbol{J}_s(\boldsymbol{r}')) = x' \nabla' \cdot \boldsymbol{J}_s(\boldsymbol{r}') + \hat{\boldsymbol{x}} \cdot \boldsymbol{J}_s(\boldsymbol{r}')$$

Integralens x-komponent blir därför med hjälp av divergenssatsen

$$\iiint_{V_s} \hat{\boldsymbol{x}} \cdot \boldsymbol{J}_s(\boldsymbol{r}') \, dv' = \iiint_{V_s} \nabla' \cdot (x' \boldsymbol{J}_s(\boldsymbol{r}')) \, dv' - \iiint_{V_s} x' \nabla' \cdot \boldsymbol{J}_s(\boldsymbol{r}') \, dv'$$
$$\underbrace{\prod_{S_s} x' \boldsymbol{J}_s(\boldsymbol{r}') \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}') \, dS'}_{S_s}$$

 $^{^{18}}$ Rayleigh-spridning förklarar en rad fenomen, t.ex. himlens blå färg och röda solnedgångar. En populärt hållen historik över ämnet finns att hämta i A.T. Young, "Rayleigh scattering," *Physics Today*, January 1982, 42–48.

Normalytintegralen lämnar inget bidrag eftersom yta
n S_s kan väljas så att den ligger utanför källorn
a ${\pmb J}_s.^{19}$ x-komponenten kan således skrivas om som

$$\iiint_{V_s} \hat{\boldsymbol{x}} \cdot \boldsymbol{J}_s(\boldsymbol{r}') \, dv' = - \iiint_{V_s} x' \nabla' \cdot \boldsymbol{J}_s(\boldsymbol{r}') \, dv'$$

och integralens övriga komponenter fås på liknande sätt. Vi får

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \, dv' = - \iiint_{V_s} \boldsymbol{r}' \nabla' \cdot \boldsymbol{J}_s(\boldsymbol{r}') \, dv'$$

Laddningarnas kontinuitetsekvation, (1.21), kan nu användas för att skriva om $\nabla \cdot \boldsymbol{J}_s$ som en integral som endast innehåller det spridda fältets inducerade laddningsfördelning ρ_s .

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \, dv' = -i\omega \iiint_{V_s} \boldsymbol{r}' \rho_s(\boldsymbol{r}') \, dv'$$

Integralen känns igen som spridarens elektriska dipolmoment p.

$$oldsymbol{p} = \iiint_{V_s} oldsymbol{r}'
ho_s(oldsymbol{r}') \, dv'$$

Detta är en komplex vektor som karakteriserar spridarens inducerade laddningstäthet. Serieutvecklingen av $K(\hat{r})$, med första termen i summan explicit utskriven i spridarens elektriska dipolmoment, blir

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{k^3}{4\pi\epsilon_0\epsilon}\boldsymbol{p} + \frac{ik^2\eta_0\eta}{4\pi}\sum_{l=1}^{\infty}\frac{(-ik)^l}{l!}\int_{V_s}\int \boldsymbol{J}_s(\boldsymbol{r}')\left(\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'\right)^l\,dv'$$

Den första termen i serieutvecklingen av $K(\hat{r})$ är proportionell mot k^3 , dvs. mot frekvensen i kubik.

Vi övergår nu till att analysera andra termen, l = 1. Denna term är något mer komplicerad än den första, men kan analyseras med liknande metoder. Följande integral ingår:

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \, dv'$$

Vi utnyttjar BAC-CAB-regeln för att skriva om integralen på en form där vi kan identifiera kända storheter.

$$\hat{\boldsymbol{r}} \times (\boldsymbol{r}' \times \boldsymbol{J}_s(\boldsymbol{r}')) = \boldsymbol{r}' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{J}_s(\boldsymbol{r}') \right) - \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right)$$

Detta uttryck används för att skriva om integralen som

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \, dv' = \iiint_{V_s} \left\{ \boldsymbol{r}' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{J}_s(\boldsymbol{r}') \right) - \hat{\boldsymbol{r}} \times \left(\boldsymbol{r}' \times \boldsymbol{J}_s(\boldsymbol{r}') \right) \right\} \, dv'$$

 $^{^{19}}$ Vi antar för enkelhets skull att strömtä
theten \boldsymbol{J}_s är en kontinuerlig funktion. Generalisering
ar är möjliga.

Den sista termen kan nu identifieras med spridarens magnetiska dipolmoment m.

$$oldsymbol{m} = rac{1}{2} \iiint\limits_{V_s} oldsymbol{r}' imes oldsymbol{J}_s(oldsymbol{r}') \, dv'$$

Detta är en komplex vektor som karakteriserar spridarens inducerade strömtäthet. Integralen kan därför skrivas som

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \, dv' = \iiint_{V_s} \boldsymbol{r}' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{J}_s(\boldsymbol{r}') \right) \, dv' + 2\boldsymbol{m} \times \hat{\boldsymbol{r}}$$

 eller

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \, dv' = \frac{1}{2} \iiint_{V_s} \left\{ \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) + \boldsymbol{r}' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{J}_s(\boldsymbol{r}') \right) \right\} dv' + \boldsymbol{m} \times \hat{\boldsymbol{r}}$$

Integralen i högerledet analyserar vi lättare om, som ovan, vi först studerar integralens x-komponent. x-komponenten av första termen på höger sida kan skrivas om med hjälp av vektoridentiteten

$$\nabla' \cdot (x' \boldsymbol{J}_{s}(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right)) = \underbrace{\nabla' \left(x' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \right)}_{\hat{\boldsymbol{x}}(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}') + x' \hat{\boldsymbol{r}}} \cdot \boldsymbol{J}_{s}(\boldsymbol{r}') + x' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \nabla' \cdot \boldsymbol{J}_{s}(\boldsymbol{r}')$$

 eller

$$(\hat{\boldsymbol{r}}\cdot\boldsymbol{r}')\,\hat{\boldsymbol{x}}\cdot\boldsymbol{J}_{s}(\boldsymbol{r}')+x'\,(\hat{\boldsymbol{r}}\cdot\boldsymbol{J}_{s}(\boldsymbol{r}'))=\nabla'\cdot(x'\boldsymbol{J}_{s}(\boldsymbol{r}')\,(\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'))-x'\,(\hat{\boldsymbol{r}}\cdot\boldsymbol{r}')\,\nabla'\cdot\boldsymbol{J}_{s}(\boldsymbol{r}')$$

Integralens x-komponent kan nu skrivas om

$$\iiint_{V_s} \hat{\boldsymbol{x}} \cdot \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \, dv' = -\frac{1}{2} \iiint_{V_s} x' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \nabla' \cdot \boldsymbol{J}_s(\boldsymbol{r}') \, dv' + \hat{\boldsymbol{x}} \cdot \left(\boldsymbol{m} \times \hat{\boldsymbol{r}} \right)$$

där vi åter använt divergensteoremet för att transformera till en normalytintegral som inte ger något bidrag. Integralens övriga komponenter behandlas på liknande sätt och integralen blir totalt

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \, dv' = -\frac{1}{2} \iiint_{V_s} \boldsymbol{r}' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \nabla' \cdot \boldsymbol{J}_s(\boldsymbol{r}') \, dv' + \boldsymbol{m} \times \hat{\boldsymbol{r}}$$

Utnyttjar vi nu åter laddningens kontinuitetsekvation, (1.21), får vi

$$\iiint_{V_s} \boldsymbol{J}_s(\boldsymbol{r}') \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \, dv' = -\frac{i\omega}{2} \iiint_{V_s} \boldsymbol{r}' \left(\hat{\boldsymbol{r}} \cdot \boldsymbol{r}' \right) \rho_s(\boldsymbol{r}') \, dv' + \boldsymbol{m} \times \hat{\boldsymbol{r}}$$

Från denna analys ser vi att l = 1-termen i serieutvecklingen av $K(\hat{r})$ bidrar med

$$\frac{k^3\eta_0\eta}{4\pi}\left[\boldsymbol{m}\times\hat{\boldsymbol{r}}+O(kd)\right]$$

Figur 3.22: Geometri för flerspridarfallet.

där $d = \max_{r \in V_s} r$ är spridarens maximala radie.

De högre termerna (l > 1) i serieutvecklingen av $K(\hat{r})$ bidrar med högre än kubiska potenser av k.

Vi kan nu summera de två första bidragen i serieutvecklingen av $F(\hat{r})$ och erhåller $F(\hat{r})$:s utveckling i långvågsgränsen.

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \frac{k^3}{4\pi\epsilon_0\epsilon} \left[\hat{\boldsymbol{r}} \times (\boldsymbol{p} \times \hat{\boldsymbol{r}}) + \frac{\sqrt{\epsilon\mu}}{c_0} \boldsymbol{m} \times \hat{\boldsymbol{r}} + O(kd) \right]$$

Vi ser att i långvågsgränsen så karakteriseras spridningsproblemet fullständigt av spridarens elektriska och magnetiska dipolmoment \boldsymbol{p} och \boldsymbol{m} . Utvecklingen av $\boldsymbol{F}(\hat{\boldsymbol{r}})$ är proportionell mot k^3 , dvs. mot frekvensen i kubik.

3.7 Spridning mot flera objekt

Vi skall i detta avsnitt behandla spridning mot flera enskilda objekt eller spridare. Detta spridningsproblem är utomordentligt komplicerat, eftersom det fält som exciterar varje spridare får bidrag från det sprida fältet från alla övriga spridare i problemet—s.k. multipelspridning. Är antalet spridare stort leder detta till ett komplicerat växelverkansspel som är mycket svårt att lösa. Vi skall därför i detta avsnitt begränsa oss till det specialfall där alla multipelspridningseffekter kan försummas. Det exciterande (infallande) fältet på varje enskild spridare approximeras därför med det av de yttre källorna genererande fältet, E_i .

Antag att vi har N stycken spridare, vars geometri schematiskt visas i figur 3.22. Vi studerar en godtyckligt utvald spridare n, vars placering relativt ett gemensamt origo är given av ortsvektorn \mathbf{r}_n , n = 1, 2, ..., N. Det av yttre källor genererade planvågsfältet med infallsriktning $\hat{\mathbf{k}}_i$ är

$$oldsymbol{E}_i(oldsymbol{r}) = oldsymbol{E}_0 e^{ikoldsymbol{k}_i\cdotoldsymbol{r}}$$

där E_0 är det infallande fältets amplitud i origo. Detta fält har vid spridare n amplituden ($r = r_n$, definierar ett i spridare n lokalt origo)

$$oldsymbol{E}_{0n}=oldsymbol{E}_i(oldsymbol{r}_n)=oldsymbol{E}_0e^{ikoldsymbol{k}_i\cdotoldsymbol{r}_n}$$

Bidraget till det spridda fältet från spridaren n ges i fjärrzonen av

$$\frac{e^{ikr'_n}}{kr'_n}\boldsymbol{F}_n(\hat{\boldsymbol{r}}'_n)$$

där \mathbf{r}'_n är ortsvektorn från det i spridaren *n*:s lokala origo till mätpunkten \mathbf{r} , se figur 3.22, och $r'_n = |\mathbf{r}'_n|$, $\hat{\mathbf{r}}'_n = \mathbf{r}'_n/r'_n$. Notera att $\mathbf{F}_n(\hat{\mathbf{r}}'_n)$ är fjärrfältsamplituden för ett infallande fält $\mathbf{E}_{0n} \exp\{ik\hat{\mathbf{k}}_i \cdot \mathbf{r}'_n\}$, dvs.

$$oldsymbol{F}_n(\hat{oldsymbol{r}}'_n) = \mathbf{S}_n(\hat{oldsymbol{r}}'_n, \hat{oldsymbol{k}}_i) \cdot oldsymbol{E}_{0n} = \mathbf{S}_n(\hat{oldsymbol{r}}'_n, \hat{oldsymbol{k}}_i) \cdot oldsymbol{E}_0 e^{ik\hat{oldsymbol{k}}_i \cdot oldsymbol{r}_n}$$

Det spridda fältet från alla spridarna, om alla multipelspridningseffekter försummas, blir summan av de enskilda spridarnas bidrag.

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = \sum_{n=1}^{N} \frac{e^{ikr'_{n}}}{kr'_{n}} \boldsymbol{F}_{n}(\hat{\boldsymbol{r}}'_{n}) = \sum_{n=1}^{N} \frac{e^{ikr'_{n}}}{kr'_{n}} e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}_{n}} \mathbf{S}_{n}(\hat{\boldsymbol{r}}'_{n},\hat{\boldsymbol{k}}_{i}) \cdot \boldsymbol{E}_{0}$$

Vi antar nu att mätpunkten befinner sig på stort avstånd från alla spridare, dvs. att $r \gg r_n$, n = 1, 2, ..., N. Vi approximerar på vanligt sätt $(d = \max_n |\boldsymbol{r}_n|)$

$$r'_n = |\boldsymbol{r} - \boldsymbol{r}_n| = r \left\{ 1 - \hat{\boldsymbol{r}} \cdot \frac{\boldsymbol{r}_n}{r} + O(d^2/r^2) \right\} = r - \hat{\boldsymbol{r}} \cdot \boldsymbol{r}_n + O(d^2/r), \text{ då } r \to \infty$$

och vi får $(\hat{\pmb{r}}_n'\approx\hat{\pmb{r}})$

$$\boldsymbol{E}_s(\boldsymbol{r}) = \frac{e^{ikr}}{kr} \boldsymbol{F}(\hat{\boldsymbol{r}})$$

där den totala fjärrfältsamplituden $\boldsymbol{F}(\hat{\boldsymbol{r}})$ ges av

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \sum_{n=1}^{N} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}_n} \boldsymbol{F}_n(\hat{\boldsymbol{r}}) = \sum_{n=1}^{N} e^{ik\boldsymbol{q}\cdot\boldsymbol{r}_n} \mathbf{S}_n(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0$$
(3.60)

Här har vi infört vektorn q definierad genom

$$m{q} = \hat{m{k}}_i - \hat{m{r}}$$

Denna vektor anger förändringen hos vågens utbredningsriktning pga. spridningen. Hela samlingens spridningsdyad $\mathbf{S}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i)$ kan identifieras från dessa uttryck.

$$oldsymbol{F}(\hat{oldsymbol{r}}) = \mathbf{S}(\hat{oldsymbol{r}},\hat{oldsymbol{k}}_i)\cdotoldsymbol{E}_0$$

där

$$\mathbf{S}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = \sum_{n=1}^{N} e^{ik\boldsymbol{q}\cdot\boldsymbol{r}_n} \mathbf{S}_n(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i)$$

Speciellt gäller i framåtriktningen $\hat{r} = \hat{k}_i$ att

$$\mathbf{S}(\hat{oldsymbol{k}}_i, \hat{oldsymbol{k}}_i) = \sum_{n=1}^N \mathbf{S}_n(\hat{oldsymbol{k}}_i, \hat{oldsymbol{k}}_i)$$

I framåtriktningen samverkar alla fasfaktorer och vi har s.k. koherent spridning.

Det optiska teoremet, (3.25) på sidan 91, kan användas för att beräkna det totala tvärsnittet σ_t för hela samlingen spridare uttryckt i de enskilda spridarnas totala tvärsnitt σ_{tn} . Vi får

$$\sigma_t = \frac{4\pi}{k^2} \operatorname{Im}\left\{\frac{\boldsymbol{E}_0^* \cdot \mathbf{S}(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0}{|\boldsymbol{E}_0|^2}\right\} = \sum_{n=1}^N \frac{4\pi}{k^2} \operatorname{Im}\left\{\frac{\boldsymbol{E}_0^* \cdot \mathbf{S}_n(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0}{|\boldsymbol{E}_0|^2}\right\} = \sum_{n=1}^N \sigma_{tn}$$

där de enskilda spridarnas totala tvärsnitt σ_{tn} är

$$\sigma_{tn} = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{\boldsymbol{E}_{0n}^* \cdot \mathbf{S}_n(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_{0n}}{|\boldsymbol{E}_{0n}|^2} \right\} = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{\boldsymbol{E}_0^* \cdot \mathbf{S}_n(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0}{|\boldsymbol{E}_0|^2} \right\}$$

Om alla spridarna är lika, dvs. $\mathbf{S}_n(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = \mathbf{s}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i), n = 1, 2, \dots, N$, kan den totala fjärrfältsamplituden $\boldsymbol{F}(\hat{\boldsymbol{r}})$ i (3.60) förenklas.

$$oldsymbol{F}(\hat{oldsymbol{r}}) = \mathbf{s}(\hat{oldsymbol{r}}, \hat{oldsymbol{k}}_i) \cdot oldsymbol{E}_0 \sum_{n=1}^N e^{ikoldsymbol{q}\cdotoldsymbol{r}_n}$$

I detta specialfall ser vi att fjärrfältsamplituden väsentligen är fjärrfältsamplituden för en enskild spridare multiplicerat med en komplex faktor. Speciellt gäller för det differentiella spridningstvärsnittet

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2} = \frac{|\mathbf{s}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0|^2}{k^2 |\boldsymbol{E}_0|^2} \mathcal{F}(\hat{\boldsymbol{r}})$$

där fasfaktorn $\mathcal{F}(\hat{\boldsymbol{r}})$ ges av

$$\mathcal{F}(\hat{m{r}}) = \left|\sum_{n=1}^{N} \exp\left\{ikm{q}\cdotm{r}_n
ight\}
ight|^2$$

Denna storhet kallas även strukturfaktor och kan skrivas som

$$\mathcal{F}(\hat{m{r}}) = \sum_{n,n'=1}^{N} \exp\left\{ikm{q}\cdot(m{r}_n-m{r}_{n'})
ight\}$$

Speciellt gäller att strukturfaktorn i framåtriktningen $\hat{\boldsymbol{r}} = \hat{\boldsymbol{k}}_i$ är

$$\mathcal{F}(\hat{k}_i) = N^2$$

Figur 3.23: Det totala spridningstvärsnittet $\sigma_s/2\pi a^2$ för en cirkulär skiva med radie *a* i långvågsgränsen. Den infallande planvågen infaller vinkelrätt mot diskens plan. Notera log-log skalan och normeringen.

Exempel 3.8

Ett specialfall är ett stort antal slumpmässigt (likformigt) fördelade spridare. Vi antar vidare att $q \neq 0$. I så fall ger alla termer $n \neq n'$ i summan för $\mathcal{F}(\hat{r})$ ett försumbart bidrag och de enda termer som bidrar är n = n'. Detta ger

$$\mathcal{F}(\hat{\boldsymbol{r}}) = N$$

och det differentiella spridningstvärsnittet blir

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = N \frac{|\mathbf{s}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0|^2}{k^2 |\boldsymbol{E}_0|^2}, \quad \hat{\boldsymbol{r}} \neq \hat{\boldsymbol{k}}_i$$

Denna typ av spridning kallas inkoherent superposition av de individuella spridningsbidragen. Det differentiella spridningstvärsnittet är i detta fall enspridartvärsnittet multiplicerat med totala antalet spridare. Ett litet enskilt tvärsnitt kan i detta fall ge ett betydande bidrag om antalet spridare är stort. ■

Exempel 3.9

Om antalet spridare är stort (vilket kan vara i strid med antagandet att multipelspridningseffekterna är försumbara), och avståndet mellan spridarna är litet jämfört med våglängden, kan vi göra en gränsövergång från summa till integral i spridningsdyaden. Vi antar liksom tidigare i avsnittet att spridarna är små och får

$$\mathbf{S}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) = \sum_{n=1}^{N} e^{ik\boldsymbol{q}\cdot\boldsymbol{r}_n} \mathbf{S}_n(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \to \iiint_V e^{ik\boldsymbol{q}\cdot\boldsymbol{r}'} \mathbf{S}(\boldsymbol{r}', \hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \, dv'$$

där integrationen sker över volymen V som innehåller spridarna och dv' = dx'dy'dz'. Dyadfältet $\mathbf{S}(\mathbf{r}, \hat{\mathbf{r}}, \hat{\mathbf{k}}_i)$ är antalet spridare per volymsenhet i punkten \mathbf{r} multiplicerat med den enskilda spridarens spridningsdyad i denna punkt.

Figur 3.24: Det totala spridningstvärsnittet $\sigma_s/2\pi a^2$ för en cirkulär skiva med radie *a* jämfört med en kortvågsapproximation. Den infallande planvågen infaller vinkelrätt mot diskens plan. Notera normeringen.

3.8 Några numeriska exempel

I detta avsnitt exemplifierar vi teorin i de tidigare avsnitten med ett antal numeriska exempel. I litteraturen finns färdiga datorprogram tillgängliga, t.ex. ref. 3. Flera av de exempel som finns återgivna i detta avsnitt är beräknade med program från denna källa.

Exempel 3.10

Ett exempel på hur det totala spridningstvärsnittet σ_s varierar som funktion av frekvensen ka för en perfekt ledande spridare ges i figurerna 3.23 och 3.24. Spridaren är i detta exempel en perfekt ledande disk²⁰ och den infallande planvågen infaller vinkelrätt mot diskens plan. Eftersom disken är perfekt ledande är det totala spridningstvärsnittet σ_s lika med det totala tvärsnittet σ_t .

$$\frac{\sigma_s}{2\pi a^2} = \frac{64}{27\pi^2} (ka)^4 \left\{ 1 + \frac{22}{25} (ka)^2 + O((ka)^4) \right\}$$

se t.ex. G. Kristensson and P.C. Waterman, "The T-matrix for acoustic and electromagnetic scattering by circular disks," *J. Acoust. Soc. Am.*, **72**(5), 1612–1625 (1982). Denna referens innehåller även den exakta lösningen. Kortvågsapproximation fås t.ex. från F.B. Sleator, "The Disc" kapitel 14 i *Electromagnetic and Acoustic Scattering by Simple Shapes*, Eds. J.J. Bowman, T.B.A. Senior, P.L.E. Uslenghi, North-Holland, Amsterdam (1969). Resultatet är

$$\frac{\sigma_s}{2\pi a^2} = 1 - \frac{1}{ka\sqrt{\pi ka}} \sin\left(2ka - \frac{\pi}{4}\right) + \frac{1}{(ka)^2} \left[\frac{3}{4} - \frac{1}{2\pi}\cos 4ka\right] \\ - \frac{1}{4(ka)^2\sqrt{\pi ka}} \left[\frac{1}{\pi}\sin\left(6ka - \frac{3\pi}{4}\right) + \frac{27}{4}\cos\left(2ka - \frac{\pi}{4}\right)\right] + O((ka)^{-3})$$

²⁰ Rayleigh-approximationen ges av

Figur 3.25: Spridningsmatriselementen $|S_{\parallel\perp}|^2$ och $|S_{\perp\perp}|^2$ för en dielektrisk sfäroid. Spridaren är en dielektrisk sfäroid med halvaxelförhållande a/b = 2 (halvaxel aär längs sfäroidens symmetriaxel och halvaxel b vinkelrätt mot symmetriaxeln och ka = 10. Den dielektriska sfäroidens material är $\epsilon = 2.25$ och $\mu = 1$ (omgivande material antas vara vakuum). Sfäroidens symmetriaxel lutar 45° mot z-axeln och 45° mot spridningsplanet som utgörs av x-z-planet, se figur 3.26. Det infallande elektriska fältet är polariserat vinkelrätt mot spridningsplanet, dvs. i \hat{y} -riktningen, och infaller längs den positiva \hat{z} -riktningen. Spridningsvinkeln θ är vinkeln mellan den positiva \hat{z} -riktningen och observationsriktningen \hat{r} . Det totala spridningstvärsnittet $\sigma_s/\pi a^2 = \sigma_t/\pi a^2 = 1.140$.

Vi ser att långvågsapproximationen är mycket god vid låga frekvenser (långa våglängder) precis som vår analys förutsagt. Kortvågsapproximationen ger i detta fall mycket god överensstämmelse även för relativt låga frekvenser. Som framgår av fotnot 20 innehåller denna kortvågsapproximation flera termer i potenser av $1/\sqrt{ka}$, beräknade med geometrisk diffraktionsteori, vilket är anledningen till den goda överensstämmelsen. Bidraget från fysikalisk-optik-approximationen beräknas i övning 3.4.

Vidare ser vi att det totala spridningstvärsnittet i gränsen mot höga frekvenser (korta våglängder) närmar sig värdet $2\pi a^2$ vilket är dubbla den geometriska tvärsnittsarean (förutsägs av fysikalisk-optik-approximationen), jfr exempel 3.1 på sidan 98. Vi ser också att disken sprider mest i resonansområdet vid $ka \approx 2$.

Ar spridaren ej perfekt ledande tränger fälten in i spridaren, t.ex. i dielektriska material. Materialet kan dessutom ha ledningsförmåga, dvs. förluster. Vi får i detta fall spridningsegenskaper som är helt annorlunda jämfört med den perfekt ledande spridaren.

Exempel 3.11

Ett exempel på spridning mot en dielektrisk kropp med sfäroidisk form ges i figur 3.25. Den dielektriska sfäroiden har halvaxlarna a och b, där a är parallell med sfäroidens symmetriaxel. I det avbildade fallet är axelförhållandet a/b = 2 och sfäroidens dielektriska

Figur 3.26: Definition av geometrin för spridaren och det infallande fältets polarisation i figur 3.25.

parametrar $\epsilon = 2.25$ och $\mu = 1$ (omgivande material antas vara vakuum). Sfäroidens symmetriaxel lutar 45° mot z-axeln och 45° mot spridningsplanet, se figur 3.26. Det infallande elektriska fältet är polariserat vinkelrätt mot spridningsplanet, som här är x-z-planet. Notera att kurvorna inte är symmetriska kring $\theta = 180^{\circ}$ och att intensiteterna parallellt, respektive vinkelrätt mot spridningsplanet inte är lika. Varje maximum anger en sidolob. Notera också att det finns olika antal sidolober för det spridda fältets två polarisationer.

Exempel 3.12

I detta exempel illustrerar vi resonansfenomen i en dielektrisk spridare, se figur 3.27. Spridaren är i detta exempel en sfär med radie a och sfärens materialparametrar är $\epsilon = 4$ och $\mu = 1$ (omgivande material antas vara vakuum). Vi ser att vid speciella frekvenser sprider den dielektriska sfären kraftigt. Detta exempel visar att det sker en ökning av spridningen på ca 30% vid dessa speciella resonansfrekvenser. Dessa resonanser beror på spridarens form och dess materialegenskaper. Beräkningarna av olika spridningstvärsnitt för sfäriska spridare presenteras i detalj i kapitel 4.

Övningar till kapitel 3

3.1 Beräkna fjärrfältsamplituden $F(\hat{r})$ från en rak, tunn antenn, som är orienterad längs z-axeln. Antennen befinner sig i vakuum och har längden l, se figur 3.28.

Figur 3.27: Det totala spridningstvärsnittet $\sigma_s/\pi a^2$ för en dielektrisk sfär. Sfärens materialparametrar är $\epsilon = 4$ och $\mu = 1$ (relativa värden jämfört med omgivande material). Notera normeringen.

Strömtätheten i antennen antas vara

$$\boldsymbol{J}_{s}(\boldsymbol{r},\omega) = \begin{cases} I_{0}\hat{\boldsymbol{z}}\sin k(\frac{l}{2}-|\boldsymbol{z}|)\delta(\boldsymbol{x})\delta(\boldsymbol{y}), & |\boldsymbol{z}| \leq \frac{l}{2} \\ \boldsymbol{0}, & \text{för övrigt} \end{cases}$$

där δ är deltafunktionen och $k = \omega/c_0$.

***3.2** Beräkna fjärrfältsamplituden $F(\hat{r})$ från en plan, cirkulär strömförande slinga i xy-planet. Slingan befinner sig i vakuum och har en radie a och i slingan flyter den totala strömmen I, se figur 3.29. Strömtätheten ges i sfäriska koordinater av

$$\boldsymbol{J}_{s}(\boldsymbol{r},\omega) = \boldsymbol{J}_{s}(r,\theta,\phi,\omega) = \frac{I\hat{\boldsymbol{\phi}}}{a}\delta(r-a)\delta(\theta-\pi/2)$$

där δ är deltafunktionen. Inför dessutom en lämplig approximation och beräkna fjärrfältsamplituden i långvågsgränsen.

Lämpliga integraler:

$$\begin{cases} \int_0^{2\pi} \sin \alpha e^{iz \cos(\alpha - \phi)} \, d\alpha = i2\pi J_1(z) \sin \phi \\ \int_0^{2\pi} \cos \alpha e^{iz \cos(\alpha - \phi)} \, d\alpha = i2\pi J_1(z) \cos \phi \end{cases}$$

där $J_1(z)$ är Besselfunktionen av ordning 1.

3.3 En metallisk reflektor har formen av en plan, tunn, rektangulär skiva (sidor a och b), se figur 3.30. Reflektorn matas med en planvåg rakt ovanifrån och polarisationen på det matande elektriska fältet är parallellt med sidan a, dvs.

$$\boldsymbol{E}_i(\boldsymbol{r}) = \hat{\boldsymbol{x}} E_0 e^{-ikz}$$

Figur 3.28: Geometri för övning 3.1.

Figur 3.29: Geometri för övning 3.2.

Beräkna fjärrfältsamplituden $F(\hat{r})$ med fysikalisk-optik-approximationen, det totala tvärsnittet σ_t med hjälp av det optiska teoremet, samt det totala spridningstvärsnittet σ_s .

***3.4** En metallisk reflektor har formen av en plan, tunn, cirkulär skiva (radie a), se figur 3.31. Reflektorn matas med en planvåg rakt ovanifrån, dvs.

$$\boldsymbol{E}_i(\boldsymbol{r}) = \boldsymbol{E}_0 e^{-ikz}$$

Beräkna fjärrfältsamplituden $F(\hat{r})$ med fysikalisk-optik-approximationen, det totala tvärsnittet σ_t med hjälp av det optiska teoremet, samt det totala spridningstvärsnittet σ_s .

- **3.5** Beräkna fjärrfältsamplituden $F(\hat{r})$ i reflektorns framåtriktning $\hat{r} = \hat{z}$ för samma geometri och infallande fält som i övning 3.4 men med geometrisk-optik-approximationen.
- **3.6** Beräkna spridningsmatrisen i långvågsapproximationen för en infallande planvåg mot en dielektrisk sfär med radie a och dielektricitetsfunktionen ϵ samt permeabilitet

Figur 3.30: Geometri för övning 3.3.

Figur 3.31: Geometri för övning 3.4.

 $\mu=1$ ($\mu=\epsilon=1$ i omgivande material). Den infallande planvågen ges av

$$\boldsymbol{E}_i(\boldsymbol{r}) = \hat{\boldsymbol{p}}_0 E_0 e^{ik\hat{\boldsymbol{k}}_i \cdot \boldsymbol{r}}$$

Beräkna först det spridda fältets ekvivalenta elektriska dipolstyrka p.

$$\boldsymbol{p} = 4\pi\epsilon_0 E_0 a^3 \frac{\epsilon - 1}{\epsilon + 2} \hat{\boldsymbol{p}}_0$$

 \hat{p}_0 är den infallande planvågens elektriska fälts polarisationsvektor. Beräkna också det totala spridningstvärsnittet σ_s för en opolariserad infallande planvåg.

3.7 Beräkna spridningsmatrisen i långvågsapproximationen för en infallande planvåg mot en perfekt ledande sfär med radie a ($\mu = \epsilon = 1$ i omgivande material). Den infallande planvågen ges av

$$\boldsymbol{E}_i(\boldsymbol{r}) = \hat{\boldsymbol{p}}_0 E_0 e^{ik\hat{\boldsymbol{k}}_i\cdot\boldsymbol{r}}$$

Beräkna först det spridda fältets ekvivalenta elektriska och magnetiska dipolstyrkor

 $p \operatorname{och} m$.

$$\boldsymbol{p} = 4\pi\epsilon_0 E_0 a^3 \hat{\boldsymbol{p}}_0$$
$$\boldsymbol{m} = -\frac{2\pi}{\mu_0 c_0} E_0 a^3 \hat{\boldsymbol{k}}_i \times \hat{\boldsymbol{p}}_0$$

 \hat{p}_0 är den infallande planvågens elektriska fälts polarisationsvektor. Beräkna också det totala spridningstvärsnittet σ_s för en opolariserad infallande planvåg.

3.8 Beräkna fjärrfältsamplituden i bakåtriktningen i fysikalisk-optik-approximationen för en infallande planvåg mot en perfekt ledande sfär med radie a ($\mu = \epsilon = 1$ i omgivande material). Den infallande planvågen ges av

$$\boldsymbol{E}_i(\boldsymbol{r}) = \boldsymbol{E}_0 e^{ik\boldsymbol{k}_i \cdot \boldsymbol{r}}$$

3.9 Ekvationerna (3.13) och (3.14) ger två olika uttryck på fjärrfältsamplituden med ytintegralsrepresentationen. Skillnaden mellan dessa framställningar är följande integral:

$$\hat{\boldsymbol{r}} \times \iint_{S_s} \left[\hat{\boldsymbol{n}} \times \boldsymbol{E}_i(\boldsymbol{r}') - \eta_0 \eta \hat{\boldsymbol{r}} \times \left(\hat{\boldsymbol{n}} \times \boldsymbol{H}_i(\boldsymbol{r}') \right) \right] e^{-ik\hat{\boldsymbol{r}} \cdot \boldsymbol{r}'} \, dS'$$

där E_i - och H_i -fälten är det infallande fältet. Visa att denna integral är noll för varje E_i - och H_i -fält som satisfierar

$$\begin{cases} \nabla \times \boldsymbol{E}_{i} = i k \eta_{0} \eta \boldsymbol{H}_{i} \\ \nabla \times \boldsymbol{H}_{i} = -i \frac{k}{\eta_{0} \eta} \boldsymbol{E}_{i} \end{cases} \quad \boldsymbol{r} \in V_{s}$$

där V_s är den volym som innesluts av den slutna ytan S_s .

 $3.10 \ {\rm Visa \ att}$

$$|\hat{\boldsymbol{r}} \times [(\hat{\boldsymbol{z}} + \hat{\boldsymbol{r}}) \times \boldsymbol{A}]|^2 = (1 + \cos \theta)^2 |\boldsymbol{A}|^2$$

där $\hat{\boldsymbol{r}} \cdot \hat{\boldsymbol{z}} = \cos \theta$ och $\hat{\boldsymbol{z}} \cdot \boldsymbol{A} = 0$.

- **3.11** Beräkna fjärrfältsamplituden $F_{fo}(\hat{z})$ med fysikalisk-optik-approximationen i framåtriktningen, $\theta = 0$, för den parabolreflektor som beskrivs i exempel 3.3.
- **3.12** Beräkna fjärrfältsamplituden $F_{go}(\hat{z})$ med geometrisk-optik-approximationen i framåtriktningen, $\theta = 0$, för den parabolreflektor som beskrivs i exempel 3.7.

Sammanfattning av kapitel 3

Fjärrfältsamplituder

$$\begin{split} \boldsymbol{E}_{s}(\boldsymbol{r}) &= \frac{e^{ikr}}{kr} \boldsymbol{F}(\hat{\boldsymbol{r}}) \\ \boldsymbol{F}(\hat{\boldsymbol{r}}) &= \frac{ik^{2}\eta_{0}\eta}{4\pi} \hat{\boldsymbol{r}} \times \left(\iiint_{V_{s}} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \boldsymbol{J}_{s}(\boldsymbol{r}') \, d\boldsymbol{v}' \times \hat{\boldsymbol{r}} \right) \\ \boldsymbol{F}(\hat{\boldsymbol{r}}) &= i\frac{k^{2}}{4\pi} \hat{\boldsymbol{r}} \times \iiint_{S_{s}} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{s}(\boldsymbol{r}') - \eta_{0}\eta\hat{\boldsymbol{r}} \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{s}(\boldsymbol{r}')) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS' \\ \boldsymbol{F}(\hat{\boldsymbol{r}}) &= i\frac{k^{2}}{4\pi} \hat{\boldsymbol{r}} \times \iiint_{S_{s}} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}(\boldsymbol{r}') - \eta_{0}\eta\hat{\boldsymbol{r}} \times (\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}(\boldsymbol{r}')) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS' \end{split}$$

Utstrålningsvillkor

$$\begin{aligned} & (\hat{\boldsymbol{r}} \times \boldsymbol{E}_s(\boldsymbol{r})) - \eta_0 \eta \boldsymbol{H}_s(\boldsymbol{r}) = o((kr)^{-1}) \\ & \eta_0 \eta \left(\hat{\boldsymbol{r}} \times \boldsymbol{H}_s(\boldsymbol{r}) \right) + \boldsymbol{E}_s(\boldsymbol{r}) = o((kr)^{-1}) \end{aligned}$$

Spridningstvärsnitt för $E_i = E_0 e^{ik\hat{k}_i \cdot r}$

$$\frac{d\sigma}{d\Omega} = r^2 \frac{\langle \boldsymbol{S}_s(t) \rangle \cdot \hat{\boldsymbol{r}}}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i} = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2}$$

$$\sigma_s = \frac{P_s}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i} = \iint \frac{d\sigma}{d\Omega} d\Omega, \qquad \sigma_a = \frac{P_a}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i}$$

$$\sigma_t = \sigma_a + \sigma_s = \frac{P_a + P_s}{\langle \boldsymbol{S}_i(t) \rangle \cdot \hat{\boldsymbol{k}}_i}$$

$$\langle \boldsymbol{S}_i(t) \rangle = \frac{\hat{\boldsymbol{k}}_i}{2\eta_0 \eta} |\boldsymbol{E}_0|^2, \qquad \langle \boldsymbol{S}_s(t) \rangle = \frac{\hat{\boldsymbol{r}}}{2\eta_0 \eta k^2 r^2} |\boldsymbol{F}(\hat{\boldsymbol{r}})|^2$$

$$P_s = \frac{1}{2\eta_0 \eta k^2} \iint |\boldsymbol{F}(\hat{\boldsymbol{r}})|^2 d\Omega, \qquad P_a = -\iint_{S_s} \frac{1}{2} \operatorname{Re} \{\boldsymbol{E} \times \boldsymbol{H}^*\} \cdot \hat{\boldsymbol{n}} \, dS'$$
Spridningsmatris

$$\boxed{\begin{pmatrix}F_{\parallel}(\hat{\boldsymbol{r}})\\F_{\perp}(\hat{\boldsymbol{r}})\end{pmatrix} = \begin{pmatrix}S_{\parallel\parallel}(\hat{\boldsymbol{r}},\hat{\boldsymbol{k}}_{i}) & S_{\parallel\perp}(\hat{\boldsymbol{r}},\hat{\boldsymbol{k}}_{i})\\S_{\perp\parallel}(\hat{\boldsymbol{r}},\hat{\boldsymbol{k}}_{i}) & S_{\perp\perp}(\hat{\boldsymbol{r}},\hat{\boldsymbol{k}}_{i})\end{pmatrix}\begin{pmatrix}E_{i\parallel}\\E_{i\perp}\end{pmatrix}}$$

Optiska teoremet

$$\sigma_t = \frac{4\pi}{k^2} \operatorname{Im}\left\{\frac{\boldsymbol{E}_0^* \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)}{|\boldsymbol{E}_0|^2}\right\} = \frac{4\pi}{k^2} \operatorname{Im}\left\{\frac{\boldsymbol{E}_0^* \cdot \mathbf{S}(\hat{\boldsymbol{k}}_i, \hat{\boldsymbol{k}}_i) \cdot \boldsymbol{E}_0}{|\boldsymbol{E}_0|^2}\right\}$$

Fysikalisk-optik-approximation en

$$\mathbf{F}_{fo}(\hat{\mathbf{r}}) = -i\frac{k^2\eta_0\eta}{2\pi}\hat{\mathbf{r}} \times \left[\hat{\mathbf{r}} \times \iint_{S_s^+} \hat{\mathbf{n}}(\mathbf{r}') \times \mathbf{H}_i(\mathbf{r}')e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} \, dS'\right]$$

$Fysikalisk-optik-approximation en,\ bak {\tt å} tamplitud$

$$\boldsymbol{F}_{fo}(\hat{\boldsymbol{r}}) = -i\frac{k^2}{2\pi}\boldsymbol{E}_0 \iint_{S_s^+} \left(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}') \right) e^{2ik\hat{\boldsymbol{k}}_i \cdot \boldsymbol{r}'} \, dS', \qquad \hat{\boldsymbol{r}} = -\hat{\boldsymbol{k}}_i, \text{ planvågsinfall}$$

Geometrisk-optik-approximation en

$$\boldsymbol{F}_{go}(\hat{\boldsymbol{r}}) = i \frac{k^2}{4\pi} \hat{\boldsymbol{r}} \times \iint_{S_a} \left[\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{E}_{sgo}(\boldsymbol{r}') - \eta_0 \eta \hat{\boldsymbol{r}} \times \left(\hat{\boldsymbol{n}}(\boldsymbol{r}') \times \boldsymbol{H}_{sgo}(\boldsymbol{r}') \right) \right] e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \, dS'$$

Geometrisk-optik-approximationen, förenklat uttryck

$$\mathbf{F}_{go}(\hat{\mathbf{r}}) = i \frac{k^2}{2\pi} \hat{\mathbf{r}} \times \iint_{S_a} \hat{\mathbf{n}}(\mathbf{r}') \times \mathbf{E}_{sgo}(\mathbf{r}') e^{-ik\hat{\mathbf{r}}\cdot\mathbf{r}'} \, dS', \qquad \hat{\mathbf{r}} = \hat{\mathbf{k}}_{go}$$

Fjärrfältets långvågsapproximation

$$\boxed{\boldsymbol{F}(\hat{\boldsymbol{r}}) = \frac{k^3}{4\pi\epsilon_0\epsilon} \left[\hat{\boldsymbol{r}} \times (\boldsymbol{p} \times \hat{\boldsymbol{r}}) + \frac{\sqrt{\epsilon\mu}}{c_0} \boldsymbol{m} \times \hat{\boldsymbol{r}} + O(kd) \right]}$$

Kapitel 4 Spridning och sfäriska vektorvågor

i skall i detta kapitel vidareutveckla spridningsteorin. Speciellt skall vi undersöka lösningar till Maxwells fältekvationer i källfria, homogena, isotropa material.

$$\left\{egin{aligned}
abla imes oldsymbol{E}(oldsymbol{r},\omega) &= ik\eta_0\etaoldsymbol{H} \
abla imes oldsymbol{H}(oldsymbol{r},\omega) &= -irac{k}{\eta_0\eta}oldsymbol{E} \end{aligned}
ight.$$

Materialparametrarna, som implicit ges av vågtalet k och vågimpedansen η , antar vi är konstanta i rummet utanför spridaren (kan dock bero på vinkelfrekvensen ω).

Maxwells fältekvationer kan kombineras till Helmholtz vektorekvation genom att eliminera antingen det elektriska eller det magnetiska fältet, se avsnitt 2.1. Lösningarna skall, för att satisfiera Maxwells fältekvationer, vara divergensfria, vilket inses genom att ta divergensen på Maxwells fältekvationer och genom att utnyttja att $\nabla \cdot \nabla \times \mathbf{F} = 0$ för ett godtyckligt vektorfält \mathbf{F} . En alternativ formulering blir därför

$$\begin{cases} \nabla^2 \boldsymbol{E}(\boldsymbol{r},\omega) + k^2(\omega) \boldsymbol{E}(\boldsymbol{r},\omega) = \boldsymbol{0} \\ \nabla \cdot \boldsymbol{E}(\boldsymbol{r},\omega) = 0 \end{cases}$$

I avsnitt 4.1 utvecklar vi begreppet sfäriska vektorvågor, som utgör lösningar till Helmholtz vektorekvation i sfäriska koordinater. Vidare används dessa sfäriska vektorvågor i avsnitten 4.2 och 4.3 för att lösa spridning mot perfekt ledande sfär, respektive dielektrisk sfär. Dessa lösningar brukar också kallas Mie-spridning eller partialvågslösningar.

4.1 Sfäriska vektorvågfunktioner

Vårt mål i detta avsnitt blir att konstruera vektorvärda basfunktioner som är lämpliga att utveckla våra elektromagnetiska fält i. De elektromagnetiska fälten i ett källfritt område är, som vi sett, divergensfria. Vi väljer dock att inte enbart begränsa oss till basfunktioner för källfria elektromagnetiska fält, utan vi vill även kunna hantera godtyckliga lösningar till Helmholtz vektorekvation. Av denna anledning tar vi även med basfunktioner som ej är divergensfria. Detta innebär att basfunktionssystemet får en mer allmän giltighet. Vi börjar med att göra en lista på de egenskaper vi vill att basfunktionerna skall ha.

1. Basfunktionerna skall vara lösningar till Helmholtz vektorekvation.

$$\nabla^2 \boldsymbol{F}(\boldsymbol{r}) + k^2 \boldsymbol{F}(\boldsymbol{r}) = \boldsymbol{0} \tag{4.1}$$

- 2. Basfunktionerna, som är funktioner av r och \hat{r} (dvs. de sfäriska vinklarna θ och ϕ), skall då r hålls fix (r = a) vara fullständiga för varje val av a > 0. Detta innebär att varje kvadratiskt integrerbar funktion¹ på sfären r = a skall ha en konvergent Fourierserie i dessa basfunktioner.
- 3. Det skall finnas ett enkelt samband mellan en utveckling av det elektriska fältet och motsvarande magnetiska fält. Eftersom det genom Maxwells fältekvationer är möjligt att växla mellan elektriskt och magnetiskt fält genom att ta rotationen på fältet är det naturligt att denna egenskap återspeglas i basfunktionerna.
- 4. Det skall vara enkelt att identifiera den delmängd av basfunktionerna, som har divergensen noll, dvs. de basfunktioner som är intressanta för utveckling av en lösning till Maxwells fältekvationer i källfria områden.

Punkt 1 är naturligtvis ganska självklar, eftersom det är Helmholtz vektorekvation som vi skall studera. Att basfunktionerna skall vara fullständiga är också ett naturligt krav. Sambandet mellan utvecklingen av E-fältet och H-fältet poängterar att det inte är någon principiell skillnad mellan det elektriska fältet och det magnetiska fältet. Punkten 4 är naturlig med tanke på att det elektromagnetiska fältet är divergensfritt i källfria områden. Vi är av den anledningen speciellt intresserade av den delmängd av utvecklingsfunktionerna som är divergensfria.

Vektorklotytfunktionerna

$$\boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}), \qquad \begin{cases} \tau = 1, 2, 3\\ \sigma = e, o\\ m = 0, 1, \dots, l - 1, l\\ l = 0, 1, 2, 3, \dots \end{cases}$$

har de egenskaper som krävs i punkt 2. Funktionerna finns beskrivna i appendix C.3 och definieras genom, se (C.2)

$$\begin{cases} \boldsymbol{A}_{1\sigma ml}(\hat{\boldsymbol{r}}) = \frac{1}{\sqrt{l(l+1)}} \nabla \times (\boldsymbol{r}Y_{\sigma ml}(\hat{\boldsymbol{r}})) = \frac{1}{\sqrt{l(l+1)}} \nabla Y_{\sigma ml}(\hat{\boldsymbol{r}}) \times \boldsymbol{r} \\ \boldsymbol{A}_{2\sigma ml}(\hat{\boldsymbol{r}}) = \frac{1}{\sqrt{l(l+1)}} r \nabla Y_{\sigma ml}(\hat{\boldsymbol{r}}) \\ \boldsymbol{A}_{3\sigma ml}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{r}}Y_{\sigma ml}(\hat{\boldsymbol{r}}) \end{cases}$$

 $^1{\rm Vi}$ har även punktvis konvergens om funktionen har tillräcklig regularitet. Vi avstår att närmare beskriva konvergensvillkoren i denna bok.

För l = 0 är definitionsmässigt $A_{1\sigma00}(\hat{r}) = A_{2\sigma00}(\hat{r}) = 0$, och sålunda endast $A_{3e00}(\hat{r}) \neq 0$. Vektorklotytfunktionerna är ortonormala på enhetssfären.

$$\iint_{\Omega} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) \cdot \boldsymbol{A}_{\tau'\sigma'm'l'}(\hat{\boldsymbol{r}}) d\Omega = \delta_{\tau\tau'} \delta_{\sigma\sigma'} \delta_{mm'} \delta_{ll'}$$

där ytmåttet på enhetssfären Ω är $d\Omega = \sin\theta d\theta d\phi$. Andra viktiga egenskaper hos dessa vektorklotytfunktioner är följande:

$$\begin{cases} \hat{\boldsymbol{r}} \cdot \boldsymbol{A}_{\tau\sigma ml}(\hat{\boldsymbol{r}}) = 0, & \tau = 1, 2\\ \hat{\boldsymbol{r}} \times \boldsymbol{A}_{3\sigma ml}(\hat{\boldsymbol{r}}) = \boldsymbol{0} \end{cases}$$

och

$$\begin{cases} \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) = \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) \times \hat{\boldsymbol{r}} \\ \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{r}} \times \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \end{cases}$$
(4.2)

Fler detaljer om $A_{\tau\sigma ml}(\hat{r})$ finns samlade i appendix C.3. Varje kvadratiskt integrerbar vektorvärd funktion, $F(\hat{r})$, definierad på enhetssfären kan utvecklas i en konvergent Fourierserie i detta funktionssystem

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{3} a_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}), \quad \theta \in [0,\pi], \phi \in [0,2\pi)$$

där (Fourier-)koefficienterna $a_{\tau\sigma ml}$ bestäms genom integralerna

$$a_{ au\sigma m l} = \iint_{\Omega} \boldsymbol{F}(\hat{\boldsymbol{r}}) \cdot \boldsymbol{A}_{ au\sigma m l}(\hat{\boldsymbol{r}}) \, d\Omega$$

Låt oss på försök undersöka en funktion $\boldsymbol{F}_{\sigma ml}(\boldsymbol{r}) = f_{\sigma ml}(\boldsymbol{r})\boldsymbol{A}_{1\sigma ml}(\hat{\boldsymbol{r}})$, som vi kräver skall satisfiera (4.1), dvs.

$$\left(\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2} + k^2\right)\boldsymbol{F}_{\sigma m l}(\boldsymbol{r}) = \boldsymbol{0}$$

Funktionen $f_{\sigma ml}(r)$, som är en funktion av r satisfierar då följande ordinära differentialekvation:

$$\left(\frac{d}{dr}\left(r^2\frac{d}{dr}\right) - l(l+1) + k^2r^2\right)f_{\sigma m l}(r) = 0$$

eftersom, se (C.8) i appendix C.3

$$\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) = -l(l+1)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})$$

Lösningarna till den ordinära differentialekvationen för $f_l(kr) = f_{\sigma ml}(r)$ är sfäriska Besselfunktioner, t.ex. en linjärkombination av de reguljära sfäriska Besselfunktionerna $j_l(kr)$ och de sfäriska Hankelfunktionerna $h_l^{(1)}(kr)$. Detaljer om dessa funktioner finns i appendix A.2. Vidare ses, mha. räknereglerna för nabla-operatorn, att det framtagna vektorfältet $f_l(kr) \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}})$ är divergensfritt, se (C.6)

$$\nabla \cdot (f_l(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})) = \nabla f_l(kr) \cdot \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) + f_l(kr) \underbrace{\nabla \cdot \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})}_{=0}$$
$$= kf_l'(kr)\underbrace{\hat{\boldsymbol{r}} \cdot \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})}_{=0} = 0$$

Från dessa resultat ser vi att punkterna 1 och 4 är uppfyllda för denna ansats och $f_l(kr)\mathbf{A}_{1\sigma ml}(\hat{r})$ är en lämplig kandidat för våra sfäriska vektorvågor. Tyvärr kan vi inte enkelt följa samma schema för att konstruera fler vektorvågor. Däremot kan vi enkelt konstruera nya vektorvågor utgående från den kandidat vi redan har. Det enklaste sättet att förverkliga detta är att med utgångspunkt från basfunktionen $f_l(kr)\mathbf{A}_{1\sigma ml}(\hat{r})$ konstruera en ny basfunktion genom att ta rotationen på densamma, dvs.

$$\nabla \times (f_l(kr) \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}))$$

Vi noterar slutligen att även $\nabla (f_l(kr)Y_{\sigma ml}(\hat{r}))$ satisfierar Helmholtz vektorekvation (4.1), eftersom $f_l(kr)Y_{\sigma ml}(\hat{r})$ satisfierar den skalära motsvarigheten. Dessa iakttagelser leder till den definition av de sfäriska vektorvågor som presenteras i nästa avsnitt.

4.1.1 Definition av sfäriska vektorvågor

Definiera utåtgående² sfäriska vektorvågor $\boldsymbol{u}_{\tau\sigma ml}(k\boldsymbol{r})$

$$\begin{cases} \boldsymbol{u}_{1\sigma m l}(k\boldsymbol{r}) = h_l^{(1)}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{u}_{2\sigma m l}(k\boldsymbol{r}) = \frac{1}{k}\nabla \times \left(h_l^{(1)}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})\right) \\ \boldsymbol{u}_{3\sigma m l}(k\boldsymbol{r}) = \frac{1}{k}\nabla \left(h_l^{(1)}(kr)Y_{\sigma m l}(\hat{\boldsymbol{r}})\right) \end{cases}$$

och de reguljära sfäriska vektorvågorna $\boldsymbol{v}_{\tau\sigma ml}(k\boldsymbol{r})$

$$\begin{cases} \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r}) = j_l(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = \frac{1}{k}\nabla \times (j_l(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})) \\ \boldsymbol{v}_{3\sigma m l}(k\boldsymbol{r}) = \frac{1}{k}\nabla (j_l(kr)Y_{\sigma m l}(\hat{\boldsymbol{r}})) \end{cases}$$

där i båda fallen indexen l, m och σ kan anta följande värden:

$$l = 0, 1, 2, 3, \dots, m = 0, 1, \dots, l - 1, l, \sigma = e, o$$

Vi skall nu visa att dessa definitioner uppfyller de krav som vi ställde upp tidigare i detta kapitel, dvs. punkterna 1–4 på sidan 138. De reguljära och de utåtgående

²Vi kommer senare, i avsnitt 4.1.3, att förklara varför de kallas utåtgående sfäriska vektorvågor.

vektorvågorna är identiska, så när som på en sfärisk Bessel- eller Hankelfunktion. När vi nedan undersöker dessa vektorvågor kan vi därför nöja oss med att analysera en uppsättning av dem, t.ex. de reguljära; de utåtgående följer på liknande sätt.

Den första basfunktionen, $\boldsymbol{v}_{1\sigma ml}(k\boldsymbol{r})$, är, som vi redan konstaterat, divergensfri. Detsamma gäller för $\boldsymbol{v}_{2\sigma ml}(k\boldsymbol{r})$, eftersom $\nabla \cdot \nabla \times \boldsymbol{F} = 0$ för ett godtyckligt vektorfält \boldsymbol{F} . Däremot är $\boldsymbol{v}_{3\sigma ml}(k\boldsymbol{r})$ ej divergensfri. Vi konstaterar därför genast att punkt 4 är uppfylld av de sfäriska vektorvågorna $\tau = 1, 2$, dvs. $\tau = 1, 2$ definierar den delmängd av basfunktionerna som har divergensfria element.

Vi har tidigare visat att $\boldsymbol{v}_{1\sigma ml}(k\boldsymbol{r})$ satisfierar (4.1). Eftersom dessutom $\nabla \cdot \boldsymbol{v}_{1\sigma ml}(k\boldsymbol{r}) = 0$ finner vi att

$$\nabla \times (\nabla \times \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r})) = \nabla (\nabla \cdot \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r})) - \nabla^2 \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r})$$

= $-\nabla^2 \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r}) = k^2 \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r})$ (4.3)

Detta samband visar att basfunktionerna $\boldsymbol{v}_{1\sigma ml}(k\boldsymbol{r})$ och $\boldsymbol{v}_{2\sigma ml}(k\boldsymbol{r})$ kan fås ur varandra genom operationen $\nabla \times$. Ena vägen följer av definitionen av $\boldsymbol{v}_{2\sigma ml}(k\boldsymbol{r})$, medan den andra vägen följer av definitionen av $\boldsymbol{v}_{2\sigma ml}(k\boldsymbol{r})$ och (4.3):

$$\nabla \times \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = \frac{1}{k} \nabla \times (\nabla \times \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r})) = k\boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r})$$

Vi har därmed visat att även punkt 3 är uppfylld, och sammanfattningsvis har vi

$$\begin{cases} \boldsymbol{v}_{1\sigma ml}(k\boldsymbol{r}) = \frac{1}{k} \nabla \times \boldsymbol{v}_{2\sigma ml}(k\boldsymbol{r}) \\ \boldsymbol{v}_{2\sigma ml}(k\boldsymbol{r}) = \frac{1}{k} \nabla \times \boldsymbol{v}_{1\sigma ml}(k\boldsymbol{r}) \end{cases}$$
(4.4)

och

$$\nabla \times (\nabla \times \boldsymbol{v}_{\tau\sigma m l}(k\boldsymbol{r})) = k^2 \boldsymbol{v}_{\tau\sigma m l}(k\boldsymbol{r}), \quad \tau = 1, 2$$
(4.5)

Vidare gäller, mha. (4.4), att även $\boldsymbol{v}_{2\sigma ml}(k\boldsymbol{r})$ satisfierar Helmholtz vektorekvation.

$$\nabla^2 \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) + k^2 \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = \nabla \left(\nabla \cdot \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r})\right) - \nabla \times \left(\nabla \times \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r})\right) + k^2 \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = -\nabla \times \left(\nabla \times \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r})\right) + k^2 \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = \mathbf{0}$$

Även $\boldsymbol{v}_{3\sigma ml}(k\boldsymbol{r})$ satisfierar Helmholtz vektorekvation, eftersom $j_l(kr)Y_{\sigma ml}(\hat{\boldsymbol{r}})$ satisfierar Helmholtz (skalära) ekvation. Därmed har vi visat att de tre sfäriska vektorvågorna, både de reguljära och de utåtgående, satisfierar (4.1), dvs. punkt 1 är uppfylld.

För att visa att de sfäriska vektorvågorna är fullständiga på en sfär r = a behöver vi skriva om de sfäriska vektorvågorna på en alternativ form, där vi kan identifiera vektorklotytfunktionerna $A_{\tau\sigma ml}(\hat{r})$, som vi sedan kan använda för att visa fullständigheten.

Från definitionen av $\boldsymbol{v}_{1\sigma ml}(k\boldsymbol{r})$ ovan, räknereglerna för ∇ -operatorn, och rotationen av $\boldsymbol{A}_{1\sigma ml}(\hat{\boldsymbol{r}})$, se (C.7), beräknar vi lätt

$$\nabla \times \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r}) = \nabla \times (j_l(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})) = j_l(kr) \underbrace{\nabla \times \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})}_{\frac{1}{r} \left(\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}})\right)} + \nabla j_l(kr) \times \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})$$
$$= \frac{j_l(kr)}{r} \left(\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}})\right) + kj'_l(kr)\underbrace{\hat{\boldsymbol{r}} \times \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})}_{\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}})}$$

Vi får

$$\boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = \frac{1}{k} \nabla \times \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r})$$
$$= \left(\frac{j_l(kr)}{kr} + j'_l(kr)\right) \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)} \frac{j_l(kr)}{kr} \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}})$$

Den tredje sfäriska vågfunktionen $\boldsymbol{v}_{3\sigma ml}(k\boldsymbol{r})$ kan skrivas om på liknande sätt:

$$\boldsymbol{v}_{3\sigma m l}(k\boldsymbol{r}) = \frac{1}{k} \nabla \left(j_l(kr) Y_{\sigma m l}(\hat{\boldsymbol{r}}) \right) = \hat{\boldsymbol{r}} j_l'(kr) Y_{\sigma m l}(\hat{\boldsymbol{r}}) + \frac{1}{k} j_l(kr) \nabla Y_{\sigma m l}(\hat{\boldsymbol{r}})$$
$$= j_l'(kr) \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)} \frac{j_l(kr)}{kr} \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}})$$

En alternativ representation av de reguljära sfäriska vektorvågorna blir därför

$$\begin{cases} \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r}) = j_{l}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = \frac{(krj_{l}(kr))'}{kr}\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\frac{j_{l}(kr)}{kr}\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{v}_{3\sigma m l}(k\boldsymbol{r}) = j_{l}'(kr)\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\frac{j_{l}(kr)}{kr}\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) \end{cases}$$
(4.6)

och för de utåtgående sfäriska vektorvågorna får vi på samma sätt

$$\begin{cases} \boldsymbol{u}_{1\sigma m l}(k\boldsymbol{r}) = h_{l}^{(1)}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{u}_{2\sigma m l}(k\boldsymbol{r}) = \frac{(krh_{l}^{(1)}(kr))'}{kr}\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\frac{h_{l}^{(1)}(kr)}{kr}\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{u}_{3\sigma m l}(k\boldsymbol{r}) = h_{l}^{(1)'}(kr)\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\frac{h_{l}^{(1)}(kr)}{kr}\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) \end{cases}$$
(4.7)

Notera att för l = 0 så är $\boldsymbol{u}_{1\sigma00}(k\boldsymbol{r}) = \boldsymbol{u}_{2\sigma00}(k\boldsymbol{r}) = \boldsymbol{v}_{1\sigma00}(k\boldsymbol{r}) = \boldsymbol{v}_{2\sigma00}(k\boldsymbol{r}) = \boldsymbol{0}$, endast $\boldsymbol{u}_{3e00}(k\boldsymbol{r})$ och $\boldsymbol{v}_{3e00}(k\boldsymbol{r})$ är skilda från noll. Från dessa alternativa framställningar av de reguljära och utåtgående sfäriska vektorvågorna konstaterar vi nu att de är fullständiga på en sfär r = a, varvid det räcker att visa att de är linjärt oberoende. För att visa detta, betraktar vi en godtycklig linjärkombination av de utåtgående sfäriska vektorvågorna som sammanfaller med nollvektorn, dvs.

$$\sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{3} c_{\tau\sigma m l} \boldsymbol{u}_{\tau\sigma m l}(k\boldsymbol{r}) = \boldsymbol{0}$$

Detta medför, p
ga. vektorklotytfunktionerna $A_{\tau\sigma ml}(\hat{r})$:s ortogonalitet på enhetss
sfären, att

$$\begin{pmatrix} h_l^{(1)}(kr) & 0 & 0\\ 0 & \frac{(krh_l^{(1)}(kr))'}{kr} & \sqrt{l(l+1)}\frac{h_l^{(1)}(kr)}{kr}\\ 0 & \sqrt{l(l+1)}\frac{h_l^{(1)}(kr)}{kr} & h_l^{(1)'}(kr) \end{pmatrix} \begin{pmatrix} c_{1\sigma ml} \\ c_{2\sigma ml} \\ c_{3\sigma ml} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Icketriviala lösningar till detta ekvationssystem existerar endast då

$$0 = \frac{h_l^{(1)}(kr)}{(kr)^2} \left(kr(krh_l^{(1)}(kr))'h_l^{(1)'}(kr) - l(l+1) \left(h_l^{(1)}(kr)\right)^2 \right)$$

$$= \frac{h_l^{(1)}(kr)}{(kr)^2} \left[krh_l^{(1)'}(kr) + (l+1)h_l^{(1)}(kr) \right] \left[krh_l^{(1)'}(kr) - lh_l^{(1)}(kr) \right]$$

$$= -h_l^{(1)}(kr)h_{l-1}^{(1)}(kr)h_{l+1}^{(1)}(kr)$$

där vi använt oss av rekursionssambanden $zf'_l(z) + (l+1)f_l(z) = zf_{l-1}(z)$ och $zf'_l(z) - lf_l(z) = -zf_{l+1}(z)$, se (A.6) för sfäriska Besselfunktioner i appendix A.2. För fixt värde på kr = ka är detta villkor aldrig uppfyllt eftersom det inte finns några nollställen till $h_l^{(1)}(kr)$ för det fall Im $kr \ge 0$, vilket är identiskt med villkoret för ett passivt material (Im $k \ge 0$). Alltså är alla koeficienterna $c_{\tau\sigma ml} = 0$, och de utåtgående sfäriska vektorvågorna är linjärt oberoende. På liknande sätt visas att de reguljära vågorna $\boldsymbol{v}_{\tau\sigma ml}(kr)$ är fullständiga³. I ovanstående analys har vi således visat att definitionen av de sfäriska vektorvågorna endast utgör en linjärkombination av de fullständiga vektorklotytfunktionerna $\boldsymbol{A}_{\tau\sigma ml}(\hat{\boldsymbol{r}})$, och punkt 2 är visad.

Som visats ovan är delmängden $\tau = 1, 2$ den mest intressanta i spridningssammanhang. Dessa basfunktioner satisfierar (4.5)

$$abla imes (
abla imes oldsymbol{v}_{ au\sigma ml}(koldsymbol{r})) = k^2 oldsymbol{v}_{ au\sigma ml}(koldsymbol{r}), \quad au = 1, 2$$

Det elektriska fältet i ett källfritt område satisfierar

$$\nabla \times (\nabla \times \boldsymbol{E}(\boldsymbol{r},\omega)) = k^2 \boldsymbol{E}(\boldsymbol{r},\omega)$$

En allmän utveckling av det elektriska fältet i området utanför en sfär som omsluter spridaren i ett källfritt område blir därför

$$\boldsymbol{E}(\boldsymbol{r},\omega) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} \left(a_{\tau\sigma m l} \boldsymbol{v}_{\tau\sigma m l}(k\boldsymbol{r}) + f_{\tau\sigma m l} \boldsymbol{u}_{\tau\sigma m l}(k\boldsymbol{r}) \right)$$
(4.8)

Motsvarande utveckling av det magnetiska fältet blir mha. Faradays lag

$$\boldsymbol{H}(\boldsymbol{r},\omega) = \frac{1}{i\eta_0\eta} \sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} \left(a_{\tau\sigma m l} \boldsymbol{v}_{\bar{\tau}\sigma m l}(k\boldsymbol{r}) + f_{\tau\sigma m l} \boldsymbol{u}_{\bar{\tau}\sigma m l}(k\boldsymbol{r}) \right)$$
(4.9)

³I detta fall uppstår särskild behandling av de ändligt antal värden på l svarande mot $j_l(kr)$:s diskreta reella nollställen.

där vi infört det duala indexet till τ , definierat av $\overline{1} = 2$ och $\overline{2} = 1$. I de kommande avsnitten skall vi se att i ett spridningsproblem så utgör $a_{\tau\sigma ml}$ utvecklingskoefficienterna för det inkommande fältet medan $f_{\tau\sigma ml}$ är motsvarande koefficienter för det spridda fältet.

Utvecklingarna av de elektriska och magnetiska fälten i (4.8) och (4.9) kallas för fältens partialvågs- eller multipolutvecklingar. Varje l, m, σ -term i summan definierar en partialvåg eller multipol av ordning (l, m, σ) . Från de alternativa framställningarna, (4.6) och (4.7), ser vi att multipolen med $\tau = 1$ saknar radiell komponent (\hat{r} -komponent), eftersom $\hat{r} \cdot A_{1\sigma m l}(\hat{r}) = 0$. Detta τ -index genererar av den anledningen en transversellt elektrisk (TE) multipol av ordning (l, m, σ) . En annan ofta förekommande benämning på denna våg är en magnetisk multipol av ordning (l, m, σ) . På samma sätt kallas $\tau = 2$ för en transversellt magnetisk (TM) multipol av ordning (l, m, σ) , eller en elektrisk multipol av ordning (l, m, σ) , på grund av (4.4).

4.1.2 Utveckling av planvåg

Det infallande fältet antar vi är en planvåg, vilken är en väldefinierad funktion överallt. Den kan utvecklas i de reguljära sfäriska vektorvågorna $v_{\tau\sigma ml}(k\mathbf{r})$. Vi ansätter

$$\boldsymbol{E}_{i}(\boldsymbol{r},\omega) = \boldsymbol{E}_{0}e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}} = \sum_{l=0}^{\infty}\sum_{m=0}^{l}\sum_{\sigma=\mathrm{e,o}}\sum_{\tau=1}^{3}a_{\tau\sigma ml}\boldsymbol{v}_{\tau\sigma ml}(k\boldsymbol{r})$$

Utvecklingskoefficienterna $a_{\tau\sigma ml}$ kan beräknas (se övning 4.6).

$$\begin{cases} a_{1\sigma m l} = 4\pi i^{l} \boldsymbol{E}_{0} \cdot \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{k}}_{i}) \\ a_{2\sigma m l} = -4\pi i^{l+1} \boldsymbol{E}_{0} \cdot \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{k}}_{i}) \\ a_{3\sigma m l} = -4\pi i^{l+1} \boldsymbol{E}_{0} \cdot \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{k}}_{i}) \end{cases}$$

För att planvågen skall satisfiera Maxwells fältekvationer måste den komplexa vektorn E_0 vara ortogonal mot planvågens infallsriktning \hat{k}_i , dvs.

$$\boldsymbol{E}_0 \cdot \hat{\boldsymbol{k}}_i = 0$$

Vi ser direkt att $a_{3\sigma ml} = 0$ i denna utveckling, eftersom $\mathbf{A}_{3\sigma ml}(\mathbf{k}_i)$ är proportionell mot \mathbf{k}_i , och summeringen i τ -index sker således endast över 1 och 2. Ett annat sätt att uttrycka detta på, är att kräva att planvågen skall vara divergensfri. På grund av att endast $\tau = 1, 2$ ingår startar *l*-summan först på l = 1 (l = 0 ger inget bidrag).

Speciellt intressant är fallet med infallsriktning längs z-axeln, dvs. $\hat{k}_i = \hat{z}$. Vi får då, se (C.4)

$$\begin{aligned}
\begin{aligned}
\hat{\boldsymbol{A}}_{1\sigma m l} &= i^{l} \delta_{m1} \sqrt{2\pi (2l+1)} \boldsymbol{E}_{0} \cdot (\delta_{\sigma o} \hat{\boldsymbol{x}} - \delta_{\sigma e} \hat{\boldsymbol{y}}) \\
\hat{\boldsymbol{A}}_{2\sigma m l} &= -i^{l+1} \delta_{m1} \sqrt{2\pi (2l+1)} \boldsymbol{E}_{0} \cdot (\delta_{\sigma e} \hat{\boldsymbol{x}} + \delta_{\sigma o} \hat{\boldsymbol{y}}) \quad \hat{\boldsymbol{k}}_{i} = \hat{\boldsymbol{z}} \\
\hat{\boldsymbol{A}}_{3\sigma m l} &= 0
\end{aligned}$$

$$(4.10)$$

Avsnitt 4.1

4.1.3 Fjärrfältsamplitud

Det spridda fältet har sina källor inuti spridaren. Vi kan, utanför en om spridaren omskriven sfär, utveckla det spridda fältet i utåtgående sfäriska vektorvågor, dvs.

$$\boldsymbol{E}_{s}(\boldsymbol{r},\omega) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} f_{\tau\sigma m l} \boldsymbol{u}_{\tau\sigma m l}(k\boldsymbol{r})$$

Notera att summeringen sker över $\tau = 1, 2$ samt att *l*-summan startar med l = 1, eftersom endast $\tau = 1, 2$ ingår. Motsvarande magnetiska fält har utvecklingen

$$\boldsymbol{H}_{s}(\boldsymbol{r},\omega) = \frac{1}{i\eta_{0}\eta} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} f_{\tau\sigma m l} \boldsymbol{u}_{\bar{\tau}\sigma m l}(k\boldsymbol{r})$$

Vi kommer i detta avsnitt att visa att denna utveckling satisfierar utstrålningsvillkoret (3.9) på sidan 77.

$$\begin{cases} (\hat{\boldsymbol{r}} \times \boldsymbol{E}_s(\boldsymbol{r})) - \eta_0 \eta \boldsymbol{H}_s(\boldsymbol{r}) = o((kr)^{-1}) \\ \eta_0 \eta (\hat{\boldsymbol{r}} \times \boldsymbol{H}_s(\boldsymbol{r})) + \boldsymbol{E}_s(\boldsymbol{r}) = o((kr)^{-1}) \end{cases} \quad \text{då } r \to \infty$$

De sfäriska Hankelfunktionerna, $h_l^{(1)},$ kan på stora avstånd $(kr\gg1)$ approximeras med

$$\begin{cases} h_l^{(1)}(z) = \frac{i^{-l-1}}{z} e^{iz} + O(z^{-2}) \\ h_l^{(1)'}(z) = \frac{i^{-l}}{z} e^{iz} + O(z^{-2}) \end{cases}$$

och de utåtgående sfäriska vektorvågorna kan därför approximeras med

$$\boldsymbol{u}_{\tau\sigma m l}(k\boldsymbol{r}) = i^{-l-2+\tau} \frac{e^{ikr}}{kr} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) + o((kr)^{-1}), \quad \tau = 1, 2$$

Notera att detta samband endast gäller för $\tau = 1, 2$, vilka är de τ -index som är aktuella för våra utvecklingar av de elektriska och magnetiska fälten. Fälten i fjärrzonen blir därför

$$\begin{cases} \boldsymbol{E}_{s}(\boldsymbol{r},\omega) = \frac{e^{ikr}}{kr} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) + o((kr)^{-1}) \\ \boldsymbol{H}_{s}(\boldsymbol{r},\omega) = \frac{1}{\eta_{0}\eta} \frac{e^{ikr}}{kr} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} i^{-l-\tau} f_{\tau\sigma m l} \boldsymbol{A}_{\bar{\tau}\sigma m l}(\hat{\boldsymbol{r}}) + o((kr)^{-1}) \end{cases}$$

Vi utnyttjar (4.2), och får

$$\hat{\boldsymbol{r}} \times \boldsymbol{E}_{s}(\boldsymbol{r},\omega) = \frac{e^{ikr}}{kr} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} i^{-l-\tau} f_{\tau\sigma ml} \boldsymbol{A}_{\bar{\tau}\sigma ml}(\hat{\boldsymbol{r}}) + o((kr)^{-1})$$

$$\hat{\boldsymbol{r}} \times \boldsymbol{H}_{s}(\boldsymbol{r},\omega) = -\frac{1}{\eta_{0}\eta} \frac{e^{ikr}}{kr} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma ml} \boldsymbol{A}_{\tau\sigma ml}(\hat{\boldsymbol{r}}) + o((kr)^{-1})$$

Från dessa uttryck ser vi att utstrålningsvillkoren är uppfyllda.

Det generella uttrycket på fjärrfältsamplituden i en multipolutveckling blir därför

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}})$$
(4.11)

Det differentiella spridningstvärsnittet kan generellt skrivas som

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_{i}) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^{2}}{k^{2} |\boldsymbol{E}_{0}|^{2}} = \frac{1}{k^{2} |\boldsymbol{E}_{0}|^{2}} \left| \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) \right|^{2}$$

och det totala spridningstvärsnitte
t $\sigma_s(\hat{k}_i)$ blir p
ga. ortogonaliteten hos vektorklotytfunktionerna

$$\sigma_s(\hat{\boldsymbol{k}}_i) = \iint_{\Omega} \frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_i) \, d\Omega = \frac{1}{k^2 \left|\boldsymbol{E}_0\right|^2} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} \left|f_{\tau\sigma m l}\right|^2 \tag{4.12}$$

Med hjälp av det optiska teoremet kan vi nu också beräkna det totala tvärsnittet $\sigma_t(\hat{k}_i)$

$$\sigma_t(\hat{\boldsymbol{k}}_i) = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{\boldsymbol{E}_0^* \cdot \boldsymbol{F}(\hat{\boldsymbol{k}}_i)}{|\boldsymbol{E}_0|^2} \right\}$$

samt totala absorptionstvärsnittet $\sigma_a(\hat{k}_i)$

$$\sigma_a(\hat{\boldsymbol{k}}_i) = \sigma_t(\hat{\boldsymbol{k}}_i) - \sigma_s(\hat{\boldsymbol{k}}_i)$$

Det spridda fältet bestäms av utvecklingskoefficienterna $f_{\tau\sigma ml}$. Det normala förhållandet i ett spridningsproblem är att man känner spridaren och det infallande fältet, som bestäms av dess utvecklingskoefficienter $a_{\tau\sigma ml}$. Ett sådant spridningsproblem kallas ett direkt spridningsproblem. Den andra typen av spridningsproblem de inversa—kommer att behandlas i kapitel 5. Om spridaren består av ett linjärt material kommer avbildningen mellan $a_{\tau\sigma ml}$ och $f_{\tau\sigma ml}$ att vara en linjär avbildning. Denna avbildning kan formellt skrivas

$$f_{\tau\sigma ml} = \sum_{l'=1}^{\infty} \sum_{m'=0}^{l'} \sum_{\sigma'=e,o} \sum_{\tau'=1}^{2} T_{\tau\sigma ml,\tau'\sigma'm'l'} a_{\tau'\sigma'm'l'}$$

Den oändligtdimensionella matrisen $T_{\tau\sigma ml,\tau'\sigma'm'l'}$ kallas övergångsmatrisen eller Tmatrisen för spridaren. Den är oberoende av det infallande fältet och bestäms enbart av spridaren och dess egenskaper. Att lösa det direkta spridningsproblemet går ut på att bestämma övergångsmatrisen för spridaren. I de kommande avsnitten kommer vi i några enkla fall (sfäriska fall då övergångsmatrisen är en diagonalmatris) att bestämma denna matris.

Figur 4.1: Geometri för spridning av planvåg mot perfekt ledande sfär.

4.2 Spridning mot perfekt ledande sfär

Det första fall vi analyserar blir spridning mot en perfekt ledande sfär med radie *a* och med centrum i origo. Det infallande fältet låter vi falla in längs positiva *z*axeln. Geometrin visas i figur 4.1. Polarisationsvektorn E_0 ligger i *x-y*-planet. Dess utveckling i sfäriska vektorvågor blir, se (4.10)

$$\boldsymbol{E}_{i}(\boldsymbol{r},\omega) = \boldsymbol{E}_{0}e^{ikz} = \sum_{l=1}^{\infty}\sum_{m=0}^{l}\sum_{\sigma=\mathrm{e,o}}\sum_{\tau=1}^{2}a_{\tau\sigma m l}\boldsymbol{v}_{\tau\sigma m l}(k\boldsymbol{r})$$
$$\begin{pmatrix}a_{1\sigma m l} = i^{l}\delta_{m1}\sqrt{2\pi(2l+1)}\boldsymbol{E}_{0}\cdot(\delta_{\sigma\mathrm{o}}\hat{\boldsymbol{x}} - \delta_{\sigma\mathrm{e}}\hat{\boldsymbol{y}})\\a_{2\sigma m l} = -i^{l+1}\delta_{m1}\sqrt{2\pi(2l+1)}\boldsymbol{E}_{0}\cdot(\delta_{\sigma\mathrm{e}}\hat{\boldsymbol{x}} + \delta_{\sigma\mathrm{o}}\hat{\boldsymbol{y}}) \end{pmatrix} \hat{\boldsymbol{k}}_{i} = \hat{\boldsymbol{z}}$$

Multipolutvecklingen av det spridda fältet ges av

$$\boldsymbol{E}_{s}(\boldsymbol{r},\omega) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} f_{\tau\sigma m l} \boldsymbol{u}_{\tau\sigma m l}(k\boldsymbol{r})$$

Vårt mål blir nu att bestämma utvecklingskoefficienterna $f_{\tau\sigma ml}$. Det totala fältet utanför sfären blir

$$\boldsymbol{E}(\boldsymbol{r},\omega) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} \left(a_{\tau\sigma m l} \boldsymbol{v}_{\tau\sigma m l}(k\boldsymbol{r}) + f_{\tau\sigma m l} \boldsymbol{u}_{\tau\sigma m l}(k\boldsymbol{r}) \right)$$

Randvillkoren på sfärens yta, r = a är, se (1.13) på sidan 8

$$|\hat{\boldsymbol{r}} imes \boldsymbol{E}(\boldsymbol{r}, \omega)|_{r=a} = \boldsymbol{0}$$

Detta leder till att utvecklingskoefficienterna måste uppfylla

$$\begin{cases} a_{1\sigma m l} j_l(ka) \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + f_{1\sigma m l} h_l^{(1)}(ka) \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) = \boldsymbol{0} \\ a_{2\sigma m l}(ka j_l(ka))' \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) + f_{2\sigma m l}(ka h_l^{(1)}(ka))' \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) = \boldsymbol{0} \end{cases}$$

Koefficienten framför $A_{3\sigma ml}(\hat{r})$ ger inget villkor, då denna vektorklotytfunktion är proportionell mot \hat{r} . Identifiera koefficienterna framför de linjärt oberoende vektorklotytfunktionerna $A_{\tau\sigma ml}(\hat{r})$, och skriv detta sambandet som en diagonal övergångsmatris, dvs.

$$f_{\tau\sigma ml} = t_{\tau l} a_{\tau\sigma ml}$$

Matriselementen $t_{\tau l}$ är oberoende av index m och σ , och ges explicit av

$$\begin{cases} t_{1l} = -\frac{j_l(ka)}{h_l^{(1)}(ka)} \\ t_{2l} = -\frac{(kaj_l(ka))'}{(kah_l^{(1)}(ka))'} \end{cases}$$
(4.13)

Det direkta spridningsproblemet är nu löst.

Vi kan nu teckna fjärrfältsamplituden, se (4.11) och (4.10) (endast m = 1 bidrar).

$$\begin{split} \boldsymbol{F}(\hat{\boldsymbol{r}}) &= \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) \\ &= -i \sum_{l=1}^{\infty} \sqrt{2\pi (2l+1)} \Big\{ ((\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{x}}) \boldsymbol{A}_{1o1l}(\hat{\boldsymbol{r}}) - (\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{y}}) \boldsymbol{A}_{1e1l}(\hat{\boldsymbol{r}})) t_{1l} \\ &+ ((\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{x}}) \boldsymbol{A}_{2e1l}(\hat{\boldsymbol{r}}) + (\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{y}}) \boldsymbol{A}_{2o1l}(\hat{\boldsymbol{r}})) t_{2l} \Big\} \end{split}$$

Specialfallet med $\hat{\boldsymbol{r}} = \hat{\boldsymbol{k}}_i = \hat{\boldsymbol{z}}$ ges av, se (C.4)

$$F(\hat{k}_i) = -\frac{iE_0}{2} \sum_{l=1}^{\infty} (2l+1) (t_{1l} + t_{2l})$$

Detta uttryck bestämmer fjärrfältsamplituden i framåtriktningen.

Med hjälp av (3.20) på sidan 83 får vi (beteckningar, se figur 3.4 på sidan 84)

$$\begin{cases} E_{i\parallel} = \boldsymbol{E}_0 \cdot \hat{\boldsymbol{e}}_{i\parallel} = \boldsymbol{E}_0 \cdot (\hat{\boldsymbol{x}} \cos \phi + \hat{\boldsymbol{y}} \sin \phi) \\ E_{i\perp} = \boldsymbol{E}_0 \cdot \hat{\boldsymbol{e}}_{i\perp} = \boldsymbol{E}_0 \cdot (-\hat{\boldsymbol{x}} \sin \phi + \hat{\boldsymbol{y}} \cos \phi) \end{cases}$$

och (C.5) skriver vi om fjärrfältsamplituden $\boldsymbol{F}(\hat{\boldsymbol{r}})$. Resultatet är

$$\begin{aligned} \boldsymbol{F}(\hat{\boldsymbol{r}}) &= -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \\ &\quad \cdot \left\{ \left(\hat{\boldsymbol{\theta}} P_l'(\cos\theta) E_{i\parallel} - \hat{\boldsymbol{\phi}} \left(\cos\theta P_l'(\cos\theta) - l(l+1) P_l(\cos\theta) \right) E_{i\perp} \right) t_{1l} \\ &\quad + \left(\hat{\boldsymbol{\phi}} P_l'(\cos\theta) E_{i\perp} - \hat{\boldsymbol{\theta}} \left(\cos\theta P_l'(\cos\theta) - l(l+1) P_l(\cos\theta) \right) E_{i\parallel} \right) t_{2l} \right\} \end{aligned}$$

Figur 4.2: Det totala spridningstvärsnittet σ_s för planvågsinfall mot en perfekt ledande sfär som funktion av storleken ka. Notera att spridningstvärsnittet är normerat med $2\pi a^2$.

Vi skriver om fjärrfältsamplituden $F(\hat{r})$ genom att skriva den på spridningsmatrisform, se (3.22) på sidan 85.

$$\begin{pmatrix} F_{\parallel} \\ F_{\perp} \end{pmatrix} = \begin{pmatrix} S_{\parallel\parallel} & S_{\parallel\perp} \\ S_{\perp\parallel} & S_{\perp\perp} \end{pmatrix} \begin{pmatrix} E_{i\parallel} \\ E_{i\perp} \end{pmatrix}$$

där

$$\begin{aligned} S_{\parallel\parallel} &= -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left\{ t_{1l} P_l'(\cos\theta) + t_{2l} \left[l(l+1) P_l(\cos\theta) - \cos\theta P_l'(\cos\theta) \right] \right\} \\ S_{\parallel\perp} &= 0 \\ S_{\perp\parallel} &= 0 \\ S_{\perp\perp} &= -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left\{ t_{1l} \left[l(l+1) P_l(\cos\theta) - \cos\theta P_l'(\cos\theta) \right] + t_{2l} P_l'(\cos\theta) \right\} \end{aligned}$$

$$(4.14)$$

Det differentiella spridningstvärsnittet för den perfekt ledande sfären får vi ur fjärrfältsamplituden.

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2} = \frac{1}{k^2 |\boldsymbol{E}_0|^2} \left| \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) \right|^2$$

$$\sigma_{s}(\hat{\boldsymbol{k}}_{i}) = \frac{1}{k^{2} |\boldsymbol{E}_{0}|^{2}} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} |f_{\tau\sigma ml}|^{2} = \frac{1}{k^{2} |\boldsymbol{E}_{0}|^{2}} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} |t_{\tau l} a_{\tau\sigma m l}|^{2}$$
$$= \frac{2\pi}{k^{2}} \sum_{\tau=1}^{2} \sum_{l=1}^{\infty} (2l+1) |t_{\tau l}|^{2}$$
(4.15)

oberoende av det infallande fältets polarisation. I figur 4.2 visas hur denna storhet varierar som funktion av storleken ka på sfären. Spridningstvärsnittet är normerat med $2\pi a^2$. Det differentiella spridningstvärsnittet i bakåtriktningen $\hat{\boldsymbol{r}} = -\hat{\boldsymbol{k}}_i$ visas i figur 4.3 som funktion av ka (normerat med $\pi a^2/4\pi = a^2/4$), se även övning 4.2 och jämför med resultatet av fysikalisk-optik-approximationen i övning 3.8.

Det totala tvärsnittet $\sigma_t(\hat{k}_i)$ är identiskt med $\sigma_s(\hat{k}_i)$, eftersom det totala absorptionstvärsnittet $\sigma_a(\hat{k}_i) = 0$ för perfekt ledande kroppar. Detta följer omedelbart av randvillkoret på sfärens yta, och att den totala effekt som spridaren absorberar är

$$P_a = -\iint_{S_s} \frac{1}{2} \operatorname{Re} \left\{ \boldsymbol{E} \times \boldsymbol{H}^* \right\} \cdot \hat{\boldsymbol{n}} \, dS' = -\iint_{S_s} \frac{1}{2} \operatorname{Re} \left\{ \hat{\boldsymbol{n}} \times \boldsymbol{E} \right\} \cdot \boldsymbol{H}^* \, dS' = 0$$

Det optiska teoremet ger i detta fall ett alternativt uttryck för det totala spridningstvärsnittet.

$$\sigma_s(\hat{k}_i) = \sigma_t(\hat{k}_i) = \frac{4\pi}{k^2} \operatorname{Im} \left\{ \frac{E_0^* \cdot F(\hat{k}_i)}{|E_0|^2} \right\} = -\frac{2\pi}{k^2} \operatorname{Re} \sum_{l=1}^{\infty} (2l+1) \left(t_{1l} + t_{2l} \right)$$

Notera likheter och skillnader mellan detta uttryck och det givet i (4.15).

4.2.1 Långvågsgräns

Om sfärens radie a är liten i jämförelse med våglängden λ kan vi göra approximationer. Vi har tidigare i avsnitt 3.6 undersökt långvågsapproximationen eller Rayleighapproximationen generellt. Här studerar vi specialfallet med perfekt ledande sfär.

Rayleigh-approximationen innebär i vårt fall att $ka \ll 1$. Koefficienterna $t_{\tau l}$ i (4.13) kan under detta antagande approximeras. Från appendix A.2 hämtar vi följande dominerande bidrag för små argument:

$$\begin{cases} j_l(z) = \frac{2^l l! z^l}{(2l+1)!} + O(z^{l+2}) \\ h_l^{(1)}(z) = -i \frac{(2l)!}{2^l l! z^{l+1}} + O(z^{-l+1}) \end{cases} z \to 0 \tag{4.16}$$

och

$$\begin{cases} (zj_l(z))' = \frac{2^l(l+1)!z^l}{(2l+1)!} + O(z^{l+2}) \\ (zh_l^{(1)}(z))' = i\frac{(2l)!}{2^l(l-1)!z^{l+1}} + O(z^{-l+1}) \end{cases} \qquad (4.17)$$

Figur 4.3: Det differentiella spridningstvärsnittet $\frac{d\sigma}{d\Omega}(\hat{r})$ i bakåtriktningen $\hat{r} = -\hat{k}_i$ för en perfekt ledande sfär som funktion av storleken ka. Notera normeringen, som i detta fall är $\pi a^2/4\pi = a^2/4$.

Från dessa approximationer får vi i Rayleighgränsen

$$\begin{cases} t_{1l} = -\frac{j_l(ka)}{h_l^{(1)}(ka)} = -i\frac{2^{2l}(l!)^2(ka)^{2l+1}}{(2l)!(2l+1)!} + O(z^{2l+3}) \\ t_{2l} = -\frac{(kaj_l(ka))'}{(kah_l^{(1)}(ka))'} = i\frac{2^{2l}(l+1)!(l-1)!(ka)^{2l+1}}{(2l)!(2l+1)!} + O(z^{2l+3}) \end{cases}$$

Det dominerande bidraget får vi från l = 1, vilket är

$$\begin{cases} t_{11} = -i\frac{k^3a^3}{3} \\ t_{21} = i\frac{2k^3a^3}{3} \end{cases} \quad l = 1 \end{cases}$$

och spridningsmatrisens dominerade termer blir enligt (4.14)

$$\begin{cases} S_{\parallel\parallel} = k^3 a^3 \left(\cos\theta - \frac{1}{2}\right) \\ S_{\parallel\perp} = 0 \\ S_{\perp\parallel} = 0 \\ S_{\perp\perp} = k^3 a^3 \left(1 - \frac{1}{2}\cos\theta\right) \end{cases}$$

och fjärrfältsamplituden

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = k^3 a^3 \left\{ \hat{\boldsymbol{e}}_{s\parallel} \left(\cos \theta - \frac{1}{2} \right) E_{i\parallel} + \hat{\boldsymbol{e}}_{s\perp} \left(1 - \frac{1}{2} \cos \theta \right) E_{i\perp} \right\}$$

Figur 4.4: Strålningsdiagrammet $f(\theta)$ för planvågsinfall mot en perfekt ledande sfär i långvågsgränsen, $f(\theta) = \frac{3}{10\pi} \left(\frac{5}{8}(1 + \cos^2 \theta) - \cos \theta\right)$. Normeringen är vald så att $\iint_{\Omega} f(\theta) d\Omega = 1$.

där $\hat{\boldsymbol{e}}_{s\parallel}$ och $\hat{\boldsymbol{e}}_{s\perp}$ är definierade i avsnitt 3.3.

Det differentiella spridningstvärsnittet blir

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2} = \frac{k^4 a^6}{|\boldsymbol{E}_0|^2} \left(\cos\theta - \frac{1}{2}\right)^2 |E_{i\parallel}|^2 + \frac{k^4 a^6}{|\boldsymbol{E}_0|^2} \left(1 - \frac{1}{2}\cos\theta\right)^2 |E_{i\perp}|^2$$
$$= \frac{k^4 a^6}{|\boldsymbol{E}_0|^2} \left(\cos^2\theta + \frac{1}{4} - \cos\theta\right) |E_{i\parallel}|^2 + \frac{k^4 a^6}{|\boldsymbol{E}_0|^2} \left(1 + \frac{1}{4}\cos^2\theta - \cos\theta\right) |E_{i\perp}|^2$$

Det totala spridningstvärsnittet för den perfekt ledande sfären blir, se (4.15) (jämför även resultatet i övning 3.7)

$$\sigma_s = \frac{6\pi}{k^2} \left(|t_{11}|^2 + |t_{21}|^2 \right) = \frac{6\pi}{k^2} \left(\frac{k^6 a^6}{9} + \frac{4k^6 a^6}{9} \right) = \frac{10\pi k^4 a^6}{3}$$

För ett opolariserat infallande fält förenklas det differentiella spridningstvärsnittet genom att $|E_{i\perp}|^2 = |E_{i\parallel}|^2 = |E_0|^2/2$. Vi får

$$\frac{d\sigma}{d\Omega}\Big|_{\text{opol}}\left(\hat{\boldsymbol{r}}\right) = k^4 a^6 \left(\frac{5}{8}(1+\cos^2\theta) - \cos\theta\right)$$

Strålningsdiagrammet för detta fall finns avbildat i figur 4.4.

Slutligen ger vi ett uttryck för polarisationsgraden hos det spridda fältet för ett

Figur 4.5: Polarisationsgraden $P|_{\text{opol}}$ i långvågsgränsen för en perfekt ledande sfär som funktion av vinkeln θ .

opolariserad infallande fält, se (3.23).

$$P|_{\text{opol}} = \sqrt{1 - \frac{4 \left| S_{\parallel \parallel} S_{\perp \perp} - S_{\parallel \perp} S_{\perp \parallel} \right|^2}{\left(\left| S_{\parallel \parallel} \right|^2 + \left| S_{\perp \parallel} \right|^2 + \left| S_{\parallel \perp} \right|^2 + \left| S_{\perp \perp} \right|^2 \right)^2}}$$
$$= \sqrt{1 - \frac{\left(\cos^2 \theta + \frac{1}{4} - \cos \theta \right) \left(1 + \frac{1}{4} \cos^2 \theta - \cos \theta \right)}{\left(\frac{5}{8} \cos^2 \theta + \frac{5}{8} - \cos \theta \right)^2}} = \frac{3 \sin^2 \theta}{5 \cos^2 \theta + 5 - 8 \cos \theta}$$

Denna funktion är avbildad i figur 4.5. Notera att det spridda fältet är fullständigt polariserat, $P|_{\text{opol}} = 1$, vid $\theta = 60^{\circ}$, trots att det infallande fältet är opolariserat. Polarisationsgraden P i resonansområdet, ka = 10, som funktion av spridningsvinkeln θ ges i figur 4.6.

4.3 Spridning mot dielektrisk sfär

Ett fall med många intressanta tillämpningar är spridning mot en homogen dielektrisk sfär, dielektricitetsfunktion $\epsilon_1(\omega)$ och permeabilitetsfunktion $\mu_1(\omega)$, med radie a. Vi väljer koordinatsystem så att sfärens centrum sammanfaller med origo. Det omgivande materialet har, som förut, materialparametrarna $\epsilon(\omega)$ och $\mu(\omega)$. Det infallande fältet låter vi, som tidigare, falla in längs positiva z-axeln. Geometrin och materialparametrarna finns avbildade i figur 4.7. Polarisationsvektorn E_0 ligger i x-y-planet. Dess utveckling i sfäriska vektorvågor blir, se (4.10)

$$\boldsymbol{E}_{i}(\boldsymbol{r},\omega) = \boldsymbol{E}_{0}e^{ikz} = \sum_{l=1}^{\infty}\sum_{m=0}^{l}\sum_{\sigma=\mathrm{e,o}}\sum_{\tau=1}^{2}a_{\tau\sigma ml}\boldsymbol{v}_{\tau\sigma ml}(k\boldsymbol{r})$$

Figur 4.6: Polarisationsgraden *P* för en perfekt ledande sfär, ka = 10, som funktion av spridningsvinkeln θ .

$$\begin{cases} a_{1\sigma m l} = i^{l} \delta_{m1} \sqrt{2\pi (2l+1)} \boldsymbol{E}_{0} \cdot (\delta_{\sigma \circ} \hat{\boldsymbol{x}} - \delta_{\sigma \circ} \hat{\boldsymbol{y}}) \\ a_{2\sigma m l} = -i^{l+1} \delta_{m1} \sqrt{2\pi (2l+1)} \boldsymbol{E}_{0} \cdot (\delta_{\sigma \circ} \hat{\boldsymbol{x}} + \delta_{\sigma \circ} \hat{\boldsymbol{y}}) \end{cases} \quad \hat{\boldsymbol{k}}_{i} = \hat{\boldsymbol{z}}$$

Multipolutvecklingen av det spridda fältet ges, liksom tidigare, av

$$\boldsymbol{E}_{s}(\boldsymbol{r},\omega) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} f_{\tau\sigma m l} \boldsymbol{u}_{\tau\sigma m l}(k\boldsymbol{r})$$

Det totala fältet utanför sfären blir

$$\boldsymbol{E}(\boldsymbol{r},\omega) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{2} \left(a_{\tau\sigma m l} \boldsymbol{v}_{\tau\sigma m l}(k\boldsymbol{r}) + f_{\tau\sigma m l} \boldsymbol{u}_{\tau\sigma m l}(k\boldsymbol{r}) \right)$$

och motsvarande magnetiska fältet blir genom Faradays induktionslag

$$i\eta_0 \eta \boldsymbol{H}(\boldsymbol{r},\omega) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e},\mathrm{o}} \sum_{\tau=1}^{2} \left(a_{\tau\sigma m l} \boldsymbol{v}_{\bar{\tau}\sigma m l}(k\boldsymbol{r}) + f_{\tau\sigma m l} \boldsymbol{u}_{\bar{\tau}\sigma m l}(k\boldsymbol{r}) \right)$$

där, som tidigare, $\bar{\tau}$ är det duala indexet till τ .

Det totala fältet inuti sfären, vilket vi betecknar med $E_1(r, \omega)$, utvecklar vi i reguljära sfäriska vektorvågor, eftersom det är väldefinierat överallt i sfären.

$$\boldsymbol{E}_{1}(\boldsymbol{r},\omega) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} \alpha_{\tau\sigma m l} \boldsymbol{v}_{\tau\sigma m l}(k_{1}\boldsymbol{r})$$

där $k_1 = \omega (\epsilon_1 \mu_1)^{1/2} / c_0$. Notera att denna utveckling använder vågtalet k_1 . Motsvarande magnetiska fält inuti sfären är

$$i\eta_0\eta_1 \boldsymbol{H}_1(\boldsymbol{r},\omega) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} \alpha_{\tau\sigma m l} \boldsymbol{v}_{\bar{\tau}\sigma m l}(k_1 \boldsymbol{r})$$

Figur 4.7: Geometri och materialparametrar för spridning av planvåg mot dielektrisk sfär.

där $\eta_1 = (\mu_1/\epsilon_1)^{1/2}$. Randvillkoren på sfärens yta, r = a är, se (1.12) på sidan 7 (inga ytströmmar \boldsymbol{J}_S antas)

$$\left\{ egin{array}{l} \hat{m{r}} imes m{E}_1(m{r},\omega)|_{r=a} = \hat{m{r}} imes m{E}(m{r},\omega)|_{r=a} \ \hat{m{r}} imes m{H}_1(m{r},\omega)|_{r=a} = \hat{m{r}} imes m{H}(m{r},\omega)|_{r=a} \end{array}
ight.$$

Dessa villkor leder till att

$$\begin{split} \int \alpha_{1\sigma m l} j_{l}(k_{1}a) \mathbf{A}_{2\sigma m l}(\hat{\mathbf{r}}) &= a_{1\sigma m l} j_{l}(ka) \mathbf{A}_{2\sigma m l}(\hat{\mathbf{r}}) + f_{1\sigma m l} h_{l}^{(1)}(ka) \mathbf{A}_{2\sigma m l}(\hat{\mathbf{r}}) \\ \alpha_{2\sigma m l} \frac{(k_{1}a j_{l}(k_{1}a))'}{k_{1}a} \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}}) &= a_{2\sigma m l} \frac{(ka j_{l}(ka))'}{ka} \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}}) \\ &+ f_{2\sigma m l} \frac{(ka h_{l}^{(1)}(ka))'}{ka} \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}}) \\ \frac{1}{\eta_{1}} \alpha_{1\sigma m l} \frac{(k_{1}a j_{l}(k_{1}a))'}{k_{1}a} \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}}) &= \frac{1}{\eta} a_{1\sigma m l} \frac{(ka j_{l}(ka))'}{ka} \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}}) \\ &+ \frac{1}{\eta} f_{1\sigma m l} \frac{(ka h_{l}^{(1)}(ka))'}{ka} \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}}) \\ &+ \frac{1}{\eta} f_{1\sigma m l} \frac{(ka h_{l}^{(1)}(ka))'}{ka} \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}}) \\ \int \frac{1}{\eta_{1}} \alpha_{2\sigma m l} j_{l}(k_{1}a) \mathbf{A}_{2\sigma m l}(\hat{\mathbf{r}}) &= \frac{1}{\eta} \left(a_{2\sigma m l} j_{l}(ka) + f_{2\sigma m l} h_{l}^{(1)}(ka) \right) \mathbf{A}_{2\sigma m l}(\hat{\mathbf{r}}) \end{split}$$

Koefficienterna framför $A_{3\sigma ml}(\hat{r})$ ger inget villkor, då denna vektorklotytfunktion är proportionell mot \hat{r} . Identifiera, liksom i fallet perfekt ledande sfär, koefficienterna

$$\begin{cases} \alpha_{1\sigma m l} j_{l}(k_{1}a) = a_{1\sigma m l} \left(j_{l}(ka) + t_{1l} h_{l}^{(1)}(ka) \right) \\ \frac{1}{\mu_{1}} \alpha_{1\sigma m l}(k_{1}a j_{l}(k_{1}a))' = \frac{1}{\mu} a_{1\sigma m l} \left((ka j_{l}(ka))' + t_{1l} (ka h_{l}^{(1)}(ka))' \right) \\ \alpha_{2\sigma m l} \frac{(k_{1}a j_{l}(k_{1}a))'}{k_{1}a} = a_{2\sigma m l} \left(\frac{(ka j_{l}(ka))'}{ka} + t_{2l} \frac{(ka h_{l}^{(1)}(ka))'}{ka} \right) \\ \frac{1}{\eta_{1}} \alpha_{2\sigma m l} j_{l}(k_{1}a) = \frac{1}{\eta} a_{2\sigma m l} \left(j_{l}(ka) + t_{2l} h_{l}^{(1)}(ka) \right) \end{cases}$$

där vi skrivit lösningen som en diagonal övergångsmatris, dvs.

$$f_{\tau\sigma ml} = t_{\tau l} a_{\tau\sigma ml}$$

Matriselementen $t_{\tau l}$ är oberoende av indexet m, och löses ut ur ekvationssystemet ovan. Resultatet är

$$\begin{cases} t_{1l} = -\frac{\mu j_l(ka)(k_1 a j_l(k_1 a))' - \mu_1(ka j_l(ka))' j_l(k_1 a)}{\mu h_l^{(1)}(ka)(k_1 a j_l(k_1 a))' - \mu_1(ka h_l^{(1)}(ka))' j_l(k_1 a)} \\ t_{2l} = -\frac{\epsilon j_l(ka)(k_1 a j_l(k_1 a))' - \epsilon_1(ka j_l(ka))' j_l(k_1 a)}{\epsilon h_l^{(1)}(ka)(k_1 a j_l(k_1 a))' - \epsilon_1(ka h_l^{(1)}(ka))' j_l(k_1 a)} \end{cases}$$
(4.18)

Vid vissa frekvenser, s.k. resonansfrekvenser, har nämnaren i (4.18) nollställen som ligger nära realaxeln i det komplexa ka-planet. Dessa resonanser leder till skarpa effekter i det totala spridningstvärsnittet. Ett exempel på dessa effekter har vi tidigare sett i figur 3.27.

Fjärrfältsamplituden blir, se (4.11) och (4.10) (endast m = 1 bidrar)

$$\begin{split} \boldsymbol{F}(\hat{\boldsymbol{r}}) &= \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) \\ &= -i \sum_{l=1}^{\infty} \sqrt{2\pi (2l+1)} \Big\{ ((\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{x}}) \boldsymbol{A}_{1o1l}(\hat{\boldsymbol{r}}) - (\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{y}}) \boldsymbol{A}_{1e1l}(\hat{\boldsymbol{r}})) t_{1l} \\ &+ ((\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{x}}) \boldsymbol{A}_{2e1l}(\hat{\boldsymbol{r}}) + (\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{y}}) \boldsymbol{A}_{2o1l}(\hat{\boldsymbol{r}})) t_{2l} \Big\} \end{split}$$

Specialfallet med $\hat{r} = \hat{k}_i = \hat{z}$ blir på samma sätt som i fallet med spridning mot perfekt ledande sfär

$$F(\hat{k}_i) = -\frac{iE_0}{2} \sum_{l=1}^{\infty} (2l+1) (t_{1l} + t_{2l})$$

Fjärrfältsamplituden $F(\hat{r})$ skriver vi om på spridningsmatrisform, se (3.22) på sidan 85, genom att sätta in (C.5). Resultatet blir till sin form identiskt med resultatet i avsnitt 4.2.

$$\begin{pmatrix} F_{\parallel} \\ F_{\perp} \end{pmatrix} = \begin{pmatrix} S_{\parallel\parallel} & S_{\parallel\perp} \\ S_{\perp\parallel} & S_{\perp\perp} \end{pmatrix} \begin{pmatrix} E_{i\parallel} \\ E_{i\perp} \end{pmatrix}$$

Figur 4.8: Det totala tvärsnittet σ_t , det totala spridningstvärsnittet σ_s , samt totala absorptionstvärsnittet σ_a för planvågsinfall mot en dielektrisk sfär som funktion av storleken ka. Sfärens material har parametrarna $\epsilon_1/\epsilon = (1.5+i0.01)^2$, samt $\mu_1/\mu = 1$. Spridningstvärsnitten är skalade med πa^2 .

där

$$\begin{cases} S_{\parallel\parallel} = -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left\{ t_{1l} P_l'(\cos\theta) + t_{2l} \left[l(l+1) P_l(\cos\theta) - \cos\theta P_l'(\cos\theta) \right] \right\} \\ S_{\parallel\perp} = 0 \\ S_{\perp\parallel} = 0 \\ S_{\perp\perp} = -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left\{ t_{1l} \left[l(l+1) P_l(\cos\theta) - \cos\theta P_l'(\cos\theta) \right] + t_{2l} P_l'(\cos\theta) \right\} \end{cases}$$

$$(4.19)$$

Det differentiella spridningstvärsnittet för den dielektriska sfären får vi ur fjärrfältsamplituden. Resultatet är

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2} = \frac{1}{k^2 |\boldsymbol{E}_0|^2} \left| \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) \right|^2$$

Det totala spridningstvärsnittet $\sigma_s(\hat{k}_i)$, se (4.12) för motsvarande räkningar för den perfekt ledande sfären, (4.15), blir

$$\sigma_s(\hat{\mathbf{k}}_i) = \frac{2\pi}{k^2} \sum_{\tau=1}^2 \sum_{l=1}^\infty (2l+1) |t_{\tau l}|^2$$

I likhet med den perfekt ledande sfären är det totala spridningstvärsnittet oberoende av det infallande fältets polarisation.

Med hjälp av det optiska teoremet beräknar vi det totala tvärsnittet $\sigma_t(\hat{k}_i)$, se motsvarande beräkningar för den perfekt ledande sfären.

$$\sigma_t(\hat{k}_i) = -\frac{2\pi}{k^2} \operatorname{Re}\left\{\sum_{l=1}^{\infty} (2l+1) \left(t_{1l} + t_{2l}\right)\right\}$$

Det totala absorptionstvärsnittet $\sigma_a(\hat{k}_i)$ fås till slut ur

$$\sigma_a(\mathbf{k}_i) = \sigma_t(\mathbf{k}_i) - \sigma_s(\mathbf{k}_i)$$

I figur 4.8 illustreras teorin i detta avsnitt med en beräkning av det totala tvärsnittet $\sigma_t(\hat{k}_i)$, totala absorptionstvärsnittet $\sigma_a(\hat{k}_i)$, samt det totala spridningstvärsnittet $\sigma_s(\hat{k}_i)$ för en dielektrisk sfär med parametrar $\epsilon_1/\epsilon = (1.5 + i0.01)^2$, samt $\mu_1/\mu = 1$. Spridningstvärsnitten är skalade med sfärens geometriska tvärsnittsarea πa^2 .

Materialparametrarna, $\epsilon_1(\omega)$ och $\mu_1(\omega)$, och ka är i praktiken inte oberoende storheter, pga. frekvensberoendet hos materialparametrarna. Vi illustrerar denna koppling genom att beräkna de olika tvärsnitten för en vattendroppe med radie a = 1 mm i frekvensintervallet [10, 100] GHz. Vattnets dielektricitetsfunktion antas variera som (Debye modell)

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_s - \epsilon_{\infty}}{1 - i\omega\tau}$$

där ϵ_{∞} är dielektricitetsfunktionens värde för höga frekvenser medan ϵ_s är värdet för $\omega = 0$ (statiska värdet). Explicita värden är

$$\begin{cases} \tau = 1.0 \cdot 10^{-11} \ s \\ \epsilon_{\infty} = 5.27 \\ \epsilon_s = 80.0 \end{cases}$$

Resultatet visas i figur 4.9.

4.3.1 Långvågsgräns

Om sfärens radie a är liten i jämförelse med våglängden λ och samtidigt ϵ_1 och μ_1 ej är för stora, kan vi göra approximationer. Mer precist uttryckt, så skall det gälla att

$$\begin{cases} ka \ll 1\\ k_1a \ll 1 \end{cases}$$

Koefficienterna $t_{\tau l}$ i (4.18) kan under detta antagande approximeras. Vi använder approximationerna (4.16) och (4.17). Från dessa approximationer får vi i Rayleighgränsen det dominerande bidraget från l = 1, vilket ger

$$\begin{cases} t_{11} = \frac{2ik^3a^3}{3} \frac{\mu_1 - \mu}{\mu_1 + 2\mu} \\ t_{21} = \frac{2ik^3a^3}{3} \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \end{cases} \qquad l = 1$$

Figur 4.9: Det totala tvärsnittet σ_t , det totala spridningstvärsnittet σ_s , samt totala absorptionstvärsnittet σ_a för planvågsinfall mot en sfärisk vattendroppe (a = 1 mm) som funktion av frekvensen f (GHz). Spridningstvärsnitten är skalade med πa^2 .

och spridningsmatrisens dominerade termer blir enligt (4.19)

$$\begin{cases} S_{\parallel\parallel} = k^3 a^3 \left\{ \frac{\mu_1 - \mu}{\mu_1 + 2\mu} + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \cos \theta \right\} \\ S_{\parallel\perp} = 0 \\ S_{\perp\parallel} = 0 \\ S_{\perp\perp} = k^3 a^3 \left\{ \frac{\mu_1 - \mu}{\mu_1 + 2\mu} \cos \theta + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right\} \end{cases}$$

och fjärrfältsamplituden

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = k^3 a^3 \left\{ \hat{\boldsymbol{e}}_{s\parallel} \left(\frac{\mu_1 - \mu}{\mu_1 + 2\mu} + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \cos \theta \right) E_{i\parallel} \right. \\ \left. + \hat{\boldsymbol{e}}_{s\perp} \left(\frac{\mu_1 - \mu}{\mu_1 + 2\mu} \cos \theta + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right) E_{i\perp} \right\}$$

Vi ser att den perfekt ledande sfären kan fås som ett gränsfall av detta resultat, genom att ta gränsen $\epsilon_1 \to \infty$ samtidigt som $\mu_1 \to 0$.

Det differentiella spridningstvärsnittet blir

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}) = \frac{|\boldsymbol{F}(\hat{\boldsymbol{r}})|^2}{k^2 |\boldsymbol{E}_0|^2} = \frac{k^4 a^6}{|\boldsymbol{E}_0|^2} \left| \frac{\mu_1 - \mu}{\mu_1 + 2\mu} + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \cos \theta \right|^2 |E_{i\parallel}|^2 + \frac{k^4 a^6}{|\boldsymbol{E}_0|^2} \left| \frac{\mu_1 - \mu}{\mu_1 + 2\mu} \cos \theta + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right|^2 |E_{i\perp}|^2$$

och det totala spridningstvärsnittet för den dielektriska sfären blir

$$\sigma_s = \frac{6\pi}{k^2} \left(|t_{11}|^2 + |t_{21}|^2 \right) = \frac{6\pi}{k^2} \left(\frac{4k^6 a^6}{9} \left| \frac{\mu_1 - \mu}{\mu_1 + 2\mu} \right|^2 + \frac{4k^6 a^6}{9} \left| \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right|^2 \right)$$
$$= \frac{8\pi k^4 a^6}{3} \left(\left| \frac{\mu_1 - \mu}{\mu_1 + 2\mu} \right|^2 + \left| \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right|^2 \right)$$

Med hjälp av det optiska teoremet beräknar vi det totala tvärsnittet $\sigma_t(\hat{k}_i)$

$$\sigma_t(\hat{\boldsymbol{k}}_i) = 4\pi k a^3 \operatorname{Im} \left\{ \frac{\mu_1 - \mu}{\mu_1 + 2\mu} + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right\}$$

samt totala absorptionstvärsnittet $\sigma_a(\hat{k}_i)$

$$\sigma_a(\hat{\boldsymbol{k}}_i) = \sigma_t(\hat{\boldsymbol{k}}_i) - \sigma_s(\hat{\boldsymbol{k}}_i)$$

För ett opolariserat infallande fält gäller att $|E_{i\perp}|^2 = |E_{i\parallel}|^2 = |E_0|^2/2$ vilket förenklar det differentiella spridningstvärsnittet till

$$\frac{d\sigma}{d\Omega}\Big|_{\text{opol}}\left(\hat{\boldsymbol{r}}\right) = \frac{k^4 a^6}{2} \left\{ \left|\frac{\mu_1 - \mu}{\mu_1 + 2\mu} + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \cos\theta\right|^2 + \left|\frac{\mu_1 - \mu}{\mu_1 + 2\mu} \cos\theta + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon}\right|^2 \right\}$$

Specialfallet med en sfär med magnetiska egenskaper som är identiska med omgivningen, $\mu_1 = \mu$, är speciellt viktigt. Det differentiella spridningstvärsnittet, det totala spridningstvärsnittet, och det totala tvärsnittet blir i detta specialfall

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}) = \frac{k^4 a^6}{\left|\boldsymbol{E}_0\right|^2} \left|\frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon}\right|^2 \left(\cos^2\theta \left|\boldsymbol{E}_{i\parallel}\right|^2 + \left|\boldsymbol{E}_{i\perp}\right|^2\right)$$

respektive (jämför även resultatet i övning 3.6)

$$\sigma_s = \frac{8\pi k^4 a^6}{3} \left| \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right|^2 \qquad \sigma_t(\hat{k}_i) = 4\pi k a^3 \operatorname{Im} \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon}$$

Definitionen $\sigma_t = \sigma_s + \sigma_s$ används för att beräkna det totala absorptionstvärsnittet. Resultatet till lägsta ordning i potenser av ka är

$$\sigma_a = \frac{12\pi k a^3 \epsilon \operatorname{Im} \epsilon_1}{\left(\operatorname{Re} \epsilon_1 + 2\epsilon\right)^2 + \left(\operatorname{Im} \epsilon_1\right)^2}$$

Det differentiella spridningstvärsnittet och polarisationsgraden hos det spridda fältet för ett opolariserat infallande fält, då $\mu_1 = \mu$, är också intressanta. Resultatet är

$$\frac{d\sigma}{d\Omega}\Big|_{\text{opol}}\left(\hat{\boldsymbol{r}}\right) = \frac{k^4 a^6}{2} \left|\frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon}\right|^2 \left(1 + \cos^2\theta\right)$$

Figur 4.10: Strålningsdiagrammet för planvågsinfall mot en dielektrisk sfär i långvågsgränsen, $f(\theta) = \frac{3}{16\pi}(1 + \cos^2 \theta)$. Normeringen är vald så att $\iint_{\Omega} f(\theta) d\Omega = 1$.

 och

$$P|_{\text{opol}} = \sqrt{1 - \frac{4 \det[\mathbf{J}]}{(J_{11} + J_{22})^2}} = \sqrt{1 - \frac{4 \cos^2 \theta}{(1 + \cos^2 \theta)^2}} = \frac{\sin^2 \theta}{1 + \cos^2 \theta}$$

Strålningsdiagrammet för detta fall finns avbildat i figur 4.10. Notera också att vi har fullständigt polarisation, $P|_{\text{opol}} = 1$, hos det spridda fältet vinkelrätt mot infallsriktningen, $\theta = \pi/2$, trots att det infallande fältet är opolariserat.

Övningar till kapitel 4

4.1 Visa att $t_{\tau l}$ i (4.13) och (4.18) för reella ϵ_1 och μ_1 satisfierar (energikonserveringssamband)

$$t_{\tau l} t_{\tau l}^* = -\operatorname{Re} t_{\tau l}$$

4.2 Beräkna det differentiella spridningstvärsnittet i bakåtspridningsriktningen

$$rac{d\sigma}{d\Omega}(\hat{m{r}}=-\hat{m{k}}_i)=rac{\left|m{F}(\hat{m{r}}=-\hat{m{k}}_i)
ight|^2}{k^2\left|m{E}_0
ight|^2}$$

för en perfekt ledande sfär eller dielektrisk sfär uttryckt i en serie över $t_{\tau l}$.

- **4.3** Bestäm det elektriska fältet, $E_1(r, \omega)$, inuti en dielektrisk sfär (radie *a*, materialparametrar ϵ_1 och $\mu_1 = \mu$) i långvågsgränsen. Det omgivande materialets parametrar är ϵ och μ .
- **4.4** Beräkna övergångsmatrisen $t_{\tau l}$ för en infallande planvåg mot en perfekt ledande sfär med radie a, som har ett sfäriskt dielektriskt skikt utanpå. Skiktets tjocklek är b-a, och det har materialparametrarna ϵ_1 och μ_1 , se figur 4.11.

Figur 4.11: Geometri för övning 4.4.

*4.5 Visa följande vektor
identiteter för vektorklotytfunktionerna $\boldsymbol{A}_{\tau\sigma ml}$:

$$\begin{cases} \iint_{\Omega} \mathbf{A}_{1\sigma m l}(\hat{\mathbf{r}}) e^{ik\hat{\mathbf{k}}\cdot\mathbf{r}} d\Omega = 4\pi i^{l} j_{l}(kr) \mathbf{A}_{1\sigma m l}(\hat{\mathbf{k}}) = 4\pi i^{l} \mathbf{v}_{1\sigma m l}(\mathbf{k}r) \\ \iint_{\Omega} \mathbf{A}_{2\sigma m l}(\hat{\mathbf{r}}) e^{ik\hat{\mathbf{k}}\cdot\mathbf{r}} d\Omega = \frac{4\pi i^{l}}{ir} \nabla_{k} \times \left(j_{l}(kr) \mathbf{A}_{1\sigma m l}(\hat{\mathbf{k}}) \right) = -i4\pi i^{l} \mathbf{v}_{2\sigma m l}(\mathbf{k}r) \\ \iint_{\Omega} \mathbf{A}_{3\sigma m l}(\hat{\mathbf{r}}) e^{ik\hat{\mathbf{k}}\cdot\mathbf{r}} d\Omega = \frac{4\pi i^{l}}{ir} \nabla_{k} \left(j_{l}(kr) Y_{\sigma m l}(\hat{\mathbf{k}}) \right) = -i4\pi i^{l} \mathbf{v}_{3\sigma m l}(\mathbf{k}r) \end{cases}$$

där $\boldsymbol{k}=k\hat{\boldsymbol{k}}$ och

$$abla_k = \hat{oldsymbol{x}} rac{\partial}{\partial k_x} + \hat{oldsymbol{y}} rac{\partial}{\partial k_y} + \hat{oldsymbol{z}} rac{\partial}{\partial k_z}$$

4.6 Visa att en allmän planvåg $E_0 e^{ik\hat{k}_i \cdot r}$ har en utveckling i reguljära sfäriska vektorvågor $v_{\tau\sigma ml}(kr)$

$$\boldsymbol{E}_{0}e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}} = \sum_{l=0}^{\infty}\sum_{m=0}^{l}\sum_{\sigma=\mathrm{e,o}}\sum_{\tau=1}^{3}a_{\tau\sigma m l}\boldsymbol{v}_{\tau\sigma m l}(k\boldsymbol{r})$$

där

$$\begin{cases} a_{1\sigma m l} = 4\pi i^{l} \boldsymbol{E}_{0} \cdot \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{k}}_{i}) \\ a_{2\sigma m l} = -4\pi i^{l+1} \boldsymbol{E}_{0} \cdot \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{k}}_{i}) \\ a_{3\sigma m l} = -4\pi i^{l+1} \boldsymbol{E}_{0} \cdot \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{k}}_{i}) \end{cases}$$

Ledning: Använd resultatet från övning 4.5.

Sammanfattning av kapitel 4

Sfäriska vektorvågor—reguljära

$$\begin{cases} \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r}) = j_{l}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = \frac{1}{k}\nabla \times (j_{l}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})) \\ \boldsymbol{v}_{3\sigma m l}(k\boldsymbol{r}) = \frac{1}{k}\nabla (j_{l}(kr)Y_{\sigma m l}(\hat{\boldsymbol{r}})) \end{cases}$$

$$\begin{cases} \boldsymbol{v}_{1\sigma m l}(k\boldsymbol{r}) = j_{l}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{v}_{2\sigma m l}(k\boldsymbol{r}) = \frac{(krj_{l}(kr))'}{kr}\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\frac{j_{l}(kr)}{kr}\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{v}_{3\sigma m l}(k\boldsymbol{r}) = j_{l}'(kr)\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\frac{j_{l}(kr)}{kr}\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) \end{cases}$$

Sfäriska vektorvågor—utåtgående

$$\begin{cases} \boldsymbol{u}_{1\sigma m l}(k\boldsymbol{r}) = h_{l}^{(1)}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{u}_{2\sigma m l}(k\boldsymbol{r}) = \frac{1}{k}\nabla \times \left(h_{l}^{(1)}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})\right) \\ \boldsymbol{u}_{3\sigma m l}(k\boldsymbol{r}) = \frac{1}{k}\nabla \left(h_{l}^{(1)}(kr)Y_{\sigma m l}(\hat{\boldsymbol{r}})\right) \\ \begin{cases} \boldsymbol{u}_{1\sigma m l}(k\boldsymbol{r}) = h_{l}^{(1)}(kr)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{u}_{2\sigma m l}(k\boldsymbol{r}) = \frac{(krh_{l}^{(1)}(kr))'}{kr}\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\frac{h_{l}^{(1)}(kr)}{kr}\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) \\ \boldsymbol{u}_{3\sigma m l}(k\boldsymbol{r}) = h_{l}^{(1)'}(kr)\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\frac{h_{l}^{(1)}(kr)}{kr}\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) \end{cases}$$

Utveckling av planvåg

$$\begin{aligned} \boldsymbol{E}_{i}(\boldsymbol{r},\omega) &= \boldsymbol{E}_{0}e^{ik\hat{\boldsymbol{k}}_{i}\cdot\boldsymbol{r}} = \sum_{l=0}^{\infty}\sum_{m=0}^{l}\sum_{\sigma=\mathrm{e,o}}\sum_{\tau=1}^{3}a_{\tau\sigma m l}\boldsymbol{v}_{\tau\sigma m l}(k\boldsymbol{r})\\ \begin{cases} a_{1\sigma m l} &= 4\pi i^{l}\boldsymbol{E}_{0}\cdot\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{k}}_{i})\\ a_{2\sigma m l} &= -4\pi i^{l+1}\boldsymbol{E}_{0}\cdot\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{k}}_{i})\\ a_{3\sigma m l} &= -4\pi i^{l+1}\boldsymbol{E}_{0}\cdot\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{k}}_{i}) \end{aligned}$$

Fjärrfältsamplitud

$$\mathbf{F}(\hat{\mathbf{r}}) = \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma m l} \mathbf{A}_{\tau\sigma m l}(\hat{\mathbf{r}})$$

Differentiellt och totalt spridningstvärsnitt

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}_{i}) = \frac{1}{k^{2} |\boldsymbol{E}_{0}|^{2}} \left| \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}}^{2} \sum_{\tau=1}^{2} i^{-l-2+\tau} f_{\tau\sigma ml} \boldsymbol{A}_{\tau\sigma ml}(\hat{\boldsymbol{r}}) \right|^{2}$$
$$\sigma_{s}(\hat{\boldsymbol{k}}_{i}) = \frac{1}{k^{2} |\boldsymbol{E}_{0}|^{2}} \sum_{l=1}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}}^{2} \sum_{\tau=1}^{2} |f_{\tau\sigma ml}|^{2}$$

Perfekt ledande sfär

$$\begin{cases} S_{\parallel\parallel} = -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left\{ t_{1l} P_l'(\cos\theta) + t_{2l} \left[l(l+1) P_l(\cos\theta) - \cos\theta P_l'(\cos\theta) \right] \right\} \\ S_{\parallel\perp} = 0 \\ S_{\perp\parallel} = 0 \\ S_{\perp\perp} = -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left\{ t_{1l} \left[l(l+1) P_l(\cos\theta) - \cos\theta P_l'(\cos\theta) \right] + t_{2l} P_l'(\cos\theta) \right\} \\ \begin{cases} t_{1l} = -\frac{j_l(ka)}{h_l^{(1)}(ka)} \\ t_{2l} = -\frac{(kaj_l(ka))'}{(kah_l^{(1)}(ka))'} \\ \sigma_s(\hat{k}_l) = \frac{2\pi}{k^2} \sum_{\tau=1}^{2} \sum_{l=1}^{\infty} (2l+1) \left| t_{\tau l} \right|^2 = -\frac{2\pi}{k^2} \operatorname{Re} \sum_{l=1}^{\infty} (2l+1) \left(t_{1l} + t_{2l} \right) \end{cases}$$

Perfekt ledande sfär, långvågsgräns

$$\begin{aligned} \mathbf{F}(\hat{\mathbf{r}}) &= k^3 a^3 \left\{ \hat{e}_{s\parallel} \left(\cos \theta - \frac{1}{2} \right) E_{i\parallel} + \hat{e}_{s\perp} \left(1 - \frac{1}{2} \cos \theta \right) E_{i\perp} \right\} \\ \left\{ \begin{aligned} S_{\parallel\parallel} &= k^3 a^3 \left(\cos \theta - \frac{1}{2} \right) \\ S_{\parallel\perp} &= 0 \\ S_{\perp\parallel} &= 0 \\ S_{\perp\parallel} &= 0 \\ \end{array} \right. \\ \left. \sigma_s &= \frac{10 \pi k^4 a^6}{3} \\ \left. \frac{d\sigma}{d\Omega} \right|_{\text{opol}} (\hat{\mathbf{r}}) &= k^4 a^6 \left(\frac{5}{8} (1 + \cos^2 \theta) - \cos \theta \right) \\ P|_{\text{opol}} &= \frac{3 \sin^2 \theta}{5 \cos^2 \theta + 5 - 8 \cos \theta} \end{aligned}$$

Dielektrisk sfär

$$\begin{cases} S_{\parallel\parallel} = -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left\{ t_{1l}P_l'(\cos\theta) + t_{2l} \left[l(l+1)P_l(\cos\theta) - \cos\theta P_l'(\cos\theta) \right] \right\} \\ S_{\parallel\perp} = 0 \\ S_{\perp\parallel} = 0 \\ S_{\perp\perp} = -i\sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left\{ t_{1l} \left[l(l+1)P_l(\cos\theta) - \cos\theta P_l'(\cos\theta) \right] + t_{2l}P_l'(\cos\theta) \right\} \\ \left\{ t_{1l} = -\frac{\mu j_l(ka)(k_1aj_l(k_1a))' - \mu_1(kaj_l(ka))'j_l(k_1a)}{\mu h_l^{(1)}(ka)(k_1aj_l(k_1a))' - \mu_1(kaj_l(ka))'j_l(k_1a)} \\ t_{2l} = -\frac{\epsilon j_l(ka)(k_1aj_l(k_1a))' - \epsilon_1(kaj_l(ka))'j_l(k_1a)}{\epsilon h_l^{(1)}(ka)(k_1aj_l(k_1a))' - \epsilon_1(kah_l^{(1)}(ka))'j_l(k_1a)} \\ \sigma_s(\hat{\mathbf{k}}_i) = \frac{2\pi}{k^2} \sum_{\tau=1}^2 \sum_{l=1}^{\infty} (2l+1) \left| t_{\tau l} \right|^2, \quad \sigma_t(\hat{\mathbf{k}}_i) = -\frac{2\pi}{k^2} \operatorname{Re} \sum_{l=1}^{\infty} (2l+1) \left(t_{1l} + t_{2l} \right) \end{cases}$$

Dielektrisk sfär, långvågsgräns

$$\begin{aligned} \mathbf{F}(\hat{\mathbf{r}}) &= k^3 a^3 \Biggl\{ \hat{\mathbf{e}}_{s\parallel} \left(\frac{\mu_1 - \mu}{\mu_1 + 2\mu} + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \cos \theta \right) E_{i\parallel} \\ &+ \hat{\mathbf{e}}_{s\perp} \left(\frac{\mu_1 - \mu}{\mu_1 + 2\mu} \cos \theta + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right) E_{i\perp} \Biggr\} \\ \Biggl\{ \begin{aligned} S_{\parallel\parallel} &= k^3 a^3 \Biggl\{ \frac{\mu_1 - \mu}{\mu_1 + 2\mu} + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \cos \theta \Biggr\} \\ S_{\parallel\perp} &= 0 \\ S_{\perp\parallel} &= 0 \\ S_{\perp\parallel} &= 0 \\ S_{\perp\perp} &= k^3 a^3 \Biggl\{ \frac{\mu_1 - \mu}{\mu_1 + 2\mu} \cos \theta + \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \Biggr\} \\ \sigma_s &= \frac{8\pi k^4 a^6}{3} \Biggl| \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \Biggr|^2, \qquad \mu_1 = \mu \\ \Biggl| \frac{d\sigma}{d\Omega} \Biggl|_{\text{opol}} (\hat{\mathbf{r}}) &= \frac{k^4 a^6}{2} \Biggl| \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \Biggr|^2 \left(1 + \cos^2 \theta \right), \qquad \mu_1 = \mu \end{aligned}$$

Kapitel 5

Invers spridningsteori

kapitel 3 och 4 analyserade vi några grundläggande problem som uppstår vid spridning av elektromagnetiska vågor. Spridarens geometri och materialegenskaper (perfekt ledande yta eller dielektrisk kropp karakteriserad av ϵ och μ) antogs givna, och problemet bestod i att beräkna hur det spridda fältet ser ut. Speciellt var vi intresserade av fjärrfältets utseende. Detta spridningsproblem kallas det *direkta* spridningsproblemet.

Även om det direkta spridningsproblemet är utomordentligt viktigt i många tillämpningar, så är kanske omvändningen, det s.k. *inversa* spridningsproblemet, än mer intressant. Problemställningen är här att ur kunskap om det infallande och det spridda fälten beräkna vad det var som gav upphov till det spridda fältet, dvs. bestämma spridaren.

Det inversa spridningsproblemet kan uppdelas i olika frågeställningar beroende på vad man önskar bestämma, eller hur mycket man känner till om spridaren. Har man t.ex. kännedom om att spridaren är en metallyta räcker det att bestämma spridarens form. I andra sammanhang är spridarens materialegenskaper, t.ex. hur ϵ och μ varierar inuti spridaren, det primära. En tredje variant på ett inverst spridningsproblem, som ibland får namnet inverst källproblem, är att bestämma det sprida fältets källor, dvs. att bestämma J_s .

Inversa spridningsproblem har tillämpningar inom de flesta teknikområden. De allra mest påtagliga finns inom medicin, t.ex. tomografi¹, och geofysik, t.ex. oljeoch malm-prospektering. I dessa tillämpningar önskar man på avstånd bestämma ett materials egenskaper utan att förstöra det.

Det inversa spridningsproblemet är betydligt svårare att lösa än det direkta spridningsproblemet. Den främsta orsaken till detta är att det inversa problemet är icke-linjärt, dvs. spridarens geometri eller materialegenskaper beror icke-linjärt på det spridda fältet. Även numerisk instabilitet är svår att bemästra. Någon allmän lösningsmetod för det inversa problemet finns inte, men för vissa enkla approximationer är det möjligt att lösa problemet. Speciellt viktiga är de fall där problemet linjariseras. I detta kapitel kommer vi att analysera några sådana enkla inversa spridningsproblem. I avsnitt 5.1 visas hur man kan rekonstruera objekt vars elektriska egenskaper avviker svagt från det omgivande mediets. Formen på objekt, vars

¹Av grekiskans tomos avskuret stycke (jfr anatomi) och grekiskans grafein skriva, teckna.

Figur 5.1: Geometri för inversa spridningsproblem.

yta är perfekt ledande (metall), kan rekonstrueras med hjälp av fysikalisk-optikapproximationen. Detta behandlas i avsnitt 5.2.

5.1 Svaga spridare

Dielektricitetsfunktionen ϵ har tidigare i denna bok varit oberoende av rumsvariablerna \mathbf{r} (homogena material). I detta avsnitt låter vi ϵ variera i rummet. Utanför en sfär med radie R är $\epsilon = 1$, dvs. vakuum, medan innanför denna sfär varierar ϵ , se figur 5.1. I avsnitt 2.1 härledde vi den fundamentala differentialekvation som det elektriska fältet uppfyller. Härledningen av (2.2) på sidan 45 gäller även om dielektricitetsfunktionen ϵ varierar i rummet.

$$abla imes (
abla imes oldsymbol{E}(oldsymbol{r},\omega)) - \omega^2 \epsilon_0 \mu_0 \epsilon(oldsymbol{r}) oldsymbol{E}(oldsymbol{r},\omega) = oldsymbol{0}$$

Vi har antagit att inga yttre pålagda strömmar finns i V_s , utan endast strömmar som induceras av det yttre infallande fältet E_i , se nedan, samt att materialet är icke-magnetiskt, $\mu = 1$.

Det är lämpligt att införa beteckningen

$$\epsilon(\boldsymbol{r}) = 1 + \chi_e(\boldsymbol{r})$$

Funktionen χ_e anger avvikelsen från fri rymd (vakuum). Det område som χ_e är skild från noll, antar vi är begränsat och ligger innanför en sfär med radie R, se figur 5.1. Vidare antar vi att χ_e inte beror på frekvensen ω , dvs. materialet är dispersionsfritt. I det inversa spridningsproblemet är det just denna funktion, $\chi_e(\mathbf{r})$, som vi vill beräkna från spridningsdata.

Vi använder beteckningen J_s på den inducerade strömtätheten i V_s , i enlighet med beteckningarna i kapitel 3. Storleken på dessa strömmar, som uppstår pga. att ϵ varierar i rummet, får vi genom att skriva om ekvationen för det elektriska fältet ovan

$$\nabla \times (\nabla \times \boldsymbol{E}(\boldsymbol{r},\omega)) - k^2 \boldsymbol{E}(\boldsymbol{r},\omega) = k^2 \chi_e(\boldsymbol{r}) \boldsymbol{E}(\boldsymbol{r},\omega)$$
(5.1)

där

$$k^2 = \omega^2 \epsilon_0 \mu_0$$

Notera att k är vågtalet för en våg i vakuum (omgivande medium) och inte vågtalet för materialet i spridaren. Från det högra ledet identifierar vi lätt den inducerade strömtäthetens storlek uttryckt i det totala elektriska fältet, se (2.2) på sidan 45.

$$i\omega\mu_0oldsymbol{J}_s=k^2\chi_eoldsymbol{E}$$

eller

$$\boldsymbol{J}_s = -i\omega\epsilon_0\chi_e\boldsymbol{E} \tag{5.2}$$

De inducerade strömmarna är naturligtvis okända på detta stadium. I kapitel 3 visade vi sedan att strömmarna gav ett uttryck på det elektriska fältet. Ekvationen (3.4) på sidan 72 ger oss följande integraluttryck:

$$\boldsymbol{E}_{s}(\boldsymbol{r}) = \left[k^{2}\mathbf{I} + \nabla\nabla\right] \cdot \iiint_{V_{s}} \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \chi_{e}(\boldsymbol{r}')\boldsymbol{E}(\boldsymbol{r}')\,dv', \quad \boldsymbol{r} \notin V_{s}$$

I ett spridningsproblem är det naturligt att dela upp fälten i ett inkommande och ett spritt fält, precis som i kapitel 3 och 4.

$$\boldsymbol{E} = \boldsymbol{E}_i + \boldsymbol{E}_s$$

Dessa båda fält, E_i och E_s , utgör de experimentella data från vilka vi vill bestämma $\chi_e(\mathbf{r})$. Vi kan dock bara observera fälten utanför spridaren, inte inuti, och därför är fältet E i integralen ovan okänd. Om vi däremot har en situation där vi vet att spridaren är svag, så att det spridda fältet är litet jämfört med det infallande fältets styrka, dvs. $E_s \ll E_i$, kan vi med integraluttrycket ovan generera olika approximationer för detta inre fält. Två av dessa approximationer, Born- och Rytov-approximationen, är speciellt viktiga och behandlas nedan.

5.1.1 Born-approximationen

Fjärrfältet från en strömfördelning J_s härledde vi i avsnitt 3.1.1. Från detta avsnitt, speciellt ekvation (3.6) på sidan 74, hämtar vi resultatet²

$$oldsymbol{F}(\hat{oldsymbol{r}}) = \hat{oldsymbol{r}} imes (oldsymbol{K}(\hat{oldsymbol{r}}) imes \hat{oldsymbol{r}})$$

där

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{ik^2\eta_0}{4\pi} \iiint_{V_s} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \boldsymbol{J}_s(\boldsymbol{r}') \, dv'$$

Med uttrycket på J_s från (5.2) får således ett uttryck på fjärrfältsamplituden

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{k^2 \epsilon_0 \eta_0 \omega}{4\pi} \iiint_{V_s} e^{-ik\hat{\boldsymbol{r}} \cdot \boldsymbol{r}'} \chi_e(\boldsymbol{r}') \boldsymbol{E}(\boldsymbol{r}') \, dv' = \frac{k^3}{4\pi} \iiint_{V_s} e^{-ik\hat{\boldsymbol{r}} \cdot \boldsymbol{r}'} \chi_e(\boldsymbol{r}') \boldsymbol{E}(\boldsymbol{r}') \, dv'$$

²En motsvarande formulering baserad på närfältsmätningar kan också formuleras.

Figur 5.2: k-rummet då \hat{r} genomlöper alla spridningsriktningar.

Inga approximationer har gjorts i detta uttryck ännu. För att lösa det inversa spridningsproblemet, dvs. bestämma funktionen $\chi_e(\mathbf{r})$, behöver vi linjarisera problemet. Vi antar därför att spridaren är svag. Matematiskt innebär detta att

 $\chi_e(\mathbf{r}) \ll 1$

Under dessa förutsättningar är det inte stor skillnad på det totala elektriska fältet E och det infallande fältet E_i . Vi kan därför i vårt uttryck på fjärrfältsamplituden ersätta det okända totala fältet med det kända infallande fältet, dvs.

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{k^3}{4\pi} \iiint_{V_s} e^{-ik\hat{\boldsymbol{r}}\cdot\boldsymbol{r}'} \chi_e(\boldsymbol{r}') \boldsymbol{E}_i(\boldsymbol{r}') \, dv'$$

Låter vi det infallande fältet vara en planvåg

$$oldsymbol{E}_i(oldsymbol{r}) = oldsymbol{E}_0 e^{ik \hat{oldsymbol{k}}_i \cdot oldsymbol{r}}$$

får vi

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{k^3}{4\pi} \boldsymbol{E}_0 \iiint_{V_s} \chi_e(\boldsymbol{r}') e^{ik(\hat{\boldsymbol{k}}_i - \hat{\boldsymbol{r}}) \cdot \boldsymbol{r}'} \, dv'$$

Detta approximativa uttryck på fjärrfältsamplituden identifierar vi med en tredimensionell Fouriertransform av funktionen χ_e beräknad i punkten $k(\hat{k}_i - \hat{r})$. För varje fixt värde på k och infallsriktning \hat{k}_i genomlöper vektorn $k(\hat{k}_i - \hat{r})$ en sfär med radie k och centrum i punkten $k\hat{k}_i$, då observationsriktningen \hat{r} varierar i alla riktningar, se figur 5.2. Om den experimentella uppställningen endast medger att ett transmitterat fält kan mätas får vi endast information i Fourierrummet på en halvsfär med radie k och centrum i punkten $k\hat{k}_i$, se figur 5.3. I båda dessa fall ser vi att hela Fouriervariabelrummet spänns upp av $k(\hat{k}_i - \hat{r})$ om vi låter k, \hat{k}_i och \hat{r} variera på lämpligt sätt. Born-approximationen leder därför till att spridarens ϵ -profil

Figur 5.3: k-rummet då \hat{r} endast genomlöper de spridningsriktningar som svarar mot ett transmitterat fält.

kan bestämmas genom en tredimensionell invers Fourierintegral över spridningsdata (fjärrfältsamplituden F i lämpliga riktningar och för alla frekvenser). Notera att endast fjärrfältsamplituden, F, kan fås från experimentella data, vilket medför att endast K:s tangentialkomponenter kan erhållas, dvs.

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{r}} \times (\boldsymbol{K}(\hat{\boldsymbol{r}}) \times \hat{\boldsymbol{r}}) = \hat{\boldsymbol{r}} \times (\boldsymbol{E}_0 \times \hat{\boldsymbol{r}}) \frac{k^3}{4\pi} \iiint_{V_s} \chi_e(\boldsymbol{r}') e^{ik(\hat{\boldsymbol{k}}_i - \hat{\boldsymbol{r}}) \cdot \boldsymbol{r}'} dv'$$

Vi observerar att $\hat{\boldsymbol{r}} \times (\boldsymbol{E}_0 \times \hat{\boldsymbol{r}}) = \boldsymbol{E}_0 - \hat{\boldsymbol{r}} (\boldsymbol{E}_0 \cdot \hat{\boldsymbol{r}}) = \boldsymbol{0}$ endast då \boldsymbol{E}_0 är riktad i $\hat{\boldsymbol{r}}$:s riktning, vilket alltid går att undvika med lämpligt val av polarisation \boldsymbol{E}_0 .

5.1.2 Rytov-approximationen

I Born-approximationen linjariserades problemet genom att det okända totala fältet i integralen för fjärrfältsamplituden ersattes med det överallt kända inkommande fältet. En annan approximation erhålls genom att linjarisera fasen hos det elektriska fältet. Denna approximation leder till Rytov-approximationen.

Vi låter som tidigare det infallande fältet vara en planvåg

$$\boldsymbol{E}_i(\boldsymbol{r}) = \boldsymbol{E}_0 e^{ik\hat{\boldsymbol{k}}_i\cdot\boldsymbol{r}}$$

där den komplexa vektorn E_0 anger polarisationstillståndet hos det infallande fältet. Rytov-approximationen innebär att polarisationstillståndet hos fältet inte förändras nämnvärt vid spridningen. All spridning ges av en förändring av fältets fas. Vi ansätter därför följande uttryck på det totala fältet:

$$\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}_0 e^{ik\psi(\boldsymbol{r})}$$

där fasen $\psi(\mathbf{r})$ har formen

$$\psi(\boldsymbol{r}) = \hat{\boldsymbol{k}}_i \cdot \boldsymbol{r} + \psi_s(\boldsymbol{r})$$

Den första termen på höger sida är det infallande fältets fas medan den andra termen $\psi_s(\mathbf{r})$ anger avvikelserna från det infallande fältets fas. Avsaknad av spridare innebär att $\psi_s(\mathbf{r}) = 0$, och det totala fältet \mathbf{E} blir identiskt med det infallande fältet \mathbf{E}_i . Med denna ansats får vi med hjälp av räknereglerna för ∇ -operatorn

$$\nabla \times \boldsymbol{E}(\boldsymbol{r}) = ike^{ik\psi(\boldsymbol{r})} \left(\nabla \psi(\boldsymbol{r}) \times \boldsymbol{E}_0 \right)$$

eftersom \boldsymbol{E}_0 inte beror på rumskoordinaterna. Vidare får vi

$$\begin{aligned} \nabla \times (\nabla \times \boldsymbol{E}(\boldsymbol{r})) &= ik \nabla \times \left(e^{ik\psi(\boldsymbol{r})} \nabla \psi(\boldsymbol{r}) \times \boldsymbol{E}_0 \right) \\ &= ik \left[-\boldsymbol{E}_0 \nabla \cdot \left(e^{ik\psi(\boldsymbol{r})} \nabla \psi(\boldsymbol{r}) \right) + \left(\boldsymbol{E}_0 \cdot \nabla \right) \left(e^{ik\psi(\boldsymbol{r})} \nabla \psi(\boldsymbol{r}) \right) \right] \\ &= -ik \boldsymbol{E}_0 e^{ik\psi(\boldsymbol{r})} \left[ik \nabla \psi(\boldsymbol{r}) \cdot \nabla \psi(\boldsymbol{r}) + \nabla^2 \psi(\boldsymbol{r}) \right] \\ &+ ik \left(\boldsymbol{E}_0 \cdot \nabla \right) \left(e^{ik\psi(\boldsymbol{r})} \nabla \psi(\boldsymbol{r}) \right) \end{aligned}$$

Fasen $\psi_s(\mathbf{r})$ antas vara en storhet som varierar långsamt i materialet. Vi använder dessutom att $\nabla \psi(u) = \hat{\mathbf{h}} + \nabla \psi(u)$

 och

$$\nabla \psi(\boldsymbol{r}) = \boldsymbol{k}_i + \nabla \psi_s(\boldsymbol{r})$$

$$abla^2\psi(oldsymbol{r})=
abla^2\psi_s(oldsymbol{r})$$

Vi approximerar nu uttrycket för $\nabla \times (\nabla \times \mathbf{E})$. Endast termer som är linjära i $\nabla \psi_s$ sparas, och termer som innehåller $\nabla^2 \psi_s$ och andra andraderivator av ψ_s försummas.

$$\begin{aligned} \nabla \times (\nabla \times \boldsymbol{E}(\boldsymbol{r})) &= \boldsymbol{E}_{0} e^{ik\psi(\boldsymbol{r})} \left[k^{2} \left(\hat{\boldsymbol{k}}_{i} + \nabla \psi_{s}(\boldsymbol{r}) \right) \cdot \left(\hat{\boldsymbol{k}}_{i} + \nabla \psi_{s}(\boldsymbol{r}) \right) - ik\nabla^{2} \psi_{s}(\boldsymbol{r}) \right] \\ &+ ik \left(\boldsymbol{E}_{0} \cdot \nabla \right) \left(e^{ik\psi(\boldsymbol{r})} (\hat{\boldsymbol{k}}_{i} + \nabla \psi_{s}(\boldsymbol{r})) \right) \\ &\approx \boldsymbol{E}_{0} k^{2} e^{ik\psi(\boldsymbol{r})} \left[1 + 2\hat{\boldsymbol{k}}_{i} \cdot \nabla \psi_{s}(\boldsymbol{r}) \right] \\ &- k^{2} e^{ik\psi(\boldsymbol{r})} \left[\boldsymbol{E}_{0} \cdot \left(\hat{\boldsymbol{k}}_{i} + \nabla \psi_{s}(\boldsymbol{r}) \right) \right] \left(\hat{\boldsymbol{k}}_{i} + \nabla \psi_{s}(\boldsymbol{r}) \right) \\ &\approx e^{ik\psi(\boldsymbol{r})} k^{2} \Big\{ \boldsymbol{E}_{0} \left(1 + 2\hat{\boldsymbol{k}}_{i} \cdot \nabla \psi_{s}(\boldsymbol{r}) \right) - \left(\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{k}}_{i} \right) \hat{\boldsymbol{k}}_{i} \\ &- \left(\boldsymbol{E}_{0} \cdot \nabla \psi_{s}(\boldsymbol{r}) \right) \hat{\boldsymbol{k}}_{i} - \left(\boldsymbol{E}_{0} \cdot \hat{\boldsymbol{k}}_{i} \right) \nabla \psi_{s}(\boldsymbol{r}) \Big\} \end{aligned}$$

Eftersom $\boldsymbol{E}_0 \cdot \hat{\boldsymbol{k}}_i = 0$ får vi till slut

$$\nabla \times (\nabla \times \boldsymbol{E}(\boldsymbol{r})) \approx e^{ik\psi(\boldsymbol{r})} \left\{ \boldsymbol{E}_0 k^2 \left(1 + 2\hat{\boldsymbol{k}}_i \cdot \nabla \psi_s(\boldsymbol{r}) \right) - k^2 \left(\boldsymbol{E}_0 \cdot \nabla \psi_s(\boldsymbol{r}) \right) \hat{\boldsymbol{k}}_i \right\}$$

Med denna approximation blir (5.1):

$$2\boldsymbol{E}_0\left(\hat{\boldsymbol{k}}_i\cdot\nabla\psi_s(\boldsymbol{r})\right) - \left(\boldsymbol{E}_0\cdot\nabla\psi_s(\boldsymbol{r})\right)\hat{\boldsymbol{k}}_i = \chi_e(\boldsymbol{r})\boldsymbol{E}_0$$

Eftersom E_0 och \hat{k}_i är vinkelräta får vi två ekvationer.

$$2\hat{k}_i \cdot \nabla \psi_s(\boldsymbol{r}) = \chi_e(\boldsymbol{r}) \tag{5.3}$$

Figur 5.4: Geometri för Rytov-approximationen.

 och

$$oldsymbol{E}_0\cdot
abla\psi_s(oldsymbol{r})=0$$

Ekvation (5.3) utgör huvudekvationen för att bestämma χ_e . Det vänstra ledet är en riktningsderivata i \hat{k}_i :s riktning. Vi kan alltid orientera våra kartesiska koordinater xyz så att \hat{k}_i :s riktning ligger i xy-planet. Låt η vara en koordinat i \hat{k}_i :s riktning, se figur 5.4, och ξ en koordinat i xy-planet vinkelrät mot η . Vinkeln ϕ anger rotationsvinkeln mellan de båda koordinatsystemen xy och $\xi\eta$. Sambandet mellan koordinaterna xy och $\xi\eta$ är

$$\begin{cases} \xi = x \cos \phi + y \sin \phi \\ \eta = -x \sin \phi + y \cos \phi \end{cases}$$

Fasen $\psi_s(\mathbf{r})$ antas vara noll då $\eta \to -\infty$ (i själva verket är $\psi_s(\mathbf{r})$ i denna approximation noll ända fram till spridaren) och vi kan alternativt skriva ekvationen ovan som en linjeintegral. Värdet på $\psi_s(\mathbf{r})$ bakom spridaren blir

$$\psi_s(\xi, z) = \frac{1}{2} \int_{-\infty}^{\infty} \chi_e(x, y, z) \, d\eta$$

Integrationen i variabeln η är ändlig, eftersom χ_e har antagits vara noll utanför en sfär med radien R. Koordinaten z är endast en parameter här och skrivs inte ut i fortsättningen. Inverteringsproblemet blir med andra ord tvådimensionellt i denna approximation.

Fasens amplitud på baksidan av spridaren är, förutom en funktion av koordinaten ξ , även en funktion av vinkeln ϕ , som parametriserar den infallande vågens infallsriktning \hat{k}_i . Vi får till slut

$$\psi_s(\xi,\phi) = \frac{1}{2} \int_{-\infty}^{\infty} \chi_e(x,y) \, d\eta \tag{5.4}$$

I avsnitt 5.1.3 och 5.1.4 kommer en allmän teori för att lösa ut $\chi_e(\mathbf{r})$, om vi känner $\psi_s(\xi, \phi)$, att presenteras.

5.1.3 Projektionssatsen

Resultatet i detta avsnitt är så allmänt att vi föredrar att presentera det som en matematisk sats, som sedan kan tillämpas på invers spridning med Rytov-approximationen i avsnitt 5.1.2.

Vi antar att mätresultaten, $u_{\phi}(\xi)$, och den okända funktionen, f(x, y), är representerade på formen

$$u_{\phi}(\xi) = \int_{-\infty}^{\infty} f(x, y) \, d\eta = \iint_{-\infty}^{\infty} f(x, y) \delta(\xi - \boldsymbol{\rho} \cdot \hat{\boldsymbol{\xi}}) \, dx dy \tag{5.5}$$

Vektorn ρ är här den tvådimensionella ortsvektorn, dvs. $\rho = \hat{x}x + \hat{y}y$. Integrationen är i praktiken över ett ändligt intervall då funktionen f antas vara noll utanför ett begränsat område i planet. Fysikalisk kan vi tolka integralen som en projektion av funktionen f(x, y) längs en linje ξ =konstant, se figur 5.4. Koordinaterna ξ och η är relaterade till de rätvinkliga koordinaterna x och y genom

$$\begin{cases} \xi = x \cos \phi + y \sin \phi \\ \eta = -x \sin \phi + y \cos \phi \end{cases}$$

eller omvändningen

$$\begin{cases} x = \xi \cos \phi - \eta \sin \phi \\ y = \xi \sin \phi + \eta \cos \phi \end{cases}$$

Riktningarna $\hat{\boldsymbol{\xi}}$ och $\hat{\boldsymbol{\eta}}$ är

$$\left\{ egin{array}{l} \hat{m{\xi}} = \hat{m{x}}\cos\phi + \hat{m{y}}\sin\phi \ \hat{m{\eta}} = -\hat{m{x}}\sin\phi + \hat{m{y}}\cos\phi \end{array}
ight.$$

Funktionen $u_{\phi}(\xi)$ kan därför alternativt uttryckas som en funktion av ξ och $\hat{\boldsymbol{\xi}}$.

Fouriertransformen av $u_{\phi}(\xi)$ med avseende på variabeln ξ betecknar vi³

$$\widehat{u}_{\phi}(p) = \int_{-\infty}^{\infty} u_{\phi}(\xi) e^{ip\xi} d\xi$$

där p är ξ :s Fouriervariabel. Insättning av (5.5) ger

$$\widehat{u}_{\phi}(p) = \int_{-\infty}^{\infty} e^{ip\xi} \iint_{-\infty}^{\infty} f(x,y) \delta(\xi - \boldsymbol{\rho} \cdot \hat{\boldsymbol{\xi}}) \, dx dy \, d\xi = \iint_{-\infty}^{\infty} f(x,y) \exp\left\{ip\boldsymbol{\rho} \cdot \hat{\boldsymbol{\xi}}\right\} \, dx dy$$

 $^{^3}$ Fouriertransformen betecknar vi med "hatt" (^). Förväxla ej med en vektor av längd ett, där vi också använder hattsymbolen.

Detta är en tvådimensionell Fouriertransform av funktionen f(x, y) evaluerad i punkten $p\hat{\boldsymbol{\xi}}$.

Projektionssatsen kan nu formuleras.

En endimensionell Fouriertransform av en projektion av f är lika med en skiva (linje längs $\hat{\boldsymbol{\xi}}$) genom det tvådimensionella Fourierrummet av f.

Med en invers Fouriertransform på funktionen f(x, y) får vi

$$f(x,y) = \frac{1}{4\pi^2} \iint_{-\infty}^{\infty} \widehat{f}(\boldsymbol{p}) \exp\left\{-i\boldsymbol{\rho} \cdot \boldsymbol{p}\right\} dp_x dp_y$$

där $(p \ge 0)$

$$\widehat{f}(\boldsymbol{p}) = \widehat{u}_{\phi}(p)$$

och vektorn p är uttryckt i kartesiska koordinater

$$\begin{cases} \boldsymbol{p} = \hat{\boldsymbol{x}} p_x + \hat{\boldsymbol{y}} p_y \\ p_x = p \cos \phi \\ p_y = p \sin \phi \end{cases}$$

Formellt ger därför kännedom om $u_{\phi}(\xi)$ oss en möjlighet att beräkna f(x, y) genom att först utföra en Fouriertransform på $u_{\phi}(\xi)$ för varje riktning ϕ , och därefter en tvådimensionell invers Fouriertransform på detta resultat.

5.1.4 Inversion med integralekvation

I detta avsnitt härleder vi ett alternativt sätt att beräkna funktionen f(x, y) från data $u_{\phi}(\xi)$. Denna metod är också baserad på Fouriermetoden, men i stället för ett slutresultat med en invers Fouriertransform, leder denna metod till en (oändlig) serie av integraler där den okända funktionen f(x, y) ingår. Resultatet kan tillämpas på Rytov-approximationen i avsnitt 5.1.2.

Mätresultaten antar vi som tidigare är representerade på formen (5.5). För att dessa data skall vara fysikaliska måste vi kräva att $u_{\phi}(\xi = R) = 0$. Funktionen f(x, y), som vi önskar beräkna, antar vi är noll utanför en cirkel med radie R. Vi skriver om (5.5) och använder $R = \sqrt{\xi^2 + \eta^2}$ för att skriva om integrationsgränserna.

$$u_{\phi}(\xi) = \begin{cases} \sqrt{R^2 - \xi^2} \\ \int \\ -\sqrt{R^2 - \xi^2} \\ 0, \end{cases} \quad f(\rho, \alpha) \, d\eta, \quad |\xi| \le R \\ |\xi| \ge R \end{cases}$$

och den okända funktionen $f(\rho, \alpha)$ är uttryckt i cylindriska koordinater ρ och α .

$$\begin{cases} x = \rho \cos \alpha \\ y = \rho \sin \alpha \end{cases}$$

Följande samband gäller:

$$\begin{cases} \rho^2 = x^2 + y^2 = \xi^2 + \eta^2 \\ \xi = \rho \cos(\alpha - \phi) \\ \eta = \rho \sin(\alpha - \phi) \\ \tan(\alpha - \phi) = \frac{\eta}{\xi} \end{cases}$$

Funktionen $u_{\phi}(\xi)$ har symmetriegenskapen

$$u_{\phi}(-\xi) = u_{\phi+\pi}(\xi)$$

vilket medför att endast ickenegativa värden på ξ behöver beaktas, vilket inses om $\xi\eta$ -systemet roteras 180°.

Dela upp integralen i två delar; en över det negativa och en över det positiva integrationsintervallet. I den första integralen gör vi variabelsubstitutionen $\eta = -\sqrt{\rho^2 - \xi^2}$ och i den andra $\eta = \sqrt{\rho^2 - \xi^2}$. Resultatet av denna transformation är

$$u_{\phi}(\xi) = \begin{cases} -\int_{R}^{\xi} f(\rho, \phi - \arccos\frac{\xi}{\rho}) \frac{\rho \, d\rho}{\sqrt{\rho^2 - \xi^2}} + \int_{\xi}^{R} f(\rho, \phi + \arccos\frac{\xi}{\rho}) \frac{\rho \, d\rho}{\sqrt{\rho^2 - \xi^2}}, & 0 \le \xi \le R\\ 0, & \xi \ge R \end{cases}$$

eller

$$u_{\phi}(\xi) = \begin{cases} \int_{\xi}^{R} \left(f(\rho, \phi - \arccos \frac{\xi}{\rho}) + f(\rho, \phi + \arccos \frac{\xi}{\rho}) \right) \frac{\rho d\rho}{\sqrt{\rho^2 - \xi^2}}, & 0 \le \xi \le R\\ 0, & \xi \ge R \end{cases}$$

Den okända funktionen $f(\rho, \alpha)$ är för fixt ρ en periodisk funktion av α . Vi utvecklar den i en Fourierserie

$$f(\rho, \alpha) = \sum_{k=-\infty}^{\infty} f_k(\rho) e^{ik\alpha}$$

Integranden blir då

$$f(\rho, \phi - \arccos\frac{\xi}{\rho}) + f(\rho, \phi + \arccos\frac{\xi}{\rho})$$
$$= \sum_{k=-\infty}^{\infty} f_k(\rho) \left[e^{i(k\phi - k \arccos\frac{\xi}{\rho})} + e^{i(k\phi + k \arccos\frac{\xi}{\rho})} \right] = 2 \sum_{k=-\infty}^{\infty} f_k(\rho) e^{ik\phi} \cos\left(k \arccos\frac{\xi}{\rho}\right)$$

Insättning i integralen ger

$$u_{\phi}(\xi) = \begin{cases} 2\int_{\xi}^{R} \sum_{k=-\infty}^{\infty} f_{k}(\rho) e^{ik\phi} \cos\left(k \arccos\left(\frac{\xi}{\rho}\right) \frac{\rho d\rho}{\sqrt{\rho^{2} - \xi^{2}}}, & 0 \le \xi \le R\\ 0, & \xi \ge R \end{cases}$$

Vi gör nu en liknande Fourierutveckling av den kända funktionen $u_{\phi}(\xi)$.

$$u_{\phi}(\xi) = \sum_{k=-\infty}^{\infty} u_k(\xi) e^{ik\phi}$$

Identifiering av Fourierkoefficienter leder till följande oändliga system av integralekvationer:

$$u_k(\xi) = \begin{cases} 2\int_{\xi}^{R} f_k(\rho) \cos\left(k \arccos\frac{\xi}{\rho}\right) \frac{\rho \, d\rho}{\sqrt{\rho^2 - \xi^2}}, & 0 \le \xi \le R\\ 0, & \xi \ge R \end{cases}, \quad k = 0, \pm 1, \pm 2, \pm 3, \dots \end{cases}$$

Från appendix B.2 identifierar vi Tjebysjevpolynomen

$$T_k(x) = \cos\left(k \arccos x\right)$$

och vi får

$$u_{k}(\xi) = \begin{cases} 2\int_{\xi}^{R} f_{k}(\rho) T_{k}(\xi/\rho) \frac{\rho d\rho}{\sqrt{\rho^{2} - \xi^{2}}}, & 0 \le \xi \le R\\ 0, & \xi \ge R \end{cases}$$
(5.6)

Det vänstra ledet är här givna funktioner, som bestäms av experiment, medan funktionerna f_k , $k = 0, \pm 1, \pm 2, \pm 3, \ldots$, är de sökta.

Detta avsnitt avslutas med det specialfall att spridaren är axialsymmetrisk, dvs. den sökta funktionen f beror endast på avståndet ρ till z-axeln, $f(\rho, \alpha) = f(\rho)$. Mätresultaten $u_{\phi}(\xi)$ är då oberoende av vinkeln ϕ , $u_{\phi}(\xi) = u(\xi)$, och alla Fourierkoefficienter $k \neq 0$ är identiskt noll i uttrycken ovan. Bidraget från k = 0 blir $(T_0(x) = 1)$

$$u(\xi) = \begin{cases} 2\int_{\xi}^{R} f(\rho) \frac{\rho \, d\rho}{\sqrt{\rho^2 - \xi^2}}, & 0 \le \xi \le R\\ 0, & \xi \ge R \end{cases}$$

och funktionen $u(\xi)$ är jämn, dvs.

$$u(-\xi) = u(\xi)$$

I uttrycket ovan är det lämpligt att byta variabeln ξ mot t där $t = R^2 - \xi^2$, och samtidigt byta integrationsvariabeln ρ mot τ där $\tau = t - \rho^2 + \xi^2$. Resultatet blir

$$u(\sqrt{R^2 - t}) = \begin{cases} \int_{0}^{t} f(\sqrt{R^2 - \tau}) \frac{d\tau}{\sqrt{t - \tau}}, & 0 \le t \le R^2\\ 0, & t \le 0 \end{cases}$$

Anledningen till denna omskrivning av integralen är att vi nu kan använda Abels ekvation⁴, som relaterar två funktioner u(t) och f(t) till varann.

$$\begin{cases} u(t) = \int_0^t \frac{f(t') dt'}{\sqrt{t - t'}}, \quad t \ge 0\\ f(t) = \frac{1}{\pi} \frac{d}{dt} \int_0^t \frac{u(t - t') dt'}{\sqrt{t'}}, \quad t \ge 0 \end{cases}$$

⁴Abels ekvation kan härledas genom direkt insättning och växling av integrationsordning, eller med hjälp av Laplacetransformering.

Figur 5.5: Spridaren med belyst och skuggsida.

Tillämpat på vårt problem, $0 \le t \le R^2$, kan vi lösa ut den okända funktionen $f(\rho)$.

$$f(\sqrt{R^2 - t}) = \frac{1}{\pi} \frac{d}{dt} \int_0^t u(\sqrt{R^2 - t + \tau}) \frac{d\tau}{\sqrt{\tau}}, \quad 0 \le t \le R^2$$

 eller

$$f(\rho) = \begin{cases} -\frac{1}{2\pi\rho} \frac{d}{d\rho} \int_{0}^{R^2 - \rho^2} u(\sqrt{\rho^2 + \tau}) \frac{d\tau}{\sqrt{\tau}}, & 0 \le \rho \le R\\ 0, & \rho \ge R \end{cases}$$

I det axialsymmetriska fallet kan vi således finna ett slutet uttryck på den okända funktionen $f(\rho)$. Den praktiska användningen av detta uttryck begränsas dock av att integralen i högerledet behöver differentieras, vilket introducerar numeriska stabilitetsproblem.

5.2 Invers spridning med fo-approximationen

I avsnitt 5.1 var spridaren permeabel och karakteriserades av dielektricitetsfunktionen $\epsilon(\mathbf{r})$. I många tillämpningar består spridaren av en perfekt ledande kropp (metalliskt ytskikt). Vi kan i så fall inte använda de approximativa metoder som utvecklades i avsnitt 5.1. Eftersom materialegenskaperna redan är kända för en perfekt ledande kropp, återstår det att bestämma kroppens form. Detta kan åstadkommas med hjälp av fysikalisk-optik-approximationen, som behandlades i avsnitt 3.5.2.

Vi antar, som vanligt, att spridarens yta är S_s med utåtriktad normal $\hat{\boldsymbol{n}}$. Spridaren omges av ett homogent isotropt material med materialparametrar ϵ och μ , se figur 5.5. I detta avsnitt skall vi se hur vi med hjälp av fjärrfältsamplituden \boldsymbol{F}_{fo} kan beräkna ytan S_s , om ytan S_s är konvex.

I avsnitt 3.5.2 analyserade vi fysikalisk-optik-approximationen, som har sin största tillämpning för korta våglängder. Från (3.35) på sidan 98 hämtar vi det approximativa uttrycket på fjärrfältsamplituden i bakåtriktningen

$$\boldsymbol{F}_{fo}(\hat{\boldsymbol{r}} = -\hat{\boldsymbol{k}}_i) = -i\frac{k^2}{2\pi}\boldsymbol{E}_0 \iint_{S_s^+(\hat{\boldsymbol{k}}_i)} \left(\hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}')\right) e^{2ik\hat{\boldsymbol{k}}_i \cdot \boldsymbol{r}'} \, dS'$$

där $k = \omega \sqrt{\epsilon_0 \mu_0 \epsilon \mu}$ och ytan S_s^+ är den belysta delen av spridaren. Lägg märke till att den belysta delen av ytan $S_s^+ = S_s^+(\hat{k}_i)$ beror på riktningen \hat{k}_i hos den infallande planvågen.

Det är lämpligt att införa en dimensionslös funktion $f(\mathbf{K})$.

$$f(\mathbf{K}) = \frac{iK}{8\pi} \iint_{S_s^+(-\widehat{\mathbf{K}})} \left(\mathbf{K} \cdot \hat{\mathbf{n}}(\mathbf{r}')\right) e^{-i\mathbf{K} \cdot \mathbf{r}'} \, dS'$$
(5.7)

Här är \mathbf{K} en reell vektor—i vårt fall är $\mathbf{K} = -2k\hat{\mathbf{k}}_i$, $\widehat{\mathbf{K}} = -\hat{\mathbf{k}}_i$, och $K = |\mathbf{K}| = 2k \ge 0$. Notera att den belysta delen av ytan $S_s^+ = S_s^+(-\widehat{\mathbf{K}})$ beror på vektorn \mathbf{K} :s riktning. Med denna definition kan vi nu skriva om fjärrfältsamplituden i bakåtriktningen.

$$oldsymbol{F}_{fo}(\hat{oldsymbol{r}}=-oldsymbol{k}_i)=oldsymbol{E}_0f(oldsymbol{K})$$

Det differentiella spridningstvärsnittet i bakåtriktningen blir, se (3.16)

$$\frac{d\sigma}{d\Omega}(\hat{\bm{r}} = -\hat{\bm{k}}_i) = \frac{|\bm{F}_{fo}(\hat{\bm{r}} = -\hat{\bm{k}}_i)|^2}{k^2 |\bm{E}_0|^2} = \frac{|f(\bm{K})|^2}{k^2}$$

Det differentiella spridningstvärsnittet bestämmer endast absolutbeloppet av f. Den komplexa fasen hos f bestäms av fjärrfältsamplituden $\mathbf{F}_{fo}(\hat{\mathbf{r}} = -\hat{\mathbf{k}}_i)$.

Vi antar att spridaren är konvex så att alla delar av ytan S_s blir belysta med två motriktade infallande planvågor. Detta utesluter ytor med "gropar". Om vi belyser spridaren från motsatt riktning (svarar mot infallsriktningen $-\hat{k}_i$) blir funktionen $f(-\mathbf{K})$

$$f(-\mathbf{K}) = \frac{iK}{8\pi} \iint_{S_s^+(\widehat{\mathbf{K}})} \left(-\mathbf{K} \cdot \hat{\mathbf{n}}(\mathbf{r}') \right) e^{i\mathbf{K} \cdot \mathbf{r}'} \, dS'$$

Om vi komplexkonjugerar detta uttryck och använder $S_s^+(\widehat{\mathbf{K}}) = S_s^-(-\widehat{\mathbf{K}})$, där ytan S_s^- är skuggdelen av spridaren (med avseende på den ursprungliga infallsriktningen \hat{k}_i), får vi

$$f^*(-\boldsymbol{K}) = \frac{iK}{8\pi} \iint_{S_s^-(-\widehat{\boldsymbol{K}})} (\boldsymbol{K} \cdot \hat{\boldsymbol{n}}(\boldsymbol{r}')) e^{-i\boldsymbol{K}\cdot\boldsymbol{r}'} dS'$$

Eftersom hela ytan S_s är summan av S_s^+ och S_s^- får vi

$$f(\mathbf{K}) + f^*(-\mathbf{K}) = \frac{iK}{8\pi} \iint_{S_s} \left(\mathbf{K} \cdot \hat{\mathbf{n}}(\mathbf{r}') \right) e^{-i\mathbf{K} \cdot \mathbf{r}'} \, dS'$$

Integrationsområdet S_s är nu oberoende av \widehat{K} .

Vi använder divergensteoremet på volymen V_s .

$$f(\mathbf{K}) + f^*(-\mathbf{K}) = \frac{K^3}{8\pi} \iiint_{V_s} e^{-i\mathbf{K}\cdot\mathbf{r}'} \, dv'$$
(5.8)

eftersom

$$\nabla' \cdot \left(\mathbf{K} e^{-i\mathbf{K} \cdot \mathbf{r}'} \right) = -i\mathbf{K} \cdot \mathbf{K} e^{-i\mathbf{K} \cdot \mathbf{r}'} = -iK^2 e^{-i\mathbf{K} \cdot \mathbf{r}'}$$

Ekvation (5.8) är en tredimensionell Fouriertransform av spridarens karakteristiska funktion, dvs. en funktion $\gamma(\mathbf{r})$ definierad av

$$\gamma(\mathbf{r}) = \begin{cases} 1, & \mathbf{r} \in V_s \\ 0, & \text{för övrigt} \end{cases}$$

Spridarens form, som bestäms av funktionen γ , får vi genom en invers Fouriertransform av (5.8).

$$\gamma(\boldsymbol{r}) = \frac{1}{8\pi^3} \iiint_{-\infty}^{\infty} \frac{8\pi}{K^3} \left(f(\boldsymbol{K}) + f^*(-\boldsymbol{K}) \right) e^{i\boldsymbol{K}\cdot\boldsymbol{r}} d^3 K$$

$$= \frac{1}{\pi^2} \iiint_{-\infty}^{\infty} \frac{1}{K^3} \left(f(\boldsymbol{K}) + f^*(-\boldsymbol{K}) \right) e^{i\boldsymbol{K}\cdot\boldsymbol{r}} d^3 K$$
(5.9)

Vårt resultat innebär att om vi känner spridningsdata i bakåtriktningen för alla infallsvinklar (alla \hat{k}_i) och alla våglängder (alla k), så kan spridarens form bestämmas genom en invers Fouriertransform. Vi skall dock komma ihåg att fysikalisk-optikapproximationen, som var den underliggande metoden i denna analys, endast kan förväntas vara användbar för korta våglängder (höga frekvenser eller k-värden). För Fouriertransformen behövs dock även små k-värden och vi förväntar oss därför inte perfekta resultat vid invertering med denna metod.

I en experimentell mätning kan vi inte göra mätningar i hela K-rummet utan endast en begränsad delmängd D i K-rummet. Vi inför den karakteristiska funktionen χ_D för D.

$$\chi_D(\boldsymbol{K}) = \begin{cases} 1, & \text{om } \boldsymbol{K} \in D\\ 0, & \text{om } \boldsymbol{K} \notin D \end{cases}$$

I område D har vi tillgång till mätdata. Området D kan vara en kontinuerlig mängd eller diskreta punkter i K-rummet beroende på experimentella data. Den funktion vi då rekonstruerar blir

$$\gamma_D(\boldsymbol{r}) = \frac{1}{\pi^2} \iiint_{-\infty}^{\infty} \frac{1}{K^3} \chi_D(\boldsymbol{K}) \left(f(\boldsymbol{K}) + f^*(-\boldsymbol{K}) \right) e^{i\boldsymbol{K}\cdot\boldsymbol{r}} d^3 K$$
(5.10)

Detta uttryck ger $\gamma_D(\mathbf{r})$, som är en approximation av spridarens korrekta form $\gamma(\mathbf{r})$. Relationen mellan $\gamma_D(\mathbf{r})$ och $\gamma(\mathbf{r})$ kan också skrivas som en faltningsintegral,

eftersom (5.10) är en invers Fouriertransform av en produkt av Fouriertransformer.

$$\gamma_D(\boldsymbol{r}) = \iiint_{-\infty}^{\infty} (\mathcal{F}^{-1}\chi_D)(\boldsymbol{r} - \boldsymbol{r}')\gamma(\boldsymbol{r}') \, dv'$$
(5.11)

där inversa Fouriertransformen av $\chi_D(\mathbf{K})$ betecknas

$$(\mathcal{F}^{-1}\chi_D)(\boldsymbol{r}) = \frac{1}{8\pi^3} \iiint_{-\infty}^{\infty} \chi_D(\boldsymbol{K}) e^{i\boldsymbol{K}\cdot\boldsymbol{r}} d^3K$$

Vi avslutar avsnittet med att se hur rekonstruktionen av spridaren blir om vi endast kan mäta i en riktning. Låt denna riktning vara \hat{z} . Vi kan då endast erhålla $f(\mathbf{K})$ med \mathbf{K} parallell med \hat{z} -axeln, dvs. $f(\pm K\hat{z})$, $K \ge 0$. Ekvation (5.8) får då följande förenklade form för $\mathbf{K} = K\hat{z}$ ($K \ge 0$):

$$f(K\hat{\boldsymbol{z}}) + f^*(-K\hat{\boldsymbol{z}}) = \frac{K^3}{8\pi} \int_{-\infty}^{\infty} A(z) e^{-iKz} dz, \quad K \ge 0$$

och för $\boldsymbol{K} = -K\hat{\boldsymbol{z}} \ (K \ge 0)$:

$$f(-K\hat{z}) + f^*(K\hat{z}) = \frac{K^3}{8\pi} \int_{-\infty}^{\infty} A(z)e^{iKz} dz, \quad K \ge 0$$

eftersom integrationen i x- och y-led ger spridarens tvärsnittsare
aA(z)i planet z=konstant.

Vi ser att tvärsnittsarean A(z) kan rekonstrueras från spridningsdata $f(\pm K\hat{z})$ genom en invers Fouriertransform

$$\begin{aligned} A(z) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{8\pi}{|K|^3} \left(f(K\hat{z}) + f^*(-K\hat{z}) \right) e^{iKz} dK \\ &= 4 \int_{-\infty}^{\infty} \frac{1}{|K|^3} \left(f(K\hat{z}) + f^*(-K\hat{z}) \right) e^{iKz} dK \\ &= 8 \operatorname{Re} \left\{ \int_{0}^{\infty} \frac{1}{K^3} \left(f(K\hat{z}) + f^*(-K\hat{z}) \right) e^{iKz} dK \right\} \end{aligned}$$

I sista ledet har vi skrivit om integralen så att endast positiva K-värden utnyttjas.

Övningar till kapitel 5

5.1 Beräkna fjärrfältsamplituden $F(\hat{r})$ i Born-approximationen för en dielektrisk sfär med radie a och konstant dielektricitetsfunktion ϵ .

5.2 Fasen $\psi_s(\xi)$ bakom spridaren är

$$\psi_s(\xi) = \begin{cases} \chi \sqrt{R^2 - \xi^2}, & 0 \le \xi \le R \\ 0, & \xi \ge R \end{cases}$$

oberoende av vinkeln ϕ . Bestäm $\chi_e = \chi_e(\rho)$ för den axialsymmetriska spridaren.

5.3 Experimentella data på fjärrfältsamplituden i bakåtriktningen, $F(\hat{r} = -\hat{k}_i)$, längs en riktning visar sig kunna approximeras väl med

$$\boldsymbol{F}(\hat{\boldsymbol{r}} = -\hat{\boldsymbol{k}}_i) = -\frac{ka}{2}e^{2ika}\boldsymbol{E}_0 + \frac{i}{4}\left(1 - e^{2ika}\right)\boldsymbol{E}_0$$

dvs.

$$f(K\hat{\boldsymbol{z}}) + f^*(-K\hat{\boldsymbol{z}}) = -\frac{Ka}{2}\cos Ka + \frac{1}{2}\sin Ka, \quad K \ge 0$$

Bestäm spridarens form genom att invertera med fysikalisk-optik-approximationen under antagandet att kroppen är axialsymmetrisk kring \hat{z} -riktningen.

Lämpliga integraler:

$$\begin{cases} \sin y - y \cos y = y^2 \int_0^1 t \sin yt \, dt \\ \int_0^\infty \frac{\sin ay}{y} \, dy = \frac{\pi}{2} \operatorname{sign}(a) \end{cases}$$

5.4 Experimentella data på fjärrfältsamplituden i bakåtriktningen, $F(\hat{r} = -\hat{k}_i)$, längs en riktning visar sig kunna approximeras väl med $(d_1, d_2 > 0)$

$$\boldsymbol{F}(\hat{\boldsymbol{r}} = -\hat{\boldsymbol{k}}_i) = \begin{cases} \frac{ik^2a^2}{2}\boldsymbol{E}_0e^{-2ikd_1}, & \hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{z}} \ge 0\\ \frac{ik^2a^2}{2}\boldsymbol{E}_0e^{-2ikd_2}, & \hat{\boldsymbol{k}}_i \cdot \hat{\boldsymbol{z}} \le 0 \end{cases}$$

dvs.

$$f(K\hat{z}) + f^*(-K\hat{z}) = \frac{iK^2a^2}{8} \left(e^{-iKd_1} - e^{iKd_2} \right), \quad K \ge 0$$

Bestäm spridarens form genom att invertera med fysikalisk-optik-approximationen under antagandet att kroppen är axialsymmetrisk kring \hat{z} -riktningen.

Lämplig integral:

$$\int_0^\infty \frac{\sin ay}{y} \, dy = \frac{\pi}{2} \mathrm{sign}(a)$$

*5.5 Beräkna funktionen $f(\mathbf{K})$ i (5.7) för en perfekt ledande sfär med radie *a*. Visa sedan att spridarens form kan återskapas med (5.9).

Lämpliga integraler:

$$\begin{cases} \int_0^\infty \frac{\sin ay}{y} \, dy = \frac{\pi}{2} \text{sign}(a) \\ \int_0^\infty \cos ay \, dy = \pi \delta(a) \end{cases}$$

Sammanfattning av kapitel 5

Invers spridning—Born-approximationen

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \frac{k^3}{4\pi} \boldsymbol{E}_0 \iiint_{V_s} \chi_e(\boldsymbol{r}') e^{ik(\hat{\boldsymbol{k}}_i - \hat{\boldsymbol{r}}) \cdot \boldsymbol{r}'} \, dv'$$

 $Invers\ spridning - Rytov-approximation en$

$$\psi_s(\xi, z) = \frac{1}{2} \int_{-\infty}^{\infty} \chi_e(x, y, z) \, d\eta$$

Projektionssatsen

$$u_{\phi}(\xi) = \int_{-\infty}^{\infty} f(x, y) \, d\eta, \qquad \widehat{f}(\hat{\boldsymbol{x}}p \cos \phi + \hat{\boldsymbol{y}}p \sin \phi) = \int_{-\infty}^{\infty} u_{\phi}(\xi)e^{ip\xi} \, d\xi$$
$$f(x, y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \widehat{f}(\boldsymbol{p}) \exp\left\{-i\boldsymbol{\rho} \cdot \boldsymbol{p}\right\} \, dp_x dp_y$$

Inversion med integralekvationer

$$\begin{aligned} u_{\phi}(\xi) &= \int_{-\infty}^{\infty} f(x,y) \, d\eta, \qquad f(\rho,\alpha) = \sum_{k=-\infty}^{\infty} f_k(\rho) e^{ik\alpha}, \qquad u_{\phi}(\xi) = \sum_{k=-\infty}^{\infty} u_k(\xi) e^{ik\phi} \\ u_k(\xi) &= \begin{cases} 2 \int_{\xi}^{R} f_k(\rho) T_k(\xi/\rho) \frac{\rho \, d\rho}{\sqrt{\rho^2 - \xi^2}}, & |\xi| \le R \\ 0, & |\xi| \ge R \end{cases} \\ k &= 0, \pm 1, \pm 2, \pm 3, \dots \\ |\xi| \ge R \end{cases} \\ f(\rho) &= \begin{cases} -\frac{1}{2\pi\rho} \frac{d}{d\rho} \int_{0}^{R^2 - \rho^2} u(\sqrt{\rho^2 + \tau}) \frac{d\tau}{\sqrt{\tau}}, & 0 \le \rho \le R \\ 0, & \rho \ge R \end{cases} \text{ axialsymmetri} \\ \rho \ge R \end{cases} \end{aligned}$$

Invers spridning—fysikalisk-optik-approximationen

$$f(\mathbf{K}) = \frac{iK}{8\pi} \iint_{S_s^+(-\widehat{\mathbf{K}})} (\mathbf{K} \cdot \hat{\mathbf{n}}(\mathbf{r}')) e^{-i\mathbf{K} \cdot \mathbf{r}'} dS'$$
$$\gamma(\mathbf{r}) = \frac{1}{\pi^2} \iiint_{-\infty}^{\infty} \frac{1}{K^3} (f(\mathbf{K}) + f^*(-\mathbf{K})) e^{i\mathbf{K} \cdot \mathbf{r}} d^3K$$

Tv"arsnitts are an - fysikalisk-optik-approximation en

$$A(z) = 8 \operatorname{Re} \left\{ \int_{0}^{\infty} \frac{1}{K^{3}} \left[f(K\hat{\boldsymbol{z}}) + f^{*}(-K\hat{\boldsymbol{z}}) \right] e^{iKz} \, dK \right\}$$

Bilaga A Besselfunktioner

Vågutbrednings- och spridningsproblem dyker ofta Bessels differentialekvation upp, särskilt när vi har ett problem med axiell eller sfärisk symmetri. I detta appendix sammanfattas ett antal viktiga samband som gäller för Besselfunktioner. Vidare sammanfattas de sfäriska Bessel- och Hankelfunktionerna. Mer information och bevis av de olika resultaten ges t.ex. i ref. 1.

A.1 Bessel- och Hankelfunktioner

Bessels differentialekvation är

$$z^{2} \frac{d^{2}}{dz^{2}} Z_{n}(z) + z \frac{d}{dz} Z_{n}(z) + (z^{2} - n^{2}) Z_{n}(z) = 0$$
(A.1)

där n antas vara ett heltal.¹

Två linjärt oberoende lösningar finns till denna differentialekvation. En är reguljär i z = 0 och denna lösning kallas en Besselfunktion $J_n(z)$ av ordning n. Argumentet z är ett komplext tal. Ofta poängteras samhörigheten med axiell symmetri hos det underliggande problem genom att lösningarna kallas cylindriska Besselfunktioner av ordning n. Besselfunktionerna $J_n(z)$ är definierade så att de är reella för reellt argument z. De kan framställas i en överallt absolutkonvergent potensserie

$$J_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!} \left(\frac{z}{2}\right)^{n+2k}$$
(A.2)

Vi ser omedelbart att $J_n(z)$ är en jämn funktion för jämna n och en udda funktion för udda n, dvs.

$$J_n(-z) = (-1)^n J_n(z)$$

En vanlig integralframställning av Bessel funktionerna är

$$J_n(z) = \frac{1}{\pi} \int_0^{\pi} \cos\left(z\sin t - nt\right) \, dt = \frac{1}{2\pi} \int_0^{2\pi} e^{iz\cos t} e^{in\left(t - \frac{1}{2}\pi\right)} \, dt \tag{A.3}$$

 $^{^1{\}rm Mer}$ generella definitioner med t.ex.
 nsom ett komplext tal kan också göras, men då ser resultaten i flera fall annorlunda ut.

Från denna integralframställning ser vi att Besselfunktioner för positiva och negativa heltalsvärden på n är relaterade till varandra.

$$J_{-n}(z) = (-1)^n J_n(z)$$

Från potensserieframställningen i (A.2) ser vi att för små argument gäller

$$J_n(z) = \frac{1}{n!} \left(\frac{z}{2}\right)^n + O(z^{n+2})$$

För stora argument gäller $(-\pi < \arg z < \pi)$

$$J_n(z) = \left(\frac{2}{\pi z}\right)^{1/2} \left\{ P_n(z) \cos\left(z - \frac{n\pi}{2} - \frac{\pi}{4}\right) - Q_n(z) \sin\left(z - \frac{n\pi}{2} - \frac{\pi}{4}\right) \right\}$$

där funktionerna $P_n(z)$ och $Q_n(z)$ har följande asymptotiska utvecklingar ($\nu=4n^2)$

$$\begin{cases} P_n(z) \sim 1 - \frac{(\nu - 1)(\nu - 9)}{2!(8z)^2} + \frac{(\nu - 1)(\nu - 9)(\nu - 25)(\nu - 49)}{4!(8z)^4} - \dots \\ Q_n(z) \sim \frac{\nu - 1}{8z} - \frac{(\nu - 1)(\nu - 9)(\nu - 25)}{3!(8z)^3} + \dots \end{cases}$$
(A.4)

Den andra, av Besselfunktionen linjärt oberoende lösningen, som är reell för reella argument, är Neumannfunktionen² $N_n(z)$. Dess potensserieutveckling är

$$N_n(z) = \frac{2}{\pi} \left(\ln\left(\frac{z}{2}\right) + \gamma - \frac{1}{2} \sum_{k=1}^n \frac{1}{k} \right) J_n(z)$$
$$- \frac{1}{\pi} \sum_{k=0}^\infty (-1)^k \frac{\left(\frac{z}{2}\right)^{n+2k}}{k!(n+k)!} \sum_{l=1}^k \left(\frac{1}{l} + \frac{1}{l+n}\right)$$
$$- \frac{1}{\pi} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!} \left(\frac{z}{2}\right)^{-n+2k}$$

där Eulers konstant $\gamma = 0.577\,215\,66\ldots$, och där alla summor definieras till noll om övre summationsgräns är mindre summationsindex. Vi ser att denna lösning är singulär i z = 0. För små argument blir det dominerande bidraget

$$N_0(z) = \frac{2}{\pi} \left(\ln\left(\frac{z}{2}\right) + \gamma \right) + O(z^2)$$
$$N_n(z) = -\frac{(n-1)!}{\pi} \left(\frac{z}{2}\right)^{-n} + \dots$$

För stora argument kan Neumannfunktionen utvecklas som $(-\pi < \arg z < \pi)$

$$N_n(z) = \left(\frac{2}{\pi z}\right)^{1/2} \left(P_n(z)\sin\left(z - \frac{n\pi}{2} - \frac{\pi}{4}\right) + Q_n(z)\cos\left(z - \frac{n\pi}{2} - \frac{\pi}{4}\right)\right)$$

²Dessa lösningar kallas också Besselfunktioner av andra slaget.

där funktionerna $P_n(z)$ och $Q_n(z)$ är givna av (A.4).

I vågutbredningssammanhang uppkommer behovet av en linjärkombination av Bessel- och Neumannfuntioner, de s.k. Hankelfunktionerna, $H_n^{(1)}(z)$ och $H_n^{(2)}(z)$ av första respektive andra slaget.³ Dessa definieras av

$$H_n^{(1)}(z) = J_n(z) + iN_n(z)$$

$$H_n^{(2)}(z) = J_n(z) - iN_n(z)$$

En vanlig integralframställning av Hankelfunktionerna av första och andra slaget är

$$\begin{split} H_n^{(1)}(z) &= \frac{2}{i\pi} e^{-in\frac{\pi}{2}} \int_0^\infty e^{iz\cosh s} \cosh ns \, ds, \qquad 0 < \arg z < \pi \\ H_n^{(2)}(z) &= \frac{2i}{\pi} e^{in\frac{\pi}{2}} \int_0^\infty e^{-iz\cosh s} \cosh ns \, ds, \qquad -\pi < \arg z < 0 \end{split}$$

För stora argument kan Hankelfunktionerna utvecklas som

$$H_n^{(1)}(z) = \left(\frac{2}{\pi z}\right)^{1/2} e^{i\left(z - \frac{n\pi}{2} - \frac{\pi}{4}\right)} \left(P_n(z) + iQ_n(z)\right), \qquad -\pi < \arg z < 2\pi$$
$$H_n^{(2)}(z) = \left(\frac{2}{\pi z}\right)^{1/2} e^{-i\left(z - \frac{n\pi}{2} - \frac{\pi}{4}\right)} \left(P_n(z) - iQ_n(z)\right), \qquad -2\pi < \arg z < \pi$$

där funktionerna $P_n(z)$ och $Q_n(z)$ är givna av (A.4).

Mellan lösningar till Bessels differentialekvation av olika ordning finns rekursionssamband. Några av de viktigaste är (n = 0, 1, 2, ..., m = 0, 1, 2, ...)

$$Z_{n-1}(z) - Z_{n+1}(z) = 2Z'_{n}(z)$$

$$Z_{n-1}(z) + Z_{n+1}(z) = \frac{2n}{z}Z_{n}(z)$$

$$Z_{n+1}(z) = \frac{n}{z}Z_{n}(z) - Z'_{n}(z)$$

$$Z'_{n}(z) = Z_{n-1}(z) - \frac{n}{z}Z_{n}(z)$$

$$\left(\frac{d}{z\,dz}\right)^{m} [z^{n}Z_{n}(z)] = z^{n-m}Z_{n-m}(z)$$

$$\left(\frac{d}{z\,dz}\right)^{m} [z^{-n}Z_{n}(z)] = (-1)^{m}z^{-n-m}Z_{n+m}(z)$$

Här är $Z_n(z)$ antingen en Besselfunktion $J_n(z)$, en Neumannfunktion $N_n(z)$ eller någon av Hankelfunktionerna $H_n^{(1)}(z)$ eller $H_n^{(2)}(z)$. Vi ser att speciellt gäller

$$J_1(z) = -J_0'(z)$$

som ofta används i beräkningar.

 $^{^{3}}$ Ett ofta använt alternativt namn på dessa lösningar är Besselfunktioner av tredje slaget.

För Besselfunktionen $J_n(z)$, Neumannfunktionen $N_n(z)$ och Hankelfunktionerna $H_n^{(1)}(z)$ eller $H_n^{(2)}(z)$ gäller att

$$\begin{cases} J_n(z^*) = (J_n(z))^* \\ N_n(z^*) = (N_n(z))^* \end{cases} \begin{cases} H_n^{(1)}(z^*) = \left(H_n^{(2)}(z)\right)^* \\ H_n^{(2)}(z^*) = \left(H_n^{(1)}(z)\right)^* \end{cases}$$

A.2 Sfäriska Bessel- och Hankelfunktioner

Sfäriska Bessel- och Hankelfunktioner dy
ker upp i vågutbredningsproblem på många ställen, speciellt när koordinaterna uttrycks i det sfäriska koordinat
systemet (r, θ, ϕ) .

De sfäriska Besselfunktionernas differentialekvation är

$$z^{2}\frac{d^{2}}{dz^{2}}Z_{n}(z) + 2z\frac{d}{dz}Z_{n}(z) + (z^{2} - n(n+1))Z_{n}(z) = 0$$

där n antas vara ett positivt heltal och z ett komplext tal.

En lösning till denna ekvation är de sfäriska Besselfunktionerna $j_n(z)$, som definieras genom potensserieutvecklingen⁴

$$j_n(z) = 2^n z^n \sum_{k=0}^{\infty} \frac{(-1)^k (k+n)!}{k! (2k+2n+1)!} z^{2k}$$
(A.5)

Denna lösning är reell för reella argument, ändlig i z = 0, och potensserien är absolutkonvergent i hela det komplexa talplanet. Från potensserieutvecklingen ser vi dessutom att $j_n(z)$ är en jämn funktion för jämna n och en udda funktion för udda n, dvs.

$$j_n(-z) = (-1)^n j_n(z)$$

En andra linjärt oberoende lösning, som är reell för reella argument, är de sfäriska Neumannfunktionerna $n_n(z)$. Dess potensserieutveckling är

$$n_n(z) = \frac{(-1)^{n+1} 2^n \pi^{1/2}}{z^{n+1}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! (k-n-1/2)!} \left(\frac{z}{2}\right)^{2k}$$
$$= \frac{(-1)^{n+1}}{2^n z^{n+1}} \sum_{k=0}^{\infty} \frac{(-1)^k (k-n)!}{k! (2k-2n)!} z^{2k}$$

Vi ser att denna lösning är singulär i z = 0.

⁴Mellan sfäriska Besselfunktioner $j_l(z)$ och cylindriska Besselfunktioner $J_n(z)$, se appendix A.1, råder sambandet

$$j_l(z) = \left(\frac{\pi}{2z}\right)^{1/2} J_{l+1/2}(z)$$

Även mellan de övriga lösningarna till den sfäriska Besselekvationen och motsvarande lösningar till den cylindriska Besselekvationen, (A.1), finns liknande samband.

I vågutbredningssammanhang uppkommer behovet av en linjärkombination av sfäriska Bessel- och Neumannfuntioner, de s.k. sfäriska Hankelfunktionerna, $h_n^{(1)}(z)$ och $h_n^{(2)}(z)$ av första respektive andra slaget. Dessa definieras av

$$h_n^{(1)}(z) = j_n(z) + in_n(z)$$

 $h_n^{(2)}(z) = j_n(z) - in_n(z)$

De sfäriska Bessel- och Neumannfuntioner och Hankelfunktionerna för l = 0 är

$$\begin{cases} j_0(z) = \frac{\sin z}{z} \\ n_0(z) = -\frac{\cos z}{z} \end{cases} \quad \begin{cases} h_0^{(1)}(z) = -\frac{i}{z}e^{iz} \\ h_0^{(2)}(z) = \frac{i}{z}e^{-iz} \end{cases}$$

Från potensserieframställningen i (A.5) ser vi att för små argument gäller

$$j_n(z) = \frac{2^n n! z^n}{(2n+1)!} + O(z^{n+2})$$

 och

$$n_n(z) = -\frac{(2n)!}{2^n n! z^{n+1}} + \dots$$

En alternativ utveckling i ändliga trigonometriska serier är:

$$\begin{cases} j_n(z) = \frac{1}{z} \Biggl\{ \sum_{k=0}^{[n/2]} (-1)^k \frac{(n+2k)!}{(2k)!(n-2k)!} \frac{1}{(4z^2)^k} \sin\left(z - \frac{n\pi}{2}\right) \\ + \sum_{k=0}^{[(n-1)/2]} (-1)^k \frac{(n+2k+1)!}{(2k+1)!(n-2k-1)!} \frac{1}{2z(4z^2)^k} \cos\left(z - \frac{n\pi}{2}\right) \Biggr\} \\ n_n(z) = (-1)^{n+1} \frac{1}{z} \Biggl\{ \sum_{k=0}^{[n/2]} (-1)^k \frac{(n+2k)!}{(2k)!(n-2k)!} \frac{1}{(4z^2)^k} \cos\left(z + \frac{n\pi}{2}\right) \\ - \sum_{k=0}^{[(n-1)/2]} (-1)^k \frac{(n+2k+1)!}{(2k+1)!(n-2k-1)!} \frac{1}{2z(4z^2)^k} \sin\left(z + \frac{n\pi}{2}\right) \Biggr\} \end{cases}$$

där $[\cdot]$ anger heltalsdelen av argumentet. Notera att dessa serier är ändliga och att definitionsmässigt serien är noll om övre summeringsindex är negativt. För de sfäriska Hankelfunktionerna gäller

$$\begin{cases} h_n^{(1)}(z) = \frac{1}{i^{n+1}z} e^{iz} \sum_{k=0}^n \frac{(n+k)!}{k!(n-k)!} \frac{1}{(-2iz)^k} \\ h_n^{(2)}(z) = \frac{i^{n+1}}{z} e^{-iz} \sum_{k=0}^n \frac{(n+k)!}{k!(n-k)!} \frac{1}{(2iz)^k} \end{cases}$$

Mellan lösningar till de sfäriska Besselfunktionerna finns rekursionssamband. Några av de viktigaste är (n = 0, 1, 2, ..., m = 0, 1, 2, ...)

$$\begin{cases} f_{n-1}(z) + f_{n+1}(z) = \frac{2n+1}{z} f_n(z) \\ nf_{n-1}(z) - (n+1)f_{n+1}(z) = (2n+1)f'_n(z) \\ \left(\frac{d}{z \, dz}\right)^m \left[z^{n+1}f_n(z)\right] = z^{n-m+1}f_{n-m}(z) \\ \left(\frac{d}{z \, dz}\right)^m \left[z^{-n}f_n(z)\right] = (-1)^m z^{-n-m}f_{n+m}(z) \end{cases}$$
(A.6)

Här är $f_n(z)$ antingen en sfärisk Besselfunktion $j_n(z)$, en sfärisk Neumannfunktion $n_n(z)$ eller någon sfärisk Hankelfunktion $h_n^{(1)}(z)$ eller $h_n^{(2)}(z)$.

Bilaga B Ortogonalpolynom

I detta appendix definierar vi två ortogonalpolynom som förekommer i boken, och presenterar några av deras viktigaste egenskaper. Härledningar och mer detaljer finns i t.ex. ref. 1.

B.1 Legendrepolynom

Legendrepolynom, $P_l(x)$, kan definieras på många olika sätt. Vi väljer här att definiera dem genom den s.k. genererande funktionen $F(x,t) = (1 - 2xt + t^2)^{-1/2}$.

$$\frac{1}{\left(1 - 2xt + t^2\right)^{1/2}} = \sum_{l=0}^{\infty} P_l(x)t^l, \quad |t| < 1$$

Serieutveckling och identifiering av potenser av t i det vänstra ledet leder till en serierepresentation av Legendrepolynomen.

$$P_l(x) = \sum_{k=0}^{\lfloor l/2 \rfloor} (-1)^k \frac{(2l-2k)!}{2^l k! (l-k)! (l-2k)!} x^{l-2k}$$

De första polynomen är:

$$\begin{cases} P_0(x) = 1\\ P_1(x) = x\\ P_2(x) = (3x^2 - 1)/2\\ P_3(x) = (5x^3 - 3x)/2 \end{cases}$$

Mellan Legendrepolynomen av olika gradtal finns rekursionsformler. De viktigaste är

$$\begin{cases} (l+1)P_{l}(x) = P'_{l+1}(x) - xP'_{l}(x) \\ lP_{l}(x) = xP'_{l}(x) - P'_{l-1}(x) \\ (l+1)P_{l+1}(x) = (2l+1)xP_{l}(x) - lP_{l-1}(x) \\ (2l+1)P_{l}(x) = P'_{l+1}(x) - P'_{l-1}(x) \end{cases}$$

Med hjälp av dessa rekursionsformler får vi lätt att

$$P_l(1) = 1$$

för alla l = 0, 1, 2, ..., samt

$$P_l'(1) = \frac{l(l+1)}{2}$$

Vidare gäller att

$$P_l(-x) = (-1)^l P_l(x)$$

Legendrepolynomen är ortogonala på intervallet [-1, 1], dvs.

$$\int_{-1}^{1} P_l(x) P_{l'}(x) \, dx = \frac{2\delta_{ll'}}{2l+1}$$

och satisfierar differentialekvationen

$$(1 - x^2)P_l''(x) - 2xP_l'(x) + l(l+1)P_l(x) = 0$$

Vidare är funktionssystemet $\{P_l(x)\}_{l=0}^{\infty}$ ett fullständigt ortogonalt system på intervallet [-1, 1], vilket innebär att varje kvadratiskt integrerbar funktion på intervallet [-1, 1] har en konvergent Fourierserie. Konvergensen är i allmänhet endast i norm.

$$f(x) = \sum_{l=0}^{\infty} a_l P_l(x), \quad x \in [-1, 1]$$

där (Fourier-)koefficienterna a_l bestäms genom integralerna

$$a_l = \frac{2l+1}{2} \int_{-1}^{1} f(x) P_l(x) \, dx$$

B.2 Tjebysjevpolynom

Tjebysjevpolynom av s.k. typ I, $T_k(x)$, kan definieras på flera sätt. Vi väljer här att definiera dem genom den genererande funktionen, dvs.

$$\frac{1-t^2}{1-2xt+t^2} = T_0(x) + 2\sum_{k=1}^{\infty} T_k(x)t^k, \qquad 1 < x < 1, \quad |t| < 1$$

Tjebysjevpolynomen är således koefficienterna i potensserieutvecklingen av funktionen i vänstra ledet, den s.k. genererande funktionen. De första Tjebysjevpolynomen är

$$\begin{cases} T_0(x) = 1\\ T_1(x) = x\\ T_2(x) = 2x^2 - 1\\ T_3(x) = 4x^3 - 3x \end{cases}$$

Från denna definition kan man sedan härleda en rekursionsformel för Tjebysjevpolynomen

$$T_{k+1}(x) - 2xT_k(x) + T_{k-1}(x) = 0, \qquad k = 1, 2, 3, \dots$$

Denna rekursionsformel kan sedan användas för att härleda den differentialekvation som Tjebysjevpolynomen satisfierar.

$$(1 - x^2)T_k''(x) - xT_k'(x) + k^2T_k(x) = 0$$

Låter man i denna differentialekvation göra bytet $x = \cos \theta$ erhåller man

$$\frac{d^2 T_k(\cos\theta)}{d\theta^2} + k^2 T_k(\cos\theta) = 0$$

Tjebysjevpolynomen av typ I kan därför skrivas

$$T_k(x) = \cos\left(k \arccos x\right)$$

En andra linjärt oberoende lösning är

$$V_k(x) = \sin\left(k \arccos x\right)$$

Tjebysjev
polynomen av typ I är ortogonala på intervallet [-1, 1] med viktsfunktionen $(1 - x^2)^{-\frac{1}{2}}$, dvs.

$$\int_{-1}^{1} T_k(x) T_{k'}(x) (1-x^2)^{-\frac{1}{2}} dx$$

= $\int_{-1}^{1} V_k(x) V_{k'}(x) (1-x^2)^{-\frac{1}{2}} dx = \begin{cases} 0, & k \neq k' \\ \pi/2, & k = k' \neq 0 \\ \pi, & k = k' = 0 \end{cases}$

Tjebysjevpolynomen av typ II definieras på liknande sätt och betecknas $U_k(x)$. Motsvarande genererande funktion är:

$$\frac{1}{1 - 2xt + t^2} = \sum_{k=0}^{\infty} U_k(x)t^k, \qquad 1 < x < 1, \quad |t| < 1$$

och rekursionsformel

$$U_{k+1}(x) - 2xU_k(x) + U_{k-1}(x) = 0, \qquad k = 1, 2, 3, \dots$$

Differentialekvationen som $U_k(x)$ satisfierar är:

$$(1 - x^2)U_k''(x) - 3xU_k'(x) + k(k+2)U_k(x) = 0$$

Genom variabelbytet $x = \cos \theta$ erhålls

$$U_k(x) = \frac{\sin(n+1)\theta}{\sin\theta}$$

$$W_k(x) = \frac{\cos(n+1)\theta}{\sin\theta}$$

Tjebysjevpolynom av typ I, $T_k(x)$ och $V_k(x)$, och Tjebysjevpolynom av typ II, $U_k(x)$ och $W_k(x)$, är relaterade.

$$\begin{cases} V_k(x) = (1 - x^2)^{\frac{1}{2}} U_{k-1}(x) \\ W_k(x) = (1 - x^2)^{-\frac{1}{2}} T_{k+1}(x) \end{cases}$$

Tjebysjev
polynomen av typ II är ortogonala på intervallet [-1,1]med viktsfunktion
en $(1-x^2)^{\frac{1}{2}},$ dvs.

$$\int_{-1}^{1} U_k(x) U_{k'}(x) (1-x^2)^{\frac{1}{2}} dx = \int_{-1}^{1} W_k(x) W_{k'}(x) (1-x^2)^{\frac{1}{2}} dx = \frac{\pi}{2} \delta_{kk'}$$

Bilaga C Klotytfunktioner

I spridningsteori spelar klotytfunktioner en central roll. I detta appendix definierar vi dessa och presenterar några av deras viktigaste egenskaper. Härledningar och mer detaljer finns i t.ex. ref. 1.

C.1 Associerade Legendrefunktioner

De associerade Legendrefunktionerna betecknas $P_l^m(\boldsymbol{x})$ och definieras för icke-negativa heltalsindexmav

$$P_l^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x), \quad x \in [-1, 1]$$

där $P_l(x)$ är Legendrepolynom, som definierades i appendix B. För negativa heltalsvärden på m kan vi använda

$$P_l^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x), \quad x \in [-1,1]$$

Heltalsindexet l = 0, 1, 2, 3, ..., medan m = -l, -l + 1, ..., -1, 0, 1, ..., l, eftersom |m| > l leder till $P_l^m(x) = 0$. Vi noterar också att

$$P_l^0(x) = P_l(x)$$

och

$$P_l^m(1) = \delta_{m0}$$

Det är lämpligt att införa en vinkelkoordinat istället för variabeln x. Definiera $x = \cos \theta$, och definitionen av de associerade Legendrefunktionerna blir $(m \ge 0)$

$$P_l^m(\cos\theta) = \sin^m \theta \frac{d^m}{d(\cos\theta)^m} P_l(\cos\theta), \quad \theta \in [0,\pi]$$

Spegling av argumentet i origo ger

$$P_l^m(-x) = (-1)^{l+m} P_l^m(x)$$

De associerade Legendrefunktionerna är liksom Legendrepolynomen ortogonala på intervallet [-1, 1].

$$\int_{-1}^{1} P_{l}^{m}(x) P_{l'}^{m}(x) \, dx = \frac{2\delta_{ll'}}{2l+1} \frac{(l+m)!}{(l-m)!}$$

Notera att *m*-indexet är detsamma i de båda Legendrefunktionerna i integranden. Det finns dessutom ytterligare en ortogonalitetsrelation för de associerade Legendrefunktionerna, men denna gång är *l*-indexet gemensamt och en viktsfunktion $(1 - x^2)^{-1}$ är introducerad och $m \neq 0$.

$$\int_{-1}^{1} P_l^m(x) P_l^{m'}(x) \frac{1}{1-x^2} \, dx = \frac{\delta_{mm'}}{m} \frac{(l+m)!}{(l-m)!}$$

Användbara rekursionsformler är:

$$\begin{cases} P_l^{m+1}(x) - \frac{2mx}{(1-x^2)^{1/2}} P_l^m(x) + (l(l+1) - m(m-1)) P_l^{m-1}(x) = 0\\ (2l+1) (1-x^2)^{1/2} P_l^m(x) = P_{l+1}^{m+1}(x) - P_{l-1}^{m+1}(x)\\ = (l+m)(l+m-1) P_{l-1}^{m-1}(x) - (l-m+1)(l-m+2) P_{l+1}^{m-1}(x)\\ (1-x^2)^{1/2} P_l^{m'}(x) = \frac{1}{2} P_l^{m+1}(x) - \frac{1}{2}(l+m)(l-m+1) P_l^{m-1}(x) \end{cases}$$

C.2 Klotytfunktioner

Klotytfunktionerna betecknas $Y_{\sigma ml}(\theta, \phi)$ och definieras av

$$Y_{\sigma m l}(\theta, \phi) = \sqrt{\frac{\varepsilon_m}{2\pi}} \sqrt{\frac{2l+1}{2} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) \left\{ \frac{\cos m\phi}{\sin m\phi} \right\}$$

där indexen σ, m, l antar följande värden:

$$\sigma = \left\{ \begin{array}{c} \mathbf{e} \\ \mathbf{o} \end{array} \right\}, \quad m = 0, 1, 2, \dots, l, \quad l = 0, 1, \dots$$

Neumann faktorn definieras genom

$$\varepsilon_m = 2 - \delta_{m0}, \text{ dvs. } \begin{cases} \varepsilon_0 = 1 \\ \varepsilon_m = 2, \quad m > 0 \end{cases}$$

Vår definition använder endast icke-negativa värden på azimut-index m. Värdet $\sigma = e$ (even) och $\sigma = o$ (odd) svarar mot de jämna och udda trigonometriska azimut-funktionerna $\cos m\phi$ respektive $\sin m\phi$. Notera att vår definition av klotytfunktionerna $Y_{\sigma ml}(\theta, \phi)$ skiljer sig från motsvarande definition i Arfken [1] som använder komplexa kombinationer av azimutfunktioner, nämligen $e^{im\phi}$, $m = -l, \ldots, -1, 0, 1, \ldots, l$.

Figur C.1: Definition av sfäriska vinklar.

Genom vår definition blir klotytfunktionerna alltid reella, vilket ofta har fördelar vid numerisk implementering och genom att problemets symmetrier återspeglas i dessa indexvärden. Man bör se upp med vilken definition en viss referens använder på de sfäriska klotytfunktionerna, eftersom en rad olika varianter förekommer i litteraturen.

I stället för att skriva ut vinklarna θ och ϕ i argumentet använder vi ofta ortsvektorns enhetsvektor $\hat{\boldsymbol{r}} = \hat{\boldsymbol{x}} \sin \theta \cos \phi + \hat{\boldsymbol{y}} \sin \theta \sin \phi + \hat{\boldsymbol{z}} \cos \theta$, se figur C.1, och klotytfunktionerna betecknas därför också $Y_{\sigma ml}(\hat{\boldsymbol{r}})$.

För spegling av argumentet i origo $\hat{\boldsymbol{r}} \to -\hat{\boldsymbol{r}}$, dvs. $\theta \to \pi - \theta$, $\phi \to \phi + \pi$, gäller att

$$Y_{\sigma m l}(-\hat{\boldsymbol{r}}) = (-1)^l Y_{\sigma m l}(\hat{\boldsymbol{r}})$$

Speciella värden, som är viktiga i spridningstillämpningar, är

$$Y_{\sigma m l}(\hat{\boldsymbol{z}}) = \delta_{\sigma e} \delta_{m0} \sqrt{\frac{2l+1}{4\pi}}$$
(C.1)

och de första har det explicita utseendet

$$Y_{\sigma 00}(\hat{\boldsymbol{r}}) = \delta_{\sigma e} \sqrt{\frac{1}{4\pi}},$$

och

$$\begin{cases} Y_{\sigma 01}(\hat{\boldsymbol{r}}) = \delta_{\sigma e} \sqrt{\frac{3}{4\pi}} \cos \theta \\ Y_{\sigma 11}(\hat{\boldsymbol{r}}) = \sqrt{\frac{3}{4\pi}} \sin \theta \begin{cases} \cos \phi \\ \sin \phi \end{cases}, \qquad \sigma = \begin{cases} e \\ o \end{cases} \end{cases}$$

Klotytfunktionerna är ortonormerade över enhetssfären Ω , dvs.

$$\iint_{\Omega} Y_{\sigma m l}(\hat{\boldsymbol{r}}) Y_{\sigma' m' l'}(\hat{\boldsymbol{r}}) \, d\Omega = \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin\theta d\theta \, Y_{\sigma m l}(\theta, \phi) Y_{\sigma' m' l'}(\theta, \phi) = \delta_{\sigma \sigma'} \delta_{m m'} \delta_{l l'}$$

Vidare är systemet $Y_{\sigma ml}(\hat{\boldsymbol{r}}), \sigma = \text{e,o}, m = 0, 1, 2, \dots, l, l = 0, 1, \dots$ ett fullständigt ortonormerat system på enhetssfären. En kvadratiskt integrerbar funktion $f(\theta, \phi)$ definierad på enhetssfären kan utvecklas i klotytfunktionerna $Y_{\sigma ml}(\hat{\boldsymbol{r}})$.

$$f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=e,o} a_{\sigma m l} Y_{\sigma m l}(\theta,\phi), \quad \theta \in [0,\pi], \phi \in [0,2\pi)$$

där (Fourier-)koefficienterna $a_{\sigma ml}$ bestäms genom integralerna

$$a_{\sigma m l} = \int_0^{2\pi} d\phi \int_0^{\pi} \sin \theta d\theta f(\theta, \phi) Y_{\sigma m l}(\theta, \phi)$$

Konvergensen är definierad i norm

$$\left\| f(\hat{\boldsymbol{r}}) - \sum_{l=0}^{N} \sum_{m=0}^{l} \sum_{\sigma=e,o}^{N} a_{\sigma m l} Y_{\sigma m l}(\hat{\boldsymbol{r}}) \right\|^{2} = \| f(\hat{\boldsymbol{r}}) \|^{2} - \sum_{l=0}^{N} \sum_{m=0}^{l} \sum_{\sigma=e,o}^{N} |a_{\sigma m l}|^{2} \to 0, \text{ då } N \to \infty$$

där normen $\|\cdot\|$ definieras av

$$\|f(\hat{\boldsymbol{r}})\|^2 = \int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta d\theta f(\hat{\boldsymbol{r}}) f^*(\hat{\boldsymbol{r}}) = \iint_{\Omega} |f(\hat{\boldsymbol{r}})|^2 \ d\Omega$$

Fullständigheten kan också formuleras som

$$\int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta d\theta f(\theta,\phi) Y_{\sigma m l}(\theta,\phi) = 0, \text{ för alla } \sigma, m, l \Rightarrow f(\theta,\phi) = 0$$

Klotytfunktionerna $Y_{\sigma ml}(\hat{\boldsymbol{r}})$ är egenvektorer till Laplaceoperatorn ∇_{Ω}^2 på enhetssfären med egenvärde -l(l+1), dvs.

$$\nabla_{\Omega}^{2} Y_{\sigma m l}(\hat{\boldsymbol{r}}) = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} Y_{\sigma m l}(\hat{\boldsymbol{r}}) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} Y_{\sigma m l}(\hat{\boldsymbol{r}}) = -l(l+1) Y_{\sigma m l}(\hat{\boldsymbol{r}})$$

En användbar integral representation av sfäriska vågor $j_l(kr)Y_{\sigma ml}(\hat{\boldsymbol{r}})$ är

$$j_l(kr)Y_{\sigma m l}(\theta,\phi) = \frac{1}{4\pi i^l} \int_0^{2\pi} d\beta \int_0^{\pi} \sin\alpha d\alpha \, Y_{\sigma m l}(\alpha,\beta) e^{ik\hat{\boldsymbol{k}}\cdot\boldsymbol{r}}$$

där enhetsvektorn \hat{k} har de sfäriska vinklarna α och β . Speciellt gäller för m = 0 att

$$j_l(kr) = \frac{1}{2i^l} \int_0^{\pi} P_l(\cos\alpha) e^{ikr\cos\alpha} \sin\alpha d\alpha = \frac{1}{2i^l} \int_{-1}^1 P_l(\eta) e^{ikr\eta} d\eta$$

Omvändningen gäller också

$$e^{ik\hat{\boldsymbol{k}}\cdot\boldsymbol{r}} = 4\pi \sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}}^{l} i^{l} Y_{\sigma m l}(\alpha,\beta) j_{l}(kr) Y_{\sigma m l}(\theta,\phi)$$

Specialfallet $\hat{k} = \hat{z}$ är speciellt viktigt ($\alpha = 0$). Endast m = 0 bidrar i summan och vi får, se (C.1)

$$e^{ikz} = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} i^l (2l+1)j_l(kr)P_l(\cos\theta)$$

C.3 Vektorklotytfunktioner

Ett vektorfält $F(\hat{r})$ kan naturligtvis utvecklas i klotytfunktionerna i avsnitt C.2.

$$\boldsymbol{F}(\hat{\boldsymbol{r}}) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e,o}} \boldsymbol{a}_{\sigma m l} Y_{\sigma m l}(\hat{\boldsymbol{r}})$$

Nackdelen med denna utveckling är att utvecklingskoefficienterna $a_{\sigma ml}$ är vektorvärda. Det skulle vara en stor fördel om dessa koefficienter var skalärer. För att åstadkomma detta, låter vi istället vektorkaraktären finnas i basfunktionerna. Vi leds till att införa vektorklotytfunktionerna.

Vektorklotytfunktionerna kan definieras på många sätt. I denna bok använder vi följande definition:

$$\begin{cases} \boldsymbol{A}_{1\sigma ml}(\hat{\boldsymbol{r}}) = \frac{1}{\sqrt{l(l+1)}} \nabla \times (\boldsymbol{r}Y_{\sigma ml}(\hat{\boldsymbol{r}})) = \frac{1}{\sqrt{l(l+1)}} \nabla Y_{\sigma ml}(\hat{\boldsymbol{r}}) \times \boldsymbol{r} \\ \boldsymbol{A}_{2\sigma ml}(\hat{\boldsymbol{r}}) = \frac{1}{\sqrt{l(l+1)}} r \nabla Y_{\sigma ml}(\hat{\boldsymbol{r}}) \\ \boldsymbol{A}_{3\sigma ml}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{r}}Y_{\sigma ml}(\hat{\boldsymbol{r}}) \end{cases}$$
(C.2)

Heltalsindexen här är l = 0, 1, 2, 3, ..., m = 0, 1, ..., l och σ = e,o. För l = 0 är de två översta uttrycken ej väldefinierade eftersom både täljare och nämnare är noll. Vi definierar dessa två vektorklotytfunktioner till noll; dvs. $A_{1\sigma00}(\hat{r}) = A_{2\sigma00}(\hat{r}) = 0$. Alternativt kan vi uttrycka vektorklotytfunktionerna i de sfäriska basvektorerna $\{\hat{r}, \hat{\theta}, \hat{\phi}\}$. Resultatet blir

$$\begin{cases} \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) = \frac{1}{\sqrt{l(l+1)}} \left(\hat{\boldsymbol{\theta}} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} Y_{\sigma m l}(\hat{\boldsymbol{r}}) - \hat{\boldsymbol{\phi}} \frac{\partial}{\partial \theta} Y_{\sigma m l}(\hat{\boldsymbol{r}}) \right) \\ \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) = \frac{1}{\sqrt{l(l+1)}} \left(\hat{\boldsymbol{\theta}} \frac{\partial}{\partial \theta} Y_{\sigma m l}(\hat{\boldsymbol{r}}) + \hat{\boldsymbol{\phi}} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} Y_{\sigma m l}(\hat{\boldsymbol{r}}) \right) \\ \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{r}} Y_{\sigma m l}(\hat{\boldsymbol{r}}) \end{cases}$$

Dessa vektorklotytfunktioner har följande egenskaper:

$$\begin{cases} \hat{\boldsymbol{r}} \cdot \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) = 0, \quad \tau = 1, 2\\ \hat{\boldsymbol{r}} \times \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) = \boldsymbol{0} \end{cases}$$

 och

$$\left\{egin{array}{ll} m{A}_{1\sigma ml}(\hat{m{r}}) = m{A}_{2\sigma ml}(\hat{m{r}}) imes \hat{m{r}} \ m{A}_{2\sigma ml}(\hat{m{r}}) = \hat{m{r}} imes m{A}_{1\sigma ml}(\hat{m{r}}) \end{array}
ight.$$

För spegling av argumentet i origo $\hat{\boldsymbol{r}} \to -\hat{\boldsymbol{r}}$, dvs. $\theta \to \pi - \theta$, $\phi \to \phi + \pi$, gäller

$$\begin{cases} \boldsymbol{A}_{1\sigma ml}(-\hat{\boldsymbol{r}}) = (-1)^{l} \boldsymbol{A}_{1\sigma ml}(\hat{\boldsymbol{r}}) \\ \boldsymbol{A}_{2\sigma ml}(-\hat{\boldsymbol{r}}) = (-1)^{l+1} \boldsymbol{A}_{2\sigma ml}(\hat{\boldsymbol{r}}) \\ \boldsymbol{A}_{3\sigma ml}(-\hat{\boldsymbol{r}}) = (-1)^{l+1} \boldsymbol{A}_{3\sigma ml}(\hat{\boldsymbol{r}}) \end{cases}$$
(C.3)

Speciella värden är

$$\begin{cases} \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{z}}) = \delta_{m 1} \sqrt{\frac{2l+1}{8\pi}} \begin{cases} -\hat{\boldsymbol{y}} \\ \hat{\boldsymbol{x}} \end{cases} \\ \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{z}}) = \delta_{m 1} \sqrt{\frac{2l+1}{8\pi}} \begin{cases} \hat{\boldsymbol{x}} \\ \hat{\boldsymbol{y}} \end{cases} \\ \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{z}}) = \delta_{\sigma e} \delta_{m 0} \sqrt{\frac{2l+1}{4\pi}} \hat{\boldsymbol{z}} \end{cases}$$
(C.4)

och de första vektorklotytfunktionerna har det explicita utseendet

$$\left\{egin{aligned} oldsymbol{A}_{1\sigma00}(\hat{oldsymbol{r}}) &= oldsymbol{0}\ oldsymbol{A}_{2\sigma00}(\hat{oldsymbol{r}}) &= oldsymbol{0}\ oldsymbol{A}_{3\sigma00}(\hat{oldsymbol{r}}) &= \delta_{\sigma\mathrm{e}}\sqrt{rac{1}{4\pi}}\hat{oldsymbol{r}} \end{aligned}
ight.$$

 och

$$\begin{cases} \boldsymbol{A}_{1\sigma01}(\hat{\boldsymbol{r}}) = \delta_{\sigma e} \sqrt{\frac{3}{8\pi}} \hat{\boldsymbol{\phi}} \sin \theta \\ \boldsymbol{A}_{2\sigma01}(\hat{\boldsymbol{r}}) = -\delta_{\sigma e} \sqrt{\frac{3}{8\pi}} \hat{\boldsymbol{\theta}} \sin \theta \\ \boldsymbol{A}_{3\sigma01}(\hat{\boldsymbol{r}}) = \delta_{\sigma e} \sqrt{\frac{3}{4\pi}} \hat{\boldsymbol{r}} \cos \theta \end{cases}$$

 samt

$$\begin{aligned} \mathbf{A}_{1\sigma11}(\hat{\mathbf{r}}) &= \sqrt{\frac{3}{8\pi}} \left(\hat{\boldsymbol{\theta}} \left\{ \begin{array}{c} -\sin\phi\\\cos\phi \end{array} \right\} - \hat{\boldsymbol{\phi}}\cos\theta \left\{ \begin{array}{c} \cos\phi\\\sin\phi \end{array} \right\} \right) \\ \mathbf{A}_{2\sigma11}(\hat{\mathbf{r}}) &= \sqrt{\frac{3}{8\pi}} \left(\hat{\boldsymbol{\theta}}\cos\theta \left\{ \begin{array}{c} \cos\phi\\\sin\phi \end{array} \right\} + \hat{\boldsymbol{\phi}} \left\{ \begin{array}{c} -\sin\phi\\\cos\phi \end{array} \right\} \right) \\ \mathbf{A}_{3\sigma11}(\hat{\mathbf{r}}) &= \sqrt{\frac{3}{4\pi}} \hat{\mathbf{r}}\sin\theta \left\{ \begin{array}{c} \cos\phi\\\sin\phi \end{array} \right\} \end{aligned}$$

Generellt för m = 1 gäller

$$\begin{cases} \boldsymbol{A}_{1\sigma1l}(\hat{\boldsymbol{r}}) = \frac{1}{l(l+1)} \sqrt{\frac{2l+1}{2\pi}} \left(\hat{\boldsymbol{\theta}} P_l'(\cos\theta) \left\{ \begin{array}{l} -\sin\phi\\\cos\phi \end{array} \right\} \\ + \hat{\boldsymbol{\phi}} \left(\cos\theta P_l'(\cos\theta) - l(l+1) P_l(\cos\theta) \right) \left\{ \begin{array}{l} \cos\phi\\\sin\phi \end{array} \right\} \right) \\ \boldsymbol{A}_{2\sigma1l}(\hat{\boldsymbol{r}}) = \frac{1}{l(l+1)} \sqrt{\frac{2l+1}{2\pi}} \left(\hat{\boldsymbol{\phi}} P_l'(\cos\theta) \left\{ \begin{array}{l} -\sin\phi\\\cos\phi \end{array} \right\} \\ - \hat{\boldsymbol{\theta}} \left(\cos\theta P_l'(\cos\theta) - l(l+1) P_l(\cos\theta) \right) \left\{ \begin{array}{l} \cos\phi\\\sin\phi \end{array} \right\} \right) \\ \boldsymbol{A}_{3\sigma1l}(\hat{\boldsymbol{r}}) = \sqrt{\frac{2l+1}{2\pi l(l+1)}} \hat{\boldsymbol{r}} \sin\theta P_l'(\cos\theta) \left\{ \begin{array}{l} \cos\phi\\\sin\phi \end{array} \right\} \end{cases}$$
(C.5)

Viktiga relationer, som fås från definitionerna på vektorklotytfunktionerna (C.2) och användning av räknereglerna för ∇ -operatorn, är divergensen och rotationen på dessa funktioner. Vi får

$$\begin{cases} \nabla \cdot \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) = 0\\ \nabla \cdot \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) = -\sqrt{l(l+1)} \frac{Y_{\sigma m l}(\hat{\boldsymbol{r}})}{r}\\ \nabla \cdot \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) = \frac{2Y_{\sigma m l}(\hat{\boldsymbol{r}})}{r} \end{cases}$$
(C.6)

 och^1

$$\begin{cases} \nabla \times \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) = \frac{\boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + \sqrt{l(l+1)}\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}})}{r} \\ \nabla \times \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) = -\frac{\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})}{r} \\ \nabla \times \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) = \frac{\sqrt{l(l+1)}\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})}{r} \end{cases}$$
(C.7)

Från dessa resultat visar vi enkelt att dubbla rotationen ges av

$$\begin{cases} \nabla \times (\nabla \times \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})) = \frac{l(l+1)\boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}})}{r^2} \\ \nabla \times (\nabla \times \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}})) = -\frac{\sqrt{l(l+1)}\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}})}{r^2} \\ \nabla \times (\nabla \times \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}})) = \frac{l(l+1)\boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}})}{r^2} \end{cases}$$

¹Vi har här använt $\nabla \times (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{a}(\nabla \cdot \boldsymbol{b}) - \boldsymbol{b}(\nabla \cdot \boldsymbol{a}) + (\boldsymbol{b} \cdot \nabla)\boldsymbol{a} - (\boldsymbol{a} \cdot \nabla)\boldsymbol{b} \mod \boldsymbol{a} = \nabla Y_{\sigma ml}(\hat{\boldsymbol{r}})$ och $\boldsymbol{b} = \boldsymbol{r}$, samt att $\nabla \cdot \boldsymbol{r} = 3$, $\nabla^2 Y_{\sigma ml}(\hat{\boldsymbol{r}}) = -r^{-2}l(l+1)Y_{\sigma ml}(\hat{\boldsymbol{r}})$, $\frac{\partial}{\partial r}(\nabla Y_{\sigma ml}(\hat{\boldsymbol{r}})) = -r^{-1}\nabla Y_{\sigma ml}(\hat{\boldsymbol{r}})$ och $(\boldsymbol{a} \cdot \nabla)\boldsymbol{r} = \boldsymbol{a}$ för en godtycklig vektor \boldsymbol{a} .

samt att

$$\begin{cases} \nabla_{\Omega}^{2} \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) = -l(l+1) \boldsymbol{A}_{1\sigma m l}(\hat{\boldsymbol{r}}) \\ \nabla_{\Omega}^{2} \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) = -l(l+1) \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) + 2\sqrt{l(l+1)} \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) \\ \nabla_{\Omega}^{2} \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) = -(l(l+1)+2) \boldsymbol{A}_{3\sigma m l}(\hat{\boldsymbol{r}}) + 2\sqrt{l(l+1)} \boldsymbol{A}_{2\sigma m l}(\hat{\boldsymbol{r}}) \end{cases}$$
(C.8)

där ∇_{Ω}^2 betecknar Laplace
operatorn på enhetssfären, dvs.

$$\nabla_{\Omega}^{2} = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \sin\theta \frac{\partial}{\partial\theta} + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial\phi^{2}}$$

Vektorklotytfunktionerna uppfyller också en ortonormalitetsrelation på enhetssfären.

$$\iint_{\Omega} \boldsymbol{A}_{\tau\sigma ml}(\hat{\boldsymbol{r}}) \cdot \boldsymbol{A}_{\tau'\sigma'm'l'}(\hat{\boldsymbol{r}}) d\Omega$$
$$= \int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin\theta d\theta \, \boldsymbol{A}_{\tau\sigma ml}(\theta,\phi) \cdot \boldsymbol{A}_{\tau'\sigma'm'l'}(\theta,\phi) = \delta_{\tau\tau'}\delta_{\sigma\sigma'}\delta_{mm'}\delta_{ll'}$$

Det är naturligt att definiera en norm $\|\cdot\|$ för vektorvärda funktioner.

$$\|\boldsymbol{F}(\hat{\boldsymbol{r}})\|^2 = \int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta d\theta \, \boldsymbol{F}(\hat{\boldsymbol{r}}) \cdot \boldsymbol{F}^*(\hat{\boldsymbol{r}}) = \iint_{\Omega} |\boldsymbol{F}(\hat{\boldsymbol{r}})|^2 \, d\Omega$$

Varje kvadratiskt integrerbart vektorfält definierat på enhetssfären kan utvecklas i de sfäriska vektorklotytfunktionerna. En vektorvärd funktion $F(\theta, \phi)$ definierad på enhetssfären kan utvecklas

$$\boldsymbol{F}(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \sum_{\sigma=\mathrm{e},\mathrm{o}} \sum_{\tau=1}^{3} a_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\theta,\phi), \quad \theta \in [0,\pi], \phi \in [0,2\pi)$$

där (Fourier-)koefficienterna $a_{\tau\sigma ml}$ bestäms genom integralerna

$$a_{ au\sigma m l} = \iint_{\Omega} \boldsymbol{F}(\hat{\boldsymbol{r}}) \cdot \boldsymbol{A}_{ au\sigma m l}(\hat{\boldsymbol{r}}) \, d\Omega$$

Notera att utvecklingskoefficienterna i denna utveckling är skalärer. Konvergensen är i allmänhet i norm.

$$\left\| \boldsymbol{F}(\hat{\boldsymbol{r}}) - \sum_{l=0}^{N} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{3} a_{\tau\sigma m l} \boldsymbol{A}_{\tau\sigma m l}(\hat{\boldsymbol{r}}) \right\|^{2} = \\ \| \boldsymbol{F}(\hat{\boldsymbol{r}}) \|^{2} - \sum_{l=0}^{N} \sum_{m=0}^{l} \sum_{\sigma=e,o} \sum_{\tau=1}^{3} |a_{\tau\sigma m l}|^{2} \to 0, \text{ då } N \to \infty$$

Bilaga D ∇ i kroklinjiga koordinatsystem

I detta appendix är samlat några uttryck med ∇ -operatorn i två vanliga kroklinjiga koordinatsystem, nämligen de cylindriska och sfäriska koordinatsystemen. För fullständighetens skull börjar vi med det kartesiska koordinatsystemet.

D.1 Kartesiska koordinater

De kartesiska koordinaterna (x, y, z) utgör det enklaste koordinatsystemet. Gradienten och Laplace-operatorn av ett skalärt fält $\psi(x, y, z)$ i detta koordinatsystem är

$$\begin{split} \nabla \psi &= \hat{\boldsymbol{x}} \frac{\partial \psi}{\partial x} + \hat{\boldsymbol{y}} \frac{\partial \psi}{\partial y} + \hat{\boldsymbol{z}} \frac{\partial \psi}{\partial z} \\ \nabla^2 \psi &= \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \end{split}$$

Divergensen, rotationen och Laplace-operatorn av ett vektorvärt fält $\mathbf{A}(x, y, z) = \hat{\mathbf{x}}A_x(x, y, z) + \hat{\mathbf{y}}A_y(x, y, z) + \hat{\mathbf{z}}A_z(x, y, z)$ är

$$\nabla \cdot \boldsymbol{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
$$\nabla \times \boldsymbol{A} = \hat{\boldsymbol{x}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\boldsymbol{y}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\boldsymbol{z}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$
$$\nabla^2 \boldsymbol{A} = \hat{\boldsymbol{x}} \nabla^2 A_x + \hat{\boldsymbol{y}} \nabla^2 A_y + \hat{\boldsymbol{z}} \nabla^2 A_z$$

D.2 Cylindriska koordinater

Vi övergår nu till kroklinjiga koordinatsystem, och börjar med de cylindriska koordinaterna (ρ,ϕ,z) definierade av

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \begin{cases} \arccos \frac{x}{\sqrt{x^2 + y^2}} & y \ge 0 \\ 2\pi - \arccos \frac{x}{\sqrt{x^2 + y^2}} & y < 0 \end{cases} \\ z = z \end{cases}$$

Gradienten och Laplace-operatorn av ett skalärt fält $\psi(\rho,\phi,z)$ i detta koordinatsystem är

$$\begin{aligned} \nabla \psi &= \hat{\boldsymbol{\rho}} \frac{\partial \psi}{\partial \rho} + \hat{\boldsymbol{\phi}} \frac{1}{\rho} \frac{\partial \psi}{\partial \phi} + \hat{\boldsymbol{z}} \frac{\partial \psi}{\partial z} \\ \nabla^2 \psi &= \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \psi}{\partial \phi^2} + \frac{\partial^2 \psi}{\partial z^2} \end{aligned}$$

Divergensen, rotationen och Laplace-operatorn av ett vektorvärt fält $\mathbf{A}(\rho, \phi, z) = \hat{\boldsymbol{\rho}}A_{\rho}(\rho, \phi, z) + \hat{\boldsymbol{\phi}}A_{\phi}(\rho, \phi, z) + \hat{\boldsymbol{z}}A_{z}(\rho, \phi, z)$ blir

$$\nabla \cdot \boldsymbol{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho A_{\rho} \right) + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \boldsymbol{A} = \hat{\boldsymbol{\rho}} \left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \hat{\boldsymbol{\phi}} \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_{z}}{\partial \rho} \right) + \hat{\boldsymbol{z}} \frac{1}{\rho} \left(\frac{\partial}{\partial \rho} \left(\rho A_{\phi} \right) - \frac{\partial A_{\rho}}{\partial \phi} \right)$$

$$\nabla^{2} \boldsymbol{A} = \hat{\boldsymbol{\rho}} \left(\nabla^{2} A_{\rho} - \frac{A_{\rho}}{\rho^{2}} - \frac{2}{\rho^{2}} \frac{\partial A_{\phi}}{\partial \phi} \right) + \hat{\boldsymbol{\phi}} \left(\nabla^{2} A_{\phi} - \frac{A_{\phi}}{\rho^{2}} + \frac{2}{\rho^{2}} \frac{\partial A_{\rho}}{\partial \phi} \right) + \hat{\boldsymbol{z}} \nabla^{2} A_{z}$$

D.3 Sfäriska koordinater

Det sfäriska koordinatsystemet (r, θ, ϕ) (polvinkel θ och azimutvinkel ϕ) definierat av

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ \phi = \begin{cases} \arccos \frac{x}{\sqrt{x^2 + y^2}} & y \ge 0 \\ 2\pi - \arccos \frac{x}{\sqrt{x^2 + y^2}} & y < 0 \end{cases} \end{cases}$$

Gradienten och Laplace-operatorn av ett skalärt fält $\psi(r,\theta,\phi)$ i detta koordinatsystem är

$$\nabla \psi = \hat{r} \frac{\partial \psi}{\partial r} + \hat{\theta} \frac{1}{r} \frac{\partial \psi}{\partial \theta} + \hat{\phi} \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi}$$
$$\nabla^2 \psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2}$$
$$= \frac{1}{r} \frac{\partial^2}{\partial r^2} (r\psi) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2}$$

och divergensen, rotationen och Laplace-operatorn av ett vektorvärt fält $\boldsymbol{A}(r,\theta,\phi) = \hat{\boldsymbol{r}}A_r(r,\theta,\phi) + \hat{\boldsymbol{\theta}}A_{\theta}(r,\theta,\phi) + \hat{\boldsymbol{\phi}}A_{\phi}(r,\theta,\phi)$ är

$$\nabla \cdot \boldsymbol{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta A_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$
$$\nabla \times \boldsymbol{A} = \hat{\boldsymbol{r}} \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(\sin \theta A_\phi \right) - \frac{\partial A_\theta}{\partial \phi} \right)$$
$$+ \hat{\theta} \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} \left(r A_\phi \right) \right) + \hat{\phi} \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r A_\theta \right) - \frac{\partial A_r}{\partial \theta} \right)$$
$$\nabla^2 \boldsymbol{A} = \hat{\boldsymbol{r}} \left(\nabla^2 A_r - \frac{2A_r}{r^2} - \frac{2}{r^2} \frac{\partial A_\theta}{\partial \theta} - \frac{2 \cot \theta}{r^2} A_\theta - \frac{2}{r^2 \sin \theta} \frac{\partial A_\phi}{\partial \phi} \right)$$
$$+ \hat{\theta} \left(\nabla^2 A_\theta - \frac{A_\theta}{r^2 \sin^2 \theta} + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\phi}{\partial \phi} \right)$$
$$+ \hat{\phi} \left(\nabla^2 A_\phi - \frac{A_\phi}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin \theta} \frac{\partial A_r}{\partial \phi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\theta}{\partial \phi} \right)$$
Bilaga E Beräkning av en integral

i kommer i detta appendix att beräkna en integral som förekommer i avsnitt 2.2, som behandlar Čerenkov strålning. Vi löser integralen genom att deformera integrationskonturen i det komplexa talplanet. Integralen vi önskar beräkna är

$$I = \int_{-\infty}^{\infty} \frac{1}{\sqrt{1+x^2}} e^{ia\sqrt{1+x^2}+ibx} \, dx = i\pi H_0^{(1)}((a^2-b^2)^{1/2}) \tag{E.1}$$

För att säkerställa konvergensen av integralen antar vi att talet a har positiv imaginärdel. Talet b antar vi för enkelhets skull är reellt och det är vidare ingen inskränkning att anta $b \ge 0$ (om b < 0 gör variabelbyte $x \to -x$) eller att det komplexa talet a har positiv realdel. Parametrarna a och b är sålunda definierade av

$$a = a' + ia'', \quad a' > 0, \quad a'' > 0$$

 $b \ge 0$

Kvadratroten som förekommer i högerledet är definierad som den gren som fås då det komplexa talplanet är uppskuret längs den positiva realaxeln.

Utför variabeltransformationen $x = \sinh u$. Denna ger eftersom $\frac{dx}{du} = \cosh u = \sqrt{1+x^2}$.

$$I = \int_{-\infty}^{\infty} e^{ia\cosh u + ib\sinh u} \, du$$

Definiera nu det komplexa tale
t $\alpha = \alpha' + i \alpha''$ genom

$$\tanh \alpha = \frac{b}{a}$$

Med de värden på parametrarna a och b som vi valt kommer det komplexa talet $\alpha = \alpha' + i\alpha''$ att ligga i den fjärde kvadranten, $\alpha' \ge 0$, $\alpha'' \in (-\pi/2, 0)$. Detta ses lätt av definitionen av tanh α .

$$\tanh \alpha = \frac{\sinh 2\alpha' + i \sin 2\alpha''}{\cosh 2\alpha' + \cos 2\alpha''}$$

Figur E.1: Integrationskontur.

Vidare gäller att

$$\frac{a}{\cosh \alpha} = \frac{b}{\sinh \alpha} = \frac{b}{\sinh \alpha' \cos \alpha'' + i \cosh \alpha' \sin \alpha''} = \left(a^2 - b^2\right)^{\frac{1}{2}}$$

för det parameterområde i a och b vi valt. Notera att imaginärdelen av det högra ledet är positiv.

Integralen I kan nu skrivas om med summaformeln för de hyperboliska funktionerna.

$$I = \int_{-\infty}^{\infty} e^{i(a^2 - b^2)^{\frac{1}{2}} \cosh(u + \alpha)} \, du = \int_{-\infty}^{\infty} e^{i(a^2 - b^2)^{\frac{1}{2}} \cosh(u + i\alpha'')} \, du$$

Vi skall nu visa att integrationsvägen kan ändras så att $\alpha'' = 0$, dvs. integration längs realaxeln. Den ursprungliga integrationsvägen kompletteras enligt figur E.1. Integranden har inga singulariteter innanför den slutna konturen och i syfte att studera exponentialfunktionens argument undersöker vi följande uttryck:

$$e^{\pm i\phi} \left(a^2 - b^2\right)^{\frac{1}{2}} = b \frac{e^{\pm i\phi}}{\sinh \alpha} = b \frac{e^{\pm i\phi}}{|\sinh \alpha|^2} (\sinh \alpha)^*$$

där $\alpha'' \in (-\pi/2,0)$ och $\phi \in [\alpha'',0].$ Tecknet på imaginärdelen av detta uttryck bestäms av

$$\operatorname{Im}\left\{e^{\pm i\phi}(\sinh\alpha)^*\right\} = \pm \sinh\alpha'\cos\alpha''\sin\phi - \cosh\alpha'\sin\alpha''\cos\phi$$
$$= \frac{1}{2}\left\{\sin\underbrace{(\pm\phi + \alpha'')}_{\in(-\pi,0]}\underbrace{(\sinh\alpha' - \cosh\alpha')}_{-e^{-\alpha'}<0} + \sin\underbrace{(\pm\phi - \alpha'')}_{\in[0,\pi)}\underbrace{(\sinh\alpha' + \cosh\alpha')}_{e^{\alpha'}>0}\right\} > 0$$

$$\lim_{u \to \pm \infty} \frac{\cosh(u+i\phi)}{\frac{1}{2}e^{|u|}} = e^{\pm i\phi}$$

så ser vi med hjälp av räkningarna ovan att

$$\operatorname{Im}\left\{\left(a^{2}-b^{2}\right)^{\frac{1}{2}}\cosh(u+i\phi)\right\}>0$$

då $u\to\pm\infty,\,\phi\in[\alpha'',0]$ och $\alpha''\in(-\pi/2,0).$ Cauchys integralsats ger nu

$$I = \int_{-\infty}^{\infty} e^{i(a^2 - b^2)^{\frac{1}{2}} \cosh(u + i\alpha'')} \, du = \int_{-\infty}^{\infty} e^{i(a^2 - b^2)^{\frac{1}{2}} \cosh u} \, du$$

eftersom integralerna längs de ändliga linjestyckena $u + i\phi$ då $|u| \to \infty, \phi \in [\alpha'', 0], \alpha'' \in (-\pi/2, 0)$, se figur E.1, inte lämnar något bidrag. Detta ger nu omedelbart ekvation (E.1).

$$I = 2 \int_0^\infty e^{i(a^2 - b^2)^{\frac{1}{2}} \cosh u} \, du = i\pi H_0^{(1)}((a^2 - b^2)^{\frac{1}{2}})$$

där vi använt följande integralframställning av Hankelfunktionen av första slaget av ordning noll, se appendix A.1 sidan 187 och [1, sidan 609]:

$$H_0^{(1)}(z) = \frac{2}{i\pi} \int_0^\infty e^{iz\cosh s} \, ds$$

som gäller för alla z sådana att $0<\arg z<\pi.$

Bilaga F Enheter och konstanter

Pe elektromagnetiska grundekvationernas utseende varierar beroende på vilket enhetssystem som används. Det numera standardiserade SI-systemet används så gott som alltid i litteraturen, och denna bok utgör inget undantag. De konstanter som är relevanta för vår framställning finns angivna i detta appendix. Ljushastigheten i vakuum c_0 har värdet (exakt)

$$c_0 = 299\,792\,458 \text{ m/s}$$

 μ_0 och ϵ_0 är vakuums permeabilitets- respektive dielektricitetskonstant. Deras värden är (exakt)

$$\mu_0 = 4\pi \cdot 10^{-7} \text{ N/A}^2$$

 $\epsilon_0 = \frac{1}{c_0^2 \mu_0} \text{ F/m}$

Approximativa värden på dessa konstanter är

$$\mu_0 \approx 12.566\,370\,614 \cdot 10^{-7} \text{ N/A}^2$$

$$\epsilon_0 \approx 8.854\,187\,817 \cdot 10^{-12} \text{ F/m}$$

Vågimpedansen hos vakuum betecknas med

$$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = c_0 \mu_0 = 299\,792\,458 \cdot 4\pi \cdot 10^{-7}\,\Omega \approx 376.730\,314\,\Omega$$

Elektronens laddning -e och massa m har värdena

$$e \approx 1.602 \, 177 \, 33 \cdot 10^{-19} \, \mathrm{C}$$

 $m \approx 9.109 \, 389 \, 8 \cdot 10^{-31} \, \mathrm{kg}$
 $e/m \approx 1.758 \, 819 \, 63 \cdot 10^{11} \, \mathrm{C/kg}$

Bilaga G

Beteckningar

Bra beteckningar leder till att texten blir mer lättläst och framställningen mer systematisk. De flesta beteckningar förklaras på det ställe i texten där de introduceras, medan andra som är mer allmänt förekommande finns samlade i detta appendix.

- Vektorfält betecknas med fet kursiverad stil, t.ex. \boldsymbol{a} och \boldsymbol{b} , och enhetsvektorer markeras med "hatt" (^) över storheten, t.ex. $\hat{\boldsymbol{x}}$ och $\hat{\boldsymbol{\rho}}$.
- Vi särskiljer på en vektor *a* och dess komponentframställning i ett specifikt koordinatsystem, och betecknar komponentframställningen med en kolonnvektor eller hakparenteser runt vektorn, t.ex.

$$[\boldsymbol{a}] = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$

där

$$oldsymbol{a} = \hat{oldsymbol{x}} a_x + \hat{oldsymbol{y}} a_y + \hat{oldsymbol{z}} a_z$$

• Linjära vektorvärda transformationer betecknas med fet upprätt stil, t.ex. A. En linjär transformation A verkande på ett vektorfält u blir ett nytt vektorfält v och vi använder skrivsättet

$$\boldsymbol{v} = \mathbf{A} \cdot \boldsymbol{u}$$

Den enklaste typen av linjär transformation är

$$oldsymbol{v} = oldsymbol{a} \underbrace{(oldsymbol{b} \cdot oldsymbol{u})}_{ ext{skalär}}$$

Vektorn \boldsymbol{u} har här avbildats på en ny vektor riktad längs vektorn \boldsymbol{a} . Skalningen sker med vektorn \boldsymbol{b} genom skalärprodukten $\boldsymbol{b} \cdot \boldsymbol{u}$. Vi betecknar denna transformation med en *enkel dyad* och använder symbolen \boldsymbol{ab} för transformationen, som definieras genom (skrivs antingen med eller utan parentes kring transformationen \boldsymbol{ab})

$$\boldsymbol{v} = (\boldsymbol{a}\boldsymbol{b})\cdot\boldsymbol{u} = \boldsymbol{a}\boldsymbol{b}\cdot\boldsymbol{u} \stackrel{\mathrm{def}}{=} \boldsymbol{a}\left(\boldsymbol{b}\cdot\boldsymbol{u}
ight)$$

Notera att vektorerna i transformationen \boldsymbol{ab} skrivs samman utan tecken mellan vektorerna.

I ett specifikt koordinatsystem kan den linjära transformationen **A** ibland representeras med en 3×3 matris [**A**], där vi använder hakparenteser runt om **A** för att markera att komponentframställningen av **A** avses. Vektorn \boldsymbol{v} :s komponenter blir då

$$[oldsymbol{v}] = [oldsymbol{A}] \cdot [oldsymbol{u}]$$

eller

$$\begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix} \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$$

• Enhetsmatrisen och nollmatrisen i tre dimensioner betecknas [I] respektive [0].

$$[\mathbf{I}] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad [\mathbf{0}] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

eller i två dimensioner

$$[\mathbf{I}] = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad [\mathbf{0}] = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Transponering och Hermitekonjugering av en dyad, A^t respektive A[†], markeras med (^t) respektive dolktecknet" ([†]), och definieras genom

$$oldsymbol{v} = oldsymbol{A}^t \cdot oldsymbol{u} \stackrel{ ext{def}}{=} oldsymbol{u} \cdot oldsymbol{A} \qquad oldsymbol{v} = oldsymbol{A}^\dagger \cdot oldsymbol{u} \stackrel{ ext{def}}{=} oldsymbol{u} \cdot (oldsymbol{A})^*$$

Transponering av en matrix markeras med $\binom{t}{}$ och Hermitekonjugering med dolktecknet" $\binom{\dagger}{}$, dvs.

$$A_{ij}^t = A_{ji}$$
$$A_{ij}^\dagger = A_{ji}^*$$

• Vi använder ibland symbolerna o och O, som definieras

$$\begin{cases} f(x) = o\left(g(x)\right), & x \to a \quad \Longleftrightarrow \quad \lim_{x \to a} \frac{f(x)}{g(x)} = 0\\ f(x) = O\left(g(x)\right), & x \to a \quad \Longleftrightarrow \quad \frac{f(x)}{g(x)} \quad \text{begränsad i en omgivning av } a \end{cases}$$

- Symbolen anger slut på exempel.
- Realdelen och imaginärdelen av ett komplext tal z = x + iy betecknas med Re z respektive Im z, dvs.

$$\operatorname{Re} z = x$$
$$\operatorname{Im} z = y$$

En stjärna (*) markerar komplexkonjugering, dvs. $z^* = x - iy$.

• Heavisides stegfunktion betecknas med H(t) och definieras av

$$H(t) = \begin{cases} 0, & t < 0\\ 1, & t \ge 0 \end{cases}$$

• Kroneckers delta
funktion betecknas med δ_{ij} och definieras av

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

- Det cylindriska koordinatsystemet (ρ,ϕ,z) definieras

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \begin{cases} \arccos \frac{x}{\sqrt{x^2 + y^2}} & y \ge 0 \\ 2\pi - \arccos \frac{x}{\sqrt{x^2 + y^2}} & y < 0 \\ z = z \end{cases}$$

Här tillhör $\rho \in [0,\infty), \ \phi \in [0,2\pi)$ och $z \in (-\infty,\infty)$.

• Det sfäriska koordinatsystemet (r,θ,ϕ) definieras

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ \phi = \begin{cases} \arccos \frac{x}{\sqrt{x^2 + y^2}} & y \ge 0 \\ 2\pi - \arccos \frac{x}{\sqrt{x^2 + y^2}} & y < 0 \end{cases} \end{cases}$$

Här tillhör $r \in [0, \infty), \theta \in [0, \pi]$ och $\phi \in [0, 2\pi)$.

Litteraturförteckning

- G. Arfken. Mathematical Methods for Physicists. Academic Press, Inc., Orlando, third edition, 1985.
- [2] C.A. Balanis. Advanced Engineering Electromagnetics. Wiley, New York, 1989.
- [3] P.W. Barber and S.C. Hill. Light Scattering by Particles: Computational Methods. World Scientific, Singapore, 1990.
- [4] C.F. Bohren and D.R. Huffman. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York, 1983.
- [5] M. Born and E. Wolf. *Principles of Opics*. Pergamon Press, Oxford, sixth (corrected) edition, 1980.
- [6] O. Brander. Vektoranalys, Modellering av fysikaliska problem i tre dimensioner. Studentlitteratur, Lund, 1995.
- [7] K.G. Budden. The propagation of radio waves. Cambridge University Press, Cambridge, 1985.
- [8] D.K. Cheng. Field and wave electromagnetics. Addison-Wesley, Reading, 1983.
- [9] W.C. Chew. Waves and Fields in Inhomogeneous Media. IEEE Press, New York, 1995.
- [10] S.K. Cho. *Electromagnetic Scattering*. Springer-Verlag, New York, 1990.
- [11] E.W. Cowan. *Basic electromagnetism*. Academic Press, New York, 1968.
- [12] A.T. de Hoop. Handbook of Radiation and Scattering of Waves. Academic Press, London, 1995.
- [13] E. Hallén. *Elektricitetslära*. Almqvist & Wiksells, Uppsala, 1968.
- [14] A. Ishimaru. Electromagnetic Wave Propagation, Radiation, and Scattering. Prentice Hall, Englewood Cliffs, 1991.
- [15] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, New York, third edition, 1999.

- [16] D.S. Jones. Methods in Electromagnetic Wave Propagation. IEEE Press, Piscatawaty, second edition, 1994.
- [17] J.A. Kong. *Electromagnetic Wave Theory*. John Wiley & sons, New York, 1986.
- [18] J.D. Kraus. *Electromagnetics*. McGraw-Hill, New York, fourth edition, 1992.
- [19] G. Kristensson. *Elektromagnetisk vågutbredning*. Studentlitteratur, Lund, 1999.
- [20] I.V. Lindell. Methods for Electromagnetic Field Analysis. Clarendon Press, Oxford, 1992.
- [21] C. Müller. Foundations of the Mathematical Theory of Electromagnetic Waves. Springer-Verlag, Berlin, 1969.
- [22] W.K.H. Panofsky and M. Phillips. *Classical electricity and magnetism*. Addison-Wesley, Reading, 1962.
- [23] C.H. Papas. Theory of Electromagnetic Wave Propagation. Dover, New York, 1988.
- [24] B.D. Popović. Introductory Engineering Electromagnetics. Addison-Wesley, Reading, 1971.
- [25] SIS-Standardiseringskommissionen i Sverige. SI måttenheter, September 1988.
- [26] J.A. Stratton. *Electromagnetic Theory*. McGraw-Hill, New York, 1941.
- [27] I. Tolstoy. *Wave propagation*. McGraw-Hill, New York, 1973.
- [28] G. Tyras. Radiation and Propagation of Electromagnetic Waves. Academic Press, New York, 1969.
- [29] J. Van Bladel. *Electromagnetic Fields*. Hemisphere Publishing Corporation, New York, 1985.
- [30] J.R. Wait. *Electromagnetic Waves in Stratified Media*. Pergamon, Oxford, 1970.
- [31] C.H. Yeh, K.C.and Lin. Theory of Ionospheric Waves. Academic Press, New York, 1972.

Facit

- 1.1 En ellips med halvaxlar a och b längs \hat{e}_1 respektive \hat{e}_2 -axeln. Fältet är högerpolariserat och $E(t=0) = \hat{e}_1 a$.
- **1.2** En ellips med halvaxlar $\sqrt{2}a \cos \pi/8$ respektive $\sqrt{2}a \sin \pi/8$. Den senare halvaxeln lutar 45° mot positiva \hat{e}_1 -axeln. Fältet är högerpolariserat och $E(t = 0) = a(\hat{e}_1 + \hat{e}_2/\sqrt{2})$.

1.4

$$\begin{aligned} \boldsymbol{A} &= \hat{\boldsymbol{x}} + i\hat{\boldsymbol{y}} \\ \boldsymbol{B} &= (\hat{\boldsymbol{x}} + \xi\hat{\boldsymbol{y}}) + i(-\xi\hat{\boldsymbol{x}} + \hat{\boldsymbol{y}}) \end{aligned}$$

där ξ är ett godtyckligt reellt tal.

1.6

$$-\nabla \cdot \langle \boldsymbol{S}(t) \rangle = \frac{\omega \epsilon_0}{2} \left\{ \operatorname{Im} \boldsymbol{\epsilon}(\omega) + \left| \frac{\boldsymbol{\epsilon}(\omega)}{\mu(\omega)} \right| \operatorname{Im} \mu(\omega) \right\} |\boldsymbol{E}_0(\boldsymbol{k}, \omega)|^2 e^{-2\operatorname{Im} \boldsymbol{k} \hat{\boldsymbol{k}} \cdot \boldsymbol{r}}$$

2.1 $\boldsymbol{E}(r,\omega)$ och $\boldsymbol{H}(r,\omega)$ är noll för r > a.

2.2

$$\begin{split} \boldsymbol{E} &= \frac{pk^2}{\epsilon_0} \frac{e^{ikr}}{4\pi r} \left\{ [3\hat{\boldsymbol{r}}(\hat{\boldsymbol{z}} \cdot \hat{\boldsymbol{r}}) - \hat{\boldsymbol{z}}] \left(\frac{1}{k^2 r^2} - \frac{i}{kr} \right) + \hat{\boldsymbol{r}} \times (\hat{\boldsymbol{z}} \times \hat{\boldsymbol{r}}) \right\} \\ \boldsymbol{H} &= -ik\omega p \frac{e^{ikr}}{4\pi r} \left(i - \frac{1}{kr} \right) \hat{\boldsymbol{r}} \times \hat{\boldsymbol{z}} \\ &< \boldsymbol{S}(t) \! > = \frac{|p|^2 k^3 \omega}{32\pi^2 r^2 \epsilon_0} \hat{\boldsymbol{r}} \left(1 - (\hat{\boldsymbol{z}} \cdot \hat{\boldsymbol{r}})^2 \right) \\ P &= \frac{|p|^2 k^3 \omega}{12\pi\epsilon_0} \end{split}$$

 $\mathbf{2.3}$

$$v > c_0 \sqrt{\frac{\omega^2 - \omega_0^2}{\omega^2 - 2\omega_0^2}} \approx 0.66c_0$$

3.1

$$m{F}(\hat{m{r}}) = \hat{m{r}} imes (m{K}(\hat{m{r}}) imes \hat{m{r}})$$

där

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{z}} \frac{iI_0 k\eta_0}{2\pi \sin^2 \theta} \left[\cos\left(\frac{kl}{2}\cos\theta\right) - \cos\left(\frac{kl}{2}\right) \right]$$

 $\boldsymbol{\theta}$ är polvinkeln för $\hat{\boldsymbol{r}}$ i sfäriska koordinater.

3.2

$$m{F}(\hat{m{r}}) = \hat{m{r}} imes (m{K}(\hat{m{r}}) imes \hat{m{r}})$$

där

$$oldsymbol{K}(\hat{oldsymbol{r}}) = \hat{oldsymbol{\phi}} rac{Ik^2 a^2 \eta_0}{2a} J_1(ka\sin heta)$$

med långvågsapproximation

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{\phi}} \frac{mk^3 \eta_0 \sin \theta}{4\pi}$$

där slingans magnetiska moment m är

$$m=I\pi a^2$$

3.3

$$m{F}_{fo}(\hat{m{r}}) = \hat{m{r}} imes (m{K}(\hat{m{r}}) imes \hat{m{r}}) \ \sigma_t = \sigma_s = 2ab$$

där

$$\boldsymbol{K}(\hat{\boldsymbol{r}}) = \hat{\boldsymbol{x}} \frac{iE_0k^2ab}{2\pi} \frac{\sin\left(\frac{ka}{2}\sin\theta\cos\phi\right)}{\frac{ka}{2}\sin\theta\cos\phi} \frac{\sin\left(\frac{kb}{2}\sin\theta\sin\phi\right)}{\frac{kb}{2}\sin\theta\sin\phi}$$

 $\boldsymbol{\theta}$ är polvinkeln och $\boldsymbol{\phi}$ azimutvinkeln för $\hat{\boldsymbol{r}}$ i sfäriska koordinater.

3.4

$$m{F}_{fo}(\hat{m{r}}) = \hat{m{r}} imes (m{K}(\hat{m{r}}) imes \hat{m{r}})$$

 $\sigma_t = \sigma_s = 2\pi a^2$

där

$$oldsymbol{K}(\hat{oldsymbol{r}}) = ik^2 a^2 oldsymbol{E}_0 rac{J_1(ka\sin heta)}{ka\sin heta}$$

 $\boldsymbol{\theta}$ är polvinkeln för $\hat{\boldsymbol{r}}$ i sfäriska koordinater.

3.5

$$oldsymbol{F}_{go}(\hat{oldsymbol{z}}) = i rac{k^2 a^2}{2} oldsymbol{E}_0$$

3.6

$$S_{\parallel\parallel} = k^3 a^3 \frac{\epsilon - 1}{\epsilon + 2} \cos \theta$$
$$S_{\parallel\perp} = S_{\perp\parallel} = 0$$
$$S_{\perp\perp} = k^3 a^3 \frac{\epsilon - 1}{\epsilon + 2}$$
$$\sigma_s = \frac{8\pi k^4 a^6}{3} \left| \frac{\epsilon - 1}{\epsilon + 2} \right|^2$$

 θ är vinkeln mellan \hat{k}_i och \hat{r} .

3.7

$$\begin{split} S_{\parallel\parallel} &= k^3 a^3 \left(\cos \theta - \frac{1}{2} \right) \\ S_{\parallel\perp} &= S_{\perp\parallel} = 0 \\ S_{\perp\perp} &= k^3 a^3 \left(1 - \frac{1}{2} \cos \theta \right) \\ \sigma_s &= \frac{10 \pi k^4 a^6}{3} \end{split}$$

heta är vinkeln mellan \hat{k}_i och \hat{r} .

3.8

$$F_{fo}(-\hat{\boldsymbol{k}}_i) = -\frac{ka}{2}e^{-2ika}\boldsymbol{E}_0\left(1 - \frac{i}{2ka}\left(1 - e^{2ika}\right)\right)$$

3.11
$$F_{fo}(\hat{z}) = i\hat{y}kFe^{i2kF}\frac{k^3p}{2\pi\epsilon_0}\frac{a^2}{a^2+4F^2}$$

3.12

$$\boldsymbol{F}_{go}\left(\hat{\boldsymbol{z}}\right) = i\hat{\boldsymbol{y}}kFe^{i2kF}\frac{k^{3}p}{2\pi\epsilon_{0}}\frac{a^{2}}{a^{2}+4F^{2}}$$

4.2

$$\frac{d\sigma}{d\Omega}(\hat{\boldsymbol{r}} = -\hat{\boldsymbol{k}}_i) = \frac{1}{4k^2} \left| \sum_{l=1}^{\infty} (2l+1)(-1)^l (t_{1l} - t_{2l}) \right|^2$$

4.3 Till lägsta ordning i ka:

$$oldsymbol{E}_1(oldsymbol{r},\omega) = rac{3\epsilon}{\epsilon_1 + 2\epsilon}oldsymbol{E}_0$$

4.4

$$\begin{cases} t_{1l} = -\frac{\mu j_l(kb)A_{1l} - \mu_1(kbj_l(kb))'B_{1l}}{\mu h_l^{(1)}(kb)A_{1l} - \mu_1(kbh_l^{(1)}(kb))'B_{1l}} \\ t_{2l} = -\frac{\epsilon j_l(kb)A_{2l} - \epsilon_1(kbj_l(kb))'B_{2l}}{\epsilon h_l^{(1)}(kb)A_{2l} - \epsilon_1(kbh_l^{(1)}(kb))'B_{2l}} \end{cases}$$

där

$$\begin{cases} A_{\tau l} = (k_1 b j_l(k_1 b))' + t_{\tau l}^{\text{perf}}(k_1 b h_l^{(1)}(k_1 b))' \\ B_{\tau l} = j_l(k_1 b) + t_{\tau l}^{\text{perf}} h_l^{(1)}(k_1 b) \end{cases} \begin{cases} t_{1l}^{\text{perf}} = -\frac{j_l(k_1 a)}{h_l^{(1)}(k_1 a)} \\ t_{2l}^{\text{perf}} = -\frac{(k_1 a j_l(k_1 a))'}{(k_1 a h_l^{(1)}(k_1 a))'} \end{cases}$$

5.1

5.2

$$\boldsymbol{F}(\boldsymbol{r}) = \hat{\boldsymbol{r}} \times (\boldsymbol{E}_0 \times \hat{\boldsymbol{r}}) (\epsilon - 1) \frac{k^3}{k_b^3} (\sin k_b a - k_b a \cos k_b a)$$

där $\boldsymbol{k}_b = k(\hat{\boldsymbol{k}}_i - \hat{\boldsymbol{r}})$ och $k_b = |\boldsymbol{k}_b|$.

$$\chi_e(\rho) = \begin{cases} \chi, & 0 \le \rho \le R \\ 0, & \rho > R \end{cases}$$

5.3

$$A(z) = \begin{cases} \pi(a^2 - z^2), & |z| \le a \\ 0, & |z| \ge a \end{cases}$$

dvs. spridaren är en sfär med radie a.

 $\mathbf{5.4}$

$$A(z) = \frac{\pi a^2}{2} \left(\text{sign}(d_2 + z) + \text{sign}(d_1 - z) \right) = \begin{cases} \pi a^2, & -d_2 < z < d_1 \\ 0, & \text{för övrigt} \end{cases}$$

dvs. spridaren är en rak cirkulär cylinder med radi
eaorienterad med symmetriaxeln längs z-axeln och med
ändytorna i $z=-d_2$ och $z=d_1.$

5.5

$$f(\mathbf{K}) = \frac{1}{4} \left\{ i - e^{iKa} \left[Ka + i \right] \right\}$$
$$f(\mathbf{K}) + f^*(-\mathbf{K}) = -\frac{Ka}{2} \cos Ka + \frac{1}{2} \sin Ka$$

Sakregister

Abels ekvation, 180 Aktiva material, 25 tidsharmoniska fält, 25 Ampères (generaliserade) lag, 2 Associerade Legendrefunktioner, 199– 200Azimutvinkel, 208 Besselfunktioner, 189–192 sfäriska, 192–194 Born-approximationen, 171–173 Brytningsindex, 28 Cerenkovstrålning, 52–58 energiutflöde, 57–58 Cylindrisk våg, 56 Debyemodell, 22-24 Dielektricitetsfunktion, 20 vakuum, 215 Differentiellt spridningstvärsnitt, 82, 86, 146Dipolmoment elektriskt, 120 magnetiskt, 121 Direkt spridningsproblem, 169 Dispersion, 20 Dispersionsekvation, 28 Dualt index, 144 Dyad, 84 reflectionsdyad, 95 Elektrisk flödestäthet, 2 Elektrisk fältstyrka, 2 Elektrisk multipol, 144 Elektromagnetiskt frekvensspektrum, 12 radarband, 13 Enkel dyad, 217

Förlustfria material, 25 konstitutiva relationer, 25 Faradays induktionslag, 2 Fashastighet, 27 Fjärrfält, 71–80 fjärrzon, 71 utstrålningsvillkor, 77, 145 volymformulering, 72–74 ytformulering, 74–80 Fjärrfältsamplitud cylindrisk reflektorantenn, 102 dielektrisk sfär, 156 flera lika spridare, 124 flera spridare, 123 fysikalisk-optik-approximation, 97 långvågsapproximation, 122 multipolutveckling, 146 perfekt ledande sfär, 148 volymformulering, 74 ytformulering, 80 Fjärrfältsapproximation, 71 Fouriertransform, 11 Fysikalisk-optik-approximation, 97–106 invers spridning, 180–184 spridningstvärsnitt, 98 Gaugetransformation, 46 Gauss lag, 2 Geometrisk diffraktionsteori, 97 Geometrisk-optik-approximation, 107-118Glatt yta, 59 Greenfunktion, 48 Hankelfunktioner, 189–192 sfäriska, 192–194 Hörnreflektor, 110–113

Icke-strålande källor, 51

Infallande fält, 69 planvåg, 81 Inkoherent superposition, 125 Integralframställning av fält, 59–65 allmänt uttryck, 62 ytfältsuttryck, 65 Inverst spridningsproblem, 169 axialsymmetri, 180 tvärsnittsarea, 184 Isotropt material, 19 Klotytfunktioner, 200–203 skalära, 200-203 vektorvärda, 203–206 Koherenslängd, 29 Koherensmatris, 31 infallande fält, 85 spritt fält, 85 Koherenstid, 29 Koherent spridning, 124 Konstitutiva relationer, 3, 19–24 förlustfria material, 25 passiva material, 25 vatten, 23 Kortvågsapproximationer, 92–118 fysikalisk-optik, 97–106 geometrisk-optik, 107–118 Kvasi-monokromatiskt fält, 30 Långvågsapproximation, 118–122, 150– 153, 158-161 dielektrisk sfär, 158–161 fjärrfältsamplitud, 122 perfekt ledande sfär, 150–153 Laddningens kontinuitetsekvation, 2 tidsharmoniska fält, 14 Laddningskonservering, 2 Ledningsförmåga, 20 Legendrepolynom, 195–196 Lobbredd, 99 Lorentz-kraft, 2 Lorentzmodell, 21–22 Lorenz bivillkor, 47 Lorenz gauge, 47 Magnetisering av material, 4, 19

inducerad, 4 permanent, 4 Magnetisk flödestäthet, 2 Magnetisk fältstyrka, 2 Magnetisk multipol, 144 Maxwells fältekvationer, 1, 2 plana vågor, 27 svaga lösningar, 6 tidsharmoniska fält, 13 Mie-spridning, 137 Multipelspridning, 122 Multipolutveckling, 144 planvåg, 144 Neumann faktor, 200 Neumannfunktioner, 189–192 sfäriska, 192–194 Opolariserat fält, 33 Optiska teoremet, 87–91 volymformulering, 87–90 vtformulering, 90–91 Parabolreflektor cylindrisk, 99-104, 113-116 parabol, 104-106, 116-118 Parsevals identitet, 58 Partialvågsutveckling, 144 planvåg, 144 Passiva material, 25 konstitutiva relationer, 25 tidsharmoniska fält, 25 Permeabilitetsfunktion, 20 vakuum, 215 Permittivitetsfunktion, 20 Plana vågor, 26–29 fas, 26 fashastighet, 27 homogena, 26 inhomogena, 26 reflection, 96 våglängd, 27 vågtal, 27 vågvektor, 27 Planvågsreflektion, 96 Planvågsutveckling, 144

Plasmafrekvens, 21 Poincaré-sfären, 37 Polarisation av fält, 33–35 allmän polarisationsgrad, 34 fullständigt polariserat fält, 34 naturlig, 33 opolariserat fält, 33 Polarisation av material, 4, 19 inducerad, 4 permanent, 4 Polarisationsellips, 15–19 cirkulärpolarisation, 18 högerpolarisation, 18 linjär polarisation, 18 vänsterpolarisation, 18 Polarisationsgrad, 33, 35, 36 dielektrisk sfär, 161 fullständigt polariserat fält, 34 opolariserat fält, 33, 87 perfekt ledande sfär, 152 Polarisator, 31, 36 Polvinkel, 208 Poyntings sats, 9, 15 tidsharmoniska fält, 15 Poyntings vektor, 9 Projektionssatsen, 177 Radarbandsfrekvenser, 13 Randvillkor, 7 ledare, 8 Rayleigh-spridning, 118 dielektrisk sfär, 158–161 perfekt ledande sfär, 150–153 Reciproka material, 85 Reflectionsdyad, 95 Relaxationsmodell, 22–24 Relaxationstid, 22 etanol, 24 vatten, 23 Resonanser, 128 Resonansmodell, 21–22 Retardationsplatta, 31, 36 Rytov-approximationen, 173–176 Sfärisk våg, 49, 74 Sfäriska Besselfunktioner, 192–194

Sfäriska Hankelfunktioner, 192–194 Sfäriska Neumannfunktioner, 192–194 Sfäriska vektorvågor, 140–144 reguljära, 140, 142 utåtgående, 140, 142 Skalär potential, 46 Spridningsdyad, 84 flera spridare, 124 reciprocitet, 84 Spridningsmatris, 84 dielektrisk sfär, 157 perfekt ledande sfär, 149 Spridningsplan, 83 Spridningsproblem direkt, 146, 169 inverst, 146, 169 Spridningstvärsnitt, 81–83 bistatic cross section, 82 dielektrisk sfär, 157–158 differentiellt, 82, 86, 146 flera lika spridare, 124 flera spridare, 124 perfekt ledande sfär, 149–150 slumpmässiga spridare, 125 totalt, 82, 146 totalt absorptionstvärsnitt, 83, 146 totalt tvärsnitt, 83, 146 utsläckningstvärsnitt, 83 Spritt fält, 69 Stokes-parametrar, 35–37 Strukturfaktor, 125 Strömtäthet, 2 Susceptibilitetsfunktion elektrisk, 20 magnetisk, 20 T-matris, 146 TE-multipol, 144 Tidsharmoniska fält, 11–13 kvasi-monokromatiska, 30 villkor för reella fält, 11 Tidsmedelvärde, 14, 31 Tjebysjevpolynom, 196–198 TM-multipol, 144 Totalt absorptionstvärsnitt, 83

226 Sakregister

Totalt fält, 70 Totalt tvärsnitt, 83 Transversellt elektrisk multipol, 144 Transversellt magnetisk multipol, 144 Tvärsnittsarea, 98 Utsläckningsparadoxen, 99 Utsläckningstvärsnitt, 83 Utstrålningsvillkor, 77, 145 Vågimpedans, 63

vakuum, 215 Våglängd, 27 Vågtal, 27 Vågvektor, 27 Vektorklotytfunktioner, 138, 203–206 Vektorpotential, 46

Ytladdningstäthet, 7 Ytströmtäthet, 7

Övergångsmatris, 146 dielektrisk sfär, 156 perfekt ledande sfär, 148

Viktiga vektoridentiteter

- (1) $(\boldsymbol{a} \times \boldsymbol{c}) \times (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{c} \left((\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} \right)$
- (2) $(\boldsymbol{a} \times \boldsymbol{b}) \cdot (\boldsymbol{c} \times \boldsymbol{d}) = (\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d}) (\boldsymbol{a} \cdot \boldsymbol{d})(\boldsymbol{b} \cdot \boldsymbol{c})$
- (3) $\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b})$
- (4) $\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b} \cdot (\boldsymbol{c} \times \boldsymbol{a}) = \boldsymbol{c} \cdot (\boldsymbol{a} \times \boldsymbol{b})$

Integrationsformler

Stokes sats och till denna analoga satser

(1)
$$\iint_{S} (\nabla \times \mathbf{A}) \cdot \hat{\mathbf{n}} \, dS = \int_{C} \mathbf{A} \cdot d\mathbf{r}$$

(2)
$$\iint_{S} \hat{\mathbf{n}} \times \nabla \varphi \, dS = \int_{C} \varphi \, d\mathbf{r}$$

(3)
$$\iint_{S} (\hat{\mathbf{n}} \times \nabla) \times \mathbf{A} \, dS = \int_{C} d\mathbf{r} \times \mathbf{A}$$

Gauss sats (divergenssatsen) och till denna analoga satser

(1)
$$\iiint_{V} \nabla \cdot \mathbf{A} \, dv = \iint_{S} \mathbf{A} \cdot \hat{\mathbf{n}} \, dS$$

(2)
$$\iiint_{V} \nabla \varphi \, dv = \iint_{S} \varphi \hat{\mathbf{n}} \, dS$$

(3)
$$\iiint_{V} \nabla \times \mathbf{A} \, dv = \iint_{S} \hat{\mathbf{n}} \times \mathbf{A} \, dS$$

Greens formler

(1)
$$\iiint_{V} (\psi \nabla^{2} \varphi - \varphi \nabla^{2} \psi) \, dv = \iint_{S} (\psi \nabla \varphi - \varphi \nabla \psi) \cdot \hat{\boldsymbol{n}} \, dS$$

(2)
$$\iiint_{V} (\psi \nabla^{2} \boldsymbol{A} - \boldsymbol{A} \nabla^{2} \psi) \, dv$$
$$= \iint_{S} (\nabla \psi \times (\hat{\boldsymbol{n}} \times \boldsymbol{A}) - \nabla \psi (\hat{\boldsymbol{n}} \cdot \boldsymbol{A}) - \psi (\hat{\boldsymbol{n}} \times (\nabla \times \boldsymbol{A})) + \hat{\boldsymbol{n}} \psi (\nabla \cdot \boldsymbol{A})) \, dS$$

Samband mellan basvektorer

Cylindriska koordinater (ρ, ϕ, z) Sfäriska koordinater (r, θ, ϕ)

$$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \begin{cases} \arccos \frac{x}{\sqrt{x^2 + y^2}} & y \ge 0 \\ 2\pi - \arccos \frac{x}{\sqrt{x^2 + y^2}} & y < 0 \end{cases} \\ z = z \end{cases} \begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ \varphi = \begin{cases} \arccos \frac{x}{\sqrt{x^2 + y^2}} & y \ge 0 \\ 2\pi - \arccos \frac{x}{\sqrt{x^2 + y^2}} & y < 0 \end{cases} \end{cases}$$

$$\begin{split} &(r,\theta,\phi) \longrightarrow (x,y,z) \\ \begin{cases} \hat{r} = \hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta \\ \hat{\theta} = \hat{x}\cos\theta\cos\phi + \hat{y}\cos\theta\sin\phi - \hat{z}\sin\theta \\ \hat{\theta} = -\hat{x}\sin\phi + \hat{y}\cos\phi \end{cases} \\ &(x,y,z) \longrightarrow (r,\theta,\phi) \\ \begin{cases} \hat{x} = \hat{r}\sin\theta\cos\phi + \hat{\theta}\cos\theta\cos\phi - \hat{\phi}\sin\phi \\ \hat{y} = \hat{r}\sin\theta\sin\phi + \hat{\theta}\cos\theta\sin\phi + \hat{\phi}\cos\phi \\ \hat{z} = \hat{r}\cos\theta - \hat{\theta}\sin\theta \end{cases} \\ &(\rho,\phi,z) \longrightarrow (x,y,z) \\ \begin{cases} \hat{\rho} = \hat{x}\cos\phi + \hat{y}\sin\phi = (\hat{x}x + \hat{y}y)/\sqrt{x^2 + y^2} \\ \hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi = (-\hat{x}y + \hat{y}x)/\sqrt{x^2 + y^2} \\ \hat{z} = \hat{z} \end{cases} \\ &(x,y,z) \longrightarrow (\rho,\phi,z) \\ \begin{cases} \hat{x} = \hat{\rho}\cos\phi - \hat{\phi}\sin\phi \\ \hat{y} = \hat{\rho}\sin\phi + \hat{\phi}\cos\phi \\ \hat{z} = \hat{z} \end{cases} \\ &(r,\theta,\phi) \longrightarrow (\rho,\phi,z) \\ \begin{cases} \hat{r} = \hat{\rho}\sin\theta + \hat{z}\cos\theta \\ \hat{\theta} = \hat{\rho}\cos\theta - \hat{z}\sin\theta \\ \hat{\phi} = \hat{\phi} \end{cases} \\ &(\rho,\phi,z) \longrightarrow (r,\theta,\phi) \end{cases} \\ \begin{cases} \hat{\rho} = \hat{r}\sin\theta + \hat{\theta}\cos\theta \\ \hat{\phi} = \hat{\phi} \\ \hat{z} = \hat{r}\cos\theta - \hat{\theta}\sin\theta \end{cases} \end{split}$$