
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On energy reduction in hard real-time systems containing tasks with stochastic
execution times

Gruian, Flavius

Published in:
[Host publication title missing]

2001

Link to publication

Citation for published version (APA):
Gruian, F. (2001). On energy reduction in hard real-time systems containing tasks with stochastic execution
times. In [Host publication title missing] (pp. 11-16). IEEE - Institute of Electrical and Electronics Engineers Inc..

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/5d358ed1-d7cc-4f26-967e-ad9a1f5489b8

a-
in

ith
d to

at
w

fi-

re-
for

ng
We
the
en
 4.

on
be

e
ad-

the
m
e-

r-
et
e

rst
stic
es.

eed,
ir
ge.

ot
the

ses.

On Energy Reduction in Hard Real-Time Systems Containing
Tasks with Stochastic Execution Times

Flavius Gruian
Department of Computer Science, Lund University,

P.O. Box 118,
S-221 00 Lund, Sweden

<Flavius.Gruian@cs.lth.se>
Abstract  This paper addresses low energy scheduling in
hard real-time systems, containing independent tasks running on
dynamic voltage supply (DVS) processors. Since tasks with prob-
abilistic run times are more realistic, we focus on systems
containing such tasks. We show that the energy consumption can
be reduced if the scheduling takes into account the probabilistic
behavior of the tasks. Moreover, stochastic data can be used in
deriving schedules both for task sets and individual tasks. First we
address task-set level scheduling for two cases. Then we analyze
two task-level voltage scheduling approaches: intra-task schedul-
ing and our method called stochastic scheduling. The examples
and experimental results presented throughout the paper support
our conclusion.

1. Introduction

Today an important design requirement for digital systems
is low energy consumption. It has impact on operating time, on
system cost, and, of no lesser importance, on the environment.
Methods for reducing the power and energy dissipation in dig-
ital systems have long been sought for by several research
groups. With the arrival of dynamic voltage supply processors
[3,17], highly flexible systems can be designed, while taking
advantage of supply voltage scaling to reduce energy consump-
tion. Since the supply voltage has a direct impact on processor
speed, classic task scheduling and supply voltage selection
have to be addressed together. Scheduling offers thus another
niche for reducing the energy consumption, especially when
the system architecture is fixed or the system exhibits a very
dynamic behavior. For such dynamic systems, various power
management techniques exist and are reviewed for example in
[1,2]. Yet, these mainly target soft real-time systems, where
deadlines can be missed if the Quality of Service is kept. Sev-
eral scheduling techniques for soft real-time tasks, running on
DVS processors have already been described [4,5,6]. Even for
hard real-time systems, where all deadlines have to be met,
energy reductions can be achieved as shown in [7,8,9,10,11].
Yet most of the work carried out in the hard real-time systems
area does not make use of the stochastic properties of a real-life
application. In this paper, we also focus on hard real-time
scheduling techniques, but we emphasize the impact of consid-
ering the probabilistic behavior of the hard real-time tasks. For
this reason we consider tasks with stochastic execution delays.

Task level voltage scheduling decisions can reduce even fur-
ther the energy consumption. Some of these, the intra-task
scheduling methods, use several re-scheduling points inside a

task, and are usually compiler assisted [13,14,15]. Altern
tively, fixing the schedule before the task starts executing as
[8,11,16] eliminates the internal scheduling overhead, but w
possible affects on energy reduction. Statistics can be use
take advantage of the dynamic behavior of the system, both
task level [15] and at task-set level [7]. In this paper, we sho
the importance of employing stochastic data in deriving ef
cient voltage schedules at both task and task-set levels.

The rest of the paper is organized as follows. Section 2 p
sents the scheduling alternatives available at task-set level,
two cases, increasing in generality. Task-level scheduli
methods for low average energy are addressed in section 3.
give examples and some experimental results throughout
paper, in specific sub-sections, hoping to make our point ev
clearer. Finally, our conclusions make the subject of section

2. Task-Set Level Scheduling Decisions

In this paper, we address only independent tasks running
a single dynamic supply voltage processor. Yet the ideas can
applied to more general cases. Each of theN tasks in the task
set is defined by a 4-tuple composed of th
execution pattern, worst case execution time, period, and de
line for task . The execution patternXi is a random variable
describing the number of clock cycles required to execute
task. We will denote by the expected value of the rando
variableXi. At the fastest processor speed (highest clock fr
quency), the maximal value forXi is Ci.

The focus of this discussion is on the influence of conside
ing tasks with probabilistic execution pattern on the task-s
level scheduling strategies for low energy consumption. W
show that scheduling policies considering only the tasks’ wo
case execution time (WCET) can be improved when stocha
data is used. We compute therefore the following measur
The worst case execution speed,sWCE, which does not consider
the stochastic behavior of the tasks. The expected ideal sp
sideal, which assumes that all tasks will always run at the
expected time and can take full advantage of this knowled
And, finally, the average real speed,s, which is a measure of the
realistic behavior, when the actual execution times are n
known a priori. We can use these three measures to compute
energy consumptions for the worst, ideal, and average ca
The energy consumption for a given time interval [t0, t1] is
defined as the integral of power over time:

(1)

τi Xi Ci T,
i

Di, ,()=

τi

Xi

E P s t()() td
t0

t1

∫ s t()()α
td

t0

t1

∫≅=

ort
be
est

er,

l

the
ote

the

er-
by

an

e
l-

gy
e.
ks

ath-
he
uch
nly
xact
mal
g a
is

we
” in
’).
der.
the
od

in-
ing

ran-
Note that , value influenced by the delay-supply voltage
dependency. All the examples presented here use , but
all the formulae are given for the general case. To get the exact
value of the energy consumption, one has to find out the pro-
cessor speed at every time moment.

Because of the dynamic behavior of the system, we need to
address not only off-line scheduling methods, but also on-line
re-scheduling policies. Depending on the generality of the
problem, the complexity of the off and on-line policies varies.

We address two cases, with increasing generality. First we
consider task sets with tasks having the same period and dead-
line. Next we analyze tasks having the same period, but
different deadlines. The influence of stochastic data on sched-
uling sets of task which have different periods and deadlines
makes the subject of another of our papers [12], and will not be
discussed here.

2.1 Unique Period, Unique Deadline

This is the simplest possible case, where the set of tasks has
to finish before a certain deadline, in no particular order. For-
mally we consider . When the
actual execution time of each task is known beforehand, the
optimal schedule from the energy point of view is given by uni-
formly stretching the tasks to exactly meet the deadline [11].
The worst case processor speed is then computed as:

(2)

while the ideal expected speed:
. (3)

Using only off-line decisions, one can always guarantee the
deadlines only by using the worst case speed. Yet, an on-line
re-scheduling algorithm is required for energy efficiency. The
on-line re-scheduling algorithm is used every time a task com-
pletes its execution. In each of these scheduling points, a new
expected optimal processor speed is computed. If task is
about to start executing, the new optimal processor speed is:

(4)

Here represents the actual execution time for taskk in the
current iteration. Note that the execution order of the tasks in
this case is important from the energy consumption point of
view. A simplistic approach would be to adopt a random exe-
cution order for each new task-set instance. This will yield in
the long run an energy consumption which is somewhere
between the ones produced by the worst and the best order.

Yet, better orders can be found at a deeper analysis of task
set. In principle it is good eliminate the biggest uncertainties
early, so that we can settle for a close to optimal speed as soon
as possible. Tasks exhibiting a very dynamic behavior (large
discrepancy between their WCET and expected execution
time) seem like good candidates for executing first. For exam-
ple one could order tasks according to the following priorities
(low numbers mean high priority):

(5)

On the other hand, task lengths play an important role. Sh
tasks should be executed first, since the left-over time might
used early on. Finally, according to our computations, the b
ordering is given by using the following priorities:

(5’)

Note that when using relations of form (5) to compute an ord
an algorithm of complexity will do. For the opti-
mal order (5’), we need an algorithm with computationa
complexity of , since the priorities depend on
the already ordered tasks.

Having decided on the schedule, we can now compute
energy consumption for each of the cases presented here. N
that the processor speed is constant on intervals, and for
WCE and ideal case there is a unique speed:

(6)

(7)

(8)

Note that the last energy value is dependent on the task ord
ing. This is where one can reduce the energy consumption
using an optimal ordering. Also note that in the long run we c
talk about a mean value forEreal. In fact, this mean value can
be estimated by replacing with in (4) and (8). For th
next example we used this kind of estimates, while for the fo
lowing experiments we computed the actual ener
consumption for each iteration and report the average valu

Consider a simple task set, composed of three tas
{ , ; ,

; , }. The processor
speeds for four cases, plus the energy consumptions are g
ered in Table 1. The first two columns refer to the worst and t
ideal cases. The “worst case” decides an off-line speed s
that the tasks will always meet their deadlines, and uses o
that speed at runtime. The “ideal case” assumes that the e
execution times are known beforehand and decides an opti
processor speed for each period. The real case implies usin
runtime voltage re-scheduling policy. The processor speed
recomputed each time a task finishes execution, that is why
give three speed values for the real case. The “best order
Table 1 is the order given by the priorities computed as in (5
The “reverse best” is when the task assume an inverse or
From the table we can see that the on-line strategy reduces
energy consumption, as expected. More importantly, a go
ordering also contributes to further energy reductions.

We also performed experiments for larger task sets, conta
ing 10, 30, 60 and 100 tasks with stochastic behavior, us
normal distributions with mean C/2 and standard deviation
C/6. For each of these set sizes, we examined one thousand

α 2≥
α 3=

τi τ j,()∀ Ti Di T j D j A= = = =,

s
WCE

Ci
1 i N≤ ≤

∑ 
  A⁄=

s
ideal

Xi
1 i N≤ ≤

∑ 
  A⁄=

τ j

sj Ci
j i N≤ ≤
∑ 

  A Xk sk⁄()
1 k j<≤

∑– 
 ⁄=

Xk

pi 1 Ci Xi–()⁄=

pj X j 1

Ci
j i< N≤
∑

Ci
j i N≤ ≤
∑ Xj–

 
 
 
 
  α 1–

–

 
 
 
 
 

⁄=

O N N()log⋅()

O N2 N()log⋅()

E
WCE

s
WCE()

α
Xi s

WCE⁄()
1 i N≤ ≤

∑=

Ci
1 i N≤ ≤

∑ 
  A⁄ 

  α 1–
Xi

1 i N≤ ≤
∑ 

 ⋅=

E
ideal

A s
ideal()

α
Xi

1 i N≤ ≤
∑ 

  α
Aα 1–⁄= =

E
real Xi

si
----- si

α⋅
1 i N≤ ≤

∑ Xi si
α 1–⋅

1 i N≤ ≤
∑= =

Xi Xi

τ1 X1 20 100 100, , ,()= X1 16= τ2 X2 30 100 100, , ,()=
X2 20= τ3 X3 40 100 100, , ,()= X3 32=

in
are
wo
For
od
sks
ely
c
ent
sk,
er-
we
is

.
the
ere.
t on
s:

n-
. As
t:

rst
e
ule

in-
e
l-

ted”
um-
the

sk
dom sets and extract the energy consumption via simulation for
three different situations. We ordered the tasks according to
(5’) and also using the inverse order. We compared the energy
consumption for these two to the ideal case, defined as for
Table 1. Again, note that the ideal case is impossible to be
reached in practice. The results are depicted in Fig. 1.

2.2 Unique Period, Different Deadlines

The problem becomes more complex when the deadlines for
the tasks differ: , , . A dead-
line monotonic scheduling strategy would, in this case,
guarantee feasible schedules up to full processor utilization.
Considering the tasks ordered according to their deadlines, the
processor speed for each task can be computed as in [7]:

(9)

The ideal speed for each taskj is obtained when one knows a
priori the execution pattern of all tasks:

(10)

For the real case, an on-line scheduling method is needed. The
processor speed must be recomputed whenever a task finishes
execution. The time moment when taskj finishes is:

(11)

The processor speed for the next task is re-computed (see (9)):
(12)

As in the case described in the previous section, the execu-
tion order influences the energy consumption. On the other
hand, we have less freedom to reorder tasks since the deadlines
have to be met. With this in mind, we present here an off-line
preemptive pre-scheduling strategy, which attempts to obtain a

low average energy consumption. The algorithm, presented
Fig. 2, uses an initial step in which WCE processor speeds
computed. It examines then the time intervals between t
consecutive deadlines, starting from the longest deadline.
these “scheduling intervals” we can use the scheduling meth
presented in sub-section 2.1, but this time we schedule ta
from the end backwards. Whenever a task does not fit entir
in the remaining time slot, it is split in two parts with specifi
stochastic behavior. The end part is scheduled in the curr
scheduling interval. The other part is treated as a new ta
which has to be completed before the current scheduling int
val. The algorithm finishes when we scheduled all tasks and
reached moment zero. The on-line re-scheduling algorithm
the same as the one described previously, by equation (12)

Having decided on the schedule, we can now compute
expected energy consumption for all the cases presented h
As in the previous case, the processor speed is constan
intervals. For brevity we will not expand the expression

, ,

.

Note that in the last case the number of intervals with co
stant speed can increase to as a result of preemption
an example, consider the following task se
{ , ; , }.
A classic deadline monotonic strategy would schedule fi
followed by . Using our algorithm described in Fig. 2, th
energy is reduced by splitting in two parts and the sched
looks differently. The first part of task , of length 5 (C2 is 6)
is executed first, then gets executed, and finally the rema
ing part of . The differences in energy consumption for th
average case are given in Table 2. The “WCE” and “ideal” co
umns have the same meaning as in Table 1. The “real expec
contains the expected or average value taken over a large n
ber of task set instances. The “classic order” corresponds to

Table 1: An example of case 2.1 (α = 3)

{τ1, τ2, τ3} WCE ideal

real expected (estimates)

best order:
2, 3, 1

reverse best:
1, 3, 2

speed, s 0.90 0.68 0.90, 0.77, 0.55 0.90, 0.85, 0.67

normalized energy, E 1.752 1 1.273 1.433

1

1.1

1.2

1.3

1.4

1.5

10 30 60 100

inverse best order

best order

number of tasks

en
er

gy
 c

on
su

m
pt

io
n

vs
. t

he
 id

ea
l c

as
e

Fig. 1. The energy consumption obtained from simulation for case A: the
dotted line was obtained for order given by (5’), the continuous line was
obtained for the reverse order. All values are relative to the ideal case energy

τi τ j,()∀ Ti T j A= = Di D j A≤≠

sj
WCE

Ci Di Ck sk
WCE⁄()

1 k j<≤
∑– 

 ⁄ 
 

j i N≤ ≤
∑=

sj
ideal

Xi Di Xk sk
ideal⁄()

1 k j<≤
∑– 

 ⁄ 
 

j i N≤ ≤
∑=

t j Xk sk⁄()
1 k j≤ ≤

∑=

sj 1+ Ci Di t j–()⁄()
j i< N≤
∑=

begin procedure OfflinePreemptiveSchedule
empty WorkList

forall deadlines D i , longest..shortest do
time := D i , empty NextWorkList
* put all tasks with deadline D i in WorkList
* order WorkList descending

using priorities p j from (5’)
forall tasks τk in WorkList do

if C k/s k > (time - D i-1) then
* split τk:

NextWorkList.add(task with
C := C k - (time - D i-1)*s k,
D := D i-1 , X := min(C, Xk))

Also update C k := time - D i-1
end if
* schedule τk between [time - C k/s k, time)
time := time - C k/s k

end forall
* make NextWorkList the new WorkList

end forall
end procedure

Fig. 2. Off-line scheduling algorithm for reduced energy in the case of ta
sets with unique period and different deadlines

E
WCE

Xi si
WCE⋅

1 i N≤ ≤
∑= E

ideal
Xi si

ideal⋅
1 i N≤ ≤

∑=

E
real

Xi si⋅
1 i M≤ ≤

∑=

M N≥

τ1 X1 10 16 15, , ,()= X1 9= τ2 X2 6 16 16, , ,()= X2 3=
τ1

τ2
τ2

τ2
τ1

τ2

al
or
n-
s. If
d,
c-
the

e
n-
act
e
the
rt

e
:

in
ng
cy
to
the

ub-
lots
An
we
-

task
situation when one uses the classic deadline monotonic order-
ing. The “preemptive order” is the schedule found by our
algorithm. Note that in the long run the second part of task 2
will not execute, hence the expected value of 0.

3. Task Level Scheduling Decisions

Task-level voltage scheduling has captured the attention of
the research community rather recently [16]. One of the main
reasons behind using task-level scheduling techniques is that
these can lower the energy consumption of a certain task with-
out requiring strong knowledge about the other tasks in the
system. From the system point of view these methods are “self-
centered,” in the sense that they are concerned with doing their
best for the current task and the given processor time. They try
to fill-in their allocated time as best as possible. At the system
level this means that uncertainties are dealt with at individual
task level whenever this is possible. In this case, one can use
classic scheduling techniques at system level and still get
energy efficient systems. Even more efficient is having both the
task-set level and the task-level scheduling techniques aware of
the temporal non-determinism existent in the system, as pre-
sented for example in [12]. In the following we will describe
two approaches to task-level scheduling and then compare
these in different aspects.

3.1 The Intra-task, Compiler Assisted Schedule

The current trend in task level scheduling is that of using
rescheduling points inside a task [13,14,15]. In [13, 15] the task
is split into several sequential time slots, each with its own
WCET. Every time a new slot begins, the processor speed is re-
computed and adjusted to exactly meet the deadline. Addition-
ally, [15] uses statistical data to improve the task level
schedule, by slowing down different regions of a task accord-
ing to their average execution time. In [14] the time slots are
actually basic blocks extracted at assembly language level.
Note that all of these approaches require compile time support.
The compiler or a post-processor has to estimate the WCET for
each region or basic block. It should also insert the necessary
code for re-computing the new processor speed and the code
for shifting the supply voltage in each re-scheduling point (Fig.
3.a). One of the advantages of this method seems to be that the
operating system (OS) does not need to be aware of the DVS
characteristics of the hardware architecture, since the OS can
be by-passed using compiler generated re-scaling code. Thus,
one can use an “old” OS without modifications.

Analyzing the energy reduction capabilities of such an
approach one must take into consideration the “predictability”

of a task. This means how much information about the actu
finishing time one can gather during the task execution. If, f
example, the actual finishing time is known right at the begi
ning of the task, the scheduler can make the best decision
the actual finishing time can not be known until the very en
nothing can be gained. In this light, the conclusions from se
tion 2 apply also here: the best decisions can be made if
uncertainties are eliminated early in the execution.

Without great loss of generality we will consider that ther
is a point in a task before which nothing is known about the fi
ishing time. At this point, the task becomes aware of the ex
value of the finishing time. It is interesting to see how th
energy consumption of an intra-task schedule depends on
location of this point. If we denote the ratio of the unaware pa
of the task byy, it is not hard to show (using section 2) that th
normalized energy expression for the intra-task schedule is

(14)

whereC, , and have the same meaning as introduced
section 2. Note that the unit energy is that obtained by runni
the whole task (cycles in average) at the clock frequen
computed at the beginning of the task. This frequency has
accommodate the whole task even in the worst case. Thus,
unit energy is the same as the WCE-stretch energy from s
section 3.2. This formula assumes that the re-scheduling s
are very small and the re-scheduling overhead negligible.
example of such dependency is depicted in Fig. 4, where
instantiated and . We will return to this in sub
section 3.3.

Table 2: An example of case B (α = 3)

{τ1, τ2} WCE ideal

real expected

classic order
1, 2

preemptive order
part of 2, 1, rest of 2

speeds, s 1, 1 0.79, 0.66 1, 0.86 1, 0.833, (0)

normalized energy, E 2.328 1 1.630 1.346

time

allow
ed tim

e
a)

b)

Fig. 3. Task-level voltage schedule strategies:
a) intra-task re-scheduling points b) stochastic schedule

Processor
Speed Legend: re-scheduling DC-DC shift

execution

execution

idle

idle

E y() y 1 y–() 1 y–

C X⁄ y–
--------------------- 

  α 1–
+=

X α

X

X C 2⁄= α 3=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 a
ve

ra
ge

 e
ne

rg
y

The ratio of the “unaware” part of the task

E(y) = y + (1-y)*((1-y)/(2-y))^2

Fig. 4. The energy consumption of a intra-task schedule depending on the
predictability.

Stochastic is betterIntra-task is better

rgy
For
rn,
.1,

n-
9

n
a

the
as-
tch
ncy,
or
n-
se,

are
es

re-

the

) is
e the

ed-
n,

ks. If
ect-
OS
nd

ing
me
essi-
ke

le
3.2 The Stochastic Schedule

The second task-level voltage scheduling approach is what
we call stochastic scheduling. It can be completely imple-
mented inside the RT-OS and it does not require special
compiler support. Consequently, it interferes less with the
actual task than the compiler based methods. This also means
that tasks do not need to be re-compiled when the architecture
changes. In principle our approach computes a voltage sched-
ule only once, when the task starts executing. During task
execution no re-scheduling is done, but the supply voltage is
changed at well established intervals (Fig. 3.b).

First, note that in many cases tasks with variable execution
time finish before their worst case execution time (WCET).
Therefore it makes sense to execute first at a low voltage and
accelerate the execution, instead of executing at high voltage
first and decelerate. In this manner, if a task instance is not the
worst case, one skips executing high voltage regions. Our
approach uses stochastic data to build a multiple voltage sched-
ule, in which the processor speed increases towards the
deadline. The purpose for using stochastic data is to minimize
the average case energy consumption.

The stochastic voltage schedule for a task is obtained using
the probability distribution of the execution pattern for a task
(the number of clock cycles used). This probability distribution
can be obtained off-line, via simulation, or built and improved
at runtime. Unlike the compiler oriented methods, this
approach can start with very little information about the task
(only WCET) and gradually acquire more data at runtime. The
actual voltage schedule is obtained by minimizing the expected
value of the energy consumption. The on-line algorithm for
deciding the schedule has a low computational complexity, lin-
ear with the number of available voltages. A detailed
description of the algorithm is presented in [12].

Two examples of stochastic voltage schedules are given in
Fig. 5. We assumed a normal probability distribution with the
mean of 70 cycles, and standard deviation of 10.C is 100.
Assuming we only have four available clock frequenciesf, f/2,
f/3, andf/4, we give two voltage schedules obtained for two dif-
ferent values of the allowed execution time. The schedules are
given in number of clock cycles executed at each available fre-
quency. The allowed execution time is reported in percentage
of the time needed for executing the worst case behavior at the
highest clock frequency (f).

Next we present an experiment that examines the ene
gains of using a stochastic voltage schedule at task level.
this we considered a single task with variable execution patte
identical with the one used for the example in sub-section 3
Fig. 4. Assuming that the worst case behavior usesCcycles, we
used a normal distribution centered on , with a sta
dard deviation ofC/6. We considered that our processor has
different voltage clock speeds, equally distributed betweef
andf/3. With this settings, we built stochastic schedules for
range of allowed execution times (from C atf to 3xC atf). For
a large number of task instances generated according to
given distribution we computed both the energy of the stoch
tic schedule and a WCE-stretch schedule. The WCE-stre
schedule is the one obtained by assuming a unique freque
for which the task will always meet the deadline, even the f
WCE pattern (C cycles). We compared then the energy co
sumption for these two schedules to the non-scaling ca
where the processor executes at its maximal frequency,f, all the
cycles needed and then shuts down (0 power). The results
depicted in Fig. 6. Note that when the allowed time approach
eitherC at f or 3-timesC at f, the energy consumptions for the
two schedules become equal. The lowest available clock f
quency isf/3, which means 3-times slower thanf, so there is no
better schedule for these cases. On the other hand when
allowed time closesC at f, there is no other way but to use the
fastest clock. Somewhere between these two extremes (2x
the largest energy gain since the stochastic schedule can us
whole spectrum of available frequencies.

3.3 Comparison: Intra-task vs. Stochastic Scheduling

We summarize the most obvious features of the two sch
uling approaches in Table 3. Depending on the applicatio
features 1, 2 and 3 can be seen as advantages or drawbac
one can access the hardware resources directly without aff
ing the whole system, intra-task scheduling is better. Yet, an
level policy hides the hardware peculiarities of the system a
allow for better application portability/mobility. Intra-task
scheduling seems to require more accurate and detailed tim
information than the stochastic approach (feature 3). In so
cases these estimates are much harder to obtain than a p
mistic global WCET estimate. Stochastic schedules can ta

X

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

47@f/4 25@f/3 20@f

27@f/3 47@f/2 26@f

8 Allowed is 300%
of C at clock f

Allowed is 200%
of C at clock f

1-cdf function
for a normal
distribution
with mean 70
and standard
deviation 10.

Fig. 5. Examples of stochastic voltage schedules for a task with normal
distribution execution time and worst case behavior of 100 cycles

1 - cdf

X C 2⁄=

Fig. 6. The average energy consumption of a stochastic voltage schedu
compared to the energy consumption of a WCE- stretch schedule.

0

0.2

0.4

0.6

0.8

1

1x 1.5x 2x 2.5x 3x

WCE-stretch

Stochastic Schedule

N
or

m
al

iz
ed

 e
ne

rg
y

allowed execution time relative to C cycles at max frequency

1
is

 th
e

en
er

gy
 o

f m
ax

 fr
eq

ue
nc

y
ex

ec
ut

io
n

0.179

0.25

t of
to

wo
wn,
om
r-

eir

ed

e,
e
ld-

of

al

r

ed
er

d

d

nd

y

S

l-

-

d

ly
advantage of the run-time history (feature 5). Intra-task sched-
uling seems to interfere more with the actual task because of
the additional re-scheduling code inserted at compile time (6).
Overall, the work overhead for the intra-task scheduling
appears bigger than that for the simpler stochastic scheduling
strategy.

This comparison would not be complete without an analysis
of the actual energy reduction of the two methods. The stochas-
tic schedule does well only when the deadline is rather loose
(feature 9). For very tight deadlines, (those close to 1x in Fig.
6), a stochastic schedule is a bad choice, since intra-task sched-
uling can detect early finishing tasks (close to 0 in Fig. 4) and
take advantage of that. Yet, if the task is very “un-predictable”
(close to 1 in Fig. 4) the intra-task scheduling method can yield
as bad results as the WCE-stretch in Fig. 6. In this cases, for
certain deadlines a stochastic schedule is a better choice (fea-
ture 8). For example, at a deadline of 2xC in Fig. 6, a stochastic
schedule energy is 70% of the WCE-stretch energy. This corre-
sponds to a 0.69 “unaware”-ness factor in Fig. 4. Thus if it
takes longer than 69% of a task execution to determine its exact
finishing time, a stochastic schedule does better. Otherwise an
intra-task schedule is recommended. In conclusion, the actual
stochastic behavior of the task is very important and different
scheduling strategies can yield better or worse results, depend-
ing on the situation.

4. Conclusions

In this paper, we addressed scheduling methods targeting
energy reduction in hard real-time systems containing dynamic
supply voltage processors. Our main purpose was to raise the
level of awareness for considering stochastic data during
scheduling in such systems. Both task-set and individual task
level scheduling decisions were described.

For task sets we started from the simple case of tasks having
the same unique deadline and period. Then we generalized the
problem by considering different deadlines. For these cases we

showed that more efficient schedules, from the energy poin
view, can be derived when stochastic data is taken in
consideration.

We also addressed task-level voltage scheduling. T
approaches were compared: intra-task scheduling and our o
stochastic scheduling. We compared the two approaches fr
several point of views. The discussion pointed out the impo
tance of analyzing the designs from the perspective of th
stochastic behavior.

5. References

[1] L. Benini and G. DeMicheli, “System-level power optimization:
techniques and tools,”ACM Trans. on Design Automation of Electronic
Systems, No. 2, Vol. 5, April 2000, pp. 115-192.

[2] M. Pedram, “Power optimization and management in embedd
systems,“Proc. of ASP-DAC 2001, pp. 239-244.

[3] K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanab
K. Matsuda, T. Maeda, and T. Kuroda, “A 300MIPS/W RISC cor
processor with variable supply-voltage scheme in variable thresho
voltage CMOS,”Proc. of the IEEE Custom Integrated Circuits
Conference 1997,pp. 587-590.

[4] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation
dynamic voltage scaling algorithms,”Proc. of the ‘98 ISLPED, pp 76-81.

[5] A. Chnadrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven sign
processing: an approach for energy efficient computing,”Proc. of the ‘96
ISLPED,pp. 347-352.

[6] M. Weiser, B. Welch, A Demers, and S. Shenker, “Scheduling fo
reduced CPU energy,”Proc. of the First Symposium on Operating
Systems Design and Implementation, November 1994.

[7] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduc
CPU energy,”Proc. of the 36th Symposium on Foundations of Comput
Science,pp. 374-382, 1995.

[8] I. Hong, M. Potkonjak, and M.B. Srivastava, “On-line scheduling of har
real-time tasks on variable voltage processor,”Digest of Technical
Papers of the 1998 ICCAD, pp. 653-656.

[9] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for har
real-time systems,”Proc. of the 36th DAC, 1999, pp. 134-139.

[10] Y.-H. Lee and C.M. Krishna, “Voltage-clock scaling for low energy
consumption in real-time embedded systems,“Proc. of the 6th
International Conference on Real-Time Computing Systems a
Applications, 1999, pp. 272-279.

[11] F. Gruian and K. Kuchcinski, “LEneS: task scheduling for low-energ
systems using variable voltage processors,”Proc. of ASP-DAC2001, pp.
449-455.

[12] F. Gruian, “Hard real-time scheduling using stochastic data and DV
Processors,” to be presented atISLPED 2001, August 2001.

[13] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power rea
time systems,“Proc. of the 37th DAC, 2000, pp. 806-809.

[14] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low
energy hard real-time applications,”Special Issue of IEEE Design and
Test of Computers, March 2001, 18(2) pp. 20-30.

[15] D. Mossé, H. Aydin, B. Childers, and R. Melhem, “Compiler-assiste
dynamic power-aware scheduling for real-time applications,”Worksop
on Compilers and Operating Systems for Low-Power, October 2000.

[16] T. Ishihara,H. Yasuura, “Voltage scheduling problem for dynamical
variable voltage processors,”Proc. of the ‘98 ISLPED, pp 197-202.

[17] http://www.transmeta.com

Table 3:Intra-task vs. Stochastic Scheduling

Feature Intra-task Stochastic

1 implementable as a task-transparent policy? no yes

2 implementable as an OS-transparent policy? yes/partially with perfor-
mance loss

3 needs compiler support? yes no/little

4 amount of off-line required estimates many region-
wise WCETs

only the
task WCET

5 run-time adjustable? can use history? possibly yes

6 run-time interference with the task moderate to
high

low to
moderate

7 overall method complexity large small

8 performance is sensitive to
internal task “predictability”?

yes no

9 performance is sensitive to
deadline variations?

slightly very

	1. Introduction
	2. Task-Set Level Scheduling Decisions
	2.1 Unique Period, Unique Deadline
	Table 1: An example of case 2.1 (a = 3)
	Fig. 1. The energy consumption obtained from simulation for case A: the dotted line was obtained ...

	2.2 Unique Period, Different Deadlines
	Fig. 2. Off-line scheduling algorithm for reduced energy in the case of task sets with unique per...
	Table 2: An example of case B (a = 3)

	3. Task Level Scheduling Decisions
	3.1 The Intra-task, Compiler Assisted Schedule
	Fig. 3. Task-level voltage schedule strategies: a) intra-task re-scheduling points b) stochastic ...
	Fig. 4. The energy consumption of a intra-task schedule depending on the task predictability.

	3.2 The Stochastic Schedule
	Fig. 5. Examples of stochastic voltage schedules for a task with normal distribution execution ti...
	Fig. 6. The average energy consumption of a stochastic voltage schedule compared to the energy co...

	3.3 Comparison: Intra-task vs. Stochastic Scheduling
	Table 3: Intra-task vs. Stochastic Scheduling

	4. Conclusions
	5. References
	On Energy Reduction in Hard Real-Time Systems Containing Tasks with Stochastic Execution Times

