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ABSTRACT

We discuss the IAU resolutions B1.3, B1.4, B1.5, and B1.9 that were adopted during the 24th General
Assembly in Manchester, 2000, and provides details on and explanations for these resolutions. It is explained
why they present significant progress over the corresponding IAU 1991 resolutions and why they are necessary
in the light of present accuracies in astrometry, celestial mechanics, and metrology. In fact, most of these
resolutions are consistent with astronomical models and software already in use. The metric tensors and
gravitational potentials of both the Barycentric Celestial Reference System and the Geocentric Celestial
Reference System are defined and discussed. The necessity and relevance of the two celestial reference systems
are explained. The transformations of coordinates and gravitational potentials are discussed. Potential
coefficients parameterizing the post-Newtonian gravitational potentials are expounded. Simplified versions of
the time transformations suitable for modern clock accuracies are elucidated. Various approximations used in
the resolutions are explicated and justified. Some models (e.g., for higher spin moments) that serve the purpose
of estimating orders of magnitude have actually never been published before.
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1. INTRODUCTION

It is clear that, beyond some threshold of accuracy, any
astronomical problem has to be formulated within the
framework of Einstein’s theory of gravity (general relativity
theory, or GRT). Many high-precision astronomical tech-
niques have already passed this threshold. For example,

lunar laser ranging measures the distance to the Moon with
a precision of a few centimeters, thereby operating at the
10�10 level. At this level, several relativistic effects are signifi-
cant and observable. Relativistic effects related to the
motion of the Earth-Moon system about the Sun are of
order (vorbital/c)

2 ’ 10�8. The Lorentz contraction of the
lunar orbit about Earth that appears in barycentric coordi-
nates has an amplitude of about 100 cm, whereas in some
suitably chosen (local) coordinate system that moves with
the Earth-Moon barycenter, the dominant relativistic range
oscillation reduces to only a few centimeters (Mashhoon
1985; Soffel, Ruder, & Schneider 1986).

The situation is even more critical in the field of
astrometry. It is well known that the gravitational light
deflection at the limb of the Sun amounts to 1>75 and
decreases only as 1/rwith increasing impact parameter r of a
light ray to the solar center. Thus, for light rays incident at
about 90� from the Sun the angle of light deflection still
amounts to 4 mas. To describe the accuracy of astrometric
measurements, it is useful to make use of the parameter � of
the parameterized post-Newtonian (PPN) formalism. We
would like to emphasize that this paper deals solely with
Einstein’s theory of gravity, where � = 1, and not with the
PPN formalism. Nevertheless, the introduction of � is useful
if one wishes to talk about measurement accuracies. In the
PPN formalism, the angle of light deflection is proportional
to (� + 1)/2, so that astrometric measurements might be
used for a precise determination of the parameter �. Mean-
while, very long baseline interferometry (VLBI) has achieved
accuracies of better than 0.1 mas, and regular geodetic VLBI
measurements have frequently been used to determine the
space curvature parameter. A detailed analysis of VLBI data
from the projects MERIT and POLARIS/IRIS yielded
� = 1.000 � 0.003 (Robertson & Carter 1984; Carter,
Robertson, &MacKay 1985), where a formal standard error
is given. Recently an advanced processing of VLBI data
provided the best current estimates, � = 0.9996 � 0.0017
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15 Astronomický Ústav, Universita Karlova, V. Holešovičkách 2,
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(Lebach et al. 1995) and � = 0.99994 � 0.00031 (Eubanks
et al. 1997). The current accuracy of modern optical
astrometry, as represented by the Hipparcos Catalogue, is
about 1 mas, which gave a determination of � at the level of
0.997 � 0.003 (Froeschlé, Mignard, & Arenou 1997). Future
astrometric missions such as SIM and especially GAIA will
push the accuracy to the level of a few microarcseconds, and
the expected accuracy of determinations of � will be 10�6 to
10�7. The accuracy of 1 las should be compared with the
maximal possible light deflection due to various parts of the
gravitational field: the post-Newtonian effect of 1>75 due to
the mass of the Sun, 240 las caused by the oblateness of
Jupiter, J2 (10 las due to Jupiter’s J4), the post–post-
Newtonian effect of 11 las due to the Sun, etc. This
illustrates how complicated the relativistic modeling of
future astrometric observations will be. It is clear that for
such high accuracy the corresponding model must be
formulated in a self-consistent relativistic framework.

Another problem worth mentioning is that of time mea-
surement. The realization of the SI (Système international)
second (the unit of proper time) has improved by 1 order of
magnitude in the last few years with the advent of laser-
cooled atomic clocks (Lemonde et al. 2001; Weyers et al.
2001; references therein) and is now below 2 parts in 1015.
This should be compared with the dimensionless quantity
UE/c

2 ’ 7 � 10�10, which gives the order of magnitude of
relativistic effects produced by the gravity field of Earth
itself in the vicinity of its surface. In the near future, laser-
cooled atomic clocks in microgravity are expected to lead to
a further improvement by at least 1 order of magnitude. At
present, several clock experiments in terrestrial orbit are
planned, such as the Atomic Clock Ensemble in Space
project (Lemonde et al. 2001). These in turn are likely to
lead to clock experiments in solar orbits, such as the Solar
Orbit Relativity Test project. All of these experiments
require a detailed account of many subtle relativistic effects.

Finally, we would like to mention the problem of geodetic
precession and nutation (a relativistic effect that is discussed
in more detail below; Misner, Thorne, & Wheeler 1973;
Soffel 1989) and the description of Earth’s rotation in a suit-
ably chosen geocentric celestial reference system. Geodetic
precession amounts to 1>9 per century, and geodetic nuta-
tion is dominated by an annual term with amplitude 0.15
mas. Since the geocentric reference system is chosen to be
kinematically nonrotating, geodetic precession and nuta-
tion should be contained in the model describing the rela-
tion between the geocentric system and the International
Terrestrial Reference System (ITRS). According to IAU
Resolution B1.6 (2000), this relativistic precession-nutation
is indeed contained in the present IAU precession-nutation
model.

These examples show clearly that high-precision modern
astronomical observations can no longer be described by
Newtonian theory but require Einstein’s theory of gravity.
The consequences of this are profound for the basic formal-
ism to be used, since one often tends to express it in terms of
‘‘ small relativistic corrections ’’ to Newtonian theory. This
can lead to misconceptions and mistakes. One central point
is that in Newton’s theory, globally preferred coordinate
systems exist that have a direct physical meaning. In the
Newtonian framework, idealized clocks show absolute time
everywhere in the universe at all times, and global spatial
inertial coordinates exist in which dynamical equations of
motion show no inertial forces. This is no longer true in

GRT. Usually, spacetime coordinates have no direct physi-
cal meaning and it is essential to construct the observables
as coordinate-independent quantities, that is, scalars, in
mathematical language. This construction usually occurs in
two steps: first one formulates a coordinate picture of the
measurement procedure, and then one derives the observ-
able out of it. This leads us to the problem of defining useful
and adequate coordinate systems in astronomy. The
underlying concept in relativistic modeling of astronomical
observations is a relativistic four-dimensional reference
system. By reference system, we mean a purely mathe-
matical construction (a chart or a coordinate system) giving
‘‘ names ’’ to spacetime events. In contrast to this, a refer-
ence frame is some materialization of a reference system. In
astronomy, the materialization is usually realized by means
of a catalog or ephemeris, containing positions of some
celestial objects relative to the reference system under con-
sideration. Hence it is very important to understand that
any reference frame is defined only through a well-defined
reference system, which has been used to construct physical
models of observations.

In the following, a four-dimensional spacetime reference
system will be described by four coordinates x� =
(x0, xi ) = (x0, x1, x2, x3). Here and below, the Greek indices
(e.g., �) take the values 0, 1, 2, and 3, and the Latin ones
(e.g., i) take the values 1, 2, and 3. The index 0 refers to the
time variable and the indices 1, 2, and 3 refer to the three
spatial coordinates. For dimensional reasons, one usually
writes x0 = ct, where c is the speed of light and t is a time
variable. According to the mathematical formalism of
general relativity, a particular reference system is fixed by
the specific form of the metric tensor g��(t, xi ), which allows
one to compute the 4-distance ds between any two events x�

and x� + dx� according to the rule

ds2 ¼ g��ðt; xiÞdx� dx�

� g00c
2 dt2 þ 2g0ic dt dx

i þ gij dx
i dxj ; ð1Þ

where Einstein’s summation convention (summation over
repeated indices) is implied. The metric tensor allows one to
derive translational and rotational equations of motion of
bodies, to describe the propagation of light, and to model
the process of observation. Examples of such modeling
include relating the observed (proper) time of an observer to
the coordinate time t, and relating the angles between two
incident light rays as observed by that observer to the corre-
sponding coordinate directions. All of these components
can be combined into a single relativistic model for a partic-
ular kind of observation. Such a model contains a certain
set of parameters describing various properties of the
objects participating in the process of observation. These
parameters should be determined from observations. Many
of these parameters crucially depend upon the reference
system used to formulate the model of observations (e.g.,
the initial positions and velocities of certain bodies). Some
other parameters might not depend at all upon the reference
system (e.g., the speed of light in vacuum). On the other
hand, according to the principle of covariance, different
reference systems covering the region of spacetime under
consideration are mathematically equivalent in the sense
that any such system can be used to model the observations.
This freedom to choose the reference system can be used to
simplify the models or to make the resulting parameters
more physically adequate.

2688 SOFFEL ET AL. Vol. 126



It is widely accepted that in order to adequately describe
modern astronomical observations, one has to use several
relativistic reference systems. The solar system Barycentric
Celestial Reference System (BCRS) can be used to model
light propagation from distant celestial objects, as well
as the motion of bodies within the solar system. The
Geocentric Celestial Reference System (GCRS) is physically
adequate to describe processes occurring in the vicinity of
Earth (Earth’s rotation, the motion of Earth’s satellites,
etc.). The introduction of further local systems (seleno-
centric, martian, etc.) might be of relevance for specific
applications, where physical phenomena in the vicinity of
the corresponding body play a role.

The necessity of using several reference systems can be
understood from the following example: If we were to
characterize terrestrial observers by the difference between
their BCRS coordinates and the BCRS coordinates of the
geocenter, the positions of the observers relative to the geo-
center would be altered by time-dependent, relativistic
coordinate effects (such as Lorentz contraction) that have
nothing to do with Earth’s rotation or with geophysical
factors and which would vanish if one employed suitable
GCRS coordinates instead. On the other hand, the coordi-
nate positions derived with VLBI observations are used to
investigate local geophysical processes, and some adequate
geocentric reference system allows one to simplify their
description.

The basic idea is to construct a special local reference sys-
tem for each material subsystem, in which the relativistic
equations of motion for a test body inside the subsystem
under consideration take a particularly simple form. In such
a local reference system the influence of external matter, in

accordance with the equivalence principle, should be given
by tidal potentials only, that is, by potentials whose expan-
sions in powers of local spatial coordinates in the vicinity of
the origin of the corresponding reference system start with
the second order (the linear terms representing inertial forces
may also exist, but they can be eliminated if desired by a
suitable choice of the origin of the local coordinates).

Two advanced relativistic formalisms have been worked
out to tackle this problem in the first post-Newtonian
approximation of general relativity. One formalism is due
to Brumberg and Kopeikin (Brumberg & Kopeikin 1989;
Kopeikin 1988, 1990; Brumberg 1991; Klioner & Voinov
1993), and another is due to Damour, Soffel, and Xu
(Damour, Soffel, & Xu 1991, 1992, 1993, 1994). The IAU
2000 Resolutions B1.3–B1.5 are based upon these
approaches. These resolutions extend corresponding older
ones that are reconsidered in the next section. From a math-
ematical point of view, Resolution B1.3 recommends the
use of certain coordinates and the way of writing the metric
tensor. Clearly, one might use any coordinate system that is
well adapted to a specific problem of interest. Nevertheless,
because of the high risk of possible confusion, the strategy
of recommending special coordinate systems (to fix the
gauge completely, in mathematical language) has significant
advantages. If different coordinates are employed to derive
certain results, this should be stressed explicitly so that they
can be transformed into the reference systems recom-
mended by the IAU and can be compared with the results
derived in the IAU framework.

The organization of the present paper is as follows (see
also Fig. 1): In x 2, the principal content of the IAU 1991
recommendations on relativity (x 2.1) and the further

Fig. 1.—Notations used for quantities of the Barycentric and Geocentric Celestial Reference Systems (coordinates, metric, potentials, and multipole
moments) with references to the sections and resolutions where they appear.
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related IAU and International Union of Geodesy and Geo-
physics (IUGG) resolutions (x 2.2) are repeated. The IAU
2000 resolutions on relativity (Resolutions B1.3, B1.4, B1.5,
and B1.9) are discussed in x 3. The full text of the IAU 2000
resolutions on relativity is given in Appendix A. Section 3.1
briefly clarifies the necessity and the role of the two celestial
reference systems defined by the IAU resolutions. The
Barycentric Celestial Reference System, defined by Resolu-
tion B1.3, is discussed in x 3.2. Section 3.3 is devoted to a
discussion of the Geocentric Celestial Reference System, as
well as the definition of the geocentric gravitational poten-
tials also defined by Resolution B1.3. The coordinate trans-
formations between the BCRS and GCRS, also fixed by
Resolution B1.3, are explained in x 3.4. Potential coefficients
that can be used to represent in a meaningful way the post-
Newtonian geocentric gravitational potential of Earth in
its immediate vicinity are fixed by Resolution B1.4 and
explained in x 3.5. As an illustration, the gravitational
potentials of the BCRS are calculated in x 3.6 for the simpli-
fied case in which all gravitating bodies of the solar system
can be characterized by their masses only (no further struc-
ture of the gravitational field of the bodies is considered). A
similar form of the barycentric gravitational potentials is
used in Resolution B1.5, where a practical relativistic frame-
work for time and frequency applications in the solar system
is formulated. This practical relativistic framework is dis-
cussed in x 4. The practical transformation between the
coordinate times of the BCRS and GCRS is explained in
x 4.1, while the transformations between the various kinds
of time scales appropriate for Earth’s vicinity are discussed
in x 4.2. Appendix B contains an explicit proof that the
BCRS metric coincides with well-known results from the
literature.

2. THE IAU 1991 FRAMEWORK AND PREVIOUS
RECOMMENDATIONS

2.1. The IAU 1991 Recommendations

IAU Resolution A4 (1991) contains nine recommenda-
tions, the first five of which are directly relevant to our
discussion.

In the first recommendation, the metric tensor for space-
time coordinate systems (t, x) centered at the barycenter of
an ensemble of masses is recommended in the form

g00 ¼ �1þ 2Uðt; xÞ
c2

þOðc�4Þ ;

g0i ¼ Oðc�3Þ ;

gij ¼ �ij

�
1þ 2Uðt; xÞ

c2

�
þOðc�4Þ ; ð2Þ

where c is the speed of light in vacuum (c = 299,792,458 m
s�1) and U is the Newtonian gravitational potential (here a
sum of the gravitational potentials of the ensemble of
masses and of an external potential generated by bodies
external to the ensemble, the latter potential vanishing at
the origin). The algebraic sign of U is taken to be positive,
and it satisfies Poisson’s equation,

r2U ¼ �4�G� : ð3Þ

Here G is the gravitational constant, � is the matter density,
and r2 is the usual Laplacian r2 � @2/@x2 + @2/@y2 +

@2/@z2, where x = (x, y, z). This recommendation also rec-
ognizes that spacetime cannot be described by a single coor-
dinate system. The recommended form of the metric tensor
can be used not only to describe the barycentric reference
system of the whole solar system, but also to define the geo-
centric reference system centered at the center of mass of
Earth with a suitable function instead of U, now depending
upon geocentric coordinates. In analogy to the geocentric
reference system, a corresponding reference system can be
constructed for any other body of the solar system.

In the second recommendation, the origin and orienta-
tion of the spatial coordinate grids for the barycentric and
geocentric reference systems are defined. Notably, it is speci-
fied that the spatial coordinates of these systems should
show no global rotation with respect to a set of distant
extragalactic objects. It also specifies that the SI second and
meter should be the units of time and length in all coordi-
nate systems. It states in addition that the time coordinates
should be derived from an Earth atomic time scale.

The third recommendation defines TCB (Barycentric
Coordinate Time) and TCG (Geocentric Coordinate Time)
as the time coordinates of the BCRS and GCRS, respec-
tively. Here we write (t = TCB, xi) and (T = TCG, Xi ) for
the respective coordinates. The recommendation also
defines the origin of the time scales in terms of International
Atomic Time (TAI). The reading of the coordinate time
scales on 1977 January 1, 00:00:00 TAI (JD = 2,443,144.5
TAI) must be 1977 January 1, 00:00:32.184. Finally, the rec-
ommendation declares that the units of measurement of the
coordinate times of all reference systems should be chosen
so that they are consistent with the SI second. The relation-
ship between TCB and TCG is then given by the time part
of the full four-dimensional transformation between the
barycentric and geocentric reference systems,

TCB � TCG

¼ 1

c2

� Z t

t0

�
v2E
2
þUextðxEÞ

�
dtþ viEr

i
E

�
þOðc�4Þ; ð4Þ

where xiE and viE are the barycentric coordinate position
and velocity of the geocenter, riE = xi � xiE with xi the
barycentric position of some observer, and Uext(xE) is the
Newtonian potential of all solar system bodies apart from
Earth evaluated at the geocenter.

In the fourth recommendation, another coordinate time,
Terrestrial Time (TT), is defined. It differs from TCG by a
constant rate only,

TCG� TT ¼LG � ðJD� 2;443;144:5Þ � 86;400 ;

LG � 6:969291� 10�10 ; ð5Þ

where JD is TAI measured in Julian days, so that the mean
rate of TT agrees with that of the proper time of an observer
situated on the geoid up to a certain accuracy limit. Up to a
constant shift of 32.184 s, TT represents an ideal form of
TAI, the divergence between them being a consequence of
the physical defects of atomic clocks. It is also recognized
that TT is nothing but a rescaling of the geocentric time
TCG.

The fifth recommendation states that the old barycentric
time TDB may still be used where discontinuity with
previous work is deemed to be undesirable. Let us note,
however, that TDB was never defined in a self-consistent
and exact manner. For that reason it cannot be used in
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theoretical considerations. In the notes to the third
recommendation, the relation of TCB to TDB is given as

TCB� TDB ¼ LB � ðJD� 2;443;144:5Þ � 86;400 ;

LB � 1:550505� 10�8 : ð6Þ

Note, however, that according to IAU Resolution C7 (see
x 2.2), JD is defined in Terrestrial Time, which makes this
formula problematic.

2.2. Further Resolutions

Resolution 2 (1991) of the IUGG defined the Conven-
tional Terrestrial Reference System (CTRS) as a reference
system resulting from a (time dependent) spatial rotation of
the geocentric reference system defined by the 1991 IAU
recommendations, the spatial rotation being chosen such
that the CTRS has no global residual rotation with respect
to horizontal motions at Earth’s surface. The coordinate
time of the CTRS coincides with TCG.

IAU Resolution C7 (1994) recommends that the epoch
J2000, as well as the Julian (ephemeris) day, be defined in TT.
IAUResolution B6 (1997) has supplemented this framework
by one more recommendation stating that no scaling of
spatial axes should be applied in any reference system (even if
a scaled time coordinate such as TT is used). Note, however,
that this resolution has been ignored in the construction of
the International Terrestrial Reference Frame, which is
defined not with the GCRS spatial coordinates X but with
scaled coordinatesXTT = (1 � LG)X.

3. THE IAU 2000 RESOLUTIONS ON RELATIVITY

The IAU 1991 framework is unsatisfactory from many
points of view. The Einstein-Infeld-Hoffmann equations of
motion, which have been used since the 1970s to construct
the JPL numerical ephemerides of planetary motion, cannot
be derived from the metric of equation (2). In other words,
for the motion of massive solar system bodies this metric is
not the post-Newtonian metric of Einstein’s theory of
gravity. In the years prior to the 23d General Assembly in
Kyoto (1997), it became obvious that the IAU 1991 set of
recommendations concerning relativity in astrometry, celes-
tial mechanics, and metrology was not sufficient for the
accuracies that were achievable. Especially with respect to
planned astrometric missions with microarcsecond accu-
racy, extended and improved resolutions had become indis-
pensable. For that reason, the IAU Working Group on
Relativity in Celestial Mechanics and Astrometry, together
with a joint committee of the Bureau International des
Poids et Mesures and the IAU on relativity for spacetime
reference systems and metrology, suggested such an
extended set of resolutions (B1.3–B1.5 and B1.9), which was
finally adopted at the IAUGeneral Assembly inManchester
in the year 2000. The relevant resolutions can be found in
Appendix A. It is clear that because of their brevity they
need additional explanation, and there is also a need to
show how they work in practice. This paper now presents a
detailed explanatory supplement for these IAU 2000
resolutions.

3.1. The Role of the Two Celestial Reference Systems,
BCRS and GCRS

Some of the reasons why two different celestial astronom-
ical reference systems have to be introduced have already

been mentioned in x 1. Here we would like to deepen this
discussion in several respects. It is clear that for many
applications in the fields of astrometry, celestial mechanics,
geodynamics, geodesy, etc., some quasi-inertial or ‘‘ space-
fixed ’’ reference system has to be introduced. Resolution
B1.3 actually defines two different celestial reference
systems: the Barycentric Celestial Reference System and the
Geocentric Celestial Reference System.

In Newtonian theory, one can easily introduce inertial
spacetime coordinates that cover the entire universe. Such
inertial coordinates in Newton’s theory are unique up to the
choice of origin, scales, and orientation of the spatial axes
and up to a constant velocity of origin. In astronomy, con-
ceptually we may talk about two different relevant celestial
systems: a barycentric one and a geocentric one, which
basically serve different purposes. The barycentric celestial
system is considered to be inertial (external Galactic and
extragalactic matter normally being neglected) and is used
for solar system ephemerides, for concepts such as an
ecliptic, for interplanetary spacecraft navigation, etc. The
positions of remote objects can be defined in that system.
The barycentric celestial system presents the fundamental
astrometric system, in which concepts such as ‘‘ proper
motion ’’ and ‘‘ radial velocity ’’ can be defined.

On the other hand, the geocentric celestial system might
be called quasi-inertial, since the spatial axes are non-
rotating in the Newtonian absolute sense, whereas the geo-
center is accelerated. It is employed for the description of
physical processes in the vicinity of Earth, for satellite
theory, the dynamics of Earth (including Earth’s rotation),
etc. It is also used for the introduction of concepts such as
the equator and the ITRS. Let us denote the time and space
coordinates of the barycentric celestial system by (t, x), and
those of the geocentric celestial system by (T, X). In
Newton’s framework the relation between these two sets of
coordinates is trivial:

T ¼ t; X ¼ x� xEðtÞ ;

where xE(t) denotes the barycentric position of the geocenter.
Because these relations are so trivial, for some purposes the
barycentric and the geocentric celestial systems are not
always clearly distinguished in the Newtonian framework.

Of course, for astrometric problems one always distin-
guishes between the two celestial systems and apparent
places of stars from true (barycentric) places. However,
annual parallax and aberration were merely understood as
correction terms that have to be applied to get the ‘‘ true ’’
positions for the realization of the astronomical quasi-
inertial, space-fixed celestial system. Note that the definition
of the classical astronomical (�, �) system uses concepts
from both systems: some ecliptic from the barycentric celes-
tial system, and some Earth rotation pole, the Celestial
Ephemeris Pole or Celestial Intermediate Pole, and its
corresponding equator from the geocentric celestial system.

In relativity theory, the situation is more complicated.
Even in the absence of gravitational fields and a uniformly
moving geocenter, the two coordinate systems are related
by a four-dimensional Lorentz transformation from special
relativity. In our solar system, BCRS and GCRS coordi-
nates are related by a complicated four-dimensional space-
time transformation (a generalized Lorentz transformation)
that also contains acceleration terms and gravitational
potentials. This implies that the two astronomical reference
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systems, the BCRS and the GCRS, are actually quite differ-
ent. This has profound consequences for many classical
astronomical concepts.

The BCRS is the basic astrometric celestial reference sys-
tem. Usually one considers the solar system to be isolated—
that is, one ignores all matter and fields outside the system
and assumes that the gravitational potentials vanish far
from the system. It is obvious that ignoring the Galaxy and
extragalactic objects is an unphysical idealization for several
specific questions (which, however, will not be touched
upon here). If the solar system is considered to be isolated,
we might follow light rays from some very remote source
back in time to the region |x| ! 1, which might be called
the celestial sphere. In the vicinity of the celestial sphere, a
certain light ray defines spherical angles that might appear
as catalog values. Actually, for reference stars the physical
distance from Earth usually plays a role. In that case we
might associate any star with a corresponding BCRS coor-
dinate position x�, which will be a function of TCB. From
this position, vector spherical angles (��, ��) can be
introduced in a very simple manner by

x�
x�j j ¼

cos�� cos ��
sin�� cos ��

sin ��

0
B@

1
CA ; ð7Þ

which can be considered as catalog values. If the coordinate
distance of some source tends to infinity, the two construc-
tions for an astrometric position will coincide. From x�ðtÞ,
quantities such as ‘‘ proper motion ’’ and ‘‘ radial velocity ’’
can be defined as coordinate quantities in the BCRS. Note
that the problem of ‘‘ radial velocity ’’ has exhaustively been
discussed by Lindegren & Dravins (2003; see also IAU 2000
Resolutions C1 and C2 [Rickman 2001]). Other fields of
application of the BCRS are solar system ephemerides,
interplanetary navigation, etc.

The definition of the BCRS given by IAU Resolution
B1.3 (2000) does not fix the orientation of the spatial axes
uniquely but only up to some constant, time-independent
rotation matrix about the origin. One natural choice of
orientation is provided by the International Celestial
Reference System (ICRS). Actually, for the construction of
the International Celestial Reference Frame (ICRF) and its
optical counterpart, the Hipparcos Catalogue, the recom-
mended form of the barycentric metric tensor has already
been used explicitly in the underlying models. This implies
that a set of definitions that completely fix the ICRS
contains the BCRS definitions.

There might be other useful possibilities for the
orientation of barycentric spatial coordinates. One possibil-
ity is an orientation according to some ecliptic E0 at a
certain epoch t0 defined by corresponding solar system
ephemerides. Such an ecliptic would coincide with the x-y
plane of a BCRS(E0), which might be useful for reasons of
historical continuity.

On the other hand, quantities and concepts related to the
physics in the immediate vicinity of Earth should be formu-
lated in the GCRS. This concerns the gravity field of Earth
itself and satellite theory and especially applies to theories
of Earth’s rotation and their parameters. Clearly, the spatial
GCRS coordinates X can be used to define corresponding
unit vectors at the geocenter, which might be employed to
compute spherical angles (�GCRS, �GCRS) that might be

called ‘‘ geocentric places.’’ Note, however, that the coordi-
nates of the remote astronomical sources are defined in the
BCRS only. The calculated GCRS places (�GCRS, �GCRS)
are determined by incident light rays at the geocenter. They
differ from corresponding ICRS (�, �)-values because of
annual aberration, annual parallax, and gravitational light
deflection due to the gravitational fields of the solar system
bodies (apart from Earth) and are independent of Earth’s
rotation. Whether these GCRS places, however, will ever
play a role in practice is not clear.

In the past, apparent places of stars that were annually
published, for example, in the ‘‘Apparent Places of
Fundamental Stars ’’ played a role for certain problems.
These places are related to the old, traditional astronomical
reference system, that is, with some equator and equinox of
date. Nowwith the ICRS, we have a highly precise astronom-
ical reference system that is basically independent of Earth’s
rotation parameters and their determination. For several
applications, however, the introduction of quantities such as
apparent places might still be useful, especially if there is a
reference to the local plumb line—that is, to the zenith—and
the astronomical (or nautical) triangle can be employed. In
that case Resolutions B1.7 and B1.8 (IAU 2001; Rickman
2001) come into play. These two resolutions define some
intermediate system that can be used for the definition of
an intermediate position (�inter, �inter) by the Celestial
Intermediate Pole and the Celestial Ephemeris Origin. Such
an intermediate position can be considered a modern version
of the apparent place, defined in theGCRS.

For astrometry at microarcsecond accuracies, neither
GCRS places nor intermediate places likely will play a role.
To avoid problems related to nonlinearities, it is simpler to
use an overall BCRS picture to describe not only the light
rays and the motion of gravitating bodies, but also the
trajectory of an observer. In that case, only catalog and
observed positions will be of importance.

3.2. The Barycentric Celestial Reference System

Resolution B1.3 concerns the definition of the
Barycentric Celestial Reference System and the Geocentric
Celestial Reference System. The BCRS is defined with
coordinates (ct, xi ) = xl, where t = TCB. The BCRS is a
particular version of the barycentric reference system of the
solar system. The resolution recommends that the metric
tensor of the BCRS be written in the form

g00 ¼ �1þ 2w

c2
� 2w2

c4
þOðc�5Þ ;

g0i ¼ � 4

c3
wi þOðc�5Þ ;

gij ¼ �ij

�
1þ 2

c2
w

�
þOðc�4Þ : ð8Þ

A comparison reveals that this form of the metric presents
an extension of equation (2). Whereas the old form contains
only the Newtonian potential U, the new one contains a
scalar potential w and a vector potential wi.

Actually, the equations for g00 and g0i from equation (8)
without the order symbolsO(c�5) are always correct and can
simply be considered definitions of w and wi in terms of g00
and g0i. In contrast to the concrete form of the resolution, we
have added order symbols in equation (8). For example, for
g00 the order symbol indicates that terms of order c�5 will
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systematically be neglected, as stated in the notes to the
resolution. With these forms for g00 and g0i, one finds that
spatially isotropic coordinates xi exist such that gij from
equation (8) with the potential w from g00 solves Einstein’s
field equations to first post-Newtonian order. Note that the
form of equation (8) implies that the barycentric spatial coor-
dinates xi satisfy the harmonic gauge condition (see, e.g.,
Brumberg & Kopeikin 1989; Damour et al. 1991). At this
point, because of the freedom in the time coordinate, many
different ‘‘ time gauge conditions ’’ are still possible. The reso-
lution proceeds by recommending a specific kind of space
and time harmonic gauge. One argument in favor of the har-
monic gauge is that tremendous work on general relativity
has been done with the harmonic gauge, which was found to
be a useful and simplifying gauge for many kinds of
applications.Moreover, the harmonic gauge condition,

gl���l� ¼ 0 ð9Þ

(e.g.,Weinberg 1972; Fok 1959), where��l� are the Christoffel
symbols of the metric tensor, is not restricted to some post-
Newtonian approximation but can be defined in Einstein’s
theory of gravity without any approximations. This may be
important for future refinements of the IAU framework.
With the harmonic gauge condition, the post-Newtonian
Einstein field equations take the form

�
� 1

c2
@2

@t2
þr2

�
w ¼ �4�G	þOðc�4Þ ; ð10Þ

r2wi ¼ �4�G	i þOðc�2Þ : ð11Þ

Here 	 and 	i are the gravitational mass and mass current
density, respectively. Mathematically they are related to the
energy-momentum tensor Tl� by

	 ¼ 1

c2
ðT00 þ TssÞ ; 	i ¼ 1

c
T0i : ð12Þ

The energy-momentum tensor Tl� generalizes the density �
of the Poisson equation (eq. [3]). In relativity, energy density,
pressure, and stresses all act as sources of the gravitational
field. This implies that different kinds of energy contribute
to the gravitational sources—kinetic energy, gravitational
potential energy, energy of deformation, etc. Since the kinetic
energy depends upon the state of motion of the matter, the
energy-momentum tensor, which really acts as the gravita-
tional source, exhibits nontrivial transformation behavior if
we go from one reference system to another. In practice, how-
ever, the energy-momentum tensor will usually not appear
explicitly. This is because the gravitational potentials w and
wi from equations (10)–(11) are completely determined by 	
and 	i, which can be considered primary quantities. If we deal
with problems in which gravitational fields play a role only
outside of astronomical bodies and admit a useful convergent
expansion in terms of multipole moments (potential coeffi-
cients), only corresponding integral characteristics of the
bodies such as masses and quadrupole moments show up
explicitly, which are defined in terms of 	 and 	i and whose
numerical values will be fixed by observations. Because of
equation (11), wi is sometimes called the gravitomagnetic
potential, since it results from mass currents (moving or
rotating masses) just as the electromagnetic vector potential
results from electric currents in Maxwell’s theory of
electromagnetism.

Equation (10) generalizes the Poisson equation (eq. [3]),
and hence the scalar potential w presents a relativistic
generalization of the Newtonian potential U. Because of
problems related to homogeneous solutions and boundary
conditions, mathematically it is clear that these differential
equations do not fix the harmonic solutions uniquely.
Assuming spacetime to be asymptotically flat (no
gravitational fields far from the system), that is,

lim
r!1
t¼const

gl� ¼ diag ð�1;þ1;þ1;þ1Þ ; ð13Þ

the recommended solution reads

wðt; xÞ ¼ G

Z
d3x0

	ðt; x0Þ
x� x0j j

þ 1

2c2
G
@2

@t2

Z
d3x0 	ðt; x0Þ x� x0j j ; ð14Þ

wiðt; xÞ ¼ G

Z
d3x0

	iðt; x0Þ
x� x0j j : ð15Þ

It is obvious that the second time derivative term in
equation (14) results from the corresponding operator in the
field equation (eq. [10]). This operator modifies the
Laplacian from the Newtonian Poisson equation to
the d’Alembertian, and the similarity between the harmonic
post-Newtonian field equations and Maxwell’s equations of
electromagnetism in the Lorentz gauge becomes obvious
(actually, one might replace the Laplacian by the
d’Alembertian in eq. [11] to post-Newtonian accuracy).
From Maxwell’s theory, it is well known that the retarded
potential solves the corresponding field equation:

wretðt; xiÞ ¼ G

Z
d3x0

	ðtret; x0Þ
x� x0j j

ð16Þ

with

tret ¼ t� x� x0j j=c : ð17Þ

One might then expand the retarded potential in terms of
1/c. Note that such an expansion also yields a term propor-
tional to 1/c. If we stay within the first post-Newtonian
approximation, these 1/c terms vanish as a consequence of
the Newtonian mass conservation law. Such odd powers of
1/c indicate time-asymmetric terms, that is, they break
time-reversal symmetry. It is well known that such time-
asymmetric terms appear only to higher post-Newtonian
order, and they will not be considered here. For that reason,
the retarded potential (eq. [16]) leads to the recommended
solution above.

Comparing the form of the metric tensor in equation (8)
with other forms that can be found in the literature (e.g.,
Will 1993), one might get the erroneous impression that
something is missing in equation (8), which is not the case.
If matter is described by some fluid model, then formally
(w, wi ) might be split into various pieces resulting from
kinetic energy, gravitational potential energy, specific inter-
nal energy density, pressure, etc., and the equivalence of our
form of the metric tensor, for example, to that given by Will
(1993) can be shown. This is explicitly demonstrated in
Appendix B.

The point, however, is that a split of (	, 	i ) of our
metric potentials (w, wi ) or of the metric tensor itself into
various pieces is usually unnecessary. If only gravitational

No. 6, 2003 IAU 2000 RESOLUTIONS ON RELATIVITY 2693



fields outside the relevant bodies play a role (as is typi-
cally the case in celestial mechanics and astrometry), then
it is advantageous to keep such pieces together, since it
will be the sum that determines the observables. One
might argue that U is the ‘‘ Newtonian potential ’’ and
the rest can be identified as ‘‘ relativistic corrections.’’
This way of thinking, however, can be very misleading
and presents a source of errors. As has been shown in
the literature (e.g., Damour et al. 1991, 1993), suitably
defined potential coefficients based upon w (not U) and
wi can be introduced that can be determined from satel-
lite data. From a more theoretical point of view, the
introduction of (w, wi) has the advantage that the field
equations (eqs. [10]–[11]) are formally linear, although the
corresponding metric is not (because of the w2 term). We
used the word ‘‘ formally ’’ because 	 depends upon w
implicitly. This nonlinearity has been explicitly treated,
for example, by Brumberg & Kopeikin (1989), but this
dependence becomes irrelevant in practice if the fields
outside of some matter distribution are parameterized by
means of potential coefficients. This linearity implies that
for an ensemble of N bodies,

wðt; xÞ ¼
XN
A¼1

wAðt; xÞ; wiðt; xÞ ¼
XN
A¼1

wi
Aðt; xÞ ; ð18Þ

with the index A indicating the contribution related to
body A, where the integrals have to be taken over the
support of body A only. This linearity, however, does
not imply that body-body interaction terms have been
neglected. If written explicitly, wA will in general contain
contributions from bodies B 6¼ A (see, e.g., eq. [54]).

The BCRS metric tensor from IAU Resolution B1.3
(2000) extends the form of the metric tensor given in the
IAU 1991 Resolutions such that its accuracy is sufficient for
most applications in the coming years. Note that an exten-
sion of the old metric (eq. [2]) is necessary (and has been in
use for decades) for the derivation of the relativistic
equations that form the basis of any modern solar system
ephemeris (such as the JPL DE ephemerides). Resolution
B1.3 formalizes this extension.

3.3. The Geocentric Celestial Reference System

Resolution B1.3 goes on to define the GCRS, which rep-
resents a particular version of the local geocentric reference
system for Earth. Its spatial coordinates Xa are kinemati-
cally nonrotating with respect to the barycentric ones (see,
e.g., Brumberg & Kopeikin 1989; Klioner & Soffel 1998).
The geocentric coordinates are denoted by (T, X ), where
T = TCG. In the relation between xi and Xa from
Resolution B1.3, let us replace the unit matrix �ai by a
general rotation matrixRai:

Xa ¼ Rai

�
riE þ 1

c2
ð� � �Þ

�
þOðc�4Þ ;

where rE = x � xE. If the two sets of spatial coordinates are
aligned for all times, that is, if Rai = �ai as is the case for the
GCRS spatial coordinates, then Xa is defined to be kine-
matically nonrotating with respect to the barycentric spatial
coordinates xi. The resolution recommends writing the met-
ric tensor of the GCRS in the same form as the barycentric

one but with potentialsW(T, X ) andWa(T, X ). Explicitly,

G00 ¼ �1þ 2W

c2
� 2W 2

c4
þOðc�5Þ ;

G0a ¼ � 4

c3
Wa þOðc�5Þ ;

Gab ¼ �ab

�
1þ 2

c2
W

�
þOðc�4Þ ; ð19Þ

and the geocentric field equations formally look the same as
the barycentric ones (eqs. [10]–[11]) but with all variables
referred to the GCRS. Again, one decisive advantage of this
recommendation is the formal linearity of the field equa-
tions. This linearity admits a unique split of the geocentric
metric into a part coming from Earth itself and a remaining
part resulting from inertial and tidal forces. Therefore, it is
recommended to split the potentialsW andWa according to

WðT ;XÞ ¼ WEðT ;XÞ þWextðT ;XÞ ;
WaðT ;XÞ ¼ Wa

EðT ;XÞ þWa
extðT ;XÞ : ð20Þ

Earth’s potentials WE and Wa
E are defined in the same way

as wE and wa
E, (i.e., eqs. [14]–[15] with integrals taken over

the volume of the whole Earth) but with quantities calcu-
lated in the GCRS. Outside Earth the potentials (W, Wa)
admit a power series expansion in terms of R � |X |, and all
negative powers of R are contained inWE andWa

E. For that
reason, Earth’s potentials admit multipole expansions that
look very similar to the Newtonian ones. This point will be
discussed below in more detail.

It is useful to split the external potentials Wext and Wa
ext

further. They can be written in the form

Wext ¼ Wtidal þWiner; Wa
ext ¼ Wa

tidal þWa
iner ; ð21Þ

where the tidal terms are at least quadratic in Xa and the
inertial contributions Winer and Wa

iner are just linear in Xa.
Explicitly,

Winer ¼ QaX
a ; Wa

iner ¼ �1
4 c

2
abc�
b
inerX

c : ð22Þ

Mathematically, the Qa term is related to the 4-acceleration
of the geocenter in the external gravitational field, a quan-
tity that vanishes for a purely spherical and nonrotating
Earth (for a mass monopole, more precisely) that moves
along a geodesic in the external gravitational field. The Qa

term therefore results from the coupling of higher order
multipole moments of Earth to the external tidal gravita-
tional fields (to the external curvature tensor of spacetime,
in mathematical language). The quantity Qa characterizes
the deviation of the actual worldline of the origin of the
GCRS from a geodesic in the external gravitational field.
With

wextðt; xÞ ¼
X
A6¼E

wAðt; xÞ; wi
extðt; xÞ ¼

X
A6¼E

wi
Aðt; xÞ ;

to Newtonian orderQa is given by

Qa ¼ �ai

�
@

@xi
wextðxEÞ � aiE

�
: ð23Þ

Here xiE(t), v
i
E(t) = dxiE/dt, and aiE = dviE/dt are respectively

the barycentric coordinate position, velocity, and accelera-
tion of the origin of the GCRS (geocenter). The appearance
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of �ai results from the fact that the GCRS is defined as kine-
matically nonrotating with respect to the BCRS. We retain
�ai in the transformations here and below because of a desire
to distinguish between BCRS quantities (spatial indices
taken from the second part of the Latin alphabet, starting
with the letter i) and GCRS quantities (spatial indices taken
from the first part of the alphabet).

The full post-Newtonian expression for Qa [denoted
Ga(T) in the Damour-Soffel-Xu papers] can be derived from
equation (6.30a) of Damour et al. (1991). To get an idea
about orders of magnitude, the absolute value of Qa due to
the action of the Moon is on the order of 4 � 10�11 m s�2

(Kopeikin 1991).
The term Wa

iner describes a relativistic Coriolis force due
to the rotation of the GCRS with respect to a dynamically
nonrotating geocentric reference system. Such a rotation
has several components, often referred to as geodetic,
Lense-Thirring, and Thomas precessions:

Xiner ¼ XGP þXLTP þXTP ð24Þ

with

XGP ¼ � 3

2c2
vE �

D

wextðxEÞ ;

XLTP ¼ � 2

c2

D

� wextðxEÞ ;

XTP ¼ � 1

2c2
vE � Q ; ð25Þ

in obvious notation. As a relativistic precession, the
geodetic precession XGP is proportional to 1/c2. It is also
proportional to the barycentric coordinate velocity vE and
the gradient of the external gravitational scalar potential
wext at the geocenter (the barycentric coordinate accelera-
tion of the geocenter, to sufficient accuracy). The order of
magnitude is given by

XGPj j 	 1:5

�
vE
c

��
GM


c2 AU

��
c

1 AU

�

	 3� 10�15 s�1 	 200 per century :

Thomas precession is also proportional to 1/c2 and the
barycentric coordinate velocity of the geocenter, but to the
geodetic deviation term Qa as well. The order of magnitude
of Thomas precession is |XTP| 	 0.5(vE/c)|Q|/c 	 7 � 10�24

s�1 	 4 � 10�9 arcseconds per century, that is, negligible
with respect to geodetic precession.

Finally, the Lense-Thirring precession results from the
gradient of the external gravitomagnetic potential at the
geocenter. If we consider some spherically symmetric solar
system body A, then its gravitomagnetic potential Wa

A is
given by

Wa
A ¼ G

2

ðSA � XÞa

R3

in its own local rest frame (see eq. [49] below). Transforma-
tion into the BCRS according to the rule indicated below in
equation (31) leads to

wi
Aðt; xÞ ¼ G

�
ðSA � rAÞi

2r3A
þMA

rA
viA

�
;

where rA � x� xA and vA is the barycentric velocity of

body A. In our case, the spin and motion of the Sun and
Moon will provide the dominant contributions to XLTP:
|XLTP| 	 2 � 10�3 arcseconds per century.

The definition of the GCRS implies that the spatial
GCRS coordinates X are kinematically nonrotating with
respect to the BCRS ones, x (as indicated by the �ai term in
Resolution B1.3). Because of geodetic precession, locally
inertial coordinates precess with respect to the GCRS
by an amount |Xiner| = 1>9198 per century (Brumberg,
Bretagnon, & Francou 1991). Let us forget about the mass
of Earth and imagine a torque-free gyroscope at the geocen-
ter, moving along the actual trajectory of the geocenter. It
will precess by this amount in our GCRS. Since the GCRS
does not present a locally inertial reference system, Coriolis
forces caused by geodetic precession and nutation appear in
every GCRS dynamical equation of motion, for example,
that of Earth’s satellites. As recommended in the IERSCon-
ventions (2003) (McCarthy & Petit 2003), these additional
forces should be taken into account. Moreover, geodetic
precession-nutation has to be considered in the precession-
nutation model formulated in the GCRS. For example, the
basic post-Newtonian equation of Earth’s intrinsic angular
momentum S reads

dS

dT
þXiner � S ¼ D ; ð26Þ

where D is the external torque (Damour et al. 1993). As
long as observations of Earth’s orientation parameters
are referred to the GCRS, they will contain geodetic
precession-nutation automatically.

Because of the eccentricity of Earth’s orbit, the leading
term in XGP has an annual and a semiannual part that lead
to geodetic nutation in longitude with

D GP ¼ 0:153 sin l0 þ 0:002 sin 2l0 ; ð27Þ

where the amplitudes are in milliarcseconds and l is the
mean anomaly of the Earth-Moon barycenter (Fukushima
1991; Brumberg et al. 1991; Bois & Vokrouhlický 1995).

The quantity Wtidal is a generalization of the Newtonian
tidal potential

WNewton
tidal ðT ;XÞ ¼ wextðxE þ XÞ � wextðxEÞ � X x

D

wextðxEÞ :
ð28Þ

Full post-Newtonian expressions for Wtidal and Wa
tidal can

be found in Damour et al. (1992). ThereWext is denoted �WW ,
and a tidal expansion in powers of local spatial coordinates
by means of suitably defined tidal moments is given in
equation (4.15) of that paper. Expressions for Wtidal and
Wa

tidal in closed form are given in Klioner & Voinov (1993).
The quadratic term, which is the dominant term in the
expansion ofWtidal, reads

Wtidal

���
l¼2

¼ 1
2G

tidal
ab XaXb : ð29Þ

If the external bodies are taken to be mass monopoles, the
explicit expression for Gtidal

ab (not to be confused with the
GCRS metric tensor) is given by equation (3.23) of Damour
et al. (1994). Higher order terms in this approximation can
be found in Klioner et al. (2003).

Finally, the local gravitational potentials WE and Wa
E of

Earth are related to the barycentric gravitational potentials
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wE andwi
E by

WEðT ;XÞ ¼ wEðt; xÞ
�
1þ 2

c2
v2E

�

� 4

c2
viEw

i
Eðt; xÞ þOðc�4Þ;

Wa
EðT ;XÞ ¼ �ai ½wi

Eðt; xÞ � viEwEðt; xÞ� þOðc�2Þ ; ð30Þ

where �ai = �ia = �ai, or by the inverse transformation

wEðt; xÞ ¼WEðT ;XÞ
�
1þ 2

c2
v2E

�
þ 4

c2
�iav

i
EW

a
EðT ;XÞ

þOðc�4Þ ;
wi
Eðt; xÞ ¼ �iaW

a
EðT ;XÞ þ viEWEðT ;XÞ þOðc�2Þ : ð31Þ

The relations between the geocentric gravitational poten-
tials W and Wa and the barycentric ones w and wi follow
from the coordinate transformations between the BCRS
andGCRS discussed below.

3.4. Coordinate Transformations

The metric tensors in the BCRS and GCRS allow one to
derive the rules for the transformations between the BCRS
coordinates xl and the GCRS ones X� from the tensorial
transformation rules. It is obvious that these transforma-
tions can be written in two equivalent forms: as xl(T, Xa)
or as X�(t, xi ). Whereas the first form was used in the
Damour-Soffel-Xu formalism (Damour et al. 1991, 1992,
1993, 1994), the second one was presented in the Brumberg-
Kopeikin formalism (Brumberg & Kopeikin 1989;
Kopeikin 1988; Brumberg 1991; Klioner & Voinov 1993). It
should be pointed out that the transformation from one
version to the other is not trivial, because of the barycentric
coordinate position of the geocenter, which appears in the
first form as function of TCG and as function of TCB in the
second one. In Resolution B1.3, T = TCG and Xa are pre-
sented as functions of t = TCB and xi. The explicit form of
the transformations is given in the text of Resolution B1.3
(see Appendix A). Apart from the terms of order |X |3 that
appear in the O(c�4) time transformation, all terms can be
obtained from the results derived by Kopeikin (1988) and
Damour et al. (1991). The cubic and higher order terms in
|X | as represented by the functionC in Resolution B1.3 have
been derived by Kopeikin (1988) and are analyzed in full
detail in Klioner & Voinov (1993). As is also clear from
Klioner & Voinov (1993), the expression for C is not unique
but only constrained by the gauge and field equations, so
that the simplest possibility is an expression for C contain-
ing cubic terms only. It is this simplest expression that is
recommended in Resolution B1.3.

The full four-dimensional coordinate transformation is
just an extension of the usual Lorentz transformation.
Indeed, if we neglect all gravitational fields and acceleration
terms, then the coordinate transformation in Resolution
B1.3 can be written in the form

T ¼ t

�
1� �2

2
� �4

8

�
�
�
1þ �2

2

�
v x r

c2
þOðc�6Þ ;

X ¼ rþ 1

2
ðv x rÞ v

c2
þOðc�4Þ ; ð32Þ

where r = x � xE(t) and � = v/c = const. If we now write

xE(t) = vt, we obtain

T ¼ t

�
1þ �2

2
þ 3�4

8

�
�
�
1þ �2

2

�
v x x

c2
þOðc�6Þ ;

X ¼ x�
�
1þ �2

2

�
vtþ 1

2
ðv xxÞ v

c2
þOðc�4Þ ; ð33Þ

which is nothing but a Lorentz transformation from special
relativity theory,

T ¼ �

�
t� v xx

c2

�
; X ¼ x� �vtþ � � 1

v2
ðv xxÞv

in the corresponding approximation, since

� � ð1� �2Þ�1=2 ¼ 1þ 1
2�

2 þ 3
8�

4 þOðc�6Þ :

Note that the inverse transformations are obtained simply
by replacing (t, x) with (T, X) and the velocity vwith�v.

Neglecting the 1/c4 terms in the T-t relation given in
Resolution B1.3, one obtains

T ¼ t� 1

c2

�Z t

t0

�
v2E
2
þ wextðxEÞ

�
dtþ viEr

i
E

�
þOðc�4Þ ;

ð34Þ

which reduces to the old recommendation (eq. [4]), since
t = TCB, T = TCG, and wext(xE(t)) reduces to Uext(t, xE(t))
in the Newtonian limit. A more accurate version of this
transformation will be discussed below.

Let us also note that the BCRS, the GCRS, and the trans-
formation between them have been discussed by Klioner &
Soffel (2000) in the framework of the PPN formalism, with
parameters � and �. For the limit of general relativity,
� = � = 1, all of the formulae given in that publication
become equal to those derived in the framework of the new
IAU resolutions, which refer solely to Einstein’s theory of
gravity.

3.5. Potential Coefficients

3.5.1. General Post-NewtonianMultipoleMoments

For many problems it is advantageous to present the local
gravitational potentials of Earth as multipole series that usu-
ally converge outside Earth. To this end one, has to introduce
a certain set of multipole moments or potential coefficients for
Earth. A certain set of potential coefficients, called Blanchet-
Damour (B-D) moments (Blanchet & Damour 1989;
Damour et al. 1991), defined to first post-Newtonian order,
have especially attractive features. Moreover, by using such
B-Dmoments we obtain a very simple form for the multipole
expansion of the post-Newtonian potentials (these expan-
sions have almost Newtonian form). Basically, two sets of
B-D moments occur in the formalism: mass multipole
moments and spin multipole moments. Theoretically, these
moments can be derived from the distribution of mass and
matter currents inside the body, but for an observer they
simply present parameters that can be directly estimated
from observations.

Expressed in terms of symmetric and trace-free Cartesian
tensors, the B-D moments are denotedML andSL. Here L
is a multi-index of l different indices all taking the values 1,
2, and 3; that is, L = i1i2 . . . il and every index i = ð1, 2, 3Þ.
Explicit expressions for ML and SL as integrals over Earth
can be found in, for example, Blanchet & Damour (1989)
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andDamour et al. (1991):

MLðTÞ �
Z

d3X X̂XL�

þ 1

2ð2l þ 3Þc2
d2

dT2

�Z
d3X X̂XLX2�

�

� 4ð2l þ 1Þ
ðl þ 1Þð2l þ 3Þc2

d

dT

�Z
d3X X̂XaL�a

�

ðl � 0Þ ; ð35Þ

SLðTÞ �
Z

d3X 
abhcl X̂XL�1ia�b ðl � 1Þ ; ð36Þ

where the integrations extend over the body under
consideration and

�ðT ;XÞ ¼ 1

c2
ðT00 þTssÞ ; �aðT ;XÞ ¼ 1

c
T0a : ð37Þ

Here the Tl� = Tl�(T, Xa) are components of the energy-
momentum tensor in the GCRS. Both the caret and the
angle brackets indicate the symmetric and trace-free (STF)
part of the object or of the indices enclosed by the brackets
(see, e.g., Damour et al. Xu 1991, p. 3277, for an explicit
definition of the STF part of an object). Some basic infor-
mation on the operations with STF objects can be found in,
for example, Blanchet & Damour (1989) and Damour et al.
(1992).

For practical applications, however, the explicit form of
ML and SL will not be needed, since these quantities are
parameters characterizing the gravitational field of the cor-
responding body that are fitted to observations. The setML

is equivalent to the set of potential coefficients Clm and Slm

that appear in the much more familiar spherical harmonic
expansion of WE. The first nonvanishing spin moment (the
spin dipole) of a body agrees with its spin vector (total
intrinsic angular momentum). The multipole expansion of
WE andWa

E reads

WE ¼ G
X1
l¼0

ð�1Þl

l!

�
ML@L

1

Xj j
þ 1

2c2
€MML@L Xj j

�
þ 4

c2
�;T

þOðc�4Þ ; ð38Þ

Wa
E ¼ � G

X1
l¼1

ð�1Þl

l!

�
_MMaL�1@L�1

1

Xj j

þ l

l þ 1

abcScL�1@bL�1

1

Xj j

�

� �;a þOðc�2Þ ; ð39Þ

where

� ¼ G
X1
l¼0

ð�1Þl

ðl þ 1Þ!
2l þ 1

2l þ 3
PL@L

1

Xj j
; ð40Þ

PL ¼
Z
V

�aX̂XaL d3X : ð41Þ

Here an overdot stands for @/@T, and @L stands for
@l/@xi1 _ @xil . The subscripted commas denote partial
differentiation:�,T � @�/@T and�,a � @�/@Xa.

The gauge function � does not enter the post-Newtonian
equations of motion. The latter contains only the B-D

multipole moments ML and SL. The only place where the
function � should be accounted for is in the transformation
between the various time scales. However, these gauge terms
are of order c�4 in the metric tensor, so for the problem of
clock rates they are basically of second post-Newtonian
order. These terms are much less than 10�18 in the
geocentric metric tensor and will be neglected. For that
reason the�-terms are not mentioned in Resolution B1.4.

3.5.2. Approximate Expansion of the Scalar Gravitational Potential

A spherical harmonic expansion of WE equivalent to
equation (38) without the�-term reads

WEðT ;XÞ

¼ GME

R

�
1þ

X1
l¼2

Xþl

m¼0

�
RE

R

�l

Plmðcos �Þ

� ½ClmðT ;RÞ cosm�þSlmðT ;RÞ sinm��
�

þOðc�4Þ ð42Þ
withR = |X | and

CE
lmðT ;RÞ ¼ CE

lmðTÞ � 1

2ð2l � 1Þ
R2

c2
d2

dT2
CE

lmðTÞ ; ð43Þ

SE
lmðT ;RÞ ¼ SE

lmðTÞ � 1

2ð2l � 1Þ
R2

c2
d2

dT2
SE
lmðTÞ : ð44Þ

Let us stress that as stated in Resolution B1.4, CE
lm(T) and

SE
lm(T) refer to the GCRS coordinates and are related

approximately constant potential coefficients in a terrestrial
system that is rotating with Earth (i.e., those from an Earth
model) by time-dependent transformations. For a rigid,
axially symmetric body rotating about its symmetry axis
with angular velocity �E, the second time derivative terms
will vanish. Let us estimate these terms for Earth. From the
order of magnitude of the l = m = 2 terms in the reference
system corotating with Earth, one findsCE

22 and SE
22 of order

10�6. The expected order of magnitude of the second time
derivative terms is (�ERE/c)

2 ’ 10�12 times smaller than
the corresponding ‘‘Newtonian terms ’’ from CE

22 or SE
22.

The Newtonian terms lead to contributions in G00 of order
10�15, and hence the second time derivative terms lead to
contributions of order 10�27. This is about 9 orders of mag-
nitude less than the 2W 2=c4 term in G00, which is of order
10�18. For that reason, these second time derivative terms in
Earth’s metric can safely be neglected at present. They are
not mentioned in Resolution B1.4.

3.5.3. Approximate Expansion of the
Vector Gravitational Potential

Let us now come to the gravitomagnetic vector potential
of Earth,Wa

E. As can be seen from equation (39), this poten-
tial is determined by the set of spin moments and the first
time derivatives of the mass moments. As already men-
tioned, to characterize the gravitational field outside of
some matter distribution in GRT, two independent sets of
multipole moments have to be used, which in principle
should be determined from observational data. So far, the
spin moments of some astronomical bodies have not been
studied, and more work is needed here. Formally, the spin
moments of Earth are given by equation (36) above. Since
for the post-Newtonian metric we need these spin moments
only to Newtonian order, we might proceed with a simple

No. 6, 2003 IAU 2000 RESOLUTIONS ON RELATIVITY 2697



Newtonian model of a rigidly rotating Earth, with

R ¼ �ðX � XÞ ;
where � is the gravitational mass-energy density in the
GCRS and X is the angular velocity of rotation, which at
this point has to be defined only to Newtonian order. Under
this assumption, all spin moments are proportional to the
angular velocity, and one might define a set of Cartesian
tensorsCLd such that

SL ¼ CLd�
d : ð45Þ

These tensorsCLd obey the following Newtonian relations:

CLd ¼ �MLd þ
l þ 1

2l þ 1
�dhalNL�1i ; ð46Þ

where

ML �
Z
E

�X̂XL d3X ; NL �
Z
E

�X2X̂XL d3X : ð47Þ

Note that CLd is symmetric and trace-free only in the first L
indices. Moreover, for the Newtonian mass moments ML

one has

ML ¼ �ChLi : ð48Þ
For a homogeneous (� = const) and spherical Earth with
radius RE, one finds for l = 1 the usual expression for the
moment-of-inertia tensor:

Cab ¼ �abð25MR2
EÞ ;

which yields the total intrinsic angular momentum (spin)
vector of Earth according to Sa = Cab�

b. For a spherically
symmetric and mass-centered Earth, all mass moments ML

with l � 1 vanish, as do all quantities NL with l > 0. Hence,
in such a simple model only the spin vector is different from
zero and all higher spin moments vanish. For this reason,
we also considered a rigidly rotating, homogeneous, oblate
spheroid with equatorial radius A and polar radius C. For
such a model all even spin moments vanish, since they are
proportional to CL with odd l. On the other hand, odd spin
moments proportional to CL with even l are nonzero. For
the spin dipole, the usual result CXX = CYY = M(A2 + C2)/
5 and CZZ = 2MA2/5 for the moment-of-inertia tensor is
found. By means of computer algebra, all components CL

can be found for any value of l. Let  = (4MA4/525)
2 with

2 = (A2 � C2)/A2 ’ 2f, where f is the usual flattening.
Assuming �d = (0, 0, �) we find all nonvanishing l = 3
terms, up to symmetries and terms of order f 2: SXXZ =
SYYZ = 3� and SZZZ = �6�. This implies that the
metric term resulting from the spin octupole of Earth near
the surface is about 104 times smaller than the term from the
spin dipole. In the following, the contributions of higher
spin moments will be neglected.

Besides the spin moments, the first time derivatives of the
mass moments contribute to the gravitomagnetic field of
Earth. For l = 0, we encounter an _MMa term that vanishes if
the post-Newtonian center-of-mass condition Ma = 0 is
imposed. The next term is given by _MMab, which is of order
|CE

22|MR2
E� and would vanish for an axially symmetric rigid

body rotating about its symmetry axis, as would the time
derivative of all higher mass moments. For Earth the _MMab

term is smaller than the spin term (which is of order
2MR2

E�/5) by a factor determined by CE
22 ’ 1.6 � 10�6 and

hence negligible. On the other hand, the vector potential
Wa

E(T, X) is employed only in the calculation of small

relativistic effects (e.g., Lense-Thirring effects and higher
order relativistic effects in the time transformations). This
implies that the expansion in equation (39) for Wa

E(T, X)
can be truncated to the approximate expression

Wa
EðT ;XÞ ¼ �G

2

ðX � SEÞa

R3
; ð49Þ

where SE is a vector with components Sa. This expression
can be found in many standard textbooks on GRT
(Weinberg 1972; Will 1993) and is usually related to Lense-
Thirring effects resulting from Earth’s rotational motion.

The reason for characterizing Wa
E by the spin vector and

not by the angular velocity vector of Earth is a conceptual
one, since it is usually advantageous to characterize the
gravitational field of Earth in the outside region by multi-
pole moments. To obtain Wa

E, Earth’s spin vector is needed
only to Newtonian order and can be taken from current
precession-nutation models. Although one might use New-
tonian concepts to relate the gravitomagnetic field of Earth
to some Earth angular velocity, we prefer to employ the
well-defined concept of multipole moments here, which are
independent of any theoretical assumptions about the
rotational motion of Earth.

3.6. The BarycentricMetric in theMass-Monopole
Approximation

In the gravitational N-body problem, the potential coeffi-
cients of a body A are defined in its corresponding local
reference system (analogous to the GCRS for Earth). For
many applications it is sufficient to keep only the mass
monopoles of the solar system bodies, that is, to set

ML ¼ 0 for l � 1 ; SL ¼ 0 for l � 1 ð50Þ

for all bodies and to keep the masses only, that is, each body
A is characterized by the value for its post-Newtonian mass
MA (we also set PL ¼ 0). In the following, we will use the
notationMA instead ofMA to be consistent with the text of
the IAU 2000 resolutions.

From the transformation rules for the metric potentials
(eq. [31]), the expansions in equations (38)–(39), and
equation (18), one derives the metric in the barycentric
coordinate system in the form of equation (8) with

w ¼ w0 � D=c2 ; ð51Þ

where

w0ðt; xÞ �
X
A

GMA

rA
; ð52Þ

Dðt; xÞ ¼
X
A

DAðt; xÞ ð53Þ

with

DAðt; xÞ ¼
GMA

rA

�
� 3

2
v2A þ

X
B 6¼A

GMB

rBA

�
� 1

2
GMArA;tt

¼ GMA

rA

�
� 2v2A þ

X
B 6¼A

GMB

rBA

þ 1

2

�
ðrkAvkAÞ

2

r2A
þ rkAa

k
A

��
ð54Þ
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and rBA = xB�xA and aA = dvA/dt. Furthermore, in our
approximation

wiðt; xÞ ¼
X
A

GMA

rA
viA : ð55Þ

Note that we have chosen a minus sign in front of D in order
to have a plus sign in the 1/c4 part of g00 (see Resolution
B1.5). Note furthermore that the post-Newtonian Einstein-
Infeld-Hoffmann equations of motion for a system of mass
monopoles, which form the basis of modern solar system
ephemerides, can be derived from that form of the barycen-
tric metric (for details, see Damour et al. 1991). Thus, the
barycentric mass-monopole metric given above is already in
use for the description of solar system dynamics.

One improvement to this simple mass-monopole model is
to consider the spin dipoles of the various bodies as well
(i.e., to also consider SA to be nonzero). In fact, Resolution
B1.5 is based upon such a mass-monopole spin-dipole
model, where modifications from the simple mass-
monopole model are indicated explicitly.

4. TIME AND FREQUENCY APPLICATIONS
IN THE SOLAR SYSTEM

For practical applications concerning time and frequency
measurements in the solar system, it is necessary to consider
a conventional model for the realization of time coordinates
and time transformations. This model should be chosen so
that (1) its accuracy is significantly better than the expected
performance of clocks and time transfer techniques, (2) it is
consistent with the general framework of x 3, and (3) it may
readily be used with existing astrometric quantities, for
example, solar system ephemerides.

Regarding item 1, we may derive reasonable limits on
accuracy for such a model in a straightforward way. At
present, the best accuracies are reached by cesium-fountain
clocks operating at less than 2 parts in 1015 in fractional
frequency (Lemonde et al. 2001; Weyers et al. 2001). Their
frequency stability for time spans up to a few days charac-
terized by a standard Allan deviation is on the order of
	y(�) = 4 � 10�14��1/2, for an integration time � in seconds.
In the near future, high-accuracy laser-cooled rubidium
clocks (Bize et al. 1999) and spaceborne cesium clocks
(Lemonde et al. 2001) are expected to reach accuracies of a
few parts in 1017 in fractional frequency and stabilities on
the order of 	y(�) = 1 � 10�14��1/2. The uncertainty in the
time transformations should induce errors that are always
lower than the expected performance of these future clocks.
Including a factor of 2 as safety margin, we therefore con-
clude that time coordinates and time transformations
should be realized with an uncertainty not larger than
5 � 10�18 in rate or, for quasi-periodic terms, not larger
than 5 � 10�18 in rate and 0.2 ps in amplitude.

For the spatial domain of validity of the transformations,
we note that projects such as the Solar Orbit Relativity Test
plan to fly highly accurate clocks to within 0.25 AU of the
Sun, which is therefore the lower limit for the distance to the
barycenter that we will consider. In the geocentric system,
we will consider locations from Earth’s surface up to
geostationary orbits (|X | < 50,000 km).

To comply with item 2, we render the developments
following the general framework outlined in x 3, and we
show (item 3) how the time transformations, for example,

TCB-TCG, may be performed with existing astrometric
quantities and tools.

4.1. Barycentric Reference System

Let us write the barycentric metric potential w(t, x) in the
form

w ¼ w0 þ wL � D=c2 ; ð56Þ

where wL contains contributions from higher potential
coefficients with l � 1 and can be determined from equation
(38) and the transformation rules for the metric potentials.
Evaluating the DA terms from Resolution B1.5 (eq. [54] plus
spin terms) for all bodies of the solar system, we find that in
the metric tensor, |DA(t, x)|/c

4 may reach at most a few parts
in 1017 in the vicinity of Jupiter and about 10�17 close to
Earth. Presently, however, for all planets except Earth, the
magnitude of DA(t, x)/c

4 in the vicinity of the planet is
smaller than the uncertainty in w0/c

2 or wL/c
2 originating

from the uncertainties in its mass multipole moments, so
that in practice it is not necessary to account for these terms.
Nevertheless, when new astrometric observations allow der-
ivation of the moments with sufficient accuracy, it will be
necessary to do so. In any case, in the vicinity of a given
body A, only the effect of DA(t, x) is needed in practice, that
is, the effect of

P
B6¼A DB(t, x) is smaller than our accuracy

specifications. For a comparison of the proper time of a
clock in the vicinity of Earth with that of other clocks in the
solar system or with TCB, it may thus be necessary to
account for DE(t, x)/c

4.
From equations (8) and (56), the transformation between

the proper time of some observer and TCB may be derived
within our accuracy limit:

d�

dTCB
¼1� 1

c2

�
w0 þ wL þ v2

2

�

þ 1

c4

�
� v4

8
� 3

2
v2w0 þ 4viwi þ w2

0

2
þ D

�
; ð57Þ

where vi is the BCRS coordinate velocity of the observer.
Similarly, the transformation between TCB and TCG in the
immediate vicinity of Earth, accurate to the limits specified
above, can be derived from the general post-Newtonian
TCB-TCG transformation fromResolution B1.3 as

TCB� TCG ¼c�2

�Z t

t0

�
v2E
2
þ w0;extðxEÞ

�
dtþ viEr

i
E

�

� c�4

�Z t

t0

�
� 1

8
v4E � 3

2
v2Ew0;extðxEÞ

þ 4viEw
i
extðxEÞ þ

1

2
w2
0;extðxEÞ

�
dt

�
�
3w0;extðxEÞ þ

v2E
2

�
viEr

i
E

�
; ð58Þ

where t is TCB. Here w0,ext is defined by equation (52) with
the summation over all solar system bodies except Earth.
Note that t0 was not explicitly defined in Resolution B1.5
(2000). It is the origin of TCB and TCG, defined in Resolu-
tion A4 (1991; see x 2.1). The external contributions to wL

and D are beyond our accuracy limit and can be neglected
here.

No. 6, 2003 IAU 2000 RESOLUTIONS ON RELATIVITY 2699



This equation is composed of terms evaluated at the
geocenter (the two integrals) and of position-dependent
terms linear in |rE|, terms with higher powers of |rE| having
been found to be negligible. The integrals may be computed
from existing planetary ephemerides (Fukushima 1995;
Irwin & Fukushima 1999). Since, in general, the planetary
ephemerides are expressed in terms of a time argument
Teph ¼ ð1� LBÞTCBþ Teph0 (Standish 1998; Irwin &
Fukushima 1999), the first integral will be computed asZ t

t0

�
v2E
2
þ w0;extðxEÞ

�
dt

¼
�Z Teph

Teph0

�
v2E
2
þ w0;extðxEÞ

�
dTeph

��
ð1� LBÞ : ð59Þ

Terms in the second integral of equation (58) are secular
and quasi-periodic. They amount to 	1.1 � 10�16 in rate
(dTCB/dTCG) and, primarily, a yearly term of 	30 ps in
amplitude (i.e., corresponding to periodic rate variations of
amplitude	6 � 10�18). Position-dependent terms in c�4 are
not negligible and reach, for example, an amplitude of
0.4 ps (	3 � 10�17 in rate) in geostationary orbit.

4.2. Geocentric Reference System

Evaluating the contributions of the different terms in the
metric tensor of the GCRS given in Resolution B1.3 to
the d�/dTCG transformation on Earth’s surface and up to
geostationary orbit, we find that terms of order c�2 reach 7
parts in 1010, while the contributions from W 2 and Wa do
not exceed 5 parts in 1019. Also, the terms from Winer in W
remain below 2 � 10�20. Therefore, the terms given in the
IAU 1991 framework with the metric of the form of equa-
tion (2) are sufficient for time and frequency applications in
the GCRS in the region |X | < 50,000 km for present and
foreseeable future clock accuracies. Note that some care
needs to be taken when evaluating the potential W at the
location of the clock, which is not trivial when accuracies of
order 10�18 are required (Klioner 1992; Petit & Wolf 1994;
Wolf & Petit 1995).

Presently, the time scale of reference for all practical
issues on Earth is Terrestrial Time or one of the scales realiz-
ing it and differing by some time offset (e.g., TAI, UTC,
GPS time). TT was defined in IAU Resolution A4 (1991) as
a time scale differing from the Geocentric Coordinate Time
TCG by a constant rate, the unit of measurement of TT
being chosen so that it agrees with the SI second on the
geoid. According to the transformation between proper and
coordinate time, this constant rate is given by dTT/
dTCG = 1 � UG/c

2 = 1 � LG, where UG is the gravity
(gravitational plus rotational) potential on the geoid (this

notation is used instead of the usual ‘‘W0 ’’ to avoid confu-
sion with the GCRS gravitational potential W used
throughout the paper).

Some shortcomings appear in this definition of TT when
considering accuracies below 10�17. First, the uncertainty in
the determination of UG is on the order of 1 m2 s�2 or
slightly better (Burša 1995; Groten 1999). Second, even if it
is expected that the uncertainty in UG will improve with
time, the surface of the geoid is difficult to realize (so that it
is difficult to determine the potential difference between the
geoid and the location of a clock). Third, the geoid is, in
principle, variable with time. Therefore it was decided to
dissociate the definition of TT from the geoid while main-
taining continuity with the previous definition. The constant
LG was turned into a defining constant, with its value fixed
to 6.969290134 � 10�10 (Resolution B1.9; see Appendix A).
This removes the limitations mentioned above when realiz-
ing TT from clocks on board terrestrial satellites (such as in
the Global Positioning System). In Table 1, we present
numerical values for the constants LC, LG, and LB relating
the mean rates of the different relativistic time scales.

5. FINAL REMARKS

The IAU resolutions on relativity represent a post-
Newtonian framework allowing one to model any kind of
astronomical observation in a rigorous, self-consistent
manner with accuracies that are sufficient for the coming
decades. They replace the old IAU relativistic framework,
which was insufficient for many reasons discussed above.
These new resolutions, however, are not expected to lead to
dramatic changes. In fact, in many fields of application the
models presently in use are already fully compatible with
the new IAU resolutions, and in this sense the IAU resolu-
tions officially fix the status quo. Let us give some examples
of this.

The metric tensor of the BCRS allows one to derive the
Einstein-Infeld-Hoffman equations, which have been used
since the 1970s to construct the JPL numerical ephemerides
of planetary motion (Newhall, Standish, & Williams 1983).
The BCRS is the basic astrometric reference system, in which
concepts such as ‘‘ radial velocity ’’ and ‘‘ proper motion ’’ are
defined (Lindegren & Dravins 2003). The metric tensors of
both the GCRS and BCRS and the transformation between
corresponding coordinates were used to formulate the VLBI
model that has been employed by the International Earth
Rotation Service since 1992. In addition, the equations of
motion for Earth’s satellites recommended by the IERS are
compatible with the new IAU framework and can be derived
from the given metric tensor of the GCRS (McCarthy 1992,
1996;McCarthy & Petit 2003).

TABLE 1

Constants Relating the Mean Rates of Different Relativistic Time Scales

Constant

IAU 1991

(s s�1)

IAU 2000

(s s�1)

IAU 2000

(ms yr�1)

LC .............................................. 1.480813 � 10�8 1.48082686741 � 10�8 467.313

LG .............................................. 6.969291 � 10�10 6.969290134 � 10�10 21.993

LB � LC + LG � LCLG .............. 1.550505 � 10�8 1.55051976772 � 10�8 489.307

Note.—Both the values adopted by the IAU 1991 recommendations and the IAU 2000
resolutions are given. As an illustration, the IAU 2000 values are also given in milliseconds per
Julian year.
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The models used for constructing the Hipparcos
Catalogue make it clear that this catalog represents a
materialization of the BCRS. The full power of the new
IAU theoretical framework will be needed to construct a
model for astrometric positional observations with an accu-
racy of 1 las, which will be necessary for future astrometric
missions. Work in this direction has already started
(Klioner 2003).

It is obvious that this explanatory supplement presents
only a first step to show how the new IAU resolutions con-
cerning relativity should be employed in practice. Much
more work will be necessary to reach that goal.

The anonymous referee is thanked for valuable
suggestions that improved the text and made it more
readable.

APPENDIX A

IAU RESOLUTIONS CONCERNING RELATIVITY ADOPTED AT THE 24TH GENERAL ASSEMBLY18

A1. RESOLUTION B1.3: DEFINITION OF BARYCENTRIC CELESTIAL REFERENCE SYSTEM
AND GEOCENTRIC CELESTIAL REFERENCE SYSTEM

The XXVIth International Astronomical Union General Assembly,

Considering,

1. That the Resolution A4 of the XXIst General Assembly (1991) has defined a system of space-time coordinates for (a) the
solar system (now called the Barycentric Celestial Reference System [BCRS]) and (b) the Earth (now called the Geocentric
Celestial Reference System [GCRS]), within the framework of General Relativity;
2. The desire to write the metric tensors both in the BCRS and in the GCRS in a compact and self-consistent form;
3. The fact that considerable work in General Relativity has been done using the harmonic gauge that was found to be a

useful and simplifying gauge for many kinds of applications;

Recommends,

1. The choice of harmonic coordinates both for the barycentric and for the geocentric reference systems;
2. Writing the time-time component and the space-space component of the barycentric metric gl� with barycentric

coordinates (t, x) (t = Barycentric Coordinate Time [TCB]) with a single scalar potential w(t, x) that generalises the
Newtonian potential, and the space-time component with a vector potential wi(t, x); as a boundary condition it is assumed
that these two potentials vanish far from the solar system;
Explicitly,

g00 ¼ �1þ 2w

c2
� 2w2

c4
; g0i ¼ � 4

c3
wi ; gij ¼ �ij

�
1þ 2

c2
w

�
;

with

wðt; xÞ ¼ G

Z
d3x0

	ðt; x0Þ
x� x0j j

þ 1

2c2
G
@2

@t2

Z
d3x0 	ðt; x0Þ x� x0j j ; wiðt; xÞ ¼ G

Z
d3x0

	iðt; x0Þ
x� x0j j

;

here, 	 and 	i are the gravitational mass and current densities respectively;
3. Writing the geocentric metric tensor G�� with geocentric coordinates (T, X ) (T = Geocentric Coordinate Time [TCG]) in

the same form as the barycentric one but with potentials W(T, X ) and WaðT ;XÞ; these geocentric potentials should be split
into two parts—potentialsWE andWa

E arising from the gravitational action of the Earth and external partsWext andWa
ext due

to tidal and inertial effects; the external parts of the metric potentials are assumed to vanish at the geocenter and admit an
expansion into positive powers ofX;
Explicitly,

G00 ¼ �1þ 2W

c2
� 2W 2

c4
; G0a ¼ � 4

c3
Wa ; Gab ¼ �ab

�
1þ 2

c2
W

�
;

the potentialsW andWa should be split according to

WðT ;XÞ ¼ WEðT ;XÞ þWextðT ;XÞ ; WaðT ;XÞ ¼ Wa
EðT ;XÞ þWa

extðT ;XÞ ;

the Earth’s potentials WE and Wa
E are defined in the same way as w and wa but with quantities calculated in the GCRS with

integrals taken over the whole Earth;
4. Using, if accuracy requires, the full post-Newtonian coordinate transformation between the BCRS and the GCRS as

induced by the form of the corresponding metric tensors;

18 Reprinted with minor changes from the Transactions of the IAU, Vol. 24B, pp. 37–49 and 56–57 (San Francisco: ASP [2001]). Courtesy of the
International Astronomical Union.
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Explicitly, for the kinematically non-rotating GCRS [T = TCG, t = TCB, riE = xi � xiE(t), and a summation from 1 to 3
over equal indices is implied],

T ¼ t� 1

c2
½AðtÞ þ viEr

i
E� þ

1

c4
½BðtÞ þ BiðtÞriE þ BijðtÞriEr

j
E þ Cðt; xÞ� þOðc�5Þ ;

Xa ¼ �ai

�
riE þ 1

c2

�
1

2
viEv

j
Er

j
E þ wextðxEÞriE þ riEa

j
Er

j
E � 1

2
aiEr

2
E

��
þOðc�4Þ ;

where

d

dt
AðtÞ ¼ 1

2
v2E þ wextðxEÞ ;

d

dt
BðtÞ ¼ � 1

8
v4E � 3

2
v2EwextðxEÞ þ 4viEw

i
extðxEÞ þ

1

2
w2
extðxEÞ ;

BiðtÞ ¼ � 1

2
v2Ev

i
E þ 4wi

extðxEÞ � 3viEwextðxEÞ ;

BijðtÞ ¼ � viE�ajQ
a þ 2

@

@xj
wi
extðxEÞ � viE

@

@xj
wextðxEÞ þ

1

2
�ij _wwextðxEÞ ;

Cðt; xÞ ¼ � 1

10
r2Eð _aaiEriEÞ ;

here xiE, v
i
E, and aiE are the components of the barycentric position, velocity and acceleration vectors of the Earth, the dot

stands for the total derivative with respect to t, and

Qa ¼ �ai

�
@

@xi
wextðxEÞ � aiE

�
;

the external potentials, wext and wi
ext, are given by

wext ¼
X
A 6¼E

wA ; wi
ext ¼

X
A 6¼E

wi
A ;

where E stands for the Earth and wA and wi
A are determined by the expressions for w and wi with integrals taken over body A

only.

Notes

It is to be understood that these expressions for w and wi give g00 correct up toO(c�5), g0i up toO(c�5), and gij up toO(c�4).
The densities 	 and 	i are determined by the components of the energy momentum tensor of the matter composing the solar
system bodies as given in the references. Accuracies forG�� in terms of c�n correspond to those of gl�.
The external potentialsWext andWa

ext can be written in the form

Wext ¼ Wtidal þWiner; Wa
ext ¼ Wa

tidal þWa
iner :

Wtidal generalises the Newtonian expression for the tidal potential. Post-Newtonian expressions for Wtidal and Wa
tidal can be

found in the references. The potentials Winer, W
a
iner are inertial contributions that are linear in Xa. The former is determined

mainly by the coupling of the Earth’s nonsphericity to the external potential. In the kinematically non-rotating Geocentric
Celestial Reference System,Wa

iner describes the Coriolis force induced mainly by geodetic precession.
Finally, the local gravitational potentialsWE andWa

E of the Earth are related to the barycentric gravitational potentials wE

and wi
E by

WEðT ;XÞ ¼ wEðt; xÞ
�
1þ 2

c2
v2E

�
� 4

c2
viEw

i
Eðt; xÞ þOðc�4Þ ; Wa

EðT ;XÞ ¼ �ai½wi
Eðt; xÞ � viEwEðt; xÞ� þOðc�2Þ :
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A2. RESOLUTION B1.4: POST-NEWTONIAN POTENTIAL COEFFICIENTS

The XXVIth International Astronomical Union General Assembly,

Considering,

1. That for many applications in the fields of celestial mechanics and astrometry a suitable parametrization of the metric
potentials (or multipole moments) outside the massive solar system bodies in the form of expansions in terms of potential
coefficients are extremely useful; and
2. That physically meaningful post-Newtonian potential coefficients can be derived from the literature;

Recommends,

1. Expansion of the post-Newtonian potential of the Earth in the Geocentric Celestial Reference System (GCRS) outside
the Earth in the form

WEðT ;XÞ ¼ GME

R

�
1þ

X1
l¼2

Xþl

m¼0

�
RE

R

�l

Plmðcos �Þ½CE
lmðTÞ cosm�þ SE

lmðTÞ sinm��
�
;

here CE
lm and SE

lm are, to sufficient accuracy, equivalent to the post-Newtonian multipole moments introduced by Damour
et al. (Damour et al., 1991, Phys. Rev. D, 43, 3273); h and � are the polar angles corresponding to the spatial coordinates Xa of
the GCRS andR = |X |; and
2. Expression of the vector potential outside the Earth, leading to the well-known Lense-Thirring effect, in terms of the

Earth’s total angular momentum vector SE in the form

Wa
EðT ;XÞ ¼ �G

2

ðX � SEÞa

R3
:

A3. RESOLUTION B1.5: EXTENDED RELATIVISTIC FRAMEWORK FOR TIME TRANSFORMATIONS AND
REALISATION OF COORDINATE TIMES IN THE SOLAR SYSTEM

The XXVIth International Astronomical Union General Assembly,

Considering,

1. That the Resolution A4 of the XXIst General Assembly (1991) has defined systems of space-time coordinates for the solar
system (Barycentric Reference System) and for the Earth (Geocentric Reference System), within the framework of General
Relativity;
2. That Resolution B1.3 entitled ‘‘Definition of Barycentric Celestial Reference System and Geocentric Celestial Reference

System ’’ has renamed these systems the Barycentric Celestial Reference System (BCRS) and the Geocentric Celestial
Reference System (GCRS), respectively, and has specified a general framework for expressing their metric tensor and defining
coordinate transformations at the first post-Newtonian level;
3. That, based on the anticipated performance of atomic clocks, future time and frequency measurements will require

practical application of this framework in the BCRS; and
4. That theoretical work requiring such expansions has already been performed;

Recommends, That for applications that concern time transformations and realisation of coordinate times within the solar
system, Resolution B1.3 be applied as follows:

1. The metric tensor be expressed as

g00 ¼ �
�
1� 2

c2
½w0ðt; xÞ þ wLðt; xÞ� þ

2

c4
½w2

0ðt; xÞ þ Dðt; xÞ�
�
;

g0i ¼ � 4

c3
wiðt; xÞ ; gij ¼

�
1þ 2w0ðt; xÞ

c2

�
�ij ;

where (t � Barycentric Coordinate Time [TCB], x) are the barycentric coordinates, w0 = G
P

A MA/rA, with the summation
carried out over all solar system bodies A, rA = x � xA, xA are the coordinates of the center of mass of body A, rA = |rA|, and
where wL contains the expansion in terms of multipole moments [see their definition in the Resolution B1.4 entitled ‘‘ Post-
Newtonian Potential Coefficients ’’] required for each body [the vector potential wi(t, x) =

P
A wi

A(t, x) and the function
D(t, x) =

P
A DA(t, x) are given in note 2];
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2. The relation between TCB andGeocentric Coordinate Time (TCG) can be expressed to sufficient accuracy by

TCB� TCG ¼ c�2

�Z t

t0

�
v2E
2
þ w0;extðxEÞ

�
dtþ viEr

i
E

�

� c�4

�Z t

t0

�
� 1

8
v4E � 3

2
v2Ew0;extðxEÞ þ 4viEw

i
extðxEÞ þ

1

2
w2
0;extðxEÞ

�
dt�

�
3w0;extðxEÞ þ

v2E
2

�
viEr

i
E

�
;

where vE is the barycentric velocity of the Earth and where the index ext refers to summation over all bodies except the Earth.

Notes

1. This formulation will provide an uncertainty not larger than 5 � 10�18 in rate and, for quasi-periodic terms, not larger
than 5 � 10�18 in rate amplitude and 0.2 ps in phase amplitude, for locations farther than a few solar radii from the Sun. The
same uncertainty also applies to the transformation between TCB and TCG for locations within 50 000 km of the Earth.
Uncertainties in the values of astronomical quantities may induce larger errors in the formulas.
2. Within the above mentioned uncertainties, it is sufficient to express the vector potential wi

A(t, x) of bodyA as

wi
Aðt; xÞ ¼ G

�
�ðrA � SAÞi

2r3A
þMAv

i
A

rA

�
;

where SA is the total angular momentum of body A and viA are the components of the barycentric coordinate velocity of body
A. As for the function DA(t, x) it is sufficient to express it as

DAðt; xÞ ¼
GMA

rA

�
� 2v2a þ

X
B 6¼A

GMB

rBA
þ 1

2

�
ðrkAvkAÞ

2

r2A
þ rkAa

k
A

��
þ 2GvkAðrA � SAÞk

r3A
;

where rBA = |xB � xA| and akA is the barycentric coordinate acceleration of body A. In these formulas, the terms in SA are
needed only for Jupiter (S � 6.9 � 1038 m2 s�1 kg) and Saturn (S � 1.4 � 1038 m2 s�1 kg), in the immediate vicinity of these
planets.
3. Because the present Recommendation provides an extension of the IAU 1991 recommendations valid at the full first

post-Newtonian level, the constants LC and LB that were introduced in the IAU 1991 recommendations should be defined as
hTCG/TCBi = 1 � LC and hTT/TCBi = 1 � LB, where TT refers to Terrestrial Time and h i refers to a sufficiently long
average taken at the geocenter. The most recent estimate of LC is (Irwin, A., and Fukushima, T., 1999, Astron. Astroph., 348,
642–652)

LC ¼ 1:48082686741� 10�8 � 2� 10�17:

From the Resolution B1.9 on ‘‘ Redefinition of Terrestrial Time TT,’’ one infers LB = 1.55051976772 � 10�8 � 2 � 10�17 by
using the relation 1 � LB = (1 � LC)(1 � LG).LG is defined in Resolution B1.9.
Because no unambiguous definition may be provided for LB and LC, these constants should not be used in formulating time

transformations when it would require knowing their value with an uncertainty of order 1 � 10�16 or less.
4. If TCB � TCG is computed using planetary ephemerides which are expressed in terms of a time argument (noted Teph)

which is close to Barycentric Dynamical Time (TDB), rather than in terms of TCB, the first integral in Recommendation 2
above may be computed as

Z t

t0

�
v2E
2
þ w0;extðxEÞ

�
dt ¼

�Z Teph

Teph0

�
v2E
2
þ w0;extðxEÞ

�
dt

��
ð1� LBÞ :

A4. RESOLUTION B1.9: RE-DEFINITION OF TERRESTRIAL TIME TT

The XXVIth International Astronomical Union General Assembly,

Considering,

1. That IAUResolution A4 (1991) has defined Terrestrial Time (TT) in its Recommendation 4; and
2. That the intricacy and temporal changes inherent to the definition and realisation of the geoid are a source of uncertainty

in the definition and realisation of TT, which may become, in the near future, the dominant source of uncertainty in realising
TT from atomic clocks;

Recommends, That TT be a time scale differing from TCG by a constant rate: dTT/dTCG = 1 � LG, where
LG = 6.969290134 � 10�10 is a defining constant.

Note.—LG was defined by the IAU Resolution A4 (1991) in its Recommendation 4 as equal to UG/c
2 where UG is the

geopotential at the geoid. LG is now used as a defining constant.
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APPENDIX B

COMPARISON OF THE IAU METRIC WITH VERSIONS GIVEN IN THE LITERATURE

In this appendix, we will compare the metric of equation (8) with well-known results from the literature. However, for this
purpose we will consider the material composing the various bodies of the system to behave like an ideal fluid (for the IAU
2000 resolutions this is not assumed). In the ideal-fluid case, the energy-momentum tensor can be written in the form

T00 ¼ �c2
�
1þ 1

c2
ð�þ v2 þ 2UÞ

�
þOðc�2Þ ; T0i ¼ �cvi þOðc�1Þ ; Tij ¼ �vivj þ p�ij þOðc�2Þ : ðB1Þ

Here � denotes the rest-mass density, p is the pressure, P is the specific internal energy (see, e.g., Will 1993), vi(t, x) is the
velocity of the corresponding material element, and

Uðt; xÞ � G

Z
�ðt; x0Þ
x� x0j j d

3x0 : ðB2Þ

From equations (12) and (B1), we derive

	 ¼ �

�
1þ 1

c2
ð�þ 2v2 þ 2UÞ

�
þ 3

p

c2
þOðc�4Þ ; 	i ¼ �vi þOðc�2Þ : ðB3Þ

Introducing the metric potentials

�1 �
Z

�0v02

x� x0j j d
3x0 ; �2 �

Z
�0U 0

x� x0j j d
3x0 ; �3 �

Z
�0�0

x� x0j j d
3x0 ; �4 �

Z
p0

x� x0j j d
3x0 ; ðB4Þ

we obtain from equations (14) and (15)

w ¼ U þ 2�1 þ 2�2 þ �3 þ 3�4 �
1

2c2
�;tt þOðc�4Þ ; wi ¼ Vi þOðc�2Þ ðB5Þ

with

Vi �
Z

�0v0i
x� x0j j

d3x0 ; � � �G

Z
�0 x� x0j jd3x0 ; ðB6Þ

and the subscript comma denoting partial differentiation, as in

�;tt �
@2�

@t2
: ðB7Þ

The post-Newtonian metric (in harmonic gauge) can then be written as

g00 ¼ �1þ 1

c2
ð2U þ 4�1 þ 4�2 þ 2�3 þ 6�4Þ �

2

c4
U2 þ 1

c4
�;tt ; g0i ¼ � 4

c3
Vi ; gij ¼ �ij

�
1þ 2U

c2

�
: ðB8Þ

To compare, for example, with the metric inWill (1993), we transform from harmonic coordinates, used in the present paper
and recommended by the IAU, to standard post-Newtonian coordinates, used by several authors including Will. This is
achieved by a gauge transformation of the form

wSPN ¼ w� �;t=c
2 ; wi

SPN ¼ wi þ �;i=4 ðB9Þ

with

� ¼ ��;t=2 ðB10Þ

(see, e.g., eq. [3.12] of Damour et al. 1991).
This implies that the �-term disappears from w and hence from g00 when standard post-Newtonian coordinates are

employed, but the g0i term is affected by this transformation. Using the relation

�;ti ¼ Vi �Wi ðB11Þ

with

Wi �
Z
�0½v0 x ðx� x0Þ�ðxi � x0iÞ

x� x0j j3
d3x0 ; ðB12Þ

one verifies that the metric induced by the potentials in equations (14) and (15) agrees in general relativity with equation (5.28)
ofWill (1993).
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