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Abstract
The paper presents TRUETIME, a MATLAB/Simulink-
based simulator for real-time control systems. TRUE-
TIME makes it possible to simulate the temporal be-
havior of multi-tasking real-time kernels containing
controller tasks and to study the effects of CPU and
network scheduling on control performance. The sim-
ulated real-time kernel is event-driven and can han-
dle external interrupts as well as fine-grained de-
tails such as context switches. Arbitrary scheduling
policies may be defined, and the control tasks may
be implemented using C functions, M functions, or
Simulink block diagrams. A number of examples that
illustrate the use of TRUETIME are presented.

1. Introduction
Most computer control systems are embedded sys-
tems where the computer is a component within a
larger engineering system. The controllers are often
implemented as one or several tasks on a micropro-
cessor using a real-time kernel or a real-time oper-
ating system (RTOS). In most cases the micropro-
cessor also contains other tasks for other functions,
e.g., communication and user interfaces. The kernel
or OS typically uses multiprogramming to multiplex
the execution of the different tasks on a single CPU.
The CPU time and the communication bandwidth,
hence, can be viewed as shared resources which the
tasks compete for.

Computer-based control theory normally assumes
equidistant sampling intervals and negligible or con-
stant control delays, i.e., the latency between the
sampling of the inputs to the controller and the gen-
eration of the outputs. However, this can seldom be
achieved in practice. Tasks interfere with each other
through preemption and blocking due to communi-
cation. Execution times may be data-dependent or
vary due to, e.g., the uses of caches. The result of this
is jitter in sampling periods and latencies. An addi-
tional cause of this temporal non-determinism is the

increasing use of commercial off-the-shelf (COTS)
components in control systems, e.g., general purpose
operating systems such as Windows and Linux and
general purpose network protocols such as Ether-
net. These are designed to optimize average-case per-
formance rather than worst-case performance, and
therefore increase the non-determinism.

The effects of this type of temporal non-determinism
on control performance are often very hard, if not
impossible, to investigate analytically. A natural
approach is then to instead use simulation. However,
todays simulation tools make it difficult to simulate
the true temporal behavior of control loops. What
is normally done is to introduce time delays in the
control loop representing average-case or worst-case
delays.

In this paper the new simulation toolbox TRUETIME

is presented. TRUETIME, which is based on MAT-
LAB/Simulink, makes it possible to simulate the tem-
poral behavior of a multi-tasking real-time kernel
containing controller tasks. The controller tasks con-
trol processes modeled as ordinary Simulink blocks.
Different scheduling policies may be used, e.g.,
priority-driven or deadline-driven scheduling. The
execution times of the controller tasks can be mod-
eled as being constant or time-varying, using some
suitable probability distribution. The effects of con-
text switching and interrupt handling are taken into
account, as well as task synchronization using events
and monitors. With TRUETIME it is also possible to
simulate the timing behavior of communication net-
works used in, e.g., networked control loops.

TRUETIME can be used for several purposes: to in-
vestigate the true effects of timing non-determinism
on control performance, to develop compensation
schemes that adjust the controller dynamically based
on measurements of actual timing variations, to ex-
periment with new, more flexible approaches to dy-
namic scheduling, e.g., feedback scheduling [Eker
et al., 2000] and Quality-of-Service (QoS) based
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Figure 1 The interfaces to the Simulink blocks. The
Schedule and Monitors ports provide plots of the alloca-
tion of common resources (CPU, monitors, network) dur-
ing the simulation.

scheduling approaches, and to simulate event-based
control systems, e.g., combustion engine control sys-
tems and distributed controllers.

1.1 Related work

While numerous tools exist that support either sim-
ulation of control systems (e.g. Simulink) or simula-
tion of real-time scheduling (e.g. STRESS [Audsley
et al., 1994] and DRTSS [Storch and Liu, 1996]) very
few tools support co-simulation of control systems
and real-time scheduling.

An early, tick-based prototype of TRUETIME was
presented in [Eker and Cervin, 1999]. Since it was
not event-based this early version had very little
support for interrupt handling and could not handle
fine-grained simulation details. Also, there was no
support for simulation of networks.

The RTSIM real-time scheduling simulator (a stand-
alone C++ program) has recently been extended
with a numerical module (based on the Octave li-
brary) that supports simulation of continuous dy-
namics, see [Palopoli et al., 2000]. However, it lacks
a graphical plant modeling environment, and so far
its network capabilities are limited.

1.2 Outline of the paper
The simulation environment is described in some de-
tail in Section 2. Three examples are then given to
illustrate the use of the simulator. The first exam-
ple treats scheduling during overload conditions. The
subject of the second example is networked control
system, whereas the last example evaluates an im-
proved scheduling technique for controller tasks.

2. The Simulator
The TRUETIME simulation environment offers two
Simulink blocks: a computer block and a network
block, the interfaces of which are shown in Fig. 1.
The input signals are assumed to be discrete, except
the signals connected to the A/D port which may
be continuous. All output signals are discrete. The
Schedule and Monitors ports provide plots of the
allocation of common resources (CPU, monitors,
network) during the simulation (c.f. Figs. 4, 7,
and 9).
Both blocks are event-driven and execute based
on internal and external events. Internal events
correspond to clock interrupts caused, e.g., by the
release of a task from the time queue or the expiry
of a timer. External events correspond to external
interrupts which occur when signals connected to
the external interrupt port or network ports change
value.

The blocks are variable-step, discrete, MATLAB S-
functions written in C, the Simulink engine being
used only for timing and interfacing with the rest of
the model. It should thus be easy to port the blocks
to other simulation environments, provided they
support event detection (zero-crossing detection).

2.1 The computer block

The computer block S-function simulates a com-
puter with a flexible real-time kernel executing user-
defined threads and interrupt handlers. Threads
may be periodic or aperiodic and are used to simu-
late controller tasks, communication tasks etc. Inter-
rupt handlers are used to serve internal and external
interrupts. The kernel maintains a number of data
structures commonly found in real-time kernels, in-
cluding a ready queue, a time queue, and records for
threads, interrupt handlers, events, monitors etc.

The code executed during simulation consists of user-
written functions, which have been associated with
threads and interrupt handlers. These functions can
be written in C (for speed) or as M code (for ease of
use).
Execution occurs at three distinct priority levels:
interrupt level (highest), kernel level, and thread
level (lowest). The execution may be preemptive
or non-preemptive. At the interrupt level, interrupt
handlers are scheduled according to fixed priorities,
whereas at thread level dynamic-priority scheduling
may be used. The thread priorities are determined by
a user-defined priority function, which is a function
of the attributes of a thread. This makes it easy to
simulate different scheduling policies. For example,
a function returning the absolute deadline of a
thread implements deadline-driven scheduling.
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Figure 2 The execution of the code associated with
threads and interrupt handlers is modeled by a number of
code segments with different execution times. Execution
of user code occurs at the beginning of each code segment.

Threads Each thread is defined by a set
of attributes most of which are initialized by the
user when the thread is created. These attributes
include: a name, a release time, relative and absolute
deadlines, an execution time budget, a period (if
the thread is periodic), a priority (if fixed-priority
scheduling is used), and the user code associated
with the thread. Some of the attributes, such as
the release time and the execution time budget are
constantly updated by the kernel during simulation.
The other attributes can be changed by function calls
from the user code, but are otherwise kept constant.

An arbitrary data structure may be defined and at-
tached to each thread to represent the local memory
of the thread. Other threads may access this data,
which can be used for system-level communication
between threads to support simulation of, e.g., feed-
back scheduling. It is further possible to associate
three different interrupt handlers with each thread:
a code termination handler, a deadline overrun han-
dler, and an execution time overrun handler.

Interrupt handlers When an internal or ex-
ternal interrupt occurs the corresponding interrupt
handler is activated and scheduled by the kernel.
Similar to threads, interrupt handlers have a set of
basic attributes: name, priority, and the associated
user code. External interrupts also have a latency,
during which they are insensitive to new invocations.

Code The execution of the user code asso-
ciated with threads and interrupt handlers is di-
vided into segments with different simulated execu-
tion times as shown in Fig. 2. The execution times
can be constant, random or data-dependent. Execu-
tion of user code occurs at the beginning of each
code segment. The next segment is not executed until
the time associated with the previous segment has
elapsed in the simulation. This construction makes it
possible to model the timely aspects of the code that
are relevant for the interaction with other tasks. This
include, e.g., computations, input and output actions,
awaiting events, and execution in critical regions us-
ing monitors. After execution of the last segment the

Table 1 Examples of kernel primitives (pseudo code)
that can be called from threads and interrupt handlers.

ttAnalogOut(ch,value) ttAnalogIn(ch)
ttWaitUntil(time) ttCurrentTime()
ttSetPriority(prio) ttSetRelease(time)
ttNwSendMsg(msg, node) ttNwGetMsg()
ttEnterMonitor(mon) ttExitMonitor(mon)
ttAwait(event) ttCause(event)

code termination handler of the thread is activated.
For periodic threads this simply updates the release
and deadline and puts the thread to sleep until next
period. Execution will then again begin in the first
segment.

2.2 The Network Block
The network model is similar to the real-time kernel
model, albeit simpler. The network block is event-
driven and executes when messages enter or leave
the network. A send queue is used to hold all mes-
sages currently enqueued in the network (c.f. the
ready queue in the real-time kernel). A message con-
tains information about the sending and the receiv-
ing computer node, user data (typically measure-
ment signals or control signals), transmission time,
and optional real-time attributes such as a priority
or a deadline.

A user-defined priority function is used to determine
the order in which the enqueued messages should be
transmitted. This way, it is easy to model different
network policies. When the simulated transmission
of a message has completed, it is put in a buffer at
the receiving computer node, which is notified by an
external interrupt. Transmissions can be preemptive
or non-preemptive, the latter being default.

2.3 Initialization

Before the start of a simulation, the computer and
network blocks must be initialized. This is done
in a script for each block. Initialization involves
specifying the number of input and output ports,
choosing priority functions, defining code functions,
creating threads, interrupt handlers, etc.

Writing a code function A code function
takes as input argument the segment to be executed,
and returns the execution time of this segment. The
kernel provides a set of real-time primitives that can
be called from the user code, see Table 1 for some
examples. A code function for a simple controller is
given below

function exectime = myController(seg)
switch (seg),



Figure 3 Controllers represented using ordinary dis-
crete Simulink blocks may be used directly in TRUE-
TIME to evaluate timing performance. The example above
shows a PI-controller.

case 1,
y = ttAnalogIn(1);
u = calculateOutput(y);
exectime = 0.002 % execution time

case 2,
ttAnalogOut(1,u);
updateState(y);
exectime = 0.003 % execution time

case 3,
exectime = -1; % code termination

end

The input-output latency in the example above is
always at least 2 ms, this being the execution time of
the first segment. However, preemption from higher-
priority threads or interrupts may lead to a longer
delay.

Graphical controller representation As
an alternative to textual implementation of the con-
troller algorithms, TRUETIME also allows for graph-
ical representations using discrete Simulink blocks.
Block systems are called from the code function us-
ing the primitive ttCallBlockSystem. A block dia-
gram of a PI-controller is shown in Fig 3, and the
corresponding use in a code function is given below

function exectime = piController(seg)
switch (seg),

case 1,
in(1) = ttAnalogIn(1);
in(2) = ttAnalogIn(2);
out = ttCallBlockSystem(in,’PI_ctrl’);
exectime = out(2);

case 2,
ttAnalogOut(1,out(1));
exectime = 0.003;

case 3,
exectime = -1; % code termination

end

3. Scheduling during overload
conditions

This example treats scheduling of tasks with long,
but rare, worst-case execution times. In these cases
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Figure 4 Comparison of schedules generated by CBS
and EDF during an overrun for the interfering thread.
Using CBS the controller thread is unaffected by the
overrun.

traditional scheduling analysis, based on worst-case
execution times, becomes very restrictive. An al-
ternative approach, called the Constant Bandwidth
Server (CBS) was presented in [Abeni and Buttazzo,
1998]. This server approach is straightforward to
simulate using TRUETIME.

In the CBS scheme each task is handled by a
dedicated server characterized by a budget, cs, a
maximum budget, Qs, and a period, Ts. Each server
also has a dynamically changing deadline. When
the task associated with a server executes longer
than its assigned budget, the budget is recharged
and a new deadline is generated. The CBS scheme
uses deadline-driven scheduling based on the server
deadlines. The generation of a new deadline may
therefore allow other tasks to run. CBS guarantees
that no task consumes more than the bandwidth
assigned to its server, Us = Qs/Ts, i.e., if a task has
an overrun it will not affect other tasks. Hence, CBS
conceptually divides the CPU into virtual sub-CPU’s.

The CBS scheme is simulated in TRUETIME using the
execution time budget and execution time overrun
handlers associated with threads. When a thread ex-
ecutes longer than its assigned budget an interrupt
is generated. The corresponding interrupt handler
then recharges the budget and updates the server
deadline.

As an example, consider stabilizing control of an
inverted pendulum with the state-space realization

ẋ =
 0 1

1 0

 x +
0

1

u+
 0

1

w

y =
 1 0

 x + v
(1)



where w and v are independent zero-mean white
noise processes with variances 1 and 0.1 respectively.
A LQG-controller with sampling period 100 ms is
designed in order to minimize the quadratic cost
function

J(t) =
∫ t

0
xT(s)Q1x(s) + u(s)Q2u(s)ds (2)

with Q1 = 5I and Q2 = 0.01.

The execution time of the controller thread is 20 ms
and it is scheduled together with an interfering
thread with period 400 ms and a nominal execution
time of 100 ms. We further assume that the inter-
fering thread occasionally has a very long execution
time of 700 ms occurring with a probability of 5 per-
cent.

In a first simulation the tasks are scheduled using
ordinary earliest deadline first scheduling (EDF).
Here the task with the shortest remaining time to its
deadline will run, with the relative deadlines being
equal to the task periods. The effect of an overrun
is shown in the lower part of Fig. 4, where it is
seen that the controller thread misses five samples
due to preemption from the interfering thread. Using
the CBS approach we get the desired behavior as
seen in the upper part of Fig. 4. The controller
thread is unaffected by the overrun of the interfering
thread. The loss as measured by the cost function (2)
during a simulation of 100 seconds was reduced by
50 percent using the CBS approach.

4. A Networked Control System
This example describes simulation of a distributed
control system, where a DC servo is to be controlled
over a network. The system is shown in Fig. 5 and
consists of four nodes. The time-driven sensor node
samples the process periodically and sends the sam-
ples to the controller node over the network. Upon
receiving a sample, the controller computes a control
signal which is sent to the actuator node, where it is
subsequently actuated. The threads executing in the
controller and actuator nodes are both event-driven.
There is also a disturbance node generating random
interfering traffic over the network.

The network is assumed to be of CAN-type, i.e.
transmission of simultaneous messages is decided
based on priorities of the packages. The packages
generated by the disturbance node have high priority
and occupy 50 percent of the network bandwidth.
The PD-controller executing in the controller node is
designed for the sampling interval 10 ms, which is
the sampling interval used in the time-driven sensor
node.

Without influence from the interfering node, the
round-trip delay (the delay from sampling to actua-

Network

Controller

Sensor

Node

Node
Actuator

Node

Disturbance
Node

DC Servo

Figure 5 A distributed control system with time-driven
sensor node and event-driven actuator and controller
nodes. The disturbance node generates random high-
priority traffic over the network.
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Figure 6 Step response with interfering network mes-
sages and interfering computer task.

tion) will be fairly constant. Assume that the round-
trip delay in this case is equal to 3.5 ms, which
will lead to satisfactory control performance. Next,
consider influence from the disturbance node. As-
sume further, that an interfering, high-priority ac-
tivity (period 7 ms, execution time 3 ms) executes in
the controller node. The round-trip delay will now be
longer on average and time-varying. This causes the
control performance to degrade, which can be seen in
the simulated step response in Fig. 6. The execution
of the threads in the controller node and the trans-
mission of messages over the network can be studied
in detail, see Fig. 7.

Different scheduling policies would have yielded
different execution and transmission patterns, and
hence different control performance. This can easily
be studied with TRUETIME, as well as different delay
and jitter compensation schemes.

5. Sub-task Scheduling
To minimize control delay, control algorithms are
traditionally divided into two separate parts, calcu-
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late output and update state. In the first part the
measurement is read, the control signal is computed
and sent to the process. In the other part the in-
ternal state of the controller is updated. A scheme
to improve scheduling of multiple control tasks by
scheduling the calculate output and update state
parts as separate tasks was presented in [Cervin,
1999]. In this scheme the calculate output parts are
given higher priorities than the update state parts. A
drawback with the method is an increased number of
context switches. This example shows how TRUETIME

can be used to evaluate the two different schedul-
ing policies and their affect on control performance
taking the effect of context switching into account.
The problem considered involves simultaneous con-
trol of three inverted pendulums on a single CPU.
Each pendulum is described by the continuous-time
equations (1).
Three discrete controllers with different sampling
periods are designed based on the desired band-
widths 3, 5, and 7 rad/s, respectively, with corre-
sponding sampling periods of 167, 100, and 71 ms.
The controllers are based on state feedback with
observers and implemented on discrete state-space
form, see e.g. [Åström and Wittenmark, 1997]. In
the simulation of the improved scheduling the con-
trollers contain four code segments. The first seg-
ment performs the calculate output part. In the sec-
ond segment the plant is actuated followed by a call
to the kernel to lower the priority for the update state
part. The third segment updates the state and the
final segment resets the priority for the calculate out-
put part. The execution times for segment one and
three are 10 and 18 ms, respectively. Segments two
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Figure 8 The accumulated loss J1 for the slow
(low-priority) pendulum using traditional and improved
scheduling. The loss is reduced considerably for the im-
proved scheduling in spite of an increased number of con-
text switches.
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Figure 9 The computer schedule when using the im-
proved scheduling scheme. The control delay for the low-
priority thread is about the same as for the other threads.
The kernel graph shows the time to perform the context
switches.

and four are modeled as having zero execution time.
The time for a full context switch is set to 2 ms.

The two scheduling schemes are simulated for 100
seconds and the quadratic loss functions

Ji(t) =
∫ t

0
θ 2

i (s)ds i = 1, 2, 3 (3)
are recorded, θ i being the angle of the i-th pendulum.

The accumulated loss J1 for the slow (low-priority)
pendulum using traditional and improved schedul-
ing is shown in Fig. 8. The loss is reduced consider-
ably for the improved scheduling in spite of an in-
creased number of context switches. It can be seen
in the computer schedule in Fig. 9 that the control
delay for the low-priority thread is about the same
as for the two other threads, i.e. 10 ms.

6. Conclusions
This paper presented TRUETIME, an event-based sim-
ulator for control and real-time systems co-design.



The simulations capture the true, timely behavior of
real-time controller tasks, and dynamic control and
scheduling strategies can be evaluated from a control
performance perspective.
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