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PREFACE

This thesis is about constrained differential equations. It comprises two independent
parts.

In the first part, we investigate Burgers equation with a periodic and highly
irregular forcing term. We prove that notwithstanding the irregularity, there exists
only one periodic solution. Besides, our result is optimal in the sense that the
function spaces of the solution and that of the forcing term are dual to each others.
The work of this first part is a joint work with M. Fontes.

The second part is devoted to the geometric study of ordinary differential equa-
tions with constraints. We will first consider ordinary differential equations in the
most general terms, and give a precise definition of their index. We will also show
how similarly stated differential equations with constraints may be related by pull-
back. Later on, we will dive into the special case of linear differential equations,
and exhibit a new normal form, which turns out to provide a new proof for the
well-known Kronecker canonical form.
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PRELIMINARIES

1.1 Introduction

The study of the Burgers equation has a long history starting with the seminal
papers by Burgers [Bur50], Cole [Col51] and Hopf [Hop50] where the Cole-Hopf
transformation was introduced. The Cole-Hopf transformation transforms the ho-
mogeneous Burgers equation into the heat equation.

More recently there have been several articles dealing with the forced Burgers
equation:

ut − νuxx + uux = f (1.1)

The vast majority treats the initial value problem in time with homogeneous Dirich-
let or periodic space boundary conditions (see for instance [KL89]).

Only recently the question of the time-periodic forced Burgers equation has
been tackled. In most cases [JKM99; E99] the authors are chiefly interested in the
inviscid limit (the limit when the viscosity ν tends to zero). The forcing term is
usually chosen to take a particular form, for example a sum of products of white
noises in time and smooth functions in space [E99; Sin91]. In [FS05] the space
domain is the half line and the Dirichlet boundary conditions are time periodic and
analytic.

The closest related work to ours is that of Jauslin, Kreiss and Moser [JKM99]
in which the authors show existence and uniqueness of a space and time periodic
solution of the Burgers equation for a space and time periodic forcing term which
is smooth.

In this thesis we generalise these results and prove that the Burgers operator
coming from the Burgers equation is in fact a diffeomorphism between appropriate
time periodic anisotropic Sobolev spaces.

More precisely our main result (Theorem 1) shows that given a time periodic
forcing term in H(− 1

2 ,−1) we have existence and uniqueness of a time periodic
solution in H( 1

2 ,1)
0 . Furthermore we are able to prove smooth dependence on the

forcing term.
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16 CHAPTER 1. PRELIMINARIES

To prove this result we will use a method similar to that of [FS04] which makes
extensive use of anisotropic Sobolev spaces. We will also use a modification of the
Cole-Hopf transformation to prove uniqueness of the solution.

We prove those results with homogeneous Dirichlet spatial boundary conditions
but the results and the proof can be extended to inhomogeneous boundary condi-
tions as well as spatial periodic boundary conditions.

The results of this part were published in [FV07].

1.2 Fractional Calculus

In this section we recall some well known facts and fix some general notations.

Fourier Analysis

We denote the one dimensional torus T by:

T = R/Z

Let H denote a complex Hilbert space, then the space of smooth Hilbert space-
valued periodic test functions D(T, H) is denoted by:

D(T, H) = C∞(T, H)

endowed with the usual topology of test functions. Any test function ϕ ∈ D(T, H)
can be developed in a Fourier series:

ϕ =
∑
n∈Z

ϕn · ei2πnt

where ϕn ∈ H is defined by:

ϕn =
∫

T
ϕ(t) · e−i2πntdt

We denote by D′(T, H∗) the space of continuous linear functionals on D(T, H).
It is naturally isomorphic to the Hilbert-space valued 1-periodic distributions on R.
For any periodic distribution u ∈ D′(T, H∗) we then have:

u =
∑
n∈Z

un · ei2πnt

where un ∈ H∗ is defined by

∀ψ ∈ H, 〈un, ψ〉H∗,H :=
〈
u, e−i2πnt · ψ

〉
D′,D
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Fractional Derivatives

For any positive real number s we may define the fractional derivative of order
s Ds defined on D′(T, H∗) as follows:

Ds u =
∑
k∈Z

(2πik)sukei2πkt =
∑
k∈Z
|2πik|s ei sgn(k)sπ2 ukei2πkt

where we have used the principal branch of the logarithm. The sign function sgn
is defined as follows:

sgn(k) :=
{

k
|k| if k 6= 0
0 if k = 0

For s = 0 we define D0 = I. D1 coincides with the usual differentiation operator on
D′(T, H∗). The familiar composition property also holds: Ds ◦Dt = Ds+t for any
t, s ≥ 0.

The adjoint operator Ds
∗ of Ds is defined by using the conjugate of the multiplier

of Ds:
Ds
∗ u =

∑
k∈Z
|2πik|s e−i sgn(k)sπ2 ukei2πkt

Ds and Ds
∗ are adjoints in the sense that for any u ∈ D′(T, H∗) and ϕ ∈ D(T, H):

〈Ds u, ϕ〉 = 〈u,Ds
∗ ϕ〉

and similarly:
〈Ds
∗ u, ϕ〉 = 〈u,Ds ϕ〉

Hilbert Transform

The Hilbert transform H is defined using the multiplier −i sgn k. For u ∈ D′(T, H∗)
let

H u =
∑
k∈Z
−i sgn k uk ei2πkt

Simple computations then give the following properties for D
1
2
∗ :

D
1
2
∗ = D 1

2 ◦H = H◦D 1
2

Notice that if H is a function space then H maps real functions to real functions.
The following properties will be useful in the sequel:

∀u ∈ H( 1
2 )(T, H)

(
D 1

2 u,D
1
2
∗ H u

)
L2(T,H)

= −
∥∥∥D 1

2 u
∥∥∥2

L2(T,H)

∀u ∈ L2(T× I) <
(
(u,H(u))L2(T×I)

)
= 0

(1.2)

where < denotes the real part of the expression.
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1.3 Sobolev Spaces

Fractional Sobolev Spaces

We define the fractional Sobolev spaces H(s)(T, H) in the following manner, for any
s ∈ R:

H(s)(T, H) =
{
u ∈ D′(T, H∗);

∑
k∈Z

∣∣1 + k2∣∣s ‖uk‖2
H <∞

}

Of course H(0)(T, H) = L2(T, H). When s ≥ 0 then for an u ∈ L2(T, H):
u ∈ H(s)(T, H) ⇐⇒ Ds u ∈ L2(T, H). Moreover H(s)(T, H) is then a Hilbert space
with the following scalar product:

(u, v) := (u, v)L2(T,H) + (Ds u,Ds v)L2(T,H)

The following classical result holds:
(
H(s)(T, H)

)∗ = H(−s)(T, H∗).

Anisotropic Fractional Sobolev Spaces

Let I be an interval in R and s ≥ 0. Let H(s)(I) denote the usual fractional Sobolev
space of real-valued s-times differentiable functions on I. H(s)

0 (I) is the closure of
D(I) in H(s)(I). In that case we have

(
H(s)

0 (I)
)∗ = H(−s)(I). We will also use the

following notations: for α, β nonnegative real numbers we define H(α)(β)(T× I):

H(α)(β)(T× I) := H(α)(T,H(β)(I))

and H(α,β)(T× I):

H(α,β)(T× I) = H(α)(0)(T× I) ∩H(0)(β)(T× I)

We also introduce H(α,β)
0 (T× I) as the closure of D(T× I) in H(α,β)(T× I). It is

clear that H(α,β)
0 (T × I) = H(α)(0)(T × I) ∩ L2(T,H(β)

0 (I)). Duals of such spaces
are denoted as H(−α,−β)(T× I):

H(−α,−β)(T× I) :=
(
H(α,β)

0 (T× I)
)∗

= H(−α)(T,L2(I)) + L2(T,H(−β)(I))

= H(−α)(0)(T× I) + H(0)(−β)(T× I)
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1.4 Interpolation and regularity

If sk(ξ) is the Fourier transform sk(ξ) = û(k, ξ) of a distribution u defined on T×R,
we have the following Hölder inequality for any θ ∈ [0, 1]:∫

R

∑
k∈Z
|k|2α(1−θ) |ξ|2βθ |sk(ξ)|2 dξ ≤

(∫
R

∑
k∈Z
|k|2α |sk(ξ)|2 dξ

)1−θ (∫
R

∑
k∈Z
|ξ|2β |sk(ξ)|2 dξ

)θ
From this Hölder inequality we deduce

H(α,β)(T× R) ↪→ H((1−θ)α)(T,H(θβ)(R))

So using an extension operator from H(θβ)(I) to H(θβ)(R) one can prove the corre-
sponding inclusion:

H(α,β)(T× I) ↪→ H((1−θ)α)(θβ)(T× I) (1.3)

For α = 1/2 and β = 1 and θ = 1
3 we obtain (see Figure 1.1):

H( 1
2 ,1)

0 (T× I) ⊂ H( 1
2 ,1)(T× I) ⊂ H(1/3)(1/3)(T× I)

Then the vectorial Sobolev inequalities yield:

H( 1
2 ,1)

0 (T× I) ⊂ H(1/3)(1/3)(T× I) ↪→ L4(T,H( 1
3 )(I)) ↪→ L4(T,L4(I)) = L4(T× I)

(1.4)
Here the injection H(1/3)(1/3)(T × I) ↪→ L4(T,H(1/3)) is compact and thus the
injection H( 1

2 ,1)
0 (T× I) ↪→ L4(T× I) is compact.
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α

β

1
3

1
2

1
3

1

Figure 1.1: H( 1
2 ,1)

0 is included in H( 1
3 )( 1

3 ) which is included in L6 by the usual Sobolev inclusion

theorem. In particular, H( 1
2 ,1)

0 is included in L4, so u ∈ H( 1
2 ,1)

0 =⇒ u2 ∈ L2. As
a result the non-linear term of the Burgers equation may be written as −(u2, vx) for a
test function v ∈ H( 1

2 ,1)
0 since v ∈ H( 1

2 ,1)
0 =⇒ vx ∈ L2 by definition.



2

BURGERS EQUATION: ESTIMATES

Dans ce qui suit, j’ai tâché,
conformément à l’appel de
N. Bourbaki, de substituer
toujours les calculs aveugles aux
idées lucides d’Euler.

V. Arnol’d, [Arn66], 1966

2.1 Preliminaries

Scalings

For a period T > 0, a length L > 0, a non zero constant viscosity ν and a time-
periodic forcing term g, the Burgers equation is formally defined on R/TZ× (0, L)
by:

ut + uux − νuxx = g

For t̄ ∈ T, x̄ ∈ (0, 1) we define:

ū(t̄, x̄) := T

L
u(t̄T, x̄L)

Then ū is solution of
ūt + ūūx − µūxx = f

where f and µ are defined by:

f(t̄, x̄) = T 2

L
g(t̄T, x̄L)

µ = νT

L2

21
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1
µ

is often called the Reynolds number . The scalings allow us to restrict the
study of the Burgers equation to the normalised domain R/Z× (0, 1).

Notations

In the sequel we will use the following notation:

I := (0, 1)
Q := T× I

(u, v) :=
∫
Q

u · vdtdx

|u| :=
√

(u, u)

H( 1
2 ,1)

0 := H( 1
2 ,1)

0 (Q)

H(− 1
2 ,−1) := (H( 1

2 ,1)
0 )∗

Lp := Lp(Q)

and for u ∈ H( 1
2 ,1)

0 :

‖u‖ := ‖u‖
H
( 1

2 ,1)
0

ũ := H u

u√t := D 1
2 u ∈ L2

u√t∗ := D
1
2
∗ u ∈ L2

ux := ∂u

∂x
∈ L2

For f ∈ H(− 1
2 ,−1) 〈f, u〉 := 〈f, u〉

H(− 1
2 ,−1),H( 1

2 ,1)
0

2.2 Properties of the Burgers Operator

Functional Setting

By possibly changing the direction of time we may always assume that µ is a positive
real number. We split the Burgers equation in a linear and a non-linear part by
means of the two following operators:

Definition 1. We define L from H( 1
2 ,1)

0 to H(− 1
2 ,−1) as:

∀v ∈ H( 1
2 ,1)

0 〈Lu, v〉 :=
(
u√t, v

√
t∗
)

+ µ (ux, vx)
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Definition 2. The (nonlinear) operator S from H( 1
2 ,1)

0 to H(− 1
2 ,−1) is defined as:

∀v ∈ H( 1
2 ,1)

0 〈S(u), v〉 := −1
2
(
u2, vx

)
This operator is well-defined since H( 1

2 ,1)
0 ⊂ L4 (cf. (1.4)).

Definition 3. The Burgers operator T defined from H( 1
2 ,1)

0 to H(− 1
2 ,−1) is de-

fined by:
T = L+S

Given f ∈ H(− 1
2 ,−1) the Burgers equation becomes:

T(u) = f (2.1)

Main Result

Here is the main result of this part:

Theorem 1. The (nonlinear) Burgers operator T is a diffeomorphism from H( 1
2 ,1)

0

to H(− 1
2 ,−1), i.e. it is a smooth bĳection with smooth inverse.

The main ingredients in the proof of this result are an a priori estimate and the
Cole-Hopf transformation. After giving the a priori estimate we will prove existence
and then uniqueness. Before that we will make some initial observations.

Some elementary properties

If we denote by T′(m) the derivative of the operator T at m ∈ H( 1
2 ,1)

0 then the
following holds for any u, v in H( 1

2 ,1)
0 :

T(u)− T(v) = T′
(
u+ v

2

)
· (u− v) (2.2)

so T is injective iff T′(m) is injective for any m ∈ H( 1
2 ,1)

0 .
We notice that by the inclusion (1.4): S(u) = u · ux ∈ L4/3 ↪→ H(− 1

2 ,−1)
and the last inclusion is the adjoint of the inclusion (1.4) and is thus compact as
well. Since u → u2 is continuous from L4 to L2 we deduce that S is a non-linear
compact operator (that is to say it is continuous and sends bounded sets of H( 1

2 ,1)
0

to relatively compact sets of H(− 1
2 ,−1)). Now as a general fact if S is compact and

differentiable then S′(m) is a compact linear operator at any point m ∈ H( 1
2 ,1)

0 . We
collect these elementary observations in the following Lemma:
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Lemma 2.2.1. The nonlinear operator S is compact and for any m ∈ H( 1
2 ,1)

0 the
derivative S′(m) at the point m is a linear compact operator.

2.3 An a priori Estimate

We have the following a priori estimate of the solution set:
Theorem 2. Let f ∈ H(− 1

2 ,−1). The set⋃
λ∈[0,1]

(L+λS)−1({f})
is bounded in H( 1

2 ,1)
0 .

We get the following immediate corollary for the case λ = 1 since T = L+S:

Corollary 2.3.1. Let f ∈ H(− 1
2 ,−1). The set T−1({f}) is bounded in H( 1

2 ,1)
0 .

To prove Theorem 2 we will use the same techniques as in [FS04]. In particular,
the following Lemma:
Lemma 2.3.1. Given f ∈ H(− 1

2 ,−1) and ε > 0 there exists g and h in L2(Q) such
that for any ϕ ∈ H( 1

2 ,1)
0 we have:

|g| ≤ ε (2.3)

〈f, ϕ〉 = (g, ϕ√t∗)− (h, ϕx) ∀ϕ ∈ H( 1
2 ,1)

0 (2.4)

In other words we have
f = g√t + hx

in the distribution sense, and g can be taken as small as we want in L2(Q).

Proof of Lemma 2.3.1. This follows directly from the fact that H(0,−1) is a dense subspace
of H(− 1

2 ,−1). Indeed given an ε > 0 there is a ϕ ∈ H(0,−1) such that ‖f − ϕ‖
H(− 1

2 ,−1) ≤ ε.
By the Hahn-Banach theorem there exist functions g, h1 and h2 in L2 such that f − ϕ =
g√t + h1x, ϕ = h2x and |g| ≤ ‖f − ϕ‖ ≤ ε. We take h = h1 + h2 and the Lemma is
proved.

To prove Theorem 2 we will also need the following Gagliardo-Nirenberg type
inequality, for which we give an elementary proof for the convenience of the reader:

Lemma 2.3.2. There exists a constant C ∈ R such that for any u ∈ H( 1
2 ,1)

0 (Q):∫
Q

|u(t, x)|4 dtdx ≤ C2
(∫

Q

|u|2 dtdx+
∫
Q

∣∣u√t∣∣2 dtdx
)
·
(∫

Q

|ux|2 dtdx
)

which implies that: ∣∣u2∣∣ ≤ C ‖u‖ |ux| (2.5)
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Proof.
1. Using the standard Sovolev embedding:

H( 1
2 )(R2) ⊂ L4(R2)

we get by a scaling argument:

∀v ∈ H( 1
2 )(R2)∫

R2
|v(t, x)|4 dtdx ≤ C

(∫
R2

∣∣v√t(t, x)∣∣2 dtdx
)
·
(∫

R2

∣∣v√x(t, x)∣∣2 dtdx
)

(2.6)

2. We use the partial Fourier transform in x:

v̂(t, ξ) =
∫

R
v(t, x)e−i2πxξdx

v√x(t, x) =
∫

R
v̂(t, ξ)

√
i2πξei2πξdξ

By Plancherel and Cauchy-Schwarz:∣∣v√x∣∣2 =
∫

R2
|v̂(t, ξ)| · |v̂(t, ξ)| |i2πξ| dξdt

≤

√∫
R2
|v̂|2 ·

√∫
R2
|v̂(t, ξ)|2 (2πξ)2dξdt

=

√∫
R2
|v|2 ·

∫
R2
|vx|2

3. From the last inequality together with (2.6), by extending functions by zero outside
R× I we get for any v ∈ H( 1

2 ,1)
0 (R× I):∫

R×I
|v|4 ≤

∫
R×I

∣∣v√t∣∣2
√∫

R×I
|v|2
∫

R×I
|vx|2

The Poincaré inequality on R× I:∫
R×I
|v|2 ≤ 1

π

∫
R×I
|vx|2

then gives ∫
R×I
|v|4 ≤ C

π

∫
R×I

∣∣v√t∣∣2 ∫
R×I
|vx|2 (2.7)

4. Finally, given u ∈ H( 1
2 ,1)

0 (Q) we define ũ on R × I as the only 1-periodic function
in t which is equal to u on (0, 1)×I. Take ϕ in the Schwartz space S(R) such that
supp(ϕ̂) ⊂ (− 1

2 ,
1
2 ), and ϕ(0) = 1. Moreover, given 0 < δ < 1, by means of scalings

we may always choose ϕ such that ϕ([− 1
2 ,

1
2 ]) ⊂ [1− δ, 1 + δ].
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a) ũ ∈ S ′(R,L2(I)) so F ũ =
∑

k∈Z ukδ(τ − k) where uk ∈ L2(I) are the Fourier
coefficients of u. By the convolution formula we get the following Fourier
expansion for ϕũ:

F (ϕũ) =
∑
k∈Z

ukϕ̂(τ − k)

b) Thus ∫
R×I

∣∣(ϕũ)√t∣∣2 =
∫

R

∥∥(ϕũ)√t∥∥2
L2(I)

=
∫

R
|τ |

∥∥∥∥∥∑
k

ukϕ̂(τ − k)

∥∥∥∥∥
2

L2(I)

dτ

=
∑
k

‖uk‖2
L2(I)

∫ k+ 1
2

k− 1
2

|τ | |ϕ̂(τ − k)|2 dτ

Now the term on the right hand side can be estimated as follows:∫ k+ 1
2

k− 1
2

|τ | |ϕ̂(τ − k)|2 dτ =
∫ k+ 1

2

k− 1
2

(|τ | − |k|)︸ ︷︷ ︸
≤1

|ϕ̂(τ − k)|2 + |k| |ϕ̂(τ − k)|2 dτ

≤ (1 + |k|)
∫

R
|ϕ̂|2

so we get: ∫
R×I

∣∣(ϕũ)√t∣∣2 ≤ ∫
R
|ϕ̂|2 ·

(∫
T×I
|u|2 +

∫
T×I

∣∣u√t∣∣2) (2.8)

c) Furthermore ∫
R×I
|ϕũ|4 ≥ (1− δ)4

∫
T×I
|u|4 (2.9)

d) Since ϕ ∈ S(R) there exists an A > 0 such that ∀t ∈ R |ϕ(t)| ≤ A/(1 + t).
Thus finally:∫

R×I
|(ϕũ)x|2 =

∞∑
k=0

∫
[k,k+1]∪[−k−1,−k]

|ϕ(t)|2 ‖ũx(t)‖2
L2(I)

≤
∞∑
k=0

2
(

A

k + 1

)2 ∫
Q

|ux|2

= C

∫
Q

|ux|2

(2.10)

5. By using (2.7) with v = ϕũ and combining (2.8), (2.9) and (2.10) we get the desired
inequality.
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6. By using the Poincaré inequality once more one gets (2.5), which concludes the
proof of Lemma 2.3.2.

We are now ready to proceed to the proof of the a priori estimate.

Proof of Theorem 2. By definition Lu+ λS(u) = f means:

∀v ∈ H( 1
2 ,1)

0
(
u√t, v

√
t∗

)
+ µ (ux, vx)−

1
2λ
(
u2, vx

)
= 〈f, v〉 (2.11)

1. We notice that for smooth u: (
u2, ux

)
=
∫
Q

u2ux

= 1
3

∫
Q

(u3)x

= 0

and then by density and continuity this holds for all u ∈ H( 1
2 ,1)

0 .
2. With v = u in (2.11) we get:(

u√t, u
√
t∗

)︸ ︷︷ ︸
=0

+µ (ux, ux) + 1
2λ
(
u2, ux

)︸ ︷︷ ︸
=0

= 〈f, u〉

which gives:

|ux|2 = 〈f, u〉
µ

(2.12)

≤ ‖f‖ ‖u‖
µ

(2.13)

3. With v = ũ in (2.11) we get:(
u√t, ũ

√
t∗

)
+ µ (ux, ũx)︸ ︷︷ ︸

=0

+1
2λ
(
u2, ũx

)
= 〈f, ũ〉

Using the identity (1.2), the fact that ‖ũ‖ = ‖u‖ and that λ ≤ 1 we get:∣∣u√t∣∣2 ≤ 1
2
∣∣(u2, ũx

)∣∣+ ‖f‖ ‖u‖ (2.14)

4. We estimate
∣∣(u2, ũx

)∣∣ using the Lemma 2.3.2:∣∣(u2, ũx
)∣∣ ≤ ∣∣u2∣∣ |ux|
≤ C ‖u‖ |ux|2

(2.15)
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5. We use the Lemma 2.3.1 to write f = g√t + hx together with (2.12) we have:

µ |ux|2 = 〈f, u〉

=
(
g, u√t∗

)
− (h, ux)

≤ |g|
∣∣u√t∣∣+ |h| |ux|

≤ |g|
∣∣u√t∣∣+ |h|√‖f‖ ‖u‖µ

(2.16)

6. Using the estimate (2.16) inside (2.15) and the fact that
∣∣u√t∣∣ ≤ ‖u‖ we get:

1
2
∣∣(u2, ũx

)∣∣ ≤ R0

[
|g| ‖u‖2 + |h|

√
‖f‖
µ
‖u‖

3
2

]
Where R0 is defined as:

R0 = C2 ·
1
µ

So if we choose g small enough such that

R0 |g| ≤
1
2

then using (2.14) we get:∣∣u√t∣∣2 ≤ ‖f‖ ‖u‖+ 1
2 ‖u‖

2 +R0 |h|
√
‖f‖
µ
‖u‖

3
2 (2.17)

So with the notations:

a = 2
(

1 + 1
µ

)
‖f‖

and

b = R0 |h|
√
‖f‖
µ

from (2.13) and (2.17) we get

‖u‖2 ≤ a ‖u‖+ 2b ‖u‖
3
2

A straightforward computation leads to the bound

‖u‖ ≤ (b+
√
a+ b2)2

Since that estimate does not depend on λ the theorem is proved.

2.4 Existence of solutions

Existence and Uniqueness in the Linear Case

Theorem 3. L is a continuous bĳection.
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Proof.

1. Let us define the following operator on H( 1
2 ,1)

0 :

P(u) = u− ũ√
2

P is an isomorphism on H( 1
2 ,1)

0 since the corresponding Fourier multiplier has either
module one or 1/

√
2.

2. Now
〈P∗ Lu, u〉 = 〈Lu,Pu〉

= 1√
2

((
u√t, u

√
t∗

)︸ ︷︷ ︸
=0

−
(
u√t, ũ

√
t∗

)
+ µ (ux, ux)− µ

(
ux, ũx

)︸ ︷︷ ︸
=0

)

= 1√
2

(∣∣u√t∣∣2 + µ |ux|2
)

≥ min{1, µ}√
2

‖u‖2

3. P∗ ◦L is therefore a coercive and continuous linear operator from H( 1
2 ,1)

0 to H(− 1
2 ,−1).

By the Lax-Milgram theorem (cf. for example [Bre93]) it is invertible. Since P is
an isomorphism, so is P∗. We conclude that L is an isomorphism.

Existence for the General Case

Theorem 4. T is surjective.

Proof.
1. Because of Theorem 3, the equation T(u) = f can be rewritten:[

I +K
]
(u) = L−1 f

where
K = L−1 ◦S

so we only have to show that the application I +K is surjective. But since L−1 is
continuous and by Lemma 2.2.1 S is compact, K is a compact map.

2. We choose an open ball U of H( 1
2 ,1)

0 that contains
⋃
λ∈[0,1](L+λS)−1(f). Theorem 2

ascertains that for all λ ∈ [0, 1], L−1 f 6∈ (I + λK)(∂U). So the Leray-Schauder
degree of I +K on U is equal to the one of I which is one:

D(I +K,U,L−1 f) = D(I, U,L−1 f) = 1

As a result, I +K is surjective and the theorem is proved. (For the Leray-Schauder
degree theory, see for instance [Dei85]).
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COLE-HOPF TRANSFORMATION

3.1 Introduction

The aim of this chapter is to prove the following Theorem:
Theorem 5. T is injective.

The proof is quite long and involved and is split into Proposition 3.2.1, Propo-
sition 3.3.1 and Proposition 3.4.1.

The first observation we make is that if two functions u, v ∈ H( 1
2 ,1)

0 satisfy
T(u) = T(v) then w := u− v satisfies

T(w) = −(vw)x (3.1)

Thus to prove Theorem 5 it suffices to prove that given any fixed v ∈ H( 1
2 ,1)

0 the
equation (3.1) has only the trivial solution w = 0 in H( 1

2 ,1)
0 .

This will be done using the Cole-Hopf transformation.

3.2 Cole-Hopf Transformation in Sobolev Spaces

In order to define it we shall need the following anisotropic Sobolev space with
Neumann boundary conditions, denoted H(1,2)

N

H(1,2)
N =

{
u ∈ H(1,2)(Q); ux(t, 0) = ux(t, 1) = 0 ∀t ∈ T

}
Notice that by (1.3) (see also Figure 3.1) we have:

H(1,2)(Q) ⊂ H( 2
3 )( 2

3 )(Q) ⊂ C0(T, C0(I)
)

= C0(Q) (3.2)

We may therefore define the following set H(1,2)
N+ :

H(1,2)
N+ =

{
u ∈ H(1,2)

N ; u > 0 on Q
}

31
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α

β

2
3

1
2

1

2
3

1

2

Figure 3.1: The first step of the Cole-Hopf Transformation is an integration in x. This function U
obtained thus ends up in H(0)(1) ∩ H( 1

2 )(1), which delimits the plain line on the graph
above. But it follows from Tu ∈ H(0)(−1) that u is actually also in H(1)(−1) so U ends
up in H(1)(2) and we have an inclusion in H( 2

3 )( 2
3 ) which is embedded in continuous

Hölder functions.

We will also need the quotient sets H(1,2)
N /R and H(1,2)

N+ /R+ where the latter is
the quotient with respect to the action of the multiplicative group (R+,×) given
by the scalar multiplication (i.e. ϕ ∼ ψ ⇐⇒ ∃η > 0 s.t. ψ = ηϕ).

We now define the following three solution sets S1, S2 and S3, all depending on
a fixed function v ∈ H( 1

2 ,1)
0 .

Definition 4. We say that w ∈ S1 if w ∈ H( 1
2 ,1)

0 and

T(w) = −(vw)x

Definition 5. We say that ([W ],K) ∈ S2 if [W ] ∈ H(1,2)
N /R, K ∈ R and

Wt − µWxx + 1
2(Wx)2 = −vWx +K
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Definition 6. We say that ([ϕ],K) ∈ S3 if [ϕ] ∈ H(1,2)
N+ /R+, K ∈ R and

ϕt − µϕxx + vϕx +Kϕ = 0 (3.3)

Notice that the definitions above are consistent since the equations used do not
depend on the chosen representative. By the remark above, Theorem 5 will be
proved if we can show that the cardinality of S1 is one. We will do this by first
proving that the cardinalities of S1 and S3 are the same (Proposition 3.2.1) and
then finally by proving that card(S3) = 1 (Proposition 3.4.1).

We first prove an auxiliary Lemma that will be used to construct a bĳection
between S2 and S3:
Lemma 3.2.1. The exponential function is a bĳection from H(1,2)

N to H(1,2)
N+ . The

natural logarithm is its inverse. These functions can be naturally extended to
bĳections between H(1,2)

N /R and H(1,2)
N+ /R+.

Proof.
1. Take W ∈ H(1,2)

N . By (3.2) we have W ∈ C0(Q) and thus exp(W ) ∈ C0(Q). The
Lemma thus follows by simple computations and Sobolev injections. Indeed since
Wx ∈ H( 1

2 ,1)
0 and H( 1

2 ,1)
0 ⊂ L4 (by (1.4)), by considering (expW )xx we obtain:

(expW )xx =
(
Wxx︸︷︷︸
∈L2

+( Wx︸︷︷︸
∈L4

)2
)

expW︸ ︷︷ ︸
∈C0(Q)

∈ L2

and since (expW )t ∈ L2 we get exp(W ) ∈ H(1,2)
N+ .

2. The proof goes along the same lines for the logarithm function.
3. The exponential and logarithm functions preserve the group actions used to define

the quotient sets H(1,2)
N /R and H(1,2)

N+ /R+ and can thus be extended to bĳections
between those sets.

We are now ready to prove our first Proposition:
Proposition 3.2.1. The cardinalities of the solution sets S1, S2 and S3 defined above
are the same.

Proof.
1. We shall explicitely construct two transformations, one from S1 to S2: φ21 : S1 → S2

and the other from S2 to S1: φ12 : S2 → S1 that are inverse to each other.
For w ∈ S1 we have wt = (µwx − 1

2w
2 − vw)x so wt ∈ H(0,−1) and thus W :=∫ x

0 w(t, y)dy ∈ H(1,2). Moreover since w ∈ S1 we get

Dx

(
W t − µW xx + 1

2(W x)2 + vW x

)
= 0
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and thus
W t − µW xx + 1

2(W x)2 + vW x = g

for some g ∈ L2(T).
Now define h ∈ H(1)(T) by g(t) = h′(t) +

∫
T g and then define W := [W − h] i.e.

the projection of W − h ∈ H(1,2)
N onto H(1,2)

N /R. An elementary computation shows
that (W,

∫
T g) ∈ S2. We put φ21(w) = (W,

∫
T g).

2. On the other hand, given ([W ],K) ∈ S2 with W ∈ H(1,2)
N , a straightforward compu-

tation shows that Wx ∈ S1. Moreover Wx obviously does not depend on the chosen
representative W . We put φ12([W ],K) = Wx.
Now φ12 ◦ φ21 = I since for any h ∈ L2(T):

Dx

(∫ x

0
w(t, y)dy − h(t)

)
= w

Furthermore given ([W ],K) ∈ S2 then φ21 ◦ φ12([W ],K) = ([U ], K̃) ∈ S2 for some
U ∈ H(1,2)

N and K̃ ∈ R. One checks that [U ] = [W − h(t)] for an h ∈ H(1)(T), which
implies that h′(t) = K̃ −K and thus since h is periodic K = K̃ and h is constant,
and thus [W ] = [W − h]. As a result φ21 ◦ φ12 = I.

3. We will again construct transformations between the two sets S2 and S3 which
are inverse to each other: φ32 : S2 → S3 and φ23 : S3 → S2. Given an element
([W ],K) ∈ S2 and one representative W one defines ϕ = e−

W
2µ . Then

ϕt = −Wt

2µ ϕ

ϕx = −Wx

2µ ϕ

ϕxx =

[
−Wxx

2µ +
(
Wx

2µ

)2
]
ϕ

So

ϕt − µϕxx + vϕx = − 1
2µ

[
Wt − µWxx + 1

2(Wx)2 + vWx

]
ϕ

= −K2µϕ

Using that ϕ = exp(−W/2µ) and Lemma 3.2.1 one gets ϕ ∈ H(1,2)
N+ . We denote [ϕ]

the projection of ϕ ∈ H(1,2)
N+ onto H(1,2)

N+ /R+. So ([ϕ], K2µ ) is in S3. Since [ϕ] does not
depend on the chosen representative W , the function φ32 which maps ([W ],K) to
([ϕ],K/2µ) is well defined.

4. We define in the same way φ23 by: φ23(([ϕ],K)) = ([log(ϕ)], 2µK). It is easy to see
that φ23 is well defined, that it maps S3 to S2, and that φ23 and φ32 are inverse to
each other.
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We sum up the last result in the following corollary.
Corollary 3.2.1. The Cole-Hopf transformation Φ defined by Φ := φ32 ◦ φ21 is a
bĳection from S1 to S3.

3.3 Uniqueness of the Ground Eigenvalue

We will now set out to prove that S3 =
{
([1], 0)

}
. The first step consists in

proving that if (ϕ,K) ∈ S3 then K = 0. We will need a preliminary Lemma
which proves the positivity of the evolution operator associated with the equation
ψt − µψxx + vψx = 0.

Lemma 3.3.1. Given v ∈ H( 1
2 ,1)

0 , for any ψ ∈ H(1,2)
N ((0, 1)× I) such that

ψt − µψxx + vψx = 0 (3.4)

the traces ψ(0) := (x 7→ ψ(0, x)) and ψ(1) := (x 7→ ψ(1, x)) are well defined in
C0(I) and the following holds:

ψ(0) ≥ 0 =⇒ ψ(1) ≥ 0

Proof.
1. The traces are well defined by the same argument as in (3.2):

H(1,2)((0, 1)× I) ⊂ H( 2
3 )( 2

3 )((0, 1)× I) ⊂ C0((0, 1)× I)

2. (3.4) implies that ∫
I
ψtχdx+ µ

∫
I
ψxχxdx+

∫
I
vψxχdx = 0

for any test function χ ∈ H(1,2)((0, 1) × I). Using χ = ψ− := max(−ψ(t, x), 0) we
get: ∫

I
χtχdx+ µ

∫
I
χ2
xdx+

∫
I
vχxχdx = 0 (3.5)

3. We define

g(t) =
∫
I
χ(t, x)2dx

h(t) =
∫
I
χx(t, x)2dx

So we can rewrite (3.5) as:

1
2g
′(t) + µh(t)− 1

2

∫
I
vxχ

2dx = 0 (3.6)
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4. We estimate the third term of the last equation:∫
I
vxχ

2 =
∫
I
vx
(
χ2 − g(t)

)
dx+

∫
I
vxg(t)dx (3.7)

We estimate the two last terms in the following way:

a) ∣∣∣∣∫
I
vx(χ2 − g(t))dx

∣∣∣∣ ≤ h2(t)

√∫
I
(χ2 − g(t))2

where:

h2(t) =

√∫
I
|vx(t, x)|2 dx

b) Notice that since for all t ∈ [0, 1] χ(t, ·) ∈ H(1)(I) we have:

χ2(t, x)− χ2(t, x0) =
∫ x

x0

(χ2)x(t, y)dy

= 2
∫
χ(t, y)χx(t, y)dy

≤ 2

√∫
I
χ2

√∫
I
(χx)2

By integrating first with respect to x0, squaring and then integrating with
respect to x we get: ∫

I
(χ2(t, x)− g(t))2dx ≤ 4gh

so from (3.7) we obtain:∫
I
vxχ

2 ≤ h2(t) · 2 ·
√
g · h+ h1(t) · g(t) (3.8)

where
h1(t) =

∫
I
|vx(t, x)|dx

c) By Young’s inequality:

2h2
√
gh ≤ g · h2

2
2µ + 2µh

d) (3.8) now becomes:

1
2

∫
I
vxχ

2 ≤ g · h2
2

4µ + µh(t) + 1
2h1(t) · g(t)
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b

ac = αa + βb

Figure 3.2: Illustration of the proof of Proposition 3.3.1. Assume that a and b are two eigenvectors of
an operator A with respective eigenvalues λ and µ. Assume further that A preserves the
cone represented in green on the picture. One can choose a particular linear combination
c = αa + βb such that c lies on the “border” of the cone. It is clear that the image A c
is in the cone iff µ ≤ λ. By repeating this argument on the other side of the cone one
concludes that λ = µ.

5. Combining the last estimate with (3.6) yields:

g′(t) ≤ h3(t) · g(t)

where
h3(t) =

(
h2

2(t)
2µ + h1(t)

)
6. h is integrable and g(0) = 0 so g(t) = 0 for any t > 0.

Proposition 3.3.1. If ([ϕ],K) ∈ S3 then K = 0.

Proof. From any representative ϕ we define ψ ∈ H(1,2)((0, 1)×I) by ψ(t, x) = e−Ktϕ(t, x).
A simple computation shows that ψt − µψxx + vψx = 0 on (0, 1) × I so we may use
Lemma 3.3.1 to get that the trace ψ(0) ∈ C0(I) is well defined. We denote its minimum
and maximum values in the following way:

γ+ = max
x∈I

ψ(0, x)

γ− = min
x∈I

ψ(0, x)

so

ψ1 := γ+ − ψ ≥ 0
ψ2 := ψ − γ− ≥ 0

Now ψ1 and ψ2 both qualify for Lemma 3.3.1 and ψ1(0) ≥ 0 and ψ2(0) ≥ 0. Moreover by
construction we have ψ(1) = e−Kψ(0) so applying Lemma 3.3.1 yields:

ψ1(1) = γ+ − e−Kψ(0) ≥ 0

ψ2(1) = e−Kψ(0)− γ− ≥ 0

so we get e−K ≤ 1 and e−K ≥ 1 and hence K = 0.
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3.4 Non-degeneracy of the Ground State

In the last section we proved that the “eigenvalue” K must be zero. We now prove
that degeneracy for the corresponding eigenspace is impossible, i.e. we prove that
it is one dimensional. Degeneracy implies indeed that the eigenspace would meet
the boundary of the cone of positive functions. We will show that this cannot
occur because S2 is bounded in C0(Q)/R. This fact, which follows from our a priori
estimate of Corollary 2.3.1, is proved in the next Lemma.

Notice that by the previous Propositions S2 is naturally embedded in H(1,2)
N /R

(instead of (H(1,2)
N /R) × R) which is itself embedded in C0(Q). With this identifi-

cation we have the following Lemma:
Lemma 3.4.1. S2 is bounded in C0(Q)/R.

Proof.
1. We first show that L (defined by Lu = ut − µuxx for u ∈ H(1,2)

N /R) is an isometry
from H(1,2)

N /R to L :=
{
g ∈ L2(Q);

∫
Q
g = 0

}
. Take f ∈ L. We define f̃ on

T× (−1, 1) by symmetrisation:{
f̃(t, x) = f(t, x) if x ≥ 0
f̃(t, x) = f(t,−x) if x ≤ 0

We can now regard f̃ as an element of L2(T×(R/2Z)). Notice that
∫

T×(R/2Z) f̃ = 0.
By Fourier analysis there is a unique ũ ∈ H(1,2)(T× (R/2Z))/R solution of

ũt − µũxx = f̃

Now ũx ∈ H( 1
2 ,1)(T × (R/2Z)) so ux has a trace on T × {0} and T × {1}. By

symmetry it must be zero in L2(T).
2. For (W, 0) ∈ S2 we have:

LW = −1
2(Wx)2 − vWx

so by the previous result:

W = −1
2 L
−1(Wx(2v +Wx)

)
3. Since W ∈ S2 =⇒ Wx ∈ S1 (cf. Proposition 3.2.1), and Wx ∈ S1 ⇐⇒ T(v +

Wx) = T(v), by the a priori estimate (Corollary 2.3.1) there exists C > 0 such that
∀W ∈ S2, ‖Wx‖ ≤ C. Using H( 1

2 ,1)
0 ⊂ L4 we obtain that Wx(2v +Wx) is bounded

in L2.
4. Combining the three preceding steps we conclude that S2 is bounded in H(1,2)

N /R.
But H(1,2)

N /R ⊂ C0(Q)/R so we get the result.

Proposition 3.4.1.
S3 =

{
([1], 0)

}
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Proof. It is obvious that ([1], 0) ∈ S3. We proved (in Proposition 3.3.1) that (ϕ,K) ∈ S3
implies K = 0. So we take ([ϕ], 0) ∈ S3 and we will now show that [ϕ] = [1].

1. Given one representative ϕ of [ϕ], let us choose a point x0 ∈ Q where ϕ takes its
minimum γ:

γ = min
Q

ϕ = ϕ(x0)

and let us define for n ∈ N the function ψn on Q by

ψn := ϕ− γ + 1
n

By construction we have ψn(x0) −−−−→
n→∞

0 and thus logψn(x0) −−−−→
n→∞

∞. It is also
clear that for any n ∈ N we have ψn ∈ S3 so by Lemma 3.2.1, [logψn] ∈ S2.

2. If we now assume that [ϕ] 6= [1] then there exists x1 such that ϕ(x1) 6= γ so the
sequence {log(ψn(x1))}n∈N is bounded. As a result ‖log(ψn)‖C0/R −−−−→

n→∞
∞. That

is a contradiction to the fact that S2 is bounded in C0(Q)/R. We may therefore
conclude that [ϕ] = [1] and the Proposition is proved.

3.5 Smoothness

At this point we have all the ingredients to prove our main result, the Theorem 1:

Proof of Theorem 1.

1. T′(m) is injective for allm ∈ H( 1
2 ,1)

0 because of the observation (2.2) and Theorem 5.
2. T′(m) = L+S′(m) but S′(m) is compact (Lemma 2.2.1) so the Fredholm index

ind
(
T′(m)

)
= ind(L) = 0 since L is an isomorphism (cf. Theorem 3). Thus T′(m)

is surjective. Since T′(m) is continuous, linear and bĳective it is a homeomorphism.
3. We can use the inverse mapping theorem in Banach spaces (see [Hör03]) to assert

that T is locally a diffeomorphism.
4. T is a surjection (Theorem 4) so it is a global diffeomorphism.

3.6 Extensions

Our method can be adapted to cover the case of non homogeneous Dirichlet bound-
ary conditions as well as the case of periodic spatial boundary conditions (prescrib-
ing the momentum

∫
u(t, x)dx at t = 0 for the solution).
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GEOMETRIC INDEX

In der ganzen modernen
Mathematik ist die Theorie der
Differentialgleichungen die
wichtigste Disziplin

Lie, Leipziger Berichte, 1895

4.1 Introduction

The usual picture of a differential equation is that of a flow on a manifold. This
is only one of many aspects of differential equations. There are in particular three
levels at which to look at differential equations.

Vector fields

This is the most familiar way of looking at ordinary differential equations. One has
an equation of the form:

dx
dt = f(x)

where f is a vector field of a given manifold.
The vector field doesn’t depend on time here but this is not a restriction since

we may always add the trivial equation dt
dt = 1 and the new variable x := (t, x).

A not-so-innocent remark is that this implicitly models immobility, since im-
mobility corresponds to the particular vector field zero. Technically speaking, from
the space-time perspective, we have introduced a splitting of time and space. It
makes sense to say that “position doesn’t change” (or that “time doesn’t change”).
This splitting between time and space will be relevant in some of our applications
but not in the development of the general theory.

45
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Jet spaces

The most general way to describe an ordinary differential equation is by a number
of equations:

F j
(
t, x1, . . . , xn,

dx1

dt , . . . ,
dxn
dt

)
= 0 1 ≤ j ≤ m

which fixes a relation between the time t (the independent variable), xi, the depen-
dent variables, along with their derivatives dxi

dt .
From now on we will denote the sequence xi by x:

x ≡ (x1, . . . , xn)

Lie ([Lie85; Lie77; Sto00; Val45]) had already imagined a geometric theory,
where these equations would define a surface (a manifold) as follows:

M :=
{
(t, x, p) : F j(t, x, p) = 0 1 ≤ j ≤ m

}
in the space comprising 2n+1 variables t, xi, and pi. Now the variables pi are just
extra variables, not yet related to xi.

That dynamics(a) is provided by hyperplanes(b) at every point, which indicates
the relations between p and x. The hyperplane corresponding to the coordinate i
at the point (t0, x0, p0) would take the form:

P i(t0, x0, p0) :=
{
(t, x, p) : (xi − xi0)− pi0(t− t0) = 0

}
(4.1)

At each point (t0, x0, p0) ∈M the intersection of the planes P i(t0, x0, p0) models
the dynamics.

Let us denote this direction by P :

P (t0, x0, p0) :=
⋂
i

P i(t0, x0, p0)

The intersection of P and the tangent plane of M at (t0, x0, p0) produces a
direction, tangent to the manifold M at this point. We use the word “direction”
in a loose sense here, to mean any subspace at this point (not necessary a line).

Now a graph of a solution to the differential equation is obtained by integrating
those directions on the surface M. If those directions are not lines, there will
possibly be more than one solution going through a given point.

What we presented so far is a general point of view of jet spaces that allows to
handle any differential equation, partial or ordinary. It was already considered by
Lie. See also [Olv93; Vin84] for similar points of view.

So, loosely speaking, the dynamics is given by fields of hyperplanes P i, while
the constraints are given by the functions F j .

awe call “dynamics” the relation between the variables pi and xi
bcalled “contact planes”
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ξ

M

P (ξ)

TξMsolution

Figure 4.1: An illustration of a differential equation on a manifold.

Planes and differential forms

Let us emphasise that the planes P i(t0, x0, p0) are only defined infinitesimally close
to the point (t0, x0, p0) onM. More precisely, they are only defined on the tangent
space at ξ0 = (t0, x0, p0).

One convenient way to describe those hyperplanes is via differential forms. For
instance the plane (4.1) is represented by the differential form

θi(t0, x0, p0) := dxi − pi0 dt

In general a differential form ω is expressed in coordinates (ξi), at the point ξ0, as:

ω(ξ0) =
∑
i

ωi(ξ0) dξi

A differential form is nothing but a point dependent linear form. At every point
its kernel defines an hyperplane. Differential forms are thus convenient to describe
hyperplanes varying smoothly with respect to the position.

For the differential form above, the corresponding hyperplane would have the
equation:

P (ξ0) :=
{
ξ :

∑
i

ωi(ξ0)(ξi − ξi0) = 0
}

Note again that those planes are only defined locally around the point ξ0.
The previous construction, with variables (t, x, p) and contact planes (4.1), is

referred to as the “jet-space” formulation. A submanifold of a jet-space naturally
describes a differential equation.
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Quasilinear equations

Our point of view will be slightly more general than the jet-space one. We will now
consider any possible planes (not only the contact ones), and will thus no longer
need the “third coordinates” p.

Let us consider the equation:∑
i

eji (t, x)
dxi
dt + aj(t, x) = 0 1 ≤ j ≤ m (4.2)

This type of equation is called quasilinear because the highest order derivative
appears linearly in the equation.

An equivalent way of formulating this equation is to directly describe the dy-
namics by the following differential forms:∑

i

eji (t, x)dxi + aj(t, x)dt 1 ≤ j ≤ m (4.3)

As we see there, we have now lost any idea of a splitting between time and space.
So, given a manifold that models space-time, any differential form is acceptable to
describe the dynamics.

Now the graph of the solution of that equation will be a curve tangent to the
following hyperplanes (cf. Figure 4.1):

P j(t0, x0) :=
{
(t, x) : ej(t, x)(x− x0) + aj(t, x)(t− t0) = 0

}
1 ≤ j ≤ m

As before, we denote the intersection of those hyperplanes by:

P (t0, x0) :=
⋂
j

P j(t0, x0)

Vertical Solutions

Notice that going from (4.2) to (4.3) we have, formally, “multiplied by dt”. Doing
this allows us to forget the distinction between the dependent and independent
variables (time and space) but that comes at a cost. Intuitively, now, “dt is allowed
to be zero”.

Let us choose for instance e(t, x) = 0 and a(t, x) = x. The dynamics is thus
modelled by the differential form:

x dt (4.4)
corresponding to the trivial differential equation

x = 0 (4.5)

In that case, the curve C parametrized by:

s 7→ (t0, x0 + s)



4.1. INTRODUCTION 49

is a curve tangent to the plane field P at every point, and going through (t0, x0).
We conclude that there is a solution to the problem described by (4.4).

However, the only relevant solution to (4.5) is obviously only x = 0. Clearly,
the curve {x = 0} is also a solution to (4.4).

We see the advantage of the formulation with differential forms: instead of
restricting the set of possible initial conditions, we allow any initial condition, but
we must be prepared to obtained unwanted, “vertical”, solutions, i.e. solutions
where “time stands still”.

The next step is to define what those unwanted solutions exactly are.

Motivation for the Reduction Procedure

The simplest model of a differential equation is now given by a manifold M and
some differential forms defined on it. It has thus become necessary to describe
those unwanted, “vertical” directions, in order to eliminate the corresponding un-
wanted solutions. We therefore assume that we are given vertical directions at every
point. In other words, at any given point we are given a hyperplane describing the
“unwanted direction”. For instance such a hyperplane could be given by:

T (t0, x0) :=
{
(t, x) : x− x0 = 0

}
Two remarks are in order here:
First, this amounts to introduce a notion of simultaneity. This is not the same

as having a complete splitting of time and space. In fact, this is not even equivalent
to considering space-time as a bundle over the time line, if the field of hyperplanes
T is not integrable.

Second, as a physicist would notice, not all physical theories allow to model
simultaneity. In particular, the theory of relativity specifies other “forbidden di-
rections” at every point (the ones with negative Lorentz length). Even though we
will assume that the forbidden directions span a hyperplane at every point, the
whole definition of the reduction procedure, described later in this Chapter, will go
unchanged if one is given a set of directions at every point instead.

Now we are able to define a set where there are at least some non forbidden
directions. This set is simply defined by the points where T and P are transverse:

M :=
{
ξ ∈M : P (ξ) 6⊂ T (ξ)

}
In the event of M being a submanifold, to make the point clearer, we denote

that submanifold by:
M′ :=M

The essential observation now is that we obtain a new quasilinear equation by
restricting the differential forms on the submanifoldM′. To restrict a differential
form on a submanifold simply means that its domain is now restricted to the tangent
spaces of the new manifoldM′.
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A simple example

Let us work out a simple example. Let M = R3 with coordinates labelled as
(t, x, y). The differential forms defining the dynamics are:{

dy − x dt
y dt

(4.6)

Let us assume that the simultaneity directions are given by:

T (t0, x0, y0) =
{
(t, x, y) : t = t0

}
It is easy to see that the intersection P of P1 and P2 is “vertical” as soon as

y0 6= 0:
P (t0, x0, y0) =

{
(t, x, y) : t = t0

}
⊂ T (t0, x0, y0) if y0 6= 0

P (t0, x0, 0) =
{
(t, x, y) : y − x0(t− t0) = 0

}
So we see here that the set where we have hope to find non-vertical solutions is

simply:
M :=

{
(t, x, y) : y = 0

}
In this simple case, this set turns out to be a submanifold of M. Note that this
will also be the case in most practical examples in this report.

According to the last section, all we have to do now is to compute the restriction
of the differential forms (4.6) to the submanifoldM′ :=M. The tangent space of
M′ is easy enough to compute, because in the set of coordinates we are working
with, it is a linear subspace. So in those coordinates, a tangent vector to M′
has coordinates (α, β, 0). As a consequence, the differential form dy is zero, when
restricted toM′.

Obviously, the form y dt is also zero when restricted to M′, so the new, “re-
duced”, equation is now formulated as:

x dt

A similar computation would lead to a new reduced setM′ = {x = 0}, and it
is again a submanifold. On this manifold, all the original differential forms are now
zero when restricted on it. Any curve onM′′ is thus a solution. SinceM′′ is one
dimensional, it is the only solution to the problem.

4.2 Codistributions

This section is devoted to the definition of codistributions. Codistributions are a
means to describe fields of subspaces of the tangent space. In simple cases, as a
field of lines, or planes, the dimension does not change. In those cases one may
describe those subspace fields by using spans of vector fields, or spans of covector
fields.
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However, when the dimension is allowed to change, it is crucial to choose either
spans of vector fields (called “distribution” in the realm of differential geometry),
or spans of covector fields, which are the ones that prove useful in the study of
differential equations with constraints.

The reader willing to skip this section may content himself with the following
definition of codistributions:

A codistribution is a (point dependent) intersection of a fixed number
of smoothly varying hyperplanes.

The reason why they occur naturally in this form, is that differential equations
are usually provided by a list of smooth functions defined on a jet-space, being
equal to zero. Each such function will give rise to a hyperplane by differentiation,
the intersection of which giving the directions to integrate in order to construct the
solutions.

Definition

Definition 4.1. A codistribution Ω is a mapping which for every point ξ ∈M as-
sociates a subspace of T∗ξM. This mapping must also fulfill the following property:

For any ξ ∈ M, there exists a neighbourhood N of ξ and a (possibly infinite)
family of smooth covector fields {ϕa}a∈A on N such that:

∀ζ ∈ N Ωζ = spana∈A{ϕaζ} (4.7)

Remark 4.2.1.

As opposed to some other definitions of codistributions (e.g. [AMR88]),
we do not require the dimension of Ωξ to be constant with respect to ξ.
This will turn out to be important for the formulation of differential
equations.

Operations on Codistributions

We also define the sum of two codistributions as the point-wise sum of the subspaces
in the cotangent space, i.e.:

(Ω1 + Ω2)ξ := (Ω1)ξ + (Ω2)ξ ∀ξ ∈M

The reader will be easily convinced that the result of this operation is a smooth
codistribution, since it is generated by the sum of the generating covector fields of
Ω1 and Ω2.

Similarly we will denote the point-wise intersection by:

(Ω1 ∩ Ω2)ξ := (Ω1)ξ ∩ (Ω2)ξ
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Note that this codistribution need not be smooth. For instance on R2 with
coordinates (x, y), the intersection of Ω1 = span{dy} and Ω2 = span{xdx + dy}
is zero everywhere except on the line described by the equation x = 0. Such a
codistribution cannot be smooth.

Pull-backs

Let us now recall the definition of a pull-back.

Definition 4.2. Let a smooth function ϕ maps a manifold N to a manifoldM

ϕ : N →M

Recall that the derivative, or Jacobian, of ϕ is denoted by ϕ∗.
The pull-back of a one-form (or covector) θ ∈ T∗M is the one-form ϕ∗(θ)

defined by:
〈ϕ∗(θ), X〉 := 〈θ, ϕ∗(X)〉 ∀X ∈ TN

It is clear that we may then define pull-backs of codistributions by pulling-back
the subspaces of the cotangent space at each point. Notice that the pull-back of a
smooth codistribution is always smooth.

4.3 Implicit Differential Equation

General Definitions

Definition 4.3. An Implicit Differential Equation (IDE) is defined as the
triple

(M,Ω, τ)

where

• M is a smooth manifold

• Ω is a smooth co-distribution onM

• τ is a smooth co-distribution onM

Remark 4.3.1.

Conceptually we will regard this triplet as follows:

• M models space-time
• the co-distribution Ω models the dynamics
• the co-distribution τ models simultaneity
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In all our examples the codistribution τ will be spanned by the differential form
dt where t is the first variable in our coordinate system. It is only a practical
convention that we will follow in all our examples.

In other words, in all our examples the coordinates will be labeled (t, x1, x2, . . . , xd)
we will assume the following:

Notation 4.3.1 (Blanket hypothesis). Unless stated otherwise, the simultaneity
codistribution τ will be defined by:

τ = span(dt) (4.8)

Example 4.3.1. Of course our framework applies to explicitly defined ordinary
differential equations as well. Suppose the equation

dxi

dt = f i(t, x) 1 ≤ i ≤ d (4.9)

has to be solved in Rd. In our framework this can be written as the IDE:

Ω = span
{
dxi − f i(t, x) dt; 1 ≤ i ≤ d

}
(4.10)

on the space
M = R× Rd = Rd+1

and where the simultaneity codistribution is as usual:

τ = span(dt)

where t denotes the first coordinate in Rd+1.

Notation 4.3.2. We will use a special notation for IDEs throughout this report.
The notation will be as follows: each time we will provide the number of space
variables plus time, so that the total number of variables is d+ 1.

Given one-forms θ1, θ2,. . . , θn defined on Rd+1, and real-valued functions f1,
f2,. . . , fm defined from R× Rd, we will write the IDE at hand as:

θ1

θ2

...
θn

f1(t, x) = 0
f2(t, x) = 0
...
fm(t, x) = 0
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By this we mean that:

M := {t, x ∈ R× Rd : fi(t, x) = 0 ∀i ≤ m}

In all our examples,M will be a smooth submanifold of Rd+1, and the Jacobian of
the function f with coordinates (f1, f2, . . . , fm) will have full rank.

Ω := spani≤n(θi)|M

(notice that this is the restriction of a certain codistribution onM)

τ := span(dt)|M

Definition 4.4. A (generalized) solution to an IDE (M,Ω, τ) is a one dimensional
manifold C and a smooth immersion:

ϕ : C →M

such that the pull-back of Ω by ϕ is zero. In other words if:

ϕ∗Ω = 0

Remark 4.3.2.

Note that the restriction (pull-back) of a codistribution is always well
defined and smooth.

Remark 4.3.3.

Those solutions are “generalized” because the definition does not make
use of the simultaneity co-distribution τ . In particular generalized so-
lutions may be curves in space-time along which time is constant! Note
that this concept was already considered by Lie [Sto00, §2.2]!

Example 4.3.2. A solution of the IDE set up in Example 4.3.1 is a curve in
Rn+1 representing the graphs of solutions in the ordinary sense. In other words,
if the function x is a solution of (4.9), the curves parametrized by:

s 7→ (s, x1(s), . . . , xd(s))

are orthogonal to the codistribution (4.10).

In a similar manner, curves orthogonal to (4.10) must take the form above.
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Practical Computations

In practice a submanifold is often given by the locus of a given function G, i.e. by
the set:

N := {ξ ∈M : G(ξ) = 0}
We shortly explain how to compute the restriction of a given codistribution Ω

on N in this case.
Obviously for any tangent vector X to this submanifold N we have

〈dG,X〉 = 0

Now if we denote the injection of N inM (which is also an immersion since N
is a submanifold):

i : N →M
and in a coordinate system (which we denote by t, x1, . . . , xd ifM had dimension
d+ 1) this simply means that one obtains the following relations:

∂G

∂t
i∗(dt) +

d∑
j=1

∂G

∂xj
i∗(dxj) = 0

4.4 Jet spaces

In this section we show how to generate plenty of IDEs from differential equations,
possibly with constraints.

Definition 4.5. Given a manifold X and an open interval I ⊂ R we first trivially
define the zero-th order jet space J0 by

J0(I × X ) := I × X

and the first order jet space J1 by

J1(I × X ) := I × TX

Notice that if Y ⊂ X is a submanifold of X one has the natural embedding:

J1(I × Y) ↪→ J1(I × X )

Note that the first jet space admits the following canonical projections:

J0 I

J1

π0

π
π1
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Remark 4.4.1.

In what follows we will often denote coordinates of J1(I,X ) by (t, x, ẋ).
The reader must be aware that Newton’s notation ẋ will never be a
derivative. All the derivatives will be denoted either with Leibniz’s
symbol ′, or explicitly with the usual notation:

f ′(t) = df
dt (t)

The jet space J1(I ×X ) also admits a codistribution generated by the contact
form which in coordinates are defined as:

θi := dxi − ẋi dt 1 ≤ i ≤ n (4.11)

Remark 4.4.2.

One may define the contact distribution without resorting to the coor-
dinates by considering the lifting operation from I × X to J(I × X ).
The lifting is defined as follows: for any section γ of the bundle I × X
(a function from I to X ) we define its lift as being the curve

t 7→
(
t, γ(t), dγ(t)dt

)
∈ J(X )

Taking the tangent of each such curve we thus obtain a vector of TJ1(I×
X ). The linear span of all those vectors is sometimes called the Cartan
distribution on the jet space J1(I × X ) ([Vin84]). The codistribution
orthogonal to it is the contact codistribution.

Definition 4.6. The jet space J1(I × X ) will now be implicitly equipped with an
IDE structure given by the contact codistribution spanned by the contact forms
(4.11) and the trivial simultaneity codistribution τ as in (4.8).

4.5 Pull-backs of IDEs

Introduction

We will often have to deal with differential equations stated in very similar ways.
For instance what is the difference with the two following systems:{

dx− p dt
p = x
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and the system simply described by the form:

dx− xdt

Clearly, those two systems are different, the second one sporting one less variable
than the first. However, it is also clear that they are related, the first one being a
reformulation of the second one with an auxiliary variable p.

The aim of this section is to give a precise account of how different IDE may be
related. The key notion is that of pull-back. For example, the second system above
is just the pull-back (i.e. “restriction”) of the first system on the submanifold of
equations {p = x}.

Definitions

Definition 4.7. Given a smooth map ϕ:

M1
ϕ→M0

and two IDEs
(M1,Ω1, τ1) and (M0,Ω0, τ0)

we define the pull-back of (M0,Ω0, τ0) on (M1,Ω1, τ1) by:

ϕ∗
(
(M0,Ω0, τ0)

)
:= (M1,Ω1 + ϕ∗Ω0, τ1 + ϕ∗τ0)

One way to see the pull-back operation is that it restricts another IDE (M0,Ω0, τ0)
using the mapping ϕ, and adds the structure obtained to the current IDE (M1,Ω1, τ1).
This will be especially useful when the IDE on which one pulls-back is the full
jet-space (Definition 4.6), i.e. for instance (R2d+1,Ω, τ), where Ω is the contact
codistribution made of the contact forms dxi − pi dt, in the coordinates (t, xi, pi).

But the most frequent use will be to pull-back on submanifolds. To do this
and still be able to use the definition above, we need to give any manifold an IDE
structure. This is done via the notion of a trivial IDE:

Definition 4.8. A manifold M may always be equipped with a trivial IDE
structure by choosing Ω = 0 and τ = 0.

In the sequel we will identify manifolds with trivial IDEs.

M≡ (M, 0, 0) (4.12)

Remark 4.5.1.

Identifying manifolds with trivial IDEs allows us to define an IDE for
any submanifold of a given IDE. Specifically, if

ϕ :M1 →M0
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then the pull-back of the IDE (M0,Ω0, τ0) on M1 is defined as the
pull-back of (M0,Ω0, τ0) on (M1, 0, 0) (according to convention (4.12))
using Definition 4.7, i.e.:

ϕ∗(M0,Ω0, τ0) = (M1, ϕ
∗Ω0, ϕ

∗τ0)

Remark 4.5.2.

In particular, any submanifold of J1(I × X ) has now a natural struc-
ture of implicit differential equation following the convention of Re-
mark 4.5.1.

Remark 4.5.3.

In the sequel this will mostly be used when ϕ is an immersion, its image
thus defining a sub-manifold N . In that case the pulled back IDE is
simply given by the restriction of the codistributions Ω and τ on the
submanifold N .

4.6 Degeneracy

Degeneracy occurs at the points where the codimension of Ω is greater than one.
The meaning of degeneracy is that the codistribution does no longer ensure unique-
ness of solutions. We will see later however that degeneracy of the codistribution
at a given point does not necessarily imply that several solutions pass through this
point (see e.g. the Example 4.8.9).

Let us denote the set containing those points by:

N :=
{
x ∈M : dim Ω⊥ > 1

}
Proposition 4.6.1. N is a closed set.

Proof. This is due to the fact that Ω is smooth, so the codimension of Ω may not locally
increase.

Definition 4.9. When N is a submanifold of M we will call it the degenerate
manifold.
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Example 4.6.1. The equation of conservation of energy of an harmonic oscil-
lator in one dimension is:

x2 + ẋ2 = 1

It is interesting to consider this equation as an IDE on the jet space J(R × R).
We may parametrize this cylinder with (t, cos(θ), sin(θ)). The pull-back of the
contact form dx− ẋdt is

− sin(θ)(dθ + dt)

The solutions passing through the point
(
t0, cos(θ0), sin(θ0)

)
are thus the curves

(t, x(t), dx
dt (t)) parametrized as:

x(t) = cos(t− t0 + θ0)

when sin(θ) = 0 there is another solution, parametrised by: (t0 + s,±1, 0)

Note that the points where x = ±1 are important also for numerical reasons. Let
us investigate the solvability of a simple midpoint scheme:

(x1 − x0)2

h2 + (x1 + x0)2

4 = 1

Using the notation b := h/2 and α = (1− b2)/(1 + b2) we obtain:

(x1 − x0α)2 = 4b2

(1 + b2)2 (1− x2
0 − b2)

For this numerical equation to be solvable in x1 we need the right-hand side to
be positive, which will not be the case if 1− x2

0 is too small. Note also that for
such a scheme to work one has to keep track of the sign of ẋ.

The following three examples are taken from [Arn88, § 1.3.C]. See also [BG92,
§ 5.39, § 7.25]. For the Clairaut equation see also [HNW93, § I.2].

Example 4.6.2. The Clairaut equation is defined as

x = tẋ− f(ẋ)

The restriction of Ω is

ẋ dt+ tdẋ− f ′(ẋ) dẋ− ẋ dt = (t− f ′(ẋ)) dẋ

We may define the degenerate manifold

N := {(t, x, ẋ) ∈M : t = f ′(ẋ)}
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The manifold N is itself a (degenerate) solution. Notice that when f is strictly
convex, this regular solution is the lift of the Legendre transformation of f , defined
as

g(t) := sup
t

(tẋ− f(ẋ))

The other solutions, passing through points (t0, x0, ẋ0) outside N are given by:

s 7→ (t0 + s, (t0 + s)ẋ0 − f(ẋ0), ẋ0)

So in this case as in the earlier cylinder example the solutions are unique except
on the singular manifold where there are exactly two of them.

Example 4.6.3.
ẋ2 = x

This is an example similar to the two previous ones. The solution is unique except
on the degenerate manifold

N := {x = 0 : ẋ = 0}

N itself is a solution. The other solutions passing through (t0, ẋ2
0, ẋ0) are

parametrized as:
s 7→ (t0 + 2s, (ẋ0 + s)2, ẋ0 + s)

Notice that the degenerate solutions(c) are in fact envelopes of the regular solu-
tions.

Example 4.6.4.
ẋ2 = t

This is an example of an equation with “regular singular” points ([Arn88, § 1.4.E]).
From our point of view there is no particular pathology: the solution through any
point (ẋ2

0, x0, ẋ0) exists and is unique; it is parametrised by:

s 7→
(
(ẋ0 + s)2,

2
3
(
(ẋ0 + s)3 − ẋ3

0
)

+ x0, ẋ0 + s
)

However, the π1-projections are not differentiable at t = 0 since their graph here
is a cusp.

calso called “singular solutions” in [BG92]
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4.7 The Reduction Procedure and the Index

Vertical Solutions

One of the possible pathologies that may occur is that the solutions be vertical
with respect to the simultaneity co-distribution τ . Vertical directions are basically
the directions where time does not change, in other words the directions which are
orthogonal to τ .

Horizontal forms are forms which vanish on vertical directions. Those forms are
“bad” in the sense that they force solutions to be vertical. Those vertical solution
cannot be graphs of smooth time-depending functions.

Definition 4.10. We call a form θ horizontal if it belongs to the co-distribution
τ :

θ ∈ τ

Notice that the set of horizontal forms of Ω is simply:

Ω ∩ τ

We are able to state an elementary result on pull-backs of IDEs and horizontal
forms:

Proposition 4.7.1. Assume that the IDE (M,Ω, τ) is the pullback of (M0,Ω0, τ0)
by ϕ on (M1,Ω1, τ1):(

M,Ω1 + ϕ∗(Ω0), τ1 + ϕ∗(τ0)
)

= ϕ∗(M0,Ω0, τ0)

Then
ϕ∗(Ω ∩ τ) ⊂ Ω1 ∩ τ1

Proof. The proof is a direct consequence of the general (elementary) fact that for two
co-distribution Ω0 and τ0 one has:

ϕ∗(Ω0 ∩ τ0) ⊂ ϕ∗(Ω0) ∩ ϕ∗(τ0)

so we obtain the result since ϕ∗(Ω0) ⊂ Ω = ϕ∗(Ω0)+Ω1, and ϕ∗(τ0) ⊂ τ = ϕ∗(τ0)+τ1.

Note that the inclusion in the theorem is not strict in general. See Example 4.8.2
for more details.
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Reduction Procedure

One is rarely interested in vertical solutions because they do not correspond to
any graph of any time-depending function. This is why one is led to the reduc-
tion procedure which eventually allows to define local solvability for non-vertical
solutions.

Definition 4.11. We define the reduced set as the setM defined by:

M :=
{
ξ ∈M : (Ω ∩ τ)ξ = 0

}
Remark 4.7.1.

That reduced set obviously depends on the codistributions Ω and τ .
However, in order to reduce the notational overhead, and if no confusion
is possible, we will not mention this dependence in the notation.

Definition 4.12. Assume thatM′ is a submanifold ofM such that:

M′ ⊂M

The pull-back of Ω onM′ is denoted by Ω′. In other words:

M′ i
↪→M Ω′ = i∗Ω (4.13)

By pulling back the simultaneity co-distribution τ one obtains a new IDE as pointed
out in Remark 4.5.1 and Remark 4.5.3.

So from any choice of any submanifold contained in M we obtain a new IDE.
We may thus proceed further and define further reduction sets and continue until
the process stops. This is the purpose of the reduction chains, which will help us
to define the index of an IDE at every point.

4.8 Definition of the Index

Reduction Chains

Definition 4.13. For a point ξ ∈ M and a neighbourhood N of ξ, a reduction
chain is a finite sequence of submanifolds, M(k) for 0 ≤ k ≤ n of M∩ N such
that:

1.
ξ ∈M(k) 0 ≤ k ≤ n

2.
M(n) =M(n) ⊂M(n−1) (M(n−1) ⊂ · · · ⊂ M′ ⊂M (M
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The length of the chain is the integer n.
The maximum of the lengths of all such possible chains in the neighbourhood

N is the integer which will denoted by:
indNM ξ

We are now able to define the index of a given point:

Definition 4.14. The index of a point ξ ∈ M is the maximum, over all neigh-
bourhoods N of ξ, of the maximum over all the lengths of reduction chains in N
at ξ, i.e. the index at ξ, indM ξ is defined by:

indM ξ := max
N

indNM ξ

Remark 4.8.1.

The same remark as Remark 4.7.1 is in order. The index depends
obviously on the codistributions Ω and τ . Again, we will not emphasise
that dependency in the notation.

Example 4.8.1. For example, ifM is a neighbourhood of ξ ∈M then

ind ξ = 0

We may now also define the global index of an IDE:

Definition 4.15. The global index of an IDE is the maximum of all indices at
all points:

ind(M,Ω, τ) := max
ξ∈M

ind ξ

Another important concept is that of a regular point, a point where all the
reduced sets are submanifolds:

Definition 4.16. A point ξ ∈M is said to be regular if there exists a neighbour-
hood N of ξ such that the successive reduced sets are in fact submanifolds, i.e. ξ
has the following reduction chain:

M(n) =M(n) =Mn−1 ⊂M(n−1) ⊂ · · · ⊂ M′ =M⊂M
We will call that chain the regular reduction chain at ξ.

Definition 4.17. An IDE is said to be regular if it is regular at all points.

Proposition 4.8.1. At a regular point ξ ∈M the index is the length of the regular
reduction chain.
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Proof. The proof follows from an induction on the length of the regular reduction chain
and the fact that if N is a submanifold ofM then the reduction chains on N are at most
as long as the reduction chains onM.

Example 4.8.2. A trivial example of reduction is given by the following linear
system: 

dy − xdt
dz − y dt
z = 0

It is straightforward to see that the reduced set are the manifolds M′ := {y =
0} ∩M andM′′ := {x = 0} ∩M′. In particular, this IDE is regular (all linear
IDEs are, see Proposition 5.1.2).
According to the definition of the reduced manifolds we have

M′
i
↪→M

and the surjection:
Ω i∗→ Ω′

Notice now that by definition of the reduction: i∗(Ω∩τ) = 0 although Ω′∩τ ′ 6= 0,
so the inclusion in Proposition 4.7.1 is in general strict.

Example 4.8.3. We take an example from [CG95, Example 3] to illustrate the
case of a non-regular IDE. 

ẋ = 1
ẏ = z

0 = xz − y

Those equations define a manifoldM in the jet space J(R×R3) ≡ R7 and hence
an IDE by pull-back (Remark 4.5.2). The reduced setM is defined by

M := {xż = 0} ∩M

Let us define the two submanifolds

N0 :=
{
ż = 0

}
∩M and N1 :=

{
x = 0

}
∩M

So we have:
M = N0 ∪N1

There are only vertical solutions on N1, parametrized by

R 3 s 7→ (t0, 0, 0, z0, 1, z0, ż0 + s)



4.8. DEFINITION OF THE INDEX 65

As a result, the reduction of N1 is N1 = ∅. We conclude that the index of any
point of N1 with respect to N1 is zero.
Now, the restriction of Ω on N0 generates a one-dimensional distribution which
yields the solution passing through the point (t0, x0, x0z0, z0, 1, z0, 0):

(t0 + s, x0 + s, z0(x0 + s), z0, 1, z, 0)

As a result, N0 is totally reduced, i.e. N0 = N0. We conclude that the index of
any point of N0 with respect to N0 is zero.
We conclude that the index of all points inM is one, whereas the index outside
M is zero. According to our definition of the index, the index of this system is
one.

Remark 4.8.2.

The Example 4.8.3 above may be defined from the following IDE in R6

with coordinates (t, x, y, z, ẋ, ẏ):

dx− dt
dy − z dt
ẋ = 1
ẏ = z

0 = xz − y

(4.14)

Consider now the projection π from the IDE J(I × R3) to R6 defined
by “forgetting” the last component:

π(t, x, y, z, ẋ, ẏ, ż) := (t, x, y, z, ẋ, ẏ)
the Example 4.8.3 is now the pull-back of (4.14) by π on J(I ×R3). See
also Example 4.8.9 for another pull-back of (4.14).

Example 4.8.4. The reduced manifold may also be an open subset ofM (and
thus have the same dimension). Take for example M = R2 with coordinates
(t, x). The codistribution is generated by 2x dx − dt (this corresponds to the
differential equation 2xẋ = 1). The reduced manifold is

M′ := {x 6= 0}

Indeed, the solutions passing through (t0, x0) are parametrised as s 7→ ((x0 +
s)2 − x2

0 + t0, x0 + s). Those curves are not graphs of smooth functions onM′.

Proposition 4.8.2. A solution on a reduced manifoldM′ is also a solution of the
IDE defined onM.
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Proof. A solution is a manifold C
i
↪→M′ such that i∗ Ω′ = 0. But withM′

j
↪→M we have

by definition (cf. (4.13)) Ω′ = j∗Ω so (j ◦ i)∗Ω = i∗(j∗(Ω)) = 0.

Example 4.8.5. A simple example from [RLW01, Example 7] may illustrate the
efficiency of calculus via pull-backs.{

tẋ2 − 2xẋ+ 9t2 = 0
dx− ẋdt

Computing the pull-back of the contact form dx− ẋdt onM yields:

(2tẋ− 3x) dẋ− 2(ẋ2 − 9t) dt

which immediately allows to conclude that:

• when 2tẋ− 3x 6= 0 there exists a unique solution through any point
• when 2tẋ− 3x = 0 then the solutions are vertical unless ẋ2− 9t = 0 which

is a one dimensional manifold on which the pulled back contact form is zero
so that manifold is a (singular) solution.

Remark 4.8.3.

The index computed this way might not be the same as the classical
indices. Indeed, the equation:

dx
dt = f(x, y)

g(x, y) = 0

where gy is invertible is considered to have index 1 in most definitions
of the index. In following the convention of the Notation 4.3.2, this
equation has index 0!
Indeed by the implicit function theorem we may solve the variable y
in function of x, in other words, locally, there exists a function h such
that:

g(x, y) = 0 ⇐⇒ y = h(x)

Now the equation above is simply:

dx
dt = f(x, h(x))

so it seems appropriate to regard it as an explicit ordinary differential
equation.
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The index discrepancy is due to the confusion between the two following
systems: {

dx− f(x, y) dt
g(x, y) dt

and
{

dx− f(x, y) dt
g(x, y) = 0

The first system (the manifold M is the entire space) has index 1
whereas the second system (with M = {g(x, y) = 0}) has index 0.
Indeed the second system is the reduced version of the first!
Notice that the discretisation of those systems are entirely different.
For example the Radau method ([HLR89, § 2]) for the second system is
nothing but the usual Runge-Kutta method on a differential equation!
In fact, one often assumes that an index-1 system is in “Hessenberg
form”, meaning that the constraint equations are separated from the
proper differential equations. This is another way of saying that the
system is reduced to an index-0 form.
Index-0 may also lead to discretization problems, but milder ones. For
instance it may lead to unexpected time-step restrictions ([HMT03]).
More serious problems crop up when the index is one.

Example 4.8.6. In the literature the following type of system is often mentioned:{
dx− f(x, y) dt
g(x) = 0

where g′fy is assumed to be invertible.

In that case, this system has index one. Indeed it is clear that

M′ = {x, y : g′(x)f(x, y) = 0}

Now if g′fy is invertible then
Ω′ ∩ τ = 0

soM′′ =M′ and this system has index one.
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Example 4.8.7. An example of a system which index should be considered to
be 0 is the singular van der Pol equation. In a reduced form (the system comes
from a singular differential equation) the system, in R3 with coordinates (t, x, y):{ dx− y dt

(1− x2)y − x = 0

The pull-back of the one-form above is:

(1− x2) dy − (2xy + 1)y dt

The function x2−1 is nonzero on the manifoldM so the system is totally reduced
(i.e. M =M′). In fact it is clear that this system is equivalent to the differential
equation:

dx
dt = x

1− x2

so it makes sense to regard it as an index 0 IDE.

Example 4.8.8. A classical example that illustrates the difficulties in the nu-
merical discretisation is the following ([HLR89, § 2] and [GP84, §3]).{

dx+ ηtdy + (1 + η)y dt− g(t) dt
x+ ηty = f(t)

This problem may rewritten as{
x+ ηty = f(t)
d(x+ ηty − f(t))− (g(t)− y − f ′(t)) dt

it has thus index one and the reduced manifold isM′ = {g(t)−f ′(t)−y = 0}∩M.

Index and pull-backs

The purpose of reduction is to obtain another system with a lower index. We
illustrate this with a couple of examples.

Example 4.8.9. It is instructive to revisit Example 4.8.3. Formulated as it was,
that IDE had index one. Let us now look at a similar IDE given by the pull-back
of (4.14) by the following injection mapping:

ϕ(t, x, y, z) = (t, x, y, z, 1, z)
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We obtain: 
dx− dt
dy − z dt
0 = xz − y

In that case this system has index zero! This is clear since, provided that x 6= 0
the system above may be written as:

dx
dt = 1

dy
dt = y

x

so it is an ordinary differential equation in explicit form.

The pull back of the codistribution onM contains the element xdz, which means
that there is a degenerate manifold N = {x = 0}∩M. On the other hand there
is no distinct reduced manifold, i.e. M′ =M. Outside N one finds the unique
standard solution

s 7→ (t0 + s, x0 + s, z0(x0 + s), z0)

on N there are other solutions, vertical ones, given by

s 7→ (t0, 0, 0, z0 + s)

In other words this second point of view is very similar to the Example 4.6.1.
A crucial difference though is that the degenerate manifold N is not a solution
since the pullback of the codistribution on it has full rank.

Example 4.8.10. Notice that the formulation of a DAE on a jet space as a
general IDE may change the index. An example of an IDE on a jet space is

ẋ = y

ẏ = z

x = g(t)
(♠)

The codistribution is, as usual, the contact codistribution. This IDE has index 3
since the reduced manifolds areM′ = {g′(t) = y}∩M,M′′ = {g′′(t) = z}∩M′
andM′′′ = {g′′′(t) = ż}.

Consider now the seemingly equivalent IDE defined on R4:
dx− y dt
dy − z dt
x = g(t)

(♣)
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The relation with (♠) is that (♠) is the pull-back of (♣) on the submanifold
M = {ẋ = y; ẏ = z; x = g(t)} of the jet-space with three variables by the
following projection:

π(t, x, y, z, y, z, ż) := (t, x, y, z, y, z)

The IDE (♣) now has only index 2 since the reduced manifolds areM′ = {g′(t) =
y} ∩M andM′′ = {g′′(t) = z} ∩M′.
This reflects the fact that z is, in a sense, a Lagrange multiplier corresponding to
the constraint. For this reason it does not really make sense to have a differential
equation for this variable.

Solvability

An important aspect of IDEs is of course solvability that we only define for regular
IDEs for simplicity:

Proposition 4.8.3. A regular IDE will be said to be solvable if the corresponding
totally reduced IDE has exactly one (non-vertical) solution passing through every
point.

Example 4.8.11. Here is an example where the degeneracy strictly increases
during the reduction 

dz + (x+ y) dt
dx+ dy
z dt

The reduced manifold is obviously M′ = {z = 0}. Similarly one finds M′ =
{x + y = 0} ∩M. However, on M′′, the form dx + dy is pulled back to zero
so this system is degenerate.

Since this system is linear we will see later that we can describe exactly how this
system fails to be solvable using normal forms (cf. Example 5.6.2).

4.9 Reduction in Jet Spaces

Relation with the Projection Approach

In [Rei90, §4] the author defines the reduction process by projecting using the
projection π1. A detailed investigation of this approach is made in [RR94]. This
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approach is named by some authors as the Rabier-Rheinboldt reduction [RLW01;
MT98]. We adapt that approach to the jet-space setting (as in [RLW01]) and we
will show that our definition is broader than theirs.

Example 4.9.1. For an example of the fact that the index defined in [CG95,
Definition 6] (called uniform index) is not geometric consider the example in
[CG95, Example 9]: {

ẏy + x = 0
y = 0

Note that the manifold defined by those equation is exactly{
x = 0
y = 0

But those two formulations have different uniform indices. The index defined
in [CG95], according to the authors, is 2 for the first system whereas it is 1 in
the second case. In our approach the index is 1 independently of the equations
defining the manifold.

Example 4.9.2. Consider the jet space J(I × R3) with coordinates:

(t, x, y, z, ẋ, ẏ, ż)

and the submanifoldM defined by the equations:
x = g(ż)2

y = g(ż)3

z = 0

where g is a smooth function from R to R.

The restriction of the contact codistribution Ω onM is given by

2g′(ż) dż − ẋ dt
(3g(ż)ẋ− 2ẏ) dt

−ż dt

The reduced manifold is thus

M′ :=
{

(t, x, y, z, ẋ, ẏ, ż) ∈M : ż = 0, 3g(ż)ẋ = 2ẏ
}
.
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which can be reformulated as 

x = g(0)2

y = g(0)3

z = 0
3g(0)ẋ = 2ẏ
ż = 0

Outside M′ there are by definition only vertical solutions; here, if g′(ż0) 6= 0
there are many of them: any curve in the vertical plane:

R2 3 (u, v) 7→
(
t0, g(ż0)2, g(ż0)3, 0, ẋ0 + u, ẏ0 + v, ż0

)
is a vertical solution. More generally, vertical solutions are of the form

s 7→ (t0, g(ż0)2, g(ż0)3, 0, ẋ(s), ẏ(s), ż(s))

where the constraint on the function s 7→ ż(s) is that g(ż(s)) = 0 (indeed if
g′(ż0) 6= 0 then ż′(s) = 0).

There are vertical solution onM′ too, parametrized by

s 7→
(
t0, g(0)2, g(0)3, 0, ẋ0 + s,

3
2g(0)(ẋ0 + s), 0

)
M′ is further reduced to

M′′ =M′ ∩ {ẋ = 0}

NowM′′ has dimension one and the restriction of Ω on it is zero. The only solu-
tion is thusM′′ itself, i.e. the constant solutions s 7→ (t0+s, g(0)2, g(0)3, 0, 0, 0, 0).

Remark 4.9.1.

Our approach is more general than that of Rabier and Rheinboldt. In-
deed in the Example 4.9.2 if g(0) = 0 and g′(0) 6= 0 (take for instance
g(ẋ) = ẋ) then the π1 projection is a cusp with singular point along
{x = y = 0}. But this set turns out to contain the (non-vertical) solu-
tions. Since in the approach of Rabier and Rheinboldt such singularities
are excluded they would conclude that this system has no solutions. In
our framework this system has a solution and a well-defined index.
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Example 4.9.3. We now present another example where the approach of Rabier
and Rheinboldt fails. Consider R6 parametrized with the variables (t, x, y, z, ẏ, ż)
and the following system: 

dy − ẏ dt
dz − ż dt
cos(ẏ) = x

cos(ż) = y

z = 1

In that case the successive reduced manifolds are M′ = {ż = 0} ∩ M and
M′′ = {ẏ = 0}∩M′. The index is thus 2 andM′′ is the only solution. In other
words the solutions may be trivially parametrised as s 7→ (t0 + s, 1, 1, 1, 0, 0).

What makes this example interesting is that the π1 projection ofM on the π1-
base space is not a subimmersion precisely at the interesting points, for example
at {ż = 0}. The algorithm of [RR94] will thus conclude that at points where
the projection is a subimmersion there is no solution. Our approach allows to
correctly compute the index and to find the correct solution.

Notice also that the approach of [CM95] (see also [HW96, § VII.2]) also fails
in this case. Indeed one part of the assumption is that the projection of the
prolonged manifold on the π1-base of the jet space has constant rank which is
not the case here.

4.10 Notes

One of the first attempts at a systematic study of the geometric properties of
differential algebraic equations is to be found in [Rei90]. It was later reformulated
by projections in jet spaces(d) in [RR94].

Differential algebraic equations are special cases in the Cartan-Kuranishi the-
ory of solvability of differential equations (see [AVL91, § 5.6.1], or [CHS00] for
an elementary introduction, and [BCG+91; Kur57; Her65] for detailed accounts).
Several connexions with DAEs are explained in [Sei99]. The connexion between
the approach of Rabier and Rheinboldt and the Cartan-Kuranishi prolongation is
detailed in [RLW01].

Note however that the latter approach is more algebraic in nature. It is a study
of the properties of the equations themselves, rather than the properties of their
locus.

An attempt was made at defining reduction in a purely geometric fashion in
[MLRR99]. The authors failed however to notice the recursive structure of the
reduction.

dTo be precise, in tangent bundles, but the generalization to jet-spaces is straightforward.
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The idea of considering a simultaneity codistribution is very closely related to
the idea of independency condition, as it appears in [BCG+91]. It was considered
more generally as a codistribution in [Her65, p. 281] in the same form as ours.

Our definition of the index in such general terms is new, because the usual
requirements are much harsher than ours. In particular, the Cartan-Kuranishi the-
ory makes repeated use of the Cauchy-Kowalewska theorem which requires analytic
regularity. Besides, the Pfaffian system studied is often assumed to have constant
dimension ([Olv95; vNRM98]), which discards any possibility of reduction as we
described it. This is not so surprising given that the focus of the Cartan-Kuranishi
theory is shifted towards the integrability condition called involutivity, which is
relevant only for partial differential equations.

The notion of pull-back of IDE is new, and it is a convenient tool to investigate
the precise relation between different formulations of the same IDE. A related no-
tion, but which does not apply for general IDEs, is that of absolute equivalence of
Pfaffian systems in [vNRM98], related to differential flatness and dynamic feedback
equivalence.
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LINEAR AUTONOMOUS IDE

[L’art] de démontrer les vérités
déjà trouvées et de les éclaircir de
telle sorte que la preuve en soit
invincible est le seul que je veux
donner ; et je n’ai pour cela qu’à
expliquer la méthode que la
géométrie y observe ;

Pascal, Pensées, 1670

Introduction

We study in details the particular case of IDEs which may be written with lin-
ear time-independent matrices in some coordinates. We show how the geometric
reduction naturally leads to a canonical form equivalent to that of Kronecker.

This chapter is independent of the previous one, with the notable exception of
the first section.

5.1 Geometric Setting

In this section we consider the ambient manifold to be

M = I ×M

where M is a finite dimensional linear space and I ⊂ R as usual.
We consider two linear operators E and A fromM to an other finite dimensional

linear space V (which we will refer to as the codomain).

A,E : M → V

75
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We proceed to define an IDE by giving a precise meaning to the equation:

E dx + Ax dt

which will be the natural way to regard the ordinary differential equation

Edx
dt + Ax = 0

as an IDE.

Vector-valued Differential Forms

Given a finite dimensional vector space V considered as a manifold, its tangent
bundle TV is canonically “parallelized”, in the sense that one can, in a canonical
way, translate a tangent vector to a reference point, say the origin zero. It will be
easy to define the differential of forms taking values in vector spaces (or, in fact, in
any parallelized manifold).

More precisely, there exists a canonically defined parallelization mapping PV
which is a vector bundle morphism:

PV : TV −→ V

where V is identified with the vector bundle over a base of dimension zero. In other
words, P is linear when acting on the tangent vectors of V .

The differential d of a mapping

f : M−→ V

is defined by:
df := f∗PV

In other words the function df is defined on a tangent vector X of M at ξ ∈ M
as:

〈df,X〉 := PV (f∗(X))

Note that when the vector space V happens to be the space of real numbers R,
then this definition coincides with the usual definition of the differential of a scalar
function(a).

Formal Definition of a Linear IDE

Let us define the projections of I ×M on I, respectively M by t, respectively x.
We may now define properly the vector valued differential form θ:

θ = E dx + Ax dt
aIn fact, some authors ([Mal72]) define the differential of a scalar function in this way.
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This form defines a codistribution in the following way. For each vector ϕ ∈ V ∗,
we obtain the (scalar) one-form:

θϕ := ϕ ◦ θ

and the codistribution Ω corresponding to the linear IDE at hand may now be
written as:

Ω := span
{
θϕ; ϕ ∈ V ∗

}
In other words, if a tangent vector X ∈ TξM is split into a time part and a

space part as
X = (s, y) ∈ R×M ≡ TξM

where s = PRt∗(X) and y = PMx∗(X) then the requirement of it being orthogonal
to the codistribution is simply:

Ey + Ax(ξ)s

Remark 5.1.1.

Notice that at each fixed point ξ ∈ M the form θ is a mapping from
TξM to V , so at each point, its kernel defines a subspace. The codis-
tribution Ω is its orthogonal:

Ω = (ker θ)⊥

In the sequel we will use the functions t and x as coordinates, following the
tradition of differential geometry, although with the vector-coordinate x.

Reduction

Proposition 5.1.1. The reduced set is a manifold and may be written as

M′ = I ×M ′ (♦)

where M ′ is the linear subspace

M ′ :=
{

x ∈M : Ax ∈ Im E
}

= ker
(
(EM)⊥A

)
Proof. According to the definition of the reduced set in Definition 4.11 a point (t, x) ∈M
is not inM iff:

∃q ∈ V ∗ qE dx + qAx dt = dt
i.e.:

∃q ∈ V ∗ s.t.
{

qE = 0
qAx 6= 0
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which is equivalent to:
∃q ∈ (EM)⊥ qAx 6= 0

Reformulating the last line we obtain:

(t, x) ∈M ⇐⇒ ∀q ∈ (EM)⊥ qAx = 0

Remark 5.1.2.

One of the first occurrence of the definition of that subspace M ′ is to
be found in [Rei92, §7], although with a different purpose than ours.

Recalling the Definition 4.17 of regularity of an IDE, the last Proposition has
the following immediate consequence:

Proposition 5.1.2. A linear IDE is regular.

Proposition 5.1.1 paves the way to the description of reduced systems, which is
the aim of the two following Proposition:

Proposition 5.1.3. The linear system (E,A) is totally reduced (i.e. M ′ = M) iff

AM ⊂ EM

Proposition 5.1.4. An equation for the reduced system is given by

E|M ′ dx + A|M ′x dt

where E|M ′ and A|M ′ are the restrictions of respectively E and A on M ′.

Proof. The result follows from the observation that if i is the natural inclusion of M ′ in
M then:

i∗(E dx) = E d(i x) = E i dx

5.2 Determinacy Degree

Definitions

We define an integer which gives an indication of whether the system is under or
over determined (or neither). Loosely speaking it is the number of equations minus
the number of variables.
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Definition 5.1. The determinacy degree ∆ is defined to be

∆ := dim(AM + EM)− dimM

This allows us to precisely define over and under-determinacy for a linear system:

Definition 5.2. A linear IDE (E,A) will be called:

• overdetermined if ∆ > 0

• well-determined if ∆ = 0

• underdetermined if ∆ < 0

We may now show that the determinacy degree decreases with the reduction.
See also Proposition 5.4.4 for further details.

Proposition 5.2.1. The determinacy degree decreases with the reduction:

∆′ ≤ ∆

where ∆′ is the determinacy degree of the reduced system defined by (E|M ′ ,A|M ′),
i.e.:

∆′ = dim(AM ′ + EM ′)− dimM ′ (5.1)

The proof will be a direct consequence of this Lemma:

Lemma 5.2.1.
∆′ = dim(AM + EM ′)− dimM

Proof.
1. First notice that

AM ′ = {Ax : Ax ∈ EM}
= AM ∩ EM

2. It is clear that ker A ⊂M ′ so ker A = ker(A|M′).
3. We thus obtain:

dimM ′ = dim ker(A|M′) + dim AM ′

= dim ker A + dim(AM ∩ EM)
(♣)

4.

dim(AM ′ + EM ′) = dim AM ′ + dim EM ′ − dim(AM ′ ∩ EM ′)
= dim(AM ∩ EM) + dim EM ′ − dim(AM ∩ EM ′)

(♠)
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5. Using (♣) and (♠) and the definition of ∆′ (5.1) we obtain:

∆′ = dim EM ′ − dim(AM ∩ EM ′)− dim ker A

6. Using
dimM = dim ker A + dim AM

and
dim(AM + EM ′) = dim AM + dim EM ′ − dim(AM ∩ EM ′)

we obtain:
∆′ = dim(AM + EM ′)− dimM

Proof of Proposition 5.2.1. Using Lemma 5.2.1 we obtain directly:

∆′ = dim(AM + EM ′)− dimM

≤ dim(AM + EM)− dimM = ∆

The meaning of Proposition 5.2.1 is that an overdetermined linear IDE may
become well-determined (or underdetermined) after the reduction procedure and
that an underdetermined IDE will always stay underdetermined after the reduction.

Solvability

Let us make an obvious remark concerning reduced systems. Loosely speaking, a
totally reduced system can be seen as the “control part” of a control system in
descriptor form. There are then as many solutions as there are control inputs. In
other words, the solution is unique if and only if there is no control part.

Proposition 5.2.2. Assume that (E,A) is totally reduced. Then it is solvable iff E
is injective.

Proof.
1. We may change coordinates in such a way that E is represented by a block matrix

with one identity matrix as:

E =
[

I 0
0 0

]
2. Since the system is totally reduced, AM ⊂ EM and A is represented as:

A =
[

A1 A2
0 0

]
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3. Notice that
A2 = 0 ⇐⇒ ker E = 0

4. The equations are in this coordinate system:

dξ
dt + A1ξ + A2u

5. Obviously if A2 = 0 then the system has a unique solution for any initial condition.
If A2 6= 0 then for any smooth function t 7→ u(t) sucht that

u(t0) = u0 (♠)

we obtain a unique solution of the system. In other words there are as many different
solutions as there are smooth functions u satisfying the condition (♠).

Example 5.2.1. In Example 4.8.11 the determinacy degree strictly decreases
during the second reduction. The matrices for that system are:

E =

[0 0 1
1 1 0
0 0 0

]
and A =

[1 1 0
0 0 0
0 0 1

]

The reduction for this system is:

M ′ = {z = 0} E′ =
[
0 0
1 1

]
A′ =

[
1 1
0 0

]
M ′′ = {x+ y = 0} ∩M ′ E′′ = 0 A′′ = 0

So the sequence of determinacy degrees is easily determined to be:

(∆,∆′,∆′′) = (0, 0,−1)

Example 5.2.2. Here is an example of an apparently overdetermined system
which turns out to be solvable:

E =


1

0 1 0
0 1
0 0
0 0

 A =


1

1 0 0
0 0
1 0
0 1





82 CHAPTER 5. LINEAR AUTONOMOUS IDE

Let us call the variables u, x, y1, y2. The reduced subspace are M ′ = {y1 = y2 =
0} and M ′′ = {x = 0} ∩M ′.
Notice that although this system is solvable, it will not be solvable with a source
term, unless some conditions on the source term are fulfilled.
For instance here if we add a source term with coordinates f = (f, g1, g2, h1, h2)
the system

Edx
dt + Ax = f

will have no solution unless g′2 = f2.

Proposition 5.2.3. A totally reduced linear IDE system (E,A) is solvable iff it is
well-determined, i.e. iff:

∆ = 0

Proof. Using Proposition 5.1.3 and Definition 5.1 we get:

∆ = dim(EM)− dimM

which implies that ∆ = 0 iff E is injective, so we conclude with Proposition 5.2.2.

Remark 5.2.1.

Notice that it may very well happen that the totally reduced subspace
is zero, as in this example:

E =
[
0 1
0 0

]
A =

[
1 0
0 1

]
This system has only solutions for the initial condition zero.

5.3 Nested Reductions

Reduced Codomain

It will prove useful to define the reduced codomain of the operators E and A:

Definition 5.3. Given a linear IDE (E,A) we define its reduced codomain V ′

as:
V ′ := EM

One motivation of that definition is the following elementary observation:
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Proposition 5.3.1.
EM ′ ⊂ V ′ AM ′ ⊂ V ′

This suggest the definition of the reduced operators as follows:

Definition 5.4. Given a linear IDE (E,A) we define the reduced operators E′
and A′ as follows:

E′,A′ : M ′ −→ V ′

such that:
E′ = E|M ′ A′ = A|M ′

The only difference between E′ and E|M ′ , or A′ and A|M ′ is the codomain of E′
and A′ which is now V ′.

Iterated Reduction

We may iterate the process described in the last section on the new IDE (E′,A′).
This leads to a sequence of nested spacesM (k). Using Proposition 4.8.1, the smallest
integer for which this sequence stalls is the index of the IDE:

Proposition 5.3.2. The smallest integer n for which

M (n+1) = M (n)

is the index of the IDE.

Remark 5.3.1.

Notice that even if the system (E(n),A(n)) is totally reduced, E(n) may
still fail to be surjective, which entails V (n+1) = EM (n) ( V (n). This
is summarized in the following description of the sequences of nested
spaces:

M (n+1) =M (n) ⊂ . . . ⊂M ′′ ⊂M ′ ⊂M
V (n+2) = V (n+1) ⊂V (n) ⊂ . . . ⊂ V ′′ ⊂ V ′ ⊂ V

Notation 5.3.1. In order to avoid mentioning the index n of a given linear IDE,
we will denote, for an IDE of index n: E(∞) A(∞) M (∞) V (∞)

E(∞) := E(n+1)

A(∞) := A(n+1)

M (∞) := M (n+1)

V (∞) := V (n+1)
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Note that although we defined M (∞) = M (n+1) for consistency with the other
definitions, we also have by definition of n:

M (∞) = M (n)

Note also that we could simply have defined, say E(∞) by the limit of the se-
quence of operators E(k), which explains the notation “∞”.

Let us notice that by construction E(∞) is surjective:

Proposition 5.3.3. The totally reduced operator E(∞) is surjective.

5.4 Supplementary Spaces

Definitions

In this section we briefly study the general properties of supplementary spaces to
M ′.

Let us choose a supplementary space N from M ′ to M :

M = M ′ ⊕N (5.2)

Please take good notice that this splitting is by no means unique! We will see
later in Section 5.5 and Section 5.6 how to choose the supplementary space N in
an advantageous way.

Notice now the following facts, which are direct consequences of the definition
of M ′:

Proposition 5.4.1.
AN ∩ EM = 0

EM ⊕ AN = EM + AM

Recalling the definition of the reduced codomain V ′ = EM (Definition 5.3) we
may choose a supplementary space Z such that the codomain V is decomposed as:

V = V ′ ⊕ AN ⊕ Z (5.3)

We use the previous observations to produce a simple matrix representation:

Proposition 5.4.2. By choosing in AN the image of the basis in N by A we obtain
the matrix form of Figure 5.1.

Proof. The block decomposition is obtained by noticing that: (EM)⊥EM = 0, (AN +
EM)⊥AN = 0 and (EM)⊥AM ′ = 0.



5.4. SUPPLEMENTARY SPACES 85

Remark 5.4.1.

In a sense the space Z (the letter “Z” stands for zero) models the extra
“non equations” of the system. It simply means that the space V is too
big.
The reader might think that it would be a serious modelling mistake to
choose too big a space V . However, this phenomenon of “non-equations”
may occur at a higher level of the reduction, namely for one of the
reduced systems (E(k),A(k)), for which we cannot directly choose the
corresponding codomain V (k).

Remark 5.4.2.

In the same spirit as Remark 5.3.1, it makes sense to define Z even if
the system (E,A) is totally reduced, i.e. when M ′ = M . In that case,
the only possible choice for the supplementary space of (5.2) is N = 0
and (5.3) becomes:

V = V ′ ⊕ Z

M ′ N

E′

EM

AN

Z

M ′ N

A′

EM + AM

Figure 5.1: In the space decompositions described in Equation 5.2 and Equation 5.3 the operators
E and A have those matrix representations. Blue squares with diagonals are identity
matrices. White areas are zeroes. The grey area may be any matrix. The green striped
rectangle matrix must have full rank. The red-framed submatrices are the reduced matri-
ces E′ and A′ of the next step in the reduction. Notice that the result of Proposition 5.2.1
is apparent on this figure.
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Iterated Supplementary Spaces

By repeating the procedure of (5.2) and (5.3), we may choose the following spaces:

N,N ′, . . . , N (k), . . .

Z, Z ′, . . . , Z(k), . . .

Assume that the index of the system defined by (E,A) is n, i.e., according to
Proposition 5.3.2, that n is the first integer such that M (n+1) = M (n)

Then the only possible choice for N (n) is:

N (n) = 0 (5.4)

As for the sequence of spaces Z(k) it will generally stall at one step further, as
explained in Remark 5.4.2:

Z(n+1) = 0
The iterated decompositions (5.3) and (5.2) are written as:

M = M (n) ⊕N (n−1) ⊕ · · · ⊕N
V = V (n+1) ⊕ Z(n) ⊕ AN (n−1) ⊕ Z(n−1) ⊕ · · · ⊕ AN ⊕ Z

For convenience we will also define the spaces W (k):

W (k) := AN (k) ⊕ Z(k)

One may thus now also write:

V = V (n+1) ⊕W (n) ⊕W (n−1) ⊕ · · · ⊕W

We can already prove the following relation between the dimensions of Z(k) and
ker E(∞):

Proposition 5.4.3. The following identity hold:

dimM − dim ker E(∞) = dimV −
∑
k

dimZ(k)

Proof. The identity follows from:

dimM = dimM (∞) +
∑
k

dimN (k)

dimV = dimV (∞) +
∑
k

dimZ(k) +
∑
k

dim AN (k)

dimM (∞) = dim EM (∞) + dim ker E(∞)

and dim AN (k) = dimN (k) for all k, plus the property that V (∞) = EM (∞).
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Remark 5.4.3.

Here is an example of a calculation of Z ′. It is given by the pure deriva-
tor in control theory. Its homogeneous part (without the sources) is
given by the matrices:

E =

1 0
0 0
0 0

 A =

0 1
1 0
0 1


In that example the decomposition is:

N = M

V = Z ′ ⊕ AN
and

Z ′ = {y = z = 0}
The source term to observe the derivator behaviour is

q(t) =
(
0, u(t), y(t)

)
The existence of solutions then imposes the relation:

y(t) = u′(t)

Determinacy Degree and Defect Spaces

The sequence of spaces
{
Z(k)}

k≥0 is related to the indeterminacy of the system. In
fact the dimensions of those spaces exactly describe the determinacy drop observed
in Proposition 5.2.1:

Proposition 5.4.4. The determinacy degree drop ∆−∆′ is given by:

∆−∆′ = dimZ ′

Proof.
1. Using Lemma 5.2.1 one has:

∆−∆′ = dim(AM + EM)− dim(AM + EM ′)

2. Now by definition of Z′:
EM = EM ′ ⊕ AN ′ ⊕ Z′

in particular notice that
Z′ ∩ EM ′ = 0 (♠)
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3. As a result:
Im A + Im E = Im A + EM ′ + Z′

4. Using the definition of Z′ and (♠) we obtain:

Im A + EM ′ + Z′ = (Im A + EM ′)⊕ Z′

which finishes the proof.

The following Proposition gives a restriction on the dimension drop of the hidden
manifolds M (k). More precisely this dimension drop may only decrease. See an
illustration on Figure 5.2.

Proposition 5.4.5.
dimZ ′ + dimN ′ ≤ dimN

Proof.
1. We have

M = M ′ ⊕N
so

EM = EM ′ + EN
which implies

dim EM ≤ dim EM ′ + dim EN

2. Now by definition of Z′:

dim EM = dim EM ′ + dim AN ′ + dimZ′

3. The facts that dim AN ′ = dimN ′ and that dim EN ≤ dimN finish the proof.

5.5 Coupling

Coupling spaces

All the results up to now are valid independently of the choice of the supplementary
space N . To improve the final normal form we will now restrict our choice of the
supplementary space.

The strategy is to try to choose N in the same direction as the part of ker E
that remains out of M ′. First we define what this space is by decomposing the
kernel of E in the part that is included in M ′ and some supplementary space. This
is achieved by choosing any supplementary space K such that:

ker E = (ker E ∩M ′)⊕K
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Z

AN

Z ′
AN ′

EM ′

M ′′ NN ′

M ′

M ′′ NN ′

M ′

Figure 5.2: Illustration of Proposition 5.4.5. The picture represents the matrices E and A. The green
striped rectangle matrix must have full rank. This implies that dim AN ′ + dimZ′ ≤
dimN . We will see in Section 5.6 that, by a careful choice of basis, the whole checkered
area may be set to zero.

Then since, by construction, K ∩ M ′ = 0 one may complete M ′ by choosing a
supplementary space C such that:

M = M ′ ⊕ C ⊕K

We now choose N as:
N := C ⊕K

Notice now that the space K roughly speaking corresponds to the variables that
are decoupled from the rest of the system. They are sometimes called the algebraic
constraints.

Example 5.5.1. Let us illustrate the previous remark by a trivial example.
Consider the following simple system:{

dx− xdt
y dt

The variable y is decoupled from the rest of the system.
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Remark 5.5.1.

Let us notice the well known (obvious) identity:

dimV = dim(Im E) + dimC + dimK + dimZ

since
dim AN = dimN = dimC + dimK

Remark 5.5.2.

Some authors ([KM94]) define the “strangeness” as what turns out to
be the following quantity:

s = dimC

Roughly speaking it is the number of constraints that, when differenti-
ated, will help reduce the system.
We call them the number of coupled constraints instead, given the
lack of insight that the English word “strangeness” provides.

5.6 Complete Decomposition

In this section we will see how to choose the spaces K(k) and C(k) in such a way
that the operators E and A are simultaneously decomposed in an advantageous way.

The main tool will be this elementary result from linear algebra:

Lemma 5.6.1. Given a surjective operator E defined on a space M0 to a space V1
and a subspace M1 ⊂M0 with a given decomposition:

V1 = EM1 ⊕W

then there exists subspaces C ⊂M0 and K ⊂M0 such that

M0 = M1 ⊕ C ⊕K

and
EC = W

ker E ∩ C = 0

K ⊂ ker E
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Proof.

1. There exists a right inverse F to E such that:

EF = I

Note that F is necessarily injective.

2. Consider the space C defined by
C = FW

Note that
dimC = dimW

since F is injective.

3. Now if we denote
K1 := ker E ∩M1

we decompose:
K0 := ker E = K1 ⊕K

It is clear that, by definition of K:

K ∩M1 = 0

4. Since
dimM0 = dim EM0 + dimK0

and similarly:
dimM1 = dim EM1 + dimK1

we obtain:
dimM0 − dimM1 = dimW + dimK

which in turn yields:

dimM0 = dimM1 + dimC + dimK

5. This implies that
M0 = M1 ⊕K ⊕ C

Besides, by construction we have
EK = 0

and
EC = W

and
ker E ∩ C = 0

We are now ready to proceed to the main Theorem of this Chapter.
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Theorem 5.1. Consider two linear operators E and A, both acting from a finite
dimensional vector space M to a finite dimensional vector space V . Assume that
the corresponding IDE (E,A) has index n.

There exists a decomposition (cf. Figure 5.3):

M = S ⊕ ker E(∞) ⊕
n−1⊕
i=0

N (i)

and

V = V (∞) ⊕
n⊕
i=0

W (i)

such that
M (∞) = S ⊕ ker EM (∞)

and further decompositions:

N (i) = C(i) ⊕K(i)

and
W (i) = Z(i) ⊕ AN (i)

with
N (n) = 0

There exists a choice of basis in those spaces such that E is represented as a
block matrix which is

• identity on the block of coordinates (S, V (n))

• identity on the “upper diagonal blocks” of coordinates (C(i),W (i+1)) for 0 ≤
i ≤ n− 1

• zero on all other blocks

As for the operator A, it is represented as a block matrix

• a nonspecific matrix on the block (M (∞), V (∞))

• identity on the “diagonal” blocks (N (i),AN (i)) for 0 ≤ i ≤ n

• zero on all other blocks

Proof.
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M (∞)

V (∞)

Z ′′′

C ′′K ′′

AN ′′

Z ′′

C ′ K ′

AN ′

Z ′

C K

AN

Z

W ′′′

N ′′

W ′′

N ′

W ′

N

W

Figure 5.3: (See legend on p. 119). An illustration of the decomposition described in Theorem 5.1.

1. We will proceed by induction (cf. Figure 5.4). Let us assume that the statement
holds for systems of index n − 1. Given a system (E,A) of index n, the reduced
system (E′,A′) has index n − 1. Recall the (E′,A′) are operators defined from M ′

to V ′:
M ′ −→ V ′ := EM

So we get a decomposition of the spaces M ′ and V ′ as described in the Theorem.
For convenience we will shift the indices of all the spaces produced by the Theorem.
For example, the space W (k) will be now denoted W (k+1), so we may write the
decomposition as:

V ′ = EM = EM (n) ⊕W (n) ⊕ · · · ⊕W ′′ ⊕W ′

a) By definition of W ′, we have:

EM = V ′ = V ′′ ⊕W ′ = EM ′ ⊕W ′

W ′ is moreover equipped with a basis.
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N ′′

W ′′

N ′

W ′

C K

AN

Z

N

W

M (∞)

V (∞)

M ′

V ′

Figure 5.4: (See legend on p. 119). An illustration of the proof of Theorem 5.1 on an index three
system. The grey shaded part pictures the previous step of the recursion. Starting with
W ′, one constructs the spaces C and K using Lemma 5.6.1, and defines N := C ⊕K.
One then constructs Z such that V = V ′⊕AN⊕Z. This in turn definesW := AN⊕Z.

b) Using Lemma 5.6.1 we obtain the existence of C and K such that

M = M ′ ⊕ C ⊕K

with
EC = W ′

and
EK = 0

and
ker E ∩ C = 0

Note that, given a basis in W ′ we can choose a basis on C such that E is
represented by the identity matrix when restricted from C to W ′.
Let us now denote for brevity:

N = C ⊕K

We choose a basis of K so that we now have a basis for N .
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c) Now we notice as we did earlier in Proposition 5.4.1

AN ∩ EM = 0

so we define Z as in (5.3), i.e. such that:

V = EM ⊕ AN ⊕ Z

and we choose in AN the image of the basis of N by A, so that A is represented
by the identity matrix when restricted from N to AN .

d) Using (V ′)⊥EM = 0, (W ′)⊥EC = 0, EK = 0 we obtain the desired block
structure for E. Similarly, using (V ′)⊥AM ′ = 0, (AN)⊥AN = 0 and (V ′ +
AM)⊥AM = 0, we obtain the desired block structure for A.

2. We have to check the first step of the recursion. When the index is zero we simply
have AM ⊂ EM and we just choose W such that:

V = EM ⊕W

We choose an arbitrary basis in W .
Lastly we choose S as a supplementary space of ker E in M :

M = S ⊕ ker E

Clearly, E is injective on S. Given a basis on S we choose ES as a basis on EM .

Let us note the following easy Corollaries to the Theorem:

Corollary 5.6.1. It follows from Theorem 5.1 that:

(i) dimC(i) = dimW (i+1) ∀0 ≤ i ≤ n− 1

(ii) dimW (i) ≤ dimN (i−1) ≤ dimW (i−1) or more precisely:

dimN (i−1) = dimW (i) + dimK(i)

dimW (i) = dimN (i) + dimZ(i) (5.5)

Corollary 5.6.2. The following identity hold:

dimW =
∑
k

dimZ(k) +
∑
k

dimK(k)
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Proof. From:

dimM = dim EM (∞) + dim ker E(∞) +
∑
k

dimC(k) +
∑
k

dimK(k)

dimV = dim EM (∞) +
∑
k≥1

dimW (k) + dimW

and the fact that dimW (k) = dimC(k−1) for k ≥ 1, we obtain:

dimM − dim ker E(∞) −
∑
k

dimK(k) = dimV − dimW

Now we use Proposition 5.4.3 to obtain the result.

We also make the crucial observation that Theorem 5.1 provides us with a
splitting of M and V such that E and A are acting separately on those parts:

Corollary 5.6.3. Given the decomposition provided by Theorem 5.1, and defining
M and V as:

M :=
⊕
k

N (k) V :=
⊕
k

W (k)

then, by construction:

M = M (∞) ⊕M V = V (∞) ⊕ V

and the following holds:

(i)
EM (∞) ⊂ V (∞) AM (∞) ⊂ V (∞)

(ii)
EM ⊂ V AM ⊂ V

Proof.
1. Notice first that:

(V (∞))⊥EM (∞) = 0 (V (∞))⊥AM (∞) = 0

2.
V
⊥EN (k) = 0 V

⊥AN (k) = 0 ∀k
since we have:

EN (k) ⊂W (k+1)

and
AN (k) ⊂W (k)
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Example 5.6.1. Let us compute the normal form of a linearised mechanical
system. Such a system may be written in the following way, in coordinates
denoted by (x, v, λ):

E =

[I 0 0
0 I 0
0 0 0

]
A =

[0 −I 0
K D GT

G 0 0

]

where we implicitly inverted the mass matrix.
Let us change coordinates in such a way that G is written as:

G =
[
0 I

]
where we assumed that G has full rank.
We now change coordinates to (x1, x2, v1, v2, λ) so that

ker G = {x2 = 0}

We may split the matrices K and D in block matrices. For example K is split
into: K11,K12,K21,K22.
We now have following equations in the variables (x1, v1, λ, v2, x2)

dx1 − v1 dt
dv1 + (K11x1 + D11v1 + D12v2 + K12x2) dt
dv2 + (K21x1 + K22x2 + D21v1 + D22v2 + λ) dt
dx2 − v2 dt
− x2 dt

First we may eliminate the term containing x2 dt by multiplying the last line by
K12 or K22 and adding it to the corresponding lines (second and third).
Similarly, we multiply the next-to-last line by D12 and add it to the second line.
The second line is now:

dv1 + D12 dx2 + (K11x1 + D11v1) dt

Now it is easy to obtain the normal form by choosing the new coordinates:

λ̄ := −(K21x1 + D21v1 + D22v2 + λ)

and
v̄1 := v1 + D12x2

Clearly the change of coordinates defined by

(x1, v1, λ, v2, x2) 7−→ (x1, v̄1, λ̄, v2, x2)

is invertible since it is given by a triangular matrix with ones on the diagonal.
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Now in those coordinates (x1, v̄1, λ̄, v2, x2) we obtain the matrix representations:

E =


I 0
0 I

0 I
0 I

0

 A =


0 I
−K11 −D11

I
I

I


which is the normal form for that system.

Example 5.6.2. As a simple example, the system of Example 4.8.11 has the
normal form:

E =

[0 1 0
0 0 1
0 0 0

]
A =

[0 0 0
0 1 0
0 0 1

]
In this normal form the non-solvability is directly apparent: the first variable does
not appear anywhere in the equation.

5.7 Square Systems

Definition

We briefly recall basic results of linear IDEs expressed in our framework. We are
able to give original proofs of those results.

In this section we will focus on “square matrices”, i.e. operators for which the
domain and codomain have the same dimension.

Definition 5.5. A square linear system is a linear IDE (E,A) for which the
domain M and codomain V have the same dimension:

dimM = dimV
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The regular pencil Theorem

In this section we give an original proof of the so-called “regular pencil theorem”
(see e.g. [Gan59, § XII.7]), which relates solvability and the “regularity” of the
pencil given by E and A, namely the matrix-valued polynomial zE + A.

It should be noticed that this subsection is independent from Section 5.6.
We start by relating the appearance of a overdetermination defect(b) (i.e. a

non-zero Z(k) space) to the polynomial defined by:

F (z) := det(zE + A)

Lemma 5.7.1. For a square system (E,A), if Z 6= 0 then zE + A is not surjective
for any z ∈ C.

Proof. If Z 6= 0 then, by Proposition 5.4.1 and (5.3): AM + EM 6= V . In particular:

(zE + A)M ⊂ AM + EM

so the operator zE + A cannot be surjective for any z ∈ C.

In fact, Proposition 5.4.3 provides us with the exact relation between the dimen-
sion of the kernel of the totally reduced system and the dimensions of the spaces
Z(k):

Proposition 5.7.1. For a square system we have:

dim ker E(∞) =
∑
k

dimZ(k)

Proof. It is a direct consequence of Proposition 5.4.3.

Lemma 5.7.2. For a square system (E,A), if Z = 0 then there exists a choice of
basis in which:

det(zE + A) = det(zE′ + A′) ∀z ∈ C

Proof. It is a direct consequence of the block decomposition of Proposition 5.4.2, illus-
trated on Figure 5.1.

Of course we could have use the decomposition of Theorem 5.1 in the last proof.
We may now prove the Lemma relating the overdetermination defects and the

determinant:
bSee Section 5.8 for more details on defects.
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Lemma 5.7.3. Given a square system (E,A), the following assertions are equiva-
lent:

(i) (
z 7→ det(zE + A)

)
6≡ 0

(ii)
dimZ(k) = 0 ∀k ≥ 0

Proof. Let us proceed by induction on the index. Obviously if dimZ 6= 0 then det(zE +
A) ≡ 0. On the other hand, if dimZ = 0 we may use Lemma 5.7.2 and use the induction
hypothesis on the reduced operators (E′,A′) since dimM ′ = dimV ′ by Corollary 5.6.1.
Finally, if the system is totally reduced then dimZ = 0 is equivalent to E being surjective,
(and thus invertible since dimM = dimV ), which implies det(zE + A) 6= 0.

We may now prove the following Proposition, relating solvability and the totally
reduced system (E(∞),A(∞)):

Proposition 5.7.2. The square system (E,A) is solvable iff E(∞) is invertible.

Proof. Any solution of the IDE defined by (E,A) must be a solution of (E(∞),A(∞)). We
then use Proposition 5.2.2.

We are now in position to state an improved version of the regular pencil the-
orem, which relates solvability and the dimensions of the overdetermination defect
spaces Z(k) (see Figure 5.5).

Theorem 5.2. Given a square system (E,A) the following assertions are equivalent:

(i) the linear system (E,A) is solvable

(ii) (
z 7→ det(zE + A)

)
6≡ 0

(iii)
dimZ(k) = 0 ∀k ≥ 0

Proof. It is a direct consequence of Proposition 5.2.3, Lemma 5.7.1, Lemma 5.7.2 and the
fact that for a square matrix M, det(M) = 0 is invariant by equivalence transformations
(i.e. transformations of the type PMQ for P, Q invertible matrices.)



5.8. FULL CANONICAL FORM 101

N ′′ N ′ N

AN ′′

AN ′

Z ′

AN

M (∞)

V (∞)

Figure 5.5: (See legend on p. 119). Illustration of Theorem 5.2. As long as an equation defect
is present (here Z′ 6= 0) and if the matrices are square (i.e. dimM = dimV ) then
the intrinsic dynamical system will be “squeezed” to a rectangle form, i.e. the kernel
of the totally reduced operator E(∞) = E′′ is not zero. On the figure, the result of
Proposition 5.7.1 is clear. In that precise case, dim ker E(∞) = dimZ′.

5.8 Full Canonical Form

Jordan Canonical Form

The decomposition of Theorem 5.1 is not quite a canonical form yet, because it
leaves parts of the representation of A undetermined. In one case though, one may
proceed to reduce A to its Jordan canonical form by similarity transformations.

Proposition 5.8.1. If the linear IDE (E,A) is totally reduced and if

ker E ⊂ ker A (♦)

one can represent the system (E,A) by the matrices:

E =
[
I 0
0 0

]
A =

[
J 0
0 0

]
(♣)

where J is in Jordan canonical form.
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Proof.
1. One first represents E as in (♣), and using that the system is totally reduced we

obtain:
A =

[
A1 A2
0 0

]
2. (♦) yields A2 = 0.
3. One reduces A1 to a Jordan canonical form by similarity transformation:

A1 = P1JP−1
1

4. It is now clear that we can put (E,A) in the form (♣) using a similarity transfor-
mation with the matrix:

P :=
[

P1 0
0 I

]

Second sweep of the decomposition

In the specific case of E being injective, the decomposition of Theorem 5.1 is slightly
simplified.

Proposition 5.8.2. If E is injective, then in the decomposition of Theorem 5.1 we
get:

ker E(∞) = 0
K(k) = 0 ∀k ≥ 0

Now we make the following observation, stemming from the fact that by defini-
tion E(∞) is surjective (Proposition 5.3.3).

Proposition 5.8.3. Given a linear IDE (E,A), the totally reduced operator E(∞)∗

is injective.

Now, using Corollary 5.6.3, we are in a position to run the decomposition of
Theorem 5.1 for the IDE (E(∞)∗,A(∞)∗) and obtain a decomposition of M and V .

Theorem 5.3. On top of the decomposition given by Theorem 5.1, the spacesM (∞)

and V (∞) may be decomposed as (cf. Figure 5.6):

M (∞) = V (∞)
∗

⊕
k

W (k)
∗

V (∞) = M (∞)
∗

⊕
k

N (k)
∗

with W (k)
∗ = Z

(k)
∗ ⊕ C(k)

∗ and such that E and A are zero, except on the following
blocks:
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V
(∞)
∗

M
(∞)
∗

N ′′

W ′′

N ′

W ′

N

W

W ′′′∗

N ′′∗

W ′′∗

N ′∗

W ′∗

N∗

W∗

Figure 5.6: (See legend on p. 119). An illustration of the full decomposition. The first decomposition
leads to M ′′ and the corresponding space V ′′′ = EM ′′, at which point the algorithm
stalls. The second step consists in transposing the reduced operators E(∞) and A(∞),
run algorithm, and transposing back again. The red area denotes the identity for E, and
a non specific matrix for A. Notice that this block is completely separated from the rest,
so one may now reduce the A to Jordan blocks by a similarity transformation.

(i) A is the identity on the blocks (C(k)
∗ , N

(k)
∗ )

(ii) E is the identity on the blocks (W (k+1)
∗ , N

(k)
∗ )

(iii) E is the identity on the block (V (∞)
∗ ,M

(∞)
∗ )

(iv) A is in Jordan form on the block (V (∞)
∗ ,M

(∞)
∗ )
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Example 5.8.1. The following example is taken from [Sjö08, Example 2.4].

E =

[1 0 0 0
0 0 1 0
0 0 0 0

]
A =

[2 0 0 1
0 1 0 2
0 0 1 1

]
The normal form for that system is:

E =

 1 0
1 0

1 0
0

 A =

 0 1
0 1

0 1
1


In that case, there is no dynamical part remaining.

5.9 Defect Indices

In order to facilitate the description of the various decompositions, we now de-
cide on a way to write the various defects involved in the canonical decomposition
(see Figure 5.7).

Definition 5.6. The constraint defects α are the dimensions of the space K(k):

αk(E,A) := dimK(k−1) k ≥ 1

The overdetermination defects β+ are the dimensions of the spaces Z(k):

β+
k (E,A) := dimZ(k−1) k ≥ 1

The underdetermination defects β− are the overdetermination defects of
the dual reduced system (E(∞)∗,A(∞)∗):

β−k (E,A) := β+
k (E(∞)∗,A(∞)∗)

Sometimes we will also denote the dimension of the remaining pure dynamical
part:

δ := dim Im(E(∞)∗)(∞)

It is important to notice that those indices are defined in an invariant manner,
i.e. their definition does not depend on the chosen basis. In fact, it is possible to
define directly in terms of invariant quantities as follows:

Proposition 5.9.1.

αk = dimM (k−1) − dimM (k) − (dimV (k) − dimV (k+1))
β+
k = dimV (k−1) − dim(EM (k−1) + AM (k−1))
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δ

δ

α3

β+
3

α2

β+
2

α1

β+
1

β−4 β−3 β−2 β−1

Figure 5.7: (See legend on p. 119). Illustration of Definition 5.6. The definition of the defects α,
β+ and β−.

Proof. The first assertion follows from (5.5), the second one from the defining prop-
erty of Z being a supplementary subspace, in (5.3).

The following elementary observation stems from the definition of the reduction:

Proposition 5.9.2. The relation between the defect indices of a system (E,A) and
the corresponding reduced system (E′,A′) is as follows:

αk(E′,A′) = αk+1(E,A)
β+
k (E′,A′) = β+

k+1(E,A)
β−k (E′,A′) = β−k (E,A)

 ∀k ≥ 1
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Proof. It follows from the inductive definition of the reduced operators E′ and A′.

The dimensions of the spaces W and N are related to the defect indices as
follows:

Lemma 5.9.1.
dimN (k) =

∑
j≥k+1

(αj + β+
j+1)

dimW (k) =
∑
j≥k+1

(αj + β+
j )

Proof. The second identity is proved using Corollary 5.6.2 and Proposition 5.9.2. The
first identity follows from the second identity and Corollary 5.6.1.

We also note that the constraint defects determine the index of the IDE

Proposition 5.9.3. The index n of a linear IDE (E,A) is given by:

n = max
{
k : αk(E,A) + β+

k+1(E,A) 6= 0
}

Proof. Using the defining property of N (k), the index n may be defined as

n = min
k

dimN (k) = 0

Using Lemma 5.9.1 we obtain directly:

dimN (k) = 0 ⇐⇒ αj + β+
j+1 = 0 ∀j ≥ k + 1

which proves the claim.

In the case of overdetermination defects we obtain readily:

Corollary 5.9.1. The index n of an IDE (E, A) without overdetermination defects
(i.e. β+ = 0) is the biggest index of non-zero constraint defects:

n = max
{
k : αk(E,A) 6= 0

}
The choice of the name “defect” may seem overly negative, but those indices

really measure how far an IDE is from a standard, explicit and solvable ordinary
differential equation. This is the essence of the following proposition:

Proposition 5.9.4. An IDE with no defect (i.e. all defect indices are zero) is a
totally reduced, solvable IDE.
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Proof. Lemma 5.9.1 yields that the system is totally reduced (dimN = 0) and that E is
surjective (dimW = 0). Now since β− = 0, then by reasoning on the dual system which is
E∗ = E(∞)∗ (since we just proved that (E,A) was totally reduced), we finally obtain that
E∗ is surjective, i.e. E is injective, so the system is solvable.

Proposition 5.9.5. The dimensions ofM , V , the defects α, β+ and β− are related
by the following formulae:

dimM = δ +
∑
k≥1

kαk +
∑
k≥1

kβ−k +
∑
k≥2

kβ+
k

dimV = δ +
∑
k≥1

kαk +
∑
k≥1

kβ+
k +

∑
k≥2

kβ−k

Proof. The proof is by induction on the index using Lemma 5.9.1, Corollary 5.6.2 and
Theorem 5.3.

Example 5.9.1. The system of Example 5.6.2 has non-zero defects:

β+
3 = 1, β−1 = 1

Example 5.9.2. Let us examine the defects of some simple two-by-two systems.
In the right column we only mention the non zero defect indices. For convenience
we also indicate the size δ of the purely dynamical part, although it is easily
computed using Proposition 5.9.5.([

1 0
0 1

]
,

[
0 0
0 0

])
all defects are zero, δ = 2([

1 0
0 0

]
,

[
0 0
0 0

])
β+

1 = β−1 = 1, δ = 1([
0 1
0 0

]
,

[
0 0
0 1

])
β+

2 = β−1 = 1, δ = 0([
1 0
0 0

]
,

[
0 1
0 0

])
β+

1 = β−2 = 1, δ = 0([
1 0
0 0

]
,

[
0 0
0 1

])
α1 = 1, δ = 1([

0 0
0 0

]
,

[
0 1
0 0

])
α1 = β+

1 = β−1 = 1, δ = 0([
0 0
0 0

]
,

[
1 0
0 1

])
α1 = 2, δ = 0
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Example 5.9.3. The system presented in Example 5.8.1 has defect indices:

α = (1, 0, . . .)

β+ = (0, . . .)

β− = (0, 0, 1, 0, . . .)

Example 5.9.4. The mechanical system of Example 5.6.1 has defect indices
β+ = 0, β− = 0 and:

α = (0, 0, n, 0, . . .)
where n is the number of constraints, i.e. the rank of G. Notice that in general
if G has rank deficiency m then the β defect indices are not zero anymore and
one has:

β+
1 = β−1 = m

The system is clearly solvable iff m = 0, i.e. if G has full rank.

5.10 Kronecker Decomposition

The Kronecker canonical form makes use of special blocks, each of which having a
variant for the matrices E and A.

First the rectangular “L-blocks” LE
k and LA

k :

LE
k :=


1
0 1

. . . . . .
0 1

0




k LA

k :=


0
1 0

. . . . . .
1 0

1




k

One also uses the nilpotent blocks NE
k and NA

k as follows:

NE
k :=


0 1

0 1
. . . . . .

0 1
0




k NA

k :=


1 0

1 0
. . . . . .

1 0
1




k
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Theorem 5.4. A decomposition with defects α, β+, β− produces a Kronecker
decomposition with:

• αk block of type Nk

• β+
k blocks of type Lk

• β−k blocks of type LT
k

Proof. The proof is a combinatorial rearrangement of the basis of M and V provided by
Theorem 5.3, best seen on Figure 5.8.

Conjugate Decomposition

We may now show the relation between the decomposition of Theorem 5.1 on a
pair (E,A) and on the adjoints (E∗,A∗).

Theorem 5.5. The conjugate decomposition switches the defects β+ and β−, i.e.
it produces the following defects:

α(E∗,A∗) = α(E,A)
β+(E∗,A∗) = β−(E,A)
β−(E∗,A∗) = β+(E,A)

Weierstraß decomposition

In the case of square, solvable linear systems, the Kronecker decomposition is called
the Weierstraß decomposition ([Wei68; HW96]) and is as follows:

E =
[
I 0
0 N

]
A =

[
C 0
0 I

]
where C may be in Jordan normal form and N is a block diagonal matrix of blocks
of type NEk .

Then the matrix block N consists of nilpotent blocks as follows:

N = diag
(

NEk1
(0),NEk2

(0), . . . ,NEkm(0)
)

Proposition 5.10.1. The Weierstraß decomposition produces a decomposition with

αk blocks NE
k 1 ≤ k ≤ n



110 CHAPTER 5. LINEAR AUTONOMOUS IDE
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Figure 5.8: (See legend on p. 119). An illustration of Theorem 5.4. The difference of size of the
squares is exactly given by the defects α, β+ and β−. The pink squares bearing the
number j represent all the nilpotent blocks Nj ; there are αj such blocks. The yellow
squares bearing the number j represent the L-blocks Lj . There are β+

j such blocks. The
light green squares bearing the number j represent the L-blocks LT

j . There are β−j such
blocks.
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Proof. It is just a special case of Theorem 5.4.

5.11 Notes

The material presented in this Chapter is entirely new. The Kronecker decompo-
sition Theorem is a well-know result in linear algebra ([Kro90], [Gan59, § XII.4],
[GLR06, § A.7]), with applications in control theory and numerical analyis ([Kai79,
§ 6.3], [KM94], [ESF98, § 2.6.2], [HW96, VII.1]). Our proof has a geometric flavour
that is lacking in the existing proofs. The same holds for our proof of the regular
pencil theorem.

Some interesting references on variants of the Kronecker decomposition is to be
found in [Joh05]. As far as we know, the decomposition presented in this Chapter
has never been used for practical computation of the Kronecker canonical form.
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LEGEND

Legend of the various matrix figures.

E = I, A = 0

A = I, E = 0

E = I, A non specific

E = 0, A non specific

E = 0, A = 0

E = 0, A = 0

E = I, A Jordan form
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