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Abstract. In the present paper we discuss simulation with a wavelet element method.
The model problem is a simplified 2D-roller bearing model consisting of an elastic outer
and inner ring and a roller. This model reflects typical properties of elastic multibody
systems, eg. combination of gross motion with elastic deformation and contact problems.
The wavelet element method is implemented in a similar way as the widely used finite
element method. Its inherent advantages concerning model reduction will be demonstrated
as well as the influence of model reduction on simulation time.
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1 Elastic Roller Bearing Model Problem

In order to demonstrate the power of a wavelet element method we consider an elastic
extension of a simplified 2D-roller bearing model presented in [11]. The model consists
of two elastic rings and an elastic roller see Fig. 1. The outer ring is assumed to rotate

Figure 1: 2D roller bearing model and rigid body states

with constant speed ωo, while the inner ring is fixed. The rollers may be in contact with
one of the rings depending on their state. The inertial system is placed into the center
of the inner ring and the outer ring is described by means of Cartesian coordinates with
respect to that system by the six rigid state variables (yout, θout, ẏout, θout), where y ∈ R2

expresses the coordinates of the center of the outer ring and θ its orientation. The motion
of the roller is given accordingly by the rigid states (yR, θR, ẏR, θR).

The elastic deformation is taken into account by additional elastic state variables,
qR, q̇R ∈ RNR for the roller and qout, q̇out ∈ RNout , qin, q̇in ∈ RNin for the rings, resulting
from a wavelet semidiscretization of the rollers and the rings.

The total number of elastic degrees of freedom depends on the discretization and is
normally substantially larger than the number of rigid degrees of freedom.
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The number of elastic degrees of freedom is classically reduced when using a finite
element discretization by modal reduction techniques. Using modal reduction techniques
to reduce the number of elastic degrees of freedom may yield a poor description of the
relevant quantities for multibody simulation, e.g. direction and magnitude of the contact
forces.

In contrast, semidiscretization by wavelets offers direct reduction possibilities while
preserving the description of the deformation field near the contact point which yields
better results and speeds up the simulation time.

The disposition of the paper is the following: In Section 2 we present the equations of
motion of a single elastic body. In Sec. 3 a brief introduction to wavelets and the wavelet
element method (WEM) adapted to our model problem is presented. In Sec. 4 the contact
interaction is discussed and included in the model. Numerical simulations are presented
in Sec. 6.

2 ELASTIC BODY MOTION

The coupled elastic/rigid motion is described here for the outer ring. The description
of the inner ring and the roller follows in a similar way. All three elastic bodies are then
coupled together by contact constraints.

The body has the reference configuration Ω̄, which is the closure of an open convex set
Ω ∈ R2 with the boundary Γ. We assume that this boundary is divided into two disjoint
sections Γ0 and Γ1 and will impose Dirichlet (natural) boundary conditions at Γ0 and
Neumann (essential) boundary conditions at Γ1.

The body’s deformation is described in material coordinates, i.e. with respect to the
reference configuration of the undeformed body with the displacement field u(x, t), x ∈ Ω,
see Fig. 2.

For a fixed time t the displacement field u is a function in the Hilbert space

V =
{
v : vi ∈ H1(Ω), i = 1, 2, 3

}
with the inner product

〈v, w〉V =
2∑

i=1

〈vi, wi〉H1 .

As we will state following the lines of the equations of motion in their weak or variational
form, [10], we have to consider also the subspace of test functions

V0 = {v ∈ V : v|Γ0 = 0} .

With the body’s mass m, moment of inertia J(u) =
∫

Ω
ρ(x + u)T (x + u)dx, constant

density ρ, inner volume forces β(x, θ) and surface forces τ(x, θ) on Γ1 the equations of
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Figure 2: Reference systems in an elastic body

motion of the outer ring take the form:

mÿ + A′(θ)s(u)θ̈ − A(θ)s(u)θ̇2 + 2A′(θ)θ̇

∫
Ω

ρu̇dx

= A

∫
Ω

β(x, θ)dx + A(θ)

∫
Γ1

τ(x, θ)ds (1a)

s(u)TA′(θ)
T
ÿ + Jθ̈ +

∫
Ω

ρ(x + u)TĨüdx + 2θ̇

∫
Ω

ρ(x + u)Tu̇dx =

=

∫
Ω

(x + u)TĨβ(x, θ)dx +

∫
Γ1

(x + u)TĨτ(x, θ)ds (1b)

〈
ρA(θ)Tÿ, v

〉
+

〈
ρ(θ̈ĨT − θ̇I)(x + u), v

〉
+

〈
ρ(2ĨTu̇θ̇), v

〉
+ 〈ρü, v〉+ a(u, v)

= 〈l, v〉 ,∀v ∈ V0, (1c)

where A(θ) is the 2D rotation matrix, s(u) =
∫

Ω
ρ(x + u)dx, and Ĩ =

(
0 −1
1 0

)
. a(u, v)

is the bilinear form depending on the constitutive elasticity law and 〈v, l〉 a linear form
arising form homogeneisation of boundary conditions at Γo.

For more details, see [10, 8].
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2.0.1 Galerkin Semidiscretisation

Consider now a finite dimensional subspace Vh
0 ⊂ V0 with a basis {ζj}Nq

j=1. Galerkin

semidiscretization seeks for an approximative solution uh ∈ Vh
0 . A special case is the

wavelet element method which takes a wavelet basis {ζj}Nq

j=1 for Vh
0 .

The usual separation ansatz leads to

uh(x, t) =

Nq∑
j=1

qj(t)ζj(x)

with a set of time dependent coefficients {qj(t)}j, the elastic states of the system. To
compactify the presentation we write

uh(x, t) = N(x)q(t) =
(
ζ1(x)...ζj(x)...ζNq(x)

)


q1
...
qj
...

qNq

 .

We obtain then N + 3 differential equations to determine y, θ and q:

mÿ + A′ (sr + shq) θ̈ + ACT
1 q̈ = A (sr + shq) θ̇2 − 2A′CT

1 q̇ + fT(θ, q, t) (2a)

(sr + shq) A′Tÿ + (Jr + Jhq) θ̈ + (C2 + C3q) q̈ = −2 (C4 + Mhq) θ̇q̇ + fR(θ, q, t) (2b)

C1A
Tÿ + (C2 + C3(q))θ̈ + Mhq̈ = (C4 + Mhq)θ̇

2 − 2C3θ̇q̇ −Khq + lh (2c)

where we introduced the following abbreviations:

• Discrete mass, stiffness matrix and forces

Mh =

∫
Ω

ρNTNdx

(Kh)j1,j2 = a(ζj1 , ζj2)

(lh)j = 〈l, ζj〉

• Coupling matrices

C1 =

∫
Ω

ρNTdx, C2 =

∫
Ω

ρ(x1N2 − x2N1)dx

C3 =

∫
Ω

ρ(NT
2 N1 −NT

1 N2)dx, C4 =

∫
Ω

ρ(x1N1 + x2N2)dx
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• Variation terms

sh =

∫
Ω

ρNdx, Jh = 2C4q + qTMhq

• Force terms

fT (θ, t) = A

∫
Ω

β(x, θ)dx + A

∫
Γ1

τ(x, θ)dx

fR(θ, q, t) =

∫
Ω

(x + Nq)TĨβ(x, θ)dx +

∫
Γ1

(x + Nq)TĨτ(x, θ)dx

2.1 Semidiscretized Roller Bearing system

We collect the degrees of freedom in a state vector w =
(
qin, wR, wout

)T
with the

states for the roller and outer ring wR/out =
(
yR/out, θR/out, qR/out

)T
.

The motion of the uncoupled system is then described the by differential equationsMin

MR

Mout

 ẅ =

 fin(t, win, ẇin)
fR(t, wR, ẇR)

fout(t, wout, ẇout)


where the matrices for the roller and outer ring i ∈ {R, out} are

Mi(wi) =

 miI2×2 A′
i(sr,i + s∆,iqi) AiC

T
1,i

(sr,i + s∆,iqi)
TA′

i
T Jr,i + J∆,i C2,i + C3,iq

C1A
T (C2,i + C3,iqi)

T Mhi

 ,

fi(t, wi, ẇi) =

 Ai (sr,i + shi
q) θ̇2

i − 2A′
iC

T
1,iq̇i + fT,i(θi, t)

−2 (C4,i + Mhi
qi) θ̇q̇i + fR,i(qi, t)

(C4,i + Mhi
qi)θ̇

2
i − 2C3,iθ̇iq̇i −Khi

qi + lhi

 ,

and those for the inner ring Min = Mhin
and fin = Khin

qin + lhin
.

The three bodies are coupled by unilateral constraints based on a contact model de-
scribed in detail in Sec. 4 below. By introducing constraint forces the final system becomes
an index-3 differential algebraic system of the generic form

M(w)ẇ = F (t, w, ẇ)−GT (w)Tµ (3)

0 = gT (w) (4)

with GT = ∂g/∂w.
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3 Wavelet Element Method (WEM)

In [2] the general setting of the wavelet element method (WEM) is presented. Like in
the finite element case it consists of a Galerkin semidiscretization with locally supported
basis functions ζj, but unlike finite elements the wavelet basis contains information which
can be used in an effective way for system reduction. So an extra modal reduction step
like in the FEM case is no longer required.

The discrete space Vh
0 ⊂ V0 is constructed by its basis functions ζj in the following

way:

1. An appropriate father wavelet φ ∈ H1(R) is selected, with the property that the
translated functions φ(·− j), j ∈ Z are linearly independent and span a linear space
Vn0 . . . ⊂ H1(R)

2. We consider father wavelet functions having compact support, so that by truncat-
ing the basis, dilating the basis functions and adding additional boundary wavelet
functions a basis for a corresponding finite dimensional subspace of H1([0, 1]) can
be constructed.

3. By forming tensor products of these basis functions a basis for V̆n0 ⊂ H1([0, 1]×[0, 1])
is obtained.

4. Finally by constructing a continuously differentiable map FΩ : Ω −→ [0, 1]2 this
basis can be transformed to a basis for Vh

0 ⊂ H1(Ω)

The selection of a father wavelet is based on the smoothness requirements given by the
equations of motion (2). We choose the construction presented in [9] based on Daubechies
wavelets of order N , [4], denoted as DBN now on. An alternative basis is presented in [3]
based on biorthogonal wavelets and can be used for more general geometries.

When scaling and translating father wavelet functions φk,j := φ(2k · −j), j ∈ Z, k ∈ Z+

a basis of a higher dimensional space is constructed and a ladder of spaces is obtained

H1(R) ⊃ ... ⊃ V n ⊃ V n−1... ⊃ Vno

giving a natural way of increasing or decreasing the resolution level n. The lowest possible
resolution level is called no.

Following the steps 1-4 above a ladder of semidiscretization spaces is obtained:

H1(Ω) ⊃ ... ⊃ V̆ n ⊃ V̆ n−1... ⊃ V̆ no

with
V̆ n := span

{
φ̆n,j1,j2 : φ̆n,j1,j2 =

(
φn,j1 ⊗ φn,j2

)
◦ FΩ

}
. (5)

For the Galerkin ansatz function uh we set Vh
o = V̆ n ⊕ V̆ n for some n > no resulting in

N2
q = 2 · 22n elastic degrees of freedom qj.
In the following sections we formulate the model in this basis.
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4 ELASTIC CONTACT

We consider now two bodies, the outer ring Ωout and the roller ΩR with boundary
∂Ωout = Γout

1 ∪ Γout
0 resp. ∂ΩR = ΓR

1 ∪ ΓR
0 . Dirichlet boundary conditions are given on Γi

0

and Neumann boundary conditions on Γi
1.

The dynamic contact problem is to find at any time point t a state w(t) so that the
two bodies are either in contact but not penetrating or are free floating. Contact causes
contact forces as constraint forces, which are characterized by not being dragging forces.

The part of the Neumann boundary, where contact occurs will be denoted by ΓR
c rsp.

Γout
c . These boundary segments depend on the actual state w(t).

4.1 Determination of the contact points

The node-to-element approach by [6] considers the case, where the roller (called the
slave body) penetrates the outer ring (called the master body). A penetrating nodal point
is denoted by x̄s ∈ ΓR

1 .
For mathematically describing the contact condition we parameterize a section ΓR

c ⊂ ΓR
1

of the roller boundary and a corresponding section of the outer ring boundary Γout
c ⊂ Γout

1 .
This parametrization and the corresponding boundary description is based on the order
of the discretization. If Daubechies wavelets DB3 are taken the interpolation error by
describing these boundary segments by a third degree polynomial are of the same order
as the overall discretization error.

We select the four nearest nodes to x̄s on both boundaries and denote them by
xm1 , xm2 , xm3 , xm4 and xs1 , xs2 , xs3 , xs4 . The corresponding boundary profile sections of
the undeformed bodies and the corresponding deformations can then be described by four
third degree polynomials xs(ξs), us(ξs) and xm(ξm), us(ξm).

Let ξ̄s and ξ̄m be the parameter values of the (unknown) contact points, then we can
formulate the contact conditions

gcon(w, ξ̄m, ξ̄s) = ys + A(θs)(xs(ξ̄s) + us(ξ̄s))− (ym + A(θm)(xm(ξ̄m) + um(ξ̄m))) = 0

Additionally we need the so-called non penetration condition

gnpe(w, ξm, ξs, λ) = λA(θs)(x
′
s(ξs) + u′s(ξs))− A(θm)(x′m(ξm) + u′m(ξm)) = 0

stating that the tangents at the contact points are parallel.
Together we get four conditions for the four unknown variables µs, ξ̄s, ξ̄m and the tan-

gent scaling λ.
The corresponding constraint matrix G is obtained by the requirement that the relative

velocity in the contact points is orthogonal to the boundary normal vector in these points.
After having set up the constraints for all contact points we finally get a differential-
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algebraic system of the following form

M(w)ẇ = F (t, w, ẇ)−GT (w, ξ̄, λ)Tµ (6)

0 = gcon(w, ξ̄, λ) (7)

0 = gnpe(w, ξ̄, λ) (8)

with ξ ∈ R2nµ being the vector of all contact point parameters and λ ∈ Rnµ the vector of
all tangent scaling variables.

This system has index-3 with λ and x̄i as index-1 variables, while the Lagrange multi-
pliers are index-3 variables. The numerical treatment of these kind of systems is discussed
in [7, 1].

5 NUMERICAL SIMULATIONS

5.1 Numerical Algorithms

Before numerically integrating the system (6) its index has to be reduced to a stabilized
index-2 system, [7, 1]. The resulting system can then be integrated by BDF methods like
DASSL.

To handle switching between contact and no contact a switching function was imple-
mented. This function is a vector valued function, with components corresponding to
boundary nodal points. A zero of one of its components indicates the transition between
the states contact/no contact has to be made. Zeros are detected by a safeguard algorithm
based on inverse interpolation and bisection as described in [7].

To test the performance and accuracy of the wavelet ansatz we compare it with a corre-
sponding FEM semidiscretization. The simulation, contact point detection and switching
event handling is performed in both cases by identical algorithms.

5.2 Finite elements

FEMlab is used in plane stress mode to describe each individual body and compute
mass and stiffness matrices Mh,in, Mh,R, Mh,out, Kh,in, Kh,R and Kh,out with linear elements.
Typical triangularizations for the outer ring and the roller are depicted in Fig. 3. The
boundary of the rolling elements are under Neumann boundary conditions. The outer
boundary of the inner ring is under Neumann boundary conditions, as the inner boundary
of the outer ring. Dirichlet boundary conditions are imposed at the outer boundary of
the outer ring and inner boundary of the inner ring.

5.3 Wavelets

Own routines in Matlab were written for WEM. Typical wavelet triangularisations of
the roller and rings are presented in Fig. 4. The Schwarz-Christoffel map is used to map
the unit square to the circle, see [5]. The exponential map is used to map the unit square
to the rings. The corresponding boundary conditions are periodic at two opposite sides of
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Figure 3: FEM triangularization of rolling elements and rings

the unit square and Dirichlet / Neumann conditions can be set at the other two. Wavelet
DB3 was used in the discretization.
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Figure 4: Wavelet triangularization of rolling elements and rings

5.4 Comparison WEM-FEM

We present in Fig. 5 the sparsity structure of Kh,R of both approaches, FEM and
WEM . The WEM stiffness matrix is always banded, with a bandwidth depending on size
of the the wavelet support. This feature can be exploited to save computational work
using specially adapted algorithms for banded matrices. FEM generates a sparse but
unstructured stiffness matrix.

If ρ is constant The mass matrix is the identity in the WEM case. This means that the
spectrum is determined by the stiffness matrix Kh only. This is not the case for a FEM
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discretization.
Model reduction techniques reduce the number of elastic coordinates q to qred = Chq

with some matrix Ch ∈ RNred×Nq . The mass and stiffness matrices are reduced by

Mh,red = CT
h MhCh

Kh,red = CT
h KhCh.

This matrix Ch is in the FEM case obtained form the eigenvectors of the generalized
eigenvalue problem

−ω2Mhq̃ = Khq̃.

We perform model reduction by selecting eigenvectors corresponding to the s lowest fre-
quencies ω1, ω2, ..., ωs and assembling them in Ch = (q̃1, q̃2, ..., q̃s).

In the WEM case the situation is different. We construct the matrix Ch by setting to
one the diagonal element corresponding to those wavelets that have the contact node in
their support.

In Table 6.4 is the dimensions of the semidiscretisations with FEM, WEM and using
WEM model reduction. Notice that the model reduction depends on the state and possible
contact contraints applied at a certain time. We give the maximum number of equations
selected by the algorithm for the time interval [0, 0.1].

FEM WEM red WEM
Roller 108 128 max 40

Ex. Ring 976 2048 max 128
In. Ring 480 512 max 128

Table 1: Dimensions of the discretisations for FEM and WEM

In Fig. 7 we present the reference solution with FEM without model reduction and
compare the step size sequence generated by DB3 and WEM model reduction. We observe
that the WEM time step sizes are larger than those required by the FEM. Notice that
the time points when the step size decreases drastically are those when the roller bounces
against one of the rings. Although the number of equations in the reduced WEM model
is considerably lower, the bounces occur at nearly the same instances. This property was
not observed when using modal reduction.

In Fig. 6 the spectra of the roller element for FEM and WEM with and without model
reduction are depicted. In the reduced WEM we observe that non determinant high
frequency modes are removed, causing a significant speed-up of integration time.

6 CONCLUSIONS

We present a WEM discretisation of a simple 2D roller bearing model with possiblity
to model reduction using the properties of wavelet decomposition.
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Figure 5: FEM and Wavelet (single and multiresolution) sparsity structure of stiffness matrices

We show that WEM model reduction techniques are robust in the sense that we do
not need to know in advance where possible forces/interactions occur to apply modal
reduction or static mode analysis.

An improvement with respect to linear FEM discretisation is shown.
We observe that the order of approximation of the boundary is the same, but WEM

model reduction conserves this order after reduction.
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Figure 6: FEM and Wavelet spectrum of the stiffness matrix for the rolling element
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