LUND UNIVERSITY

On energy reduction in hard real-time systems containing tasks with stochastic
execution times

Gruian, Flavius

Published in:
[Host publication title missing]

2001

Link to publication

Citation for published version (APA):
Gruian, F. (2001). On energy reduction in hard real-time systems containing tasks with stochastic execution
times. In [Host publication title missing] (pp. 11-16). IEEE - Institute of Electrical and Electronics Engineers Inc..

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/5d358ed1-d7cc-4f26-967e-ad9a1f5489b8

On Energy Reduction in Hard Real-Time Systems Containing
Tasks with Stochastic Execution Times

Flavius Gruian
Department of Computer Science, Lund University,
P.O. Box 118,
S-221 00 Lund, Sweden
<Flavius.Gruian@cs.lth.se>

Abstract O This paper addresses low energy scheduling in task, and are usually compiler assisted [13,14,15]. Alterna-
hard real-time systems, containing independent tasks running on tively, fixing the schedule before the task starts executing as in
dynamic voltage supply (DVS) processors. Since tasks with prob- g 11,16] eliminates the internal scheduling overhead, but with
abilistic run times are more realistic, we focus on systems pogsiple affects on energy reduction. Statistics can be used to
containing such tasks. We show that the energy consumption can take advantage of the dynamic behavior of the system, both at
be reduced if the scheduling takes into account the probabilistic task level [15] and at task-set level [7]. In this paper, we show

behavior of the tasks. Moreover, stochastic data can be used in the i ¢ f lovi tochastic data in derivi ffi
deriving schedules both for task sets and individual tasks. First we € iImportance of employing stochaslic data in deriving efl-

address task-set level scheduling for two cases. Then we analyzeCi€nt voltage schedules at both task and task-set levels.

two task-level voltage scheduling approaches: intra-task schedul- ~ The rest of the paper is organized as follows. Section 2 pre-
ing and our method called stochastic scheduling. The examples sents the scheduling alternatives available at task-set level, for

and experimental results presented throughout the paper support two cases, increasing in generality. Task-level scheduling
our conclusion. methods for low average energy are addressed in section 3. We
give examples and some experimental results throughout the
1. Introduction paper, in specific sub-sections, hoping to make our point even
clearer. Finally, our conclusions make the subject of section 4.
Today an important design requirement for digital systems
is low energy consumption. It has impact on operating time, on 2. Task-Set Level Scheduling Decisions
system cost, and, of no lesser importance, on the environment.
Methods for reducing the power and energy dissipation in dig- In this paper, we address only independent tasks running on
ital systems have long been sought for by several researglingle dynamic supply voltage processor. Yet the ideas can be
groups. With the arrival of dynamic voltage supply processorgpplied to more general cases. Each ofXheasks in the task
[3,17], highly flexible systems can be designed, while takinget is defined by a 4-tupte = (X, C,, T,D;) composed of the
advantage of supply voltage scaling to reduce energy consungxecution pattern, worst case execution time, period, and dead-
tion. Since the supply voltage has a direct impact on processire for taskt; . The execution pattekis a random variable
speed, classic task scheduling and supply voltage selectiggscribing the number of clock cycles required to execute the
have to be addressed together. Scheduling offers thus anothsk. We will denote byx; the expected value of the random
niche for reducing the energy consumption, especially whesariableX;. At the fastest processor speed (highest clock fre-
the system architecture is fixed or the system exhibits a vegyency), the maximal value & is C;.
dynamic behavior. For such dynamic systems, various power The focus of this discussion is on the influence of consider-
management techniques exist and are reviewed for exampleiriig tasks with probabilistic execution pattern on the task-set
[1,2]. Yet, these mainly target soft real-time systems, whefievel scheduling strategies for low energy consumption. We
deadlines can be missed if the Quality of Service is kept. Seghow that scheduling policies considering only the tasks’ worst
eral scheduling techniques for soft real-time tasks, running @ase execution time (WCET) can be improved when stochastic
DVS processors have already been described [4,5,6]. Even tfata is used. We compute therefore the following measures.
hard real-time systems, where all deadlines have to be m&he worst case execution spestiE which does not consider
energy reductions can be achieved as shown in [7,8,9,10,1ftje stochastic behavior of the tasks. The expected ideal speed,
Yet most of the work carried out in the hard real-time systemgdea \which assumes that all tasks will always run at their
area does not make use of the stochastic properties of a real-bifgpected time and can take full advantage of this knowledge.
application. In this paper, we also focus on hard real-timand, finally, the average real speagwhich is a measure of the
scheduling techniques, but we emphasize the impact of consi@alistic behavior, when the actual execution times are not
ering the probabilistic behavior of the hard real-time tasks. F&nhown a priori. We can use these three measures to compute the
this reason we consider tasks with stochastic execution delagaergy consumptions for the worst, ideal, and average cases.
Task level voltage scheduling decisions can reduce even frhe energy consumption for a given time interv, [t1] is
ther the energy consumption. Some of these, the intra-tagkfined gs the integral of power over time:
scheduling methods, use several re-scheduling points inside ag = .ItO P(9)dt DJ’tO(s(t))“dt (1)

Note thata = 2 , value influenced by the delay-supply voltage On the other hand, task lengths play an important role. Short
dependency. All the examples presented herecuse3 , liasks should be executed first, since the left-over time might be
all the formulae are given for the general case. To get the exated early on. Finally, according to our computations, the best
value of the energy consumption, one has to find out the profrdering is given by using th%xfgygwing priorities:

C.

cessor speed at every time moment. BB 2 5

Because of the dynamic behavior of the system, we need to pj = Xy/0- o—=l=__ 7 [(5)
address not only off-line scheduling methods, but also on-line E O Z Ci —XJH E
re-scheduling policies. Depending on the generality of the et

problem, the complexity of the off and on-line policies variesNote that when using relations of form (5) to compute an order,
We address two cases, with increasing generality. First vamn algorithm of complexityd(N Oog(N)) will do. For the opti-
consider task sets with tasks having the same period and deathl order (5’), we need an algorithm with computational
line. Next we analyze tasks having the same period, babmplexity of O(N2Oog(N)) , since the priorities depend on
different deadlines. The influence of stochastic data on schettie already ordered tasks.
uling sets of task which have different periods and deadlines Having decided on the schedule, we can now compute the
makes the subject of another of our papers [12], and will not lenergy consumption for each of the cases presented here. Note
discussed here. that the processor speed is constant on intervals, and for the
WCE and ideal case there is a unique speed:

WCE WCE,d o, WC
o _ _ EYF= ("5 Y (Xs 5
This is the simplest possible case, where the set of tasks has 1<T=N 6)
to finish before a certain deadline, in no particular order. For- _ @ 0, AP -1 vl
P iy CyAT TH Y X

2.1 Unique Period, Unique Deadline

mally we considerD(ri,rj),Ti =D;=T;=D;=A . When the =N =
actgal execution time of each task _is knoyvn t_)ef(_)rehand, t_he gldeal - p(ddeah® _ B Z YEX/A“ @)
optimal schedule from the energy point of view is given by uni- 152N
formly stretching the tasks to exa_ctly meet the deadline [11]. greal _ z X Esi“ - z X, 50 -1 (8)
Thevy\(/:oErst case processor speed is then computed as: 12N S 1<EN
-0 O .

S - D1< N G A @) Note that the last energy value is dependent on the task order-

_ o sE _ ing. This is where one can reduce the energy consumption by
wh|liedetge_|dueal expleé:ted speed: using an optimal ordering. Also note that in the long run we can

s = D1<Z<NXiE(A' (3) talk about a mean value f&®2. In fact, this mean value can

Sl s

) i . be estimated by replacing; witk; in (4) and (8). For the
Using only off-line decisions, one can always guarantee the,y example we used this kind of estimates, while for the fol-
deadlines only by using the worst case speed. Yet, an On'l'ﬂﬁ'/ving experiments we computed the actual energy
re-scheduling algorithm is required for energy efficiency. The,ngumption for each iteration and report the average value.
on-line re-scheduling algorithm is used every time a task com- ~qsider a simple task set, composed of three tasks
pletes its execution. In each of these scheduling points, a ne{vyl = (X, 20,100 109, X, = 16; T, = (X, 30, 10Q 100,
expected optimal processor speed i_s computed. If task 38 = 20; 1, = (X4, 40,100 109, X, = 32}. The processor
about to start ex%cutmg, the new opélmal processor speed igineeds for four cases, plus the energy consumptions are gath-
ST 0 Z CiE(EA_ Z ,(Xk/sk)D 4) ered in Table 1. The first two columns refer to the worst and the
Jer=N tek<] o _ ideal cases. The “worst case” decides an off-line speed such
Here X, represents the actual execution time for taskthe 4t the tasks will always meet their deadlines, and uses only
current iteration. Note that the execution order of the tasks {4 speed at runtime. The “ideal case” assumes that the exact
this case is important from the energy consumption point Qfyecytion times are known beforehand and decides an optimal
view. A simplistic approach would be to adopt a random exes5,cessor speed for each period. The real case implies using a

cution order for each new task-set instance. This will yield i, ntime voltage re-scheduling policy. The processor speed is

the long run an energy consumption which is somewhetg ompyted each time a task finishes execution, that is why we
between the ones produced by the worst and the best order,

; give three speed values for the real case. The “best order” in
Yet, better orders can be found at a deeper analysis of &gk 1 is the order given by the priorities computed as in (5').

set. In principle it is good eliminate the biggest uncertaintie$po «reverse best” is when the task assume an inverse order.
early, so that we can settle for a close to optimal speed as s8Ry, the table we can see that the on-line strategy reduces the

as possible. Tasks exhibiti_ng a very dynamic behavior (Iar%ergy consumption, as expected. More importantly, a good
discrepancy between their WCET and expected exeCulifqering also contributes to further energy reductions.

time) seem like good candidates for executing first. For exam- \ye also performed experiments for larger task sets, contain-

ple one could order ta_sks a_ccqrding to the following prioritieghg 10, 30, 60 and 100 tasks with stochastic behavior, using
(low nimeers mean high priority): normal distributions with mean C/2 and standard deviation
pi = 17(Ci=X)) ®) C/6. For each of these set sizes, we examined one thousand ran-

Table 1: An example of case 2.1 (o =3) begin procedure OfflinePreemptiveSchedule

- empty WorkList
real expected (estimates) forall deadlinesD ;, longest..shortest do
{12 1g WCE ideal best order: reverse best: time:=D j, empty Ne>.<tWorkL|st . .
2,31 1,3,2 * put all tasks with deadline D i in WorkList
d 0.90 0.68 0.90, 0.77, 0.55 0.90, 0.85, 0.67 " order WorkList descending
S, 8 : : =0, 8.0 Bop =0, 0,89, U, using priorities p j from (5
normalized energy, E 1.752 1 1.273 1.433 forall tasks T) in WorkList do
if Cyls > (time-D i.1) then
dom sets and extract the energy consumption via simulation for ¥ SI\FIJIIttW T;L ¢ add(task with
three different situations. We ordered the tasks according to P (?Imé i s
(5) and also using the inverse order. We compared the energy D=D ik_l X := min(C - Xk;()’
consumption for these two to the ideal case, defined as for Also update C | := time - D 1
Table 1. Again, note that the ideal case is impossible to be end if
reached in practice. The results are depicted in Fig. 1. *schedule T between [time -C /s , time)
time :=time - C KIS «
. . . . end forall
2.2 Unique Period, Different Deadlines * make NextWorkList the new WorkList

. end forall
The problem becomes more complex when the deadlines fog,g procedure

t,he tasks dlﬁe,r:D(Ti’ Tj) ’Ti = Ti =A Di# DJ < A : A_dead' Fig. 2. Off-line scheduling algorithm for reduced energy in the case of task
line monotonic scheduling strategy would, in this casesets with unique period and different deadlines

guarantee feasible schedules up to full processor utilizatiogy,, average energy consumption. The algorithm, presented in
Considering the tasks ordered according to their dea_dlines, th%' 2, uses an initial step in which WCE processor speeds are
processor speed for each task can be comDEuted asin[7]: computed. It examines then the time intervals between two
S = z 83/%1 - _(Ck/s\kNCE)DD ©) consecutive deadlines, starting from the longest deadline. For
_ Jt=N tek<l these “scheduling intervals” we can use the scheduling method
The ideal speed for each tasls obtained when one knows a presented in sub-section 2.1, but this time we schedule tasks
prion t(ge execution pattern of all tasks: - from the end backwards. Whenever a task does not fit entirely
S - Z %/B)i - .(Xk/skdeal)m (10) in the remaining time slot, it is split in two parts with specific
I=t=N sk _ stochastic behavior. The end part is scheduled in the current
For the real case, an on-line scheduling method is ”eedefj-.Tst&eduling interval. The other part is treated as a new task,
processor speed must be recomputed whenever a task finisgch has to be completed before the current scheduling inter-
execution. The time moment when tashishes is: val. The algorithm finishes when we scheduled all tasks and we
= _(xk/sk) (11) reached moment zero. The on-line re-scheduling algorithm is
1eks] . the same as the one described previously, by equation (12).
The processor speed for the next task is re-computed (see (9))5Having decided on the schedule, we can now compute the
Sj+1 = Z (Ci/(D;-t))) (12) expected energy consumption for all the cases presented here.

. j<tzn . . . _ As in the previous case, the processor speed is constant on
As in the case described in the previous section, the exeGhtervals. For brevity we will not expand the expressions:

tion order influences the energy consumption. On the othg/WCE _ Z X. ESiWCE gideal _ Z X ES;deal
. .] ’ i ’

hand, we have less freedom to reorder tasks since the deadlines 152N 1<52N

have to be met. With this in mind, we present here an off-lingreal _ X & .

preemptive pre-scheduling strategy, which attempts to obtain a 1=

Note that in the last case the number of intervals with con-
stant speed can increasena> N as aresult of preemption. As
an example, consider the following task set:

A {1, = (X,,10,16 19, X, = 9; 1, = (X,, 6, 16 16, X, = 3}.
~—— uerse bestorder A élassicldeadline monlotonic sztrateg§/ would sche%:hﬂle first
followed by 1, . Using our algorithm described in Fig. 2, the
energy is reduced by splitting, in two parts and the schedule
looks differently. The first part of task, , of length 6{is 6)
'~-.....___________bss;o_rder is executed first, them; gets executed, and finally the remain-
11 i ing part oft, . The differences in energy consumption for the
number of sk average case are given in Table 2. The “WCE" and “ideal” col-
1 > = s umns have the same meaning as in Table 1. The “real expected”
Fig. 1. The energy consumption obtained from simulation for case A: theontains the expected or average value taken over a large num-

dotted line was obtained for order given by (5’), the continuous line wayer of task set instances. The “classic order” corresponds to the
obtained for the reverse order. All values are relative to the ideal case energy

15

14

1.3

1.2
h...

energy consumption vs. the ideal case

situation when one uses the classic deadline monotonic orderecessor 4
ing. The “preemptive order” is the schedule found by ourPeed G
algorithm. Note that in the long run the second part of task 2

G Legend: Gre-scheduling GDC—DC shift

will not execute, hence the expected value of 0. a) | G GG G |2
Table 2: An example of case B (a = 3)) W—ﬁ\ i
real expected G E
{1y, 13} WCE ideal X .
classic order | preemptive order idle
1,2 partof 2, 1, rest of 2 b) executjon time
speeds, s 1,1| 0.79,0.66 1,0.86 1, 0.833, (0) : |
normalized energy, B 2.328 1 1.630 1.346 Flg. 3. Task-level voItage SCh?dUIe Strategles_:
a) intra-task re-scheduling points b) stochastic schedule

of a task. This means how much information about the actual
finishing time one can gather during the task execution. If, for

Task-level voltage scheduling has captured the attention §¥@mple, the actual finishing time is known right at the begin-
the research community rather recently [16]. One of the maffing Of the task, the scheduler can make the best decisions. If
reasons behind using task-level scheduling techniques is tA3¢ actual finishing time can not be known until the very end,
these can lower the energy consumption of a certain task witAothing can be gained. In this light, the conclusions from sec-
out requiring strong knowledge about the other tasks in toN 2 apply also here: the best decisions can be made if the
system. From the system point of view these methods are “seffficertainties are eliminated early in the execution.
centered,” in the sense that they are concerned with doing their Without great loss of generality we will consider that there
best for the current task and the given processor time. They ti§/2 Pointin a task before which nothing is known about the fin-
to fill-in their allocated time as best as possible. At the systefhing time. At this point, the task becomes aware of the exact
level this means that uncertainties are dealt with at individu¥p!ue of the finishing time. It is interesting to see how the
task level whenever this is possible. In this case, one can (88€rgy consumption of an intra-task schedule depends on the
classic scheduling techniques at system level and still glgn:atlon of this point. If we denote the ratio of th(_a unaware part
energy efficient systems. Even more efficient is having both ttf¥ the task by, itis not hard to show (using section 2) that the
task-set level and the task-level scheduling techniques award§fmalized energy expresgone;]o_rlthe intra-task schedule is:

.. . . - 0
the temporal non-determinism existent in the system, as pre- E(y) = y+ (1_y)Dc/§<_yD (14)

sented for example in [12]. In the following we will describe

two approaches to task-level scheduling and then compaiereC, X, anda have the same meaning as introduced in
these in different aspects. section 2. Note that the unit energy is that obtained by running

the whole task X cycles in average) at the clock frequency
3.1 The Intra-task, Compiler Assisted Schedule computed at the beginning of the task. This frequency has to
accommodate the whole task even in the worst case. Thus, the
The current trend in task level scheduling is that of usingnit energy is the same as the WCE-stretch energy from sub-
rescheduling points inside a task [13,14,15]. In [13, 15] the taglection 3.2. This formula assumes that the re-scheduling slots
is split into several sequential time slots, each with its oware very small and the re-scheduling overhead negligible. An
WCET. Every time a new slot begins, the processor speed is ample of such dependency is depicted in Fig. 4, where we
computed and adjusted to exactly meet the deadline. AdditioimstantiatedX = C/2 and = 3 .We will return to this in sub-
ally, [15] uses statistical data to improve the task levedection 3.3.
schedule, by slowing down different regions of a task accord-
ing to their average execution time. In [14] the time slots are
actually basic blocks extracted at assembly language level.
Note that all of these approaches require compile time support. ' E@y) =y + Ly (L-y)(2-y)"2
The compiler or a post-processor has to estimate the WCET for 08
each region or basic block. It should also insert the necessary 07
code for re-computing the new processor speed and the code 2 %6
for shifting the supply voltage in each re-scheduling point (Fig. 0.5
3.a). One of the advantages of this method seems to be that the g 04
operating system (OS) does not need to be aware of the DVS 03
characteristics of the hardware architecture, since the OS can 0.2
be by-passed using compiler generated re-scaling code. Thus, = g1
one can use an “old” OS without modifications. 0
Analyzing the energy reduction capabilities of such an 0 01 02 03 04 05 06 07 08 09

approach one must take into consideration the “predictabi“t)};:g.c‘ttlgieii;nergy consumption of a intra-task schedule depending on the task

3. Task Level Scheduling Decisions

Intra-task is better | Stochastic is better

Normalized average energy

The ratio of the “unaware” part qf the task

3.2 The Stochastic Schedule Next we present an experiment that examines the energy
gains of using a stochastic voltage schedule at task level. For
The second task-level voltage scheduling approach is whaiis we considered a single task with variable execution pattern,
we call stochastic scheduling. It can be completely impléedentical with the one used for the example in sub-section 3.1,
mented inside the RT-OS and it does not require speciglg. 4. Assuming that the worst case behavior @egcles, we
compiler support. Consequently, it interferes less with thgsed a normal distribution centered ®n= C/2 , with a stan-
actual task than the compiler based methods. This also meaf§d deviation ofc/6. We considered that our processor has 9
that tasks do not need to be re-compiled when the architectuigferent voltage clock speeds, equally distributed betwieen
changes. In principle our approach computes a voltage scheghdf/3. With this settings, we built stochastic schedules for a
ule only once, when the task starts executing. During tasiinge of allowed execution times (from Cfab 3xC atf). For
execution no re-scheduling is done, but the supply voltage #large number of task instances generated according to the
changed at well established intervals (Fig. 3.b). given distribution we computed both the energy of the stochas-
First, note that in many cases tasks with variable executia schedule and a WCE-stretch schedule. The WCE-stretch
time finish before their worst case execution time (WCET)scheduie is the one obtained by assuming a unique frequency’
Therefore it makes sense to execute first at a low voltage afst which the task will always meet the deadline, even the for
accelerate the execution, instead of executing at high voltaggeCE pattern € cycles). We compared then the energy con-
first and decelerate. In this manner, if a task instance is not tegmption for these two schedules to the non-scaling case,
worst case, one skips executing high voltage regions. OWhere the processor executes at its maximal frequératythe
approach uses stochastic data to build a multiple voltage sche§cles needed and then shuts down (0 power). The results are
ule, in which the processor speed increases towards thepicted in Fig. 6. Note that when the allowed time approaches
deadline. The purpose for using stochastic data is to minimizgtherC atf or 3-timesC atf, the energy consumptions for the
the average case energy consumption. two schedules become equal. The lowest available clock fre-
The stochastic voltage schedule for a task is obtained usigéiency is/3, which means 3-times slower thirso there is no
the probability distribution of the execution pattern for a taslgetter schedule for these cases. On the other hand when the
(the number of clock cycles used). This probability distributiorllowed time close€ atf, there is no other way but to use the
can be obtained off-line, via simulation, or built and improvedastest clock. Somewhere between these two extremes (2x) is
at runtime. Unlike the compiler oriented methods, thighe largest energy gain since the stochastic schedule can use the
approach can start with very little information about the tastyhole spectrum of available frequencies.
(only WCET) and gradually acquire more data at runtime. The
actual voltage schedule is obtained by minimizing the expect&i3 Comparison: Intra-task vs. Stochastic Scheduling
value of the energy consumption. The on-line algorithm for
deciding the schedule has a low computational complexity, lin- We summarize the most obvious features of the two sched-
ear with the number of available voltages. A detailedling approaches in Table 3. Depending on the application,
description of the algorithm is presented in [12]. features 1, 2 and 3 can be seen as advantages or drawbacks. If
Two exampies of stochastic Voitage schedules are given @ne can access the hardware resources directly without affect-
Fig. 5. We assumed a normal probability distribution with théng the whole system, intra-task scheduling is better. Yet, an OS
meanX of 70 cycles, and standard deviation of@@s 100. level policy hides the hardware peculiarities of the system and
Assuming we oniy have four available clock frequendié&i allow for better application portablllty/moblllty Intra-task
f/3, andf/4, we give two voltage schedules obtained for two difscheduling seems to require more accurate and detailed timing
ferent values of the allowed execution time. The schedules dfformation than the stochastic approach (feature 3). In some
given in number of clock cycles executed at each available fréases these estimates are much harder to obtain than a pessi-

guency. The allowed execution time is reported in percenta@@StiC global WCET estimate. Stochastic schedules can take
1

of the time needed for executing the worst case behavior at the
highest clock frequency)(s WCE-stretch = = - =
=08}
. § \ Stochastic Schedule
1 1-cdf 1-cdf function o A
0.8 N E for a normal L.506 N
0.6 distribution S8 N
0.4 with mean 70 S% 04 NS
0.2 and standard 2L Seo
o deviation 10. EB ~<]o2s
<5 ~
0 20 20 60 80 100 =502 o ~ o
Allowed is 300% 2 : == =
[47@f/4 [25@f/3 [BY 20@f] . oo s
_27@f/3 _26@f Allowed is 200% x 1.5x 2x 2.5x 3
of C at clock f allowed execution time relative to C cycles at max frequency

Fig. 5. Examples of stochastic voltage schedules for a task with normal Fig. 6. The average energy consumption of a stochastic voltage schedule
distribution execution time and worst case behavior of 100 cycles compared to the energy consumption of a WCE- stretch schedule.

advantage of the run-time history (feature 5). Intra-task schedhowed that more efficient schedules, from the energy point of
uling seems to interfere more with the actual task because wiew, can be derived when stochastic data is taken into
the additional re-scheduling code inserted at compile time (&onsideration.
Overall, the work overhead for the intra-task scheduling We also addressed task-level voltage scheduling. Two
appears bigger than that for the simpler stochastic schedulingproaches were compared: intra-task scheduling and our own,
strategy. stochastic scheduling. We compared the two approaches from
This comparison would not be complete without an analysiseveral point of views. The discussion pointed out the impor-
of the actual energy reduction of the two methods. The stochaance of analyzing the designs from the perspective of their

tic schedule does well only when the deadline is rather loostochastic behavior.

(feature 9). For very tight deadlines, (those close to 1x in Fig.
6), a stochastic schedule is a bad choice, since intra-task sched-
uling can detect early finishing tasks (close to 0 in Fig. 4) and
take advantage of that. Yet, if the task is very “un-predictablg?l
(close to 1in Fig. 4) the intra-task scheduling method can yield
as bad results as the WCE-stretch in Fig. 6. In this cases, f
certain deadlines a stochastic schedule is a better choice (fea-
ture 8). For example, at a deadline of 2xC in Fig. 6, a stochas{&
schedule energy is 70% of the WCE-stretch energy. This corre-
sponds to a 0.69 “unaware”-ness factor in Fig. 4. Thus if it
takes longer than 69% of a task execution to determine its exact
finishing time, a stochastic schedule does better. Otherwise @n
intra-task schedule is recommended. In conclusion, the actual
stochastic behavior of the task is very important and differerfl
scheduling strategies can yield better or worse results, depend-
ing on the situation. (6]
Table 3:Intra-task vs. Stochastic Scheduling

Feature Intra-task Stochastic 7]
1 implementable as a task-transparent policy? no yes
2 implementable as an OS-transparent policy? yes/partially with perfor-
mance loss 8]
3 needs compiler support? yes no/little
amount of off-line required estimates many region- only the
wise WCETs task WCET 9]
5 run-time adjustable? can use history? possibly yes
6 run-time interference with the task moderate to low to [10]
high moderate
7 overall method complexity large small
8 performance is sensitive to yes no
internal task “predictability”? [11]
9 performance is sensitive to slightly very
deadline variations?
. [12]
4. Conclusions
[13]

In this paper, we addressed scheduling methods targeting
energy reduction in hard real-time systems containing dynanii#!
supply voltage processors. Our main purpose was to raise the
level of awareness for considering stochastic data during;
scheduling in such systems. Both task-set and individual task
level scheduling decisions were described.

For task sets we started from the simple case of tasks havit§!
the same unique deadline and period. Then we generalized [Qﬁ
problem by considering different deadlines. For these cases we

5. References

L. Benini and G. DeMicheli, “System-level power optimization:
techniques and toolsACM Trans. on Design Automation of Electronic
SystemsNo. 2, Vol. 5, April 2000, pp. 115-192.

M. Pedram, “Power optimization and management in embedded
systems,'Proc. of ASP-DAC 20Qp. 239-244.

K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanabe,
K. Matsuda, T. Maeda, and T. Kuroda, “A 300MIPS/W RISC core
processor with variable supply-voltage scheme in variable threshold-
voltage CMOS,"Proc. of the IEEE Custom Integrated Circuits
Conference 1997fp. 587-590.

T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of
dynamic voltage scaling algorithmBjoc. of the ‘98 ISLPEDpp 76-81.

A. Chnadrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven signal
processing: an approach for energy efficient computifmt. of the ‘96
ISLPED,pp. 347-352.

M. Weiser, B. Welch, A Demers, and S. Shenker, “Scheduling for
reduced CPU energyProc. of the First Symposium on Operating
Systems Design and ImplementatiNiovember 1994.

F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,Proc. of the 36th Symposium on Foundations of Computer
Sciencepp. 374-382, 1995.

I. Hong, M. Potkonjak, and M.B. Srivastava, “On-line scheduling of hard
real-time tasks on variable voltage process@igjest of Technical
Papers of the 1998 ICCADp. 653-656.

Y. Shin and K. Choi, “Power conscious fixed priority scheduling for hard
real-time systemsProc. of the 36th DAC, 199%p. 134-139.

Y.-H. Lee and C.M. Krishna, “Voltage-clock scaling for low energy
consumption in real-time embedded systemBrbc. of the 6th
International Conference on Real-Time Computing Systems and
Applications 1999, pp. 272-279.

F. Gruian and K. Kuchcinski, “LEneS: task scheduling for low-energy
systems using variable voltage processdpsgc. of ASP-DAC20Q%p.
449-455.

F. Gruian, “Hard real-time scheduling using stochastic data and DVS
Processors,” to be presented%itPED 2001 August 2001.

S. Lee and T. Sakurai, “Run-time voltage hopping for low-power real-
time systems,Proc. of the 37th DAC2000, pp. 806-809.

D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low-
energy hard real-time application§pecial Issue of IEEE Design and
Test of Computerdarch 2001, 18(2) pp. 20-30.

D. Mossé, H. Aydin, B. Childers, and R. Melhem, “Compiler-assisted
dynamic power-aware scheduling for real-time applicatiokggrksop

on Compilers and Operating Systems for Low-Po®etober 2000.

T. Ishihara,H. Yasuura, “Voltage scheduling problem for dynamically
variable voltage processor&toc. of the ‘98 ISLPEPpp 197-202.
http://lwww.transmeta.com

	1. Introduction
	2. Task-Set Level Scheduling Decisions
	2.1 Unique Period, Unique Deadline
	Table 1: An example of case 2.1 (a = 3)
	Fig. 1. The energy consumption obtained from simulation for case A: the dotted line was obtained ...

	2.2 Unique Period, Different Deadlines
	Fig. 2. Off-line scheduling algorithm for reduced energy in the case of task sets with unique per...
	Table 2: An example of case B (a = 3)

	3. Task Level Scheduling Decisions
	3.1 The Intra-task, Compiler Assisted Schedule
	Fig. 3. Task-level voltage schedule strategies: a) intra-task re-scheduling points b) stochastic ...
	Fig. 4. The energy consumption of a intra-task schedule depending on the task predictability.

	3.2 The Stochastic Schedule
	Fig. 5. Examples of stochastic voltage schedules for a task with normal distribution execution ti...
	Fig. 6. The average energy consumption of a stochastic voltage schedule compared to the energy co...

	3.3 Comparison: Intra-task vs. Stochastic Scheduling
	Table 3: Intra-task vs. Stochastic Scheduling

	4. Conclusions
	5. References
	On Energy Reduction in Hard Real-Time Systems Containing Tasks with Stochastic Execution Times

