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Criteria and Trade-offs in PID Design *

Olof Garpinger, Tore Higglund, Karl Johan Astrém

Department of Automatic Control, Lund University, Lund , Sweden.

Abstract: Control design is a rich problem which requires that many issues such as load
disturbances and set-point responses, model uncertainty, and measurement noise are taken into
account. These issues are discussed for design of PI and PID controllers. The purpose is to give
insight into the different criteria and their trade-offs, not to give specific tuning methods.
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1. INTRODUCTION

A rational way to design a controller is to derive a process
model and a collection of requirements. Constrained opti-
mization can then be applied to make a trade-off between
often conflicting requirements. Tuning of PID controllers
is typically not done in this way since the large number
of PID loops encountered limits the effort that can be
devoted to a single loop. Tuning of PID controllers have in-
stead focused on development of simple tuning rules based
on process models characterised by a few parameters.

Requirements typically include specification on load dis-
turbance attenuation, robustness to process uncertainty,
measurement noise and set-point response. Load distur-
bance response is a primary concern in process control
where steady-state regulation is a key issue, see Shinskey
(1996), while set-point response is a major concern in mo-
tion control. Set-point responses can, however, be treated
separately by using a control architecture having two
degrees of freedom, which is simply done by set-point
weighting in PID control. The set-point response will not
be treated in this paper.

Control performance can be characterized by the inte-
grated error and the integrated absolute error

IE:/OOe(t)dt, IAE:/OO le(t)|dt, (1)
0 0

where e is the control error due to a unit step load distur-
bance. These are good measures of load disturbance at-
tenuation for controllers with integral action. For systems
that are well damped, the two criteria are approximately
the same. The integrated error is also equal to the inverse
of the controller integral gain, IE = 1/k;.

Robustness to process uncertainty can be captured by the
maximum sensitivites M and My;
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where Gi(s) = P(s)C(s) is the loop transfer function,
and P(s) and C(s) are the process and controller transfer
function, respectively.

My = max
w
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The control actions generated by measurement noise
should not be large. The fluctuations in the control signal
can be computed from the transfer functions of the process
and the controller together with a characterization of the
measurement noise, for example its spectral density. Such
detailed information is rarely available for PID control
and we will therefore use simpler measures. The largest
high-frequency gain of the combination of the controller
and the noise filter is a possible measure. Filtering of
the measured signal is essential. With a second-order filter,
which is advisable, we have

k; 1
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where Gy is the filter transfer function. For P and PI
controllers, the high-frequency gain is essentially deter-
mined by proportional gain k, and filter-time constant 7.
For controllers with derivative action, derivative gain kq
and filter-time constant 7'y determine the high-frequency
gain. Detailed discussions of the effect of measurement
noise are given in Astrém and Hagglund (2005), Garpinger
(2009), Larsson and Hagglund (2011), and Kristiansson
and Lennartson (2006).

2. TUNING METHODS

There are few PID controller tuning methods that take the
major requirements on load disturbance attenuation, ro-
bustness, and measurement noise sensitivity into account.

The Ziegler-Nichols methods focused on attenuation of
load disturbances. Robustness to process uncertainty and
measurement noise were not considered and the tuning
rules give controllers with poor robustness. Shinskey im-
proved upon the rules by optimizing ITAE, and he also
discussed robustness in Shinskey (1990, 1996). In the
AMIGO tuning rules, Astrém and Higglund (2005), IE
was minimized subject to a robustness constraint on the
combined sensitivity M but measurement noise was not
considered.

Lambda tuning or internal model control, Dahlin (1968);
Higham (1968); Rivera et al. (1986), is a simple design
method which is commonly used in the process industry.
The method has the closed-loop time constant T,; as a
tuning parameter which admits a compromise between
performance and robustness. Skogestad (2003) introduced



modifications of the lambda tuning method called SIMC
that improves performance especially for lag-dominant
processes. In Skogestad and Grimholt (2012) the methods
were further improved for delay-dominant processes.

Most design methods do not take measurement noise
into account. It is often suggested to choose the filter-
time constant as a fraction of the derivative time, i.e.
Ty = Ty/N. This simple solution has severe drawbacks
as was pointed out in Isaksson and Graebe (2002).

Astrom and Higglund (2005) and Skogestad (2006) sug-
gested methods to detune the AMIGO method and the
SIMC method, respectively, to make the designs less noise
sensitive. Methods where both the controller parameters
and the filter-time constant are determined are more
complicated than the previous ones. Examples of such
methods are given in Kristiansson and Lennartson (2006),
Garpinger (2009), Sekara and Matausek (2009), and Lars-
son and Hagglund (2011).

3. PI CONTROL

We will now investigate PI control of some representative
processes. The criterion IE is convenient to use because
it relates directly to the controller parameters. Relations
between TAE, My and M; and the controller parameters
are more complicated. They can, however, be represented
in trade-off plots, which give level curves for the TAF, and
the sensitivities M, M; in the k, — k; plane. The level
curves for the sensitivities denote controller parameters
such that M, and M; are less than the indicated values.

Processes with positive impulse responses can conveniently
be characterized by the normalized dead time 7 = L/(L +
T), where T is the apparent lag and L the apparent dead
time of the process, Astrém and Higglund (2005).

Trade-off plots for processes with delay dominated (7
close to 1), balanced (intermediate values of 7), and lag
dominated dynamics (small values of 7), are shown in
Fig. 1. The level curves for I E are horisontal lines [E =
1/k;. The level curves of IAE and IE are almost identical
in the lower parts of the graphs, where the TAFE level
curves are horisontal. T AF is greater than I E outside these
regions where the controller parameters give closed-loop
systems with overshoot in response to load disturbances.
The smallest values of TAFE are denoted by dots.

The robustness regions are loci for constant Mg, My, they
are parabola-shaped curves. High robustness (low values
of My and M;) are obtained for small values of the
controller gains. Controllers that minimize I'E subject to
the robustness constraint correspond to the maxima of
the robustness curves. The loci of controller gains that
minimize [AE for a given robustness are indicated by a
dashed line in the graphs.

In the regions where the level curves of I AE are horisontal
we have JAE = IE = 1/k;. The performance is given by
the integral gain k; and robustness by the proportional
gain k,. The trade-off plots show that in the region to the
right of the dashed line where the level curves of TAFE are
horisontal it is possible to decrease k;,, with maintained per-
formance and improved robustness. Notice that there is a
value of the proportional gain that maximizes robustness.

Fig.

1. Trade-off plots for PI control of the delay-dominant
process P;(s) = e=%/(1+0.05s)? (top graph), the bal-
anced process P»(s) = 1/(s+1)* (middle graph), and
the lag-dominant process P3(s) = 1/((s + 1)(0.1s +
1)(0.01s+1)(0.001s+1)) (bottom graph). The dashed
lines are the loci of controller gains that minimize
TAF for a given robustness. Controllers tuned by the
Ziegler-Nichols rules are marked by squares.



The sensitivity to measurement noise is not captured
directly in the trade-off plots. However, if the effect of
the low-pass filter is neglected, the high-frequency gain
is determined by k,. Requirements on noise sensitivity
thus requires that proportional gain has to be less than
a specified value.

The trade-off plots show that the absolute minimum of
I AFE gives controllers with robustness Mg, M; = 1.9, 2.75
and 7.7, respectively. The absolute minimum thus gives
controller with very poor robustness for systems with
balanced or lag-dominated dynamics.

3.1 Delay-Dominated Dynamics

Consider the system with the transfer function
1 S
P = To0ss2® )
A FOTD approximation gives K = 1, T = 0.1, L =
1.0, and 7 = 0.92 indicating that the dynamics is delay
dominated. The trade-off plot is shown in the top graph
in Fig. 1.

The level curves of I AE shows that the absolute minimum
IAE = 149 occurs for k, = 0.36 and k; = 0.69.
The sensitivities are My, My = 1.9. The controller that
minimizes I AFE subject to Mg, My = 1.4 has TAE = 2.32,
the parameters are k, = 0.16 and k; = 0.44.

The level curves of TAE are almost horisontal in a large
region. Performance is then given by the integral gain
k;, and the TAFE values are close to IE = 1/k;. In this
region robustness is determined by the proportional gain
kp. In particular minimization of IAE and IE give the
same controller parameters if robustness is restricted to
Mg, M; < 1.6, The figure shows that there is a significant
freedom in choosing controller gain. For example, if k; =
0.2 proportional gains between 0 and 0.26 give Mg and M;
smaller than 1.4.

Measurement noise is of little concern because the con-
troller gains are small.

3.2 Process with Balanced Dynamics

Consider a system with the transfer function

1
P S — 5
A FOTD approximation gives K =1, T =29, L = 1.4,
and 7 = 0.33 and the process has balanced dynamics.

The trade-off plot is shown in the middle graph in Fig. 1.
The absolute minimum of TAFE is 2.8, which is achieved
for k, = 1.64 and k; = 0.4. Performance changes little
with the controller parameters close to the minimum, the
level curve closest to the minimum has TAE = 2.86.
The controller that minimizes TAF has poor robustness,
Mg, My = 2.75. Assuming that we require My, M; = 1.4,
the integrated absolute error increases to TAE = 5.2.
Controllers that minimize TAE or IE subject to the
robustness constraints have the gains k, = 0.43 and
k; = 0.19. If the robustness requirement is relaxed to
Mg, M; = 1.6, the smallest TAE = 3.8, is obtained for
kp = 0.65 and k; = 0.26. The controller that minimizes
IE has the gains k, = 0.62 and k; = 0.29.

The peaks of the curves for constant sensitivity correspond
to the parameter values which minimizes I F. The figure
shows that minimization of IE and ITAFE give the same
results for M, and M; lower than 1.5. For larger values
of My and M;, minimization of TAE gives higher values
of k, and lower values of k;. The plot shows the trade-
off between performance and robustness. I AF is decreased
from 10 to 5.2 when the sensitivities are increased from 1.2
to 1.4, indicating that there is an incentive to do frequent
tuning or adaptation.

To minimize the effects of measurement noise the pro-
portional gain should be as small as possible. From a
robustness point of view, it is desirable to choose those
PI parameters where the the sensitivities are small. It is
interesting to note, that for reasonable values of My and
M, ie. 1.2 < Mg, M; < 2, these two requirements give the
same choice of controller parameters, namely those where
gain k, is minimized.

3.8 Process with Lag-dominated Dynamics

Consider a system with the transfer function
P ! 6
(%) = GI D015+ D00 + D000+ 1) O
A FOTD approximation gives K =1, T = 1.0, L = 0.075,
and 7 = 0.067. The dynamics is thus lag dominated. The
trade-off plot is shown in the lower graph in Fig. 1.

The unconstrained minimum [AFE = 0.0102 is obtained
for k, = 54.7 and k; = 110.9. The sensitivities are
My = M; = 7.68. Minimization of I AF thus gives a closed
loop system with very poor robustness. The controller also
has very high gains. With stricter robustness requirements
the smallest I AF occurs at the boundary of the robustness
region. Minimization of IE and I AFE give the same results
if the maximum sensitivities are less than Mg, M; = 1.95.
The range of sensitivities where I E and I AE give the same
result are larger than in the two previous cases.

For lag-dominant processes, it is necessary to take mea-
surement noise into account and noise filtering is essen-
tial. Assume for example that the robustness requirement
is My, My = 2. The controller that minimizes IE has
k, = 10. Measurement noise of 1% of the signal span
then results in control signal variations of 10% of the
signal span. Since the gain is high, measurement noise may
generate too large control actions. They can be reduced by
filtering or by requiring lower controller gain k,. A natural
way to do this is to choose the largest proportional gain
k, that is acceptable from the view point of measurement
noise and to pick the integral gain k; from the dashed line.

The trade-off plot shows that £, can be reduced while
keeping the robustness constraint M, M; = 2. However,
this means that controller parameters are chosen in a
region where the TAE level curves are almost vertical.
Hence, the same performance can be obtained with a
higher robustness by reducing integral gain k;.

3.4 Tuning rules
The trade-off plots can be used to explore tuning rules

for PI controller design. The controller parameters given
by the Ziegler-Nichols step response method are shown



by points marked by squares in Fig. 1. They show that
Ziegler-Nichols tuning gives a controller that is close to
the one that gives the absolute minimum of TAFE for the
process with balanced dynamics. This is not surprising
since the systems explored by Ziegler and Nichols were
primarily balanced and they focused on load disturbance
response. The Ziegler-Nichols tuning rule gives poor ro-
bustness for balanced (M, 3.2) and lag-dominated
(M, = 2) systems. For delay dominated systems the rules
give systems with very low integral gain. The response to
load disturbances will therefore be very sluggish.

We will investigate lambda tuning, the SIMC rule, the
modified SIMC rule and AMIGO. To do this Fig. 2 shows
trade-off plots where the sensitivities are less than 2
with parameters for the tuning rules. The Ziegler-Nichols
rule is excluded because the parameters are outside the
plots except for delay dominated processes. Both lambda
tuning, marked A, and the SIMC rules, marked S and SM,
have a tuning parameter, T¢;. It means that these methods
are represented by lines in the plots. For the lambda
method, the recommended choices Ty; = T, 27 and 3T
are marked, and the corresponding values for the SIMC
rules are T,; = L, 2L and 3L. In lambda tuning T, = T
is considered as agressive tuning. Skogestad recommends
T = L which is designed to give My = 1.6. The AMIGO
method is derived with the goal to minimize I E with the
robustness constraint M = 1.4.

The trade-off plot for the system with delay-dominated
dynamics is shown in the top plot of Fig. 2. Lambda tuning
gives closed loop systems with poor robustness with sensi-
tivities larger than 2. The proportional gain is too low and
the integral gain too high. The SIMC rule gives a sensitiv-
ity close to the design value My = 1.4, but performance can
be increased by increasing the proportional gain as is done
by the modified SIMC rule (SM). The AMIGO rule gives
a controller close to being IAE optimal with sensitivity
Mg, M; = 1.46, i.e. close to the desired. The AMIGO rule
does not have a design parameter. Fig. 2 shows that the
dashed line indicating the sensitivity constrained I AE con-
trollers is approximately a straight line in the interesting
robustness region, which means that the integral time is
the same in these controllers, and controllers with different
sensitivity can be obtained simply by changing the gain.

The trade-off plot for the system with balanced dynamics
is shown in the center plot of Fig. 2. Lambda tuning
gives closed loop systems with good performance and
robustness. The sensitivities are approximately 1.55, 1.3
and 1.2 for T,; = T, 2T and 3T. The SIMC controllers
have sensitivities 2, 1.5 and 1.4 and the modified rules
have somewhat higher sensitivities. The nominal design
has Mg = 2 which is significantly larger than the desired
value 1.6. The AMIGO rule has sensitivity 1.3 which is
slightly lower than the design value 1.4, its integral gain
is the same as obtained by constrained I AE optimization
but the gain is a bit higher.

The trade-off plot for the system with lag-dominated
dynamics is shown in bottom plot of Fig. 2. Lambda
tuning gives closed-loop systems with high robustness. The
sensitivities are less than 1.1, but the preformance is very
poor because the gains are much too low. Both SIMC
rules give very similar performance. The sensitivity for

Fig.
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2. Scaled trade-off plots with controller parameters
obtained with a the tuning rules: lambda tuning (),
SIMC (S), modified SIMC (SM) and AMIGO (A).
The plot shows from top to bottom systems with delay
dominated, balanced and lag-dominated dynamics.
The dashed lines are the loci of controller gains that
minimize [AFE for a given robustness.



the nominal design is close to 1.5 instead of the design
value 1.6 and the controller gains are higher than the
constrained I AFE optimal controller. The AMIGO rule has
a sensitivity slightly below the design value 1.4 but is close
to the constrained IAF optimal controller. Several of the
controllers have high proportional gains k,, which means
that they may be too sensitive to measurement noise.

4. PID CONTROL

Since a PID controller has three parameters we will show
trade-off plots for fixed values of the derivative gain
kq. Since derivative action has practically no benefit for
systems with delay dominated dynamics we will focus on
systems with balanced and lag dominated dynamics.

4.1 Balanced Dynamics

Fig. 3 shows trade-off plots for the processes with bal-
anced dynamics with derivative gains k; = 1, 2, and 3.
Comparing with the corresponding plot for PI control, the
center plot in Fig. 1, we find that the plots are similar. The
gains are larger with derivative action and the sensitivity
curves have a peak with discontinous derivative. This is a
consequence of the derivative cliff discussed in Astrém and
Hégglund (2005). The absolute minimum of IAE without
robustness contstraint corresponds to controllers with poor
robustness, the sensitivities are close to 2.5 in all cases. If
we require that the sensitivities are less than 1.4, Fig. 3
shows that the controllers with k; = 1,2 and 3 have the
TAFE values 2.5, 2.6 and 2.4. The constrained minimum is
TAE = 2.14 for k, = 1.33, k; = 0.63, and kq = 1.78. The
T AFE value can be compared with the corresponding value
for PI control TAE = 4.4, adding derivative actions thus
improves performance by a factor of 2. Fig. 3 also shows
that minimization of IE and IAF do not give the same
controllers except if the robustness constraint requires very
low sensitivities. The dashed line which corresponds to the
constrained minimum has a plateau for large values of kg.
The dashed line has a different shape than for PI control.
Notice that the dashed line is close to the constraint curve
for small values of the sensitivities.

4.2 Lag-dominated Dynamics

The trade-off plot for a system with lag dominated dynam-
ics is shown in Fig. 4, with derivative gains kg = 3, 4.5, and
6. Comparing with the corresponding plot for PI control,
bottom plot in Fig. 1, we find that the gains are signifi-
cantly larger. The absolute minima of I AE corresponds to
controllers with sensitivities above 3.5. Minimizing [AE
without a robustness constraint thus gives systems with
poor robustness. The level curves for the sensitivities have
edges for sensitivities 2 and lower. If we require that
the sensitivities are My, M; = 1.4 Fig. 4 shows that the
controllers with ky = 3,4.5 and 6 have the TAE values
0.0021, 0.0013, and 0.0016. The constrained minimum is
TAE = 0.0013 for k, = 89.48, k; = 1037.5, and kg = 4.59.
The TAE value can be compared with the corresponding
value for PI control TAE = 0.1175. Adding derivative
actions thus improves performance by a factor of 90. Since
the gains are large it is important to consider the effect
of measurement noise and it may therefore be essential

Fig. 3. Trade-off plot for PID control of the process P»(s) =
1/(s+1)*, and derivative gains kg = 1 (lower graph),
kq = 2 (middle graph), and k4 = 3 (top graph).
The dashed lines are the loci of controller gains that
minimize [AFE for a given robustness.
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Fig. 4. Trade-off plot for PID control of the process
Ps(s) = 1/((s + 1)(0.1s + 1)(0.01s + 1)(0.001s + 1)),
and derivative gains kg = 3 (lower graph), kq = 4.5
(middle graph), and k4 = 6 (top graph). The dashed
lines are the loci of controller gains that minimize
T AF for a given robustness.

to impose constraints on the proportional and derivative
gains. The dashed line in the trade-off plots give guidance
for detuning.

5. CONCLUSION

The trade-off plots give insight into the design problem.
Minimization of the performance criteria IE and [AE
without robustness constraint give controllers with poor
robustness. The difference between minimizing IF and
IAE are small if the robustness requirements are strict
but may be significant for sensitivities larger than 1.2.
There are significant differences between processes with
lag dominant and delay dominant dynamics.
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