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Abstract—Favorable propagation (FP) and channel hardening
are desired properties in massive multiple-input and multiple-
output (MIMO) systems, where nearly optimal performance is
achieved with linear processing techniques, such as maximal-
ratio combining. To date, these properties have primarily been
analyzed for classical statistical channel models, or ray-based
models with very specific angular parameters and distributions.
This paper presents a thorough mathematical analysis of the
asymptotic system behaviour for ray-based channels with arbi-
trary ray distributions and a uniform linear array at the base
station. In addition to FP and channel hardening, we analyze
the large system potential (LSP) which measures the asymptotic
ratio of the power in the desired channel to the total interference
power when both the antenna and user numbers grow. LSP is
said to hold when this ratio converges to a positive constant. The
results demonstrate that while FP is guaranteed in ray-based
channels, channel hardening may or may not occur depending
on the nature of the model. Furthermore, we demonstrate that
LSP will not normally hold as the interference power grows
logarithmically relative to the power in the desired channel as the
system size increases. Nevertheless, we identify some fundamental
and attractive properties of massive MIMO in this limiting
regime.

I. INTRODUCTION

Two key principles behind the success of massive MIMO are
favourable propagation (FP) [1], [2], and channel hardening
[3], meaning that the normalized inter-user interference power
converges to zero, and the normalized power in the desired
channel becomes constant. With FP, the use of large numbers
of antennas has an implicit interference reduction mechanism
which boosts the achievable rates and enables the use of low
complexity signal processing algorithms [2], [4], [5].

The bulk of the theoretical work on FP and channel hard-
ening has employed classical statistical channel models. Here,
the existence of FP has been demonstrated for channel models
of increasing complexity, progressing from independent and
identically distributed (i.i.d.) Rayleigh [1], [6], pure line-of-
sight [1], [6], correlated Rayleigh [7], [8], and independent
Ricean [9] to correlated Ricean channels [10], [11]. In parallel,
with the theory, real channel measurements have demonstrated
that a large fraction of the theoretical gains due to FP can be
obtained [12]–[14].

This work is now mature, but incomplete in the sense that
accurate modeling of large dimensional channels requires a
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strong link to the propagation environment. This is usually
obtained through ray-based models which have been exten-
sively validated by measurements and, for this reason, have
made their way to the 3GPP standardization exercise [15].
These models are more physically based, have a closer link
to the array architecture and are widely used irrespective of
the type of frequency band [15]–[17]. The physical nature of
the ray-based models also has some advantages for analysis.
For example, FP was considered in recent work [10] for very
general heterogeneous, correlated Ricean channels. This work
gives wide ranging results on FP, but the inherent nature of
these models meant that the conclusions relied on various
assumptions concerning the correlation structure, line-of-sight
direction, etc. In contrast, we are able to prove FP for ray-
based models with the most assumptions concerning physical
phenomena rather than statistical parameters.

Variations of such models have a proliferation of names
including directional, spatial, geometric and Saleh-Valenzulela
(SV) type [18] channel models. We prefer the phrase ray-
based as the main requirements for our work are that the
statistical distributions of individual rays can be identified.
This is possible for a wide range of such channels. Important
work has begun in this area demonstrating the existence of
FP with specific ray-based models for a variety of antenna
topologies such as the uniform linear array (ULA), uniform
rectangular array (URA), and uniform circular array (UCA)
[19], [20]. However, these results rely on two very special
cases for the rays: an arbitrary ray must arrive with an
azimuth angle, φ, which satisfies φ ∼ U [0, 2π] [19], [20] or
sinφ ∼ U [0, 2π] [1], [21]. Hence, a general analysis of FP
for ray-based models with arbitrary ray distributions is almost
entirely lacking. Further, while FP is an excellent property
for a communication system, it only implies that a finite
number of users can be served by increasing the number of
antenna elements. We refer to this as single-sided massive
MIMO. Ideally, as you grow the number of BS antennas you
would also serve more users leading to a system that becomes
large both in users and antennas, i.e., double-sided massive
MIMO. Hence, we define large system potential (LSP) as the
property that the fundamental ratio which measures the power
in the desired channel relative to the total interference power
converges to a positive constant as both the number of users
(K) and the number of antennas (N ) grow to infinity, with
N/K → α as N → ∞. This is equivalent to requiring that



the signal-to-interference ratio (SIR) of maximal ratio combing
(MRC) with perfect channel state information (CSI) converges
under the same limiting regime. Very little is known about
LSP, except for the analysis in [5] for i.i.d. Rayleigh fading.
To the best of our knowledge, nothing is known about LSP
for ray-based channel models. In this paper, we address the
gaps identified in the literature. In particular, for a broad class
of ray-based models and a ULA1 at the base-station, we make
the following contributions.
• We show that channel hardening may or may not occur

depending on the nature of the model.
• We show that FP is guaranteed for all models where the

ray angles are continuous random variables (as assumed
by all models to date).

• For LSP, we derive a remarkably simple expression
which relates the asymptotic interference behaviour to
system size, antenna spacing and the ray distribution. This
result highlights the important role played by the end-fire
direction in interference growth and leads to the following
two contributions.

• We demonstrate that LSP will not normally hold as the
interference power grows logarithmically relative to the
power of the desired channel as the system size increases.

• Despite the lack of LSP, the implications for massive
MIMO are excellent. Although the interference eventually
dominates the desired channel, the growth is very slow
and is further attenuated by practical factors such as
the likely propagation environment and the typical array
patterns employed.

Notation. Boldface lower and upper case symbols denote
vectors and matrices. Complex conjugation and Hermitian
transpose operations are denoted by (·)∗ and (·)H, while
CN (m,R) denotes the circular symmetric complex Gaussian
distribution with mean m and covariance matrix R, while
U [a, b] denotes a uniform distribution on [a, b]. E[·] denotes
statistical expectation, ∼ denotes asymptotic equivalence de-
fined in [22, p. 15], a.s.−−→ denotes almost sure convergence, and
F(·) denotes the Fourier transform. Finally, J0(·) and I0(·)
denote the zero order Bessel and modified Bessel functions of
the first kind.

II. CHANNEL MODEL AND SYSTEM METRICS

We consider an uplink massive MIMO system with N co-
located antennas at one BS simultaneously serving K single
antenna users, where N � K. We assume a narrowband flat
fading channel model such that the N × 1 channel vector for
user i can be written as hi, defined below, and the composite
N ×K channel matrix is denoted by H = [h1h2...hK ].

A. Ray-based Channel Model

In general, the propagation channel to user i can be de-
scribed as the superposition of many individual rays possibly
arriving in clusters from a set of far-field scatterers. In simple

1We extend the analysis to a URA in the forthcoming journal version of
this work.

terms, the channel is broken down into P incident rays at the
BS.2 Hence, for a ULA we have:

hi =

P∑
r=1

γira(φir), (1)

where φir is the azimuth angle of the rth ray, γir is a
complex scaling factor for the magnitude and phase of the
ray, and a(φir) is the steering vector. In azimuth, the antenna
array broadside is at φir = 0, and end-fire is φir = ±π2 .
Common models for the scaling factor include random phase
models [15], where γir =

√
βirexp(jΦir), βir is the power of

the rth ray and Φir are i.i.d. U [0, 2π] phase offsets. Hence,
βi =

∑P
r=1 βir is the total link gain for user i. Also,

complex Gaussian models have been proposed in [17], where
γir =

√
βiruir and uir ∼ CN (0, 1). For both models, we

note that E[γir] = 0, E[|γir|2] = βir and E[γ∗irγjs] = 0 for all
pairs (i, r) 6= (j, s). For a ULA with normalized inter-element
spacing d, the steering vectors are:

a(φir) =
[
1, e2πjdsinφir , e2πj2dsinφir , . . . , e2πj(N−1)dsinφir

]T
.

B. FP, Channel Hardening and Large System Potential

Here, FP denotes asymptotic FP where hH
i hj/N → 0 as

N → ∞ [1]. Channel hardening refers to the property that
hH
i hi/N → βi as N →∞, which is equivalent in our case to

the definition [3]. In addition, we define, LSP where both the
number of antennas and users grow at the same rate. LSP is
said to hold when the following ratio

ζLSP =
|hH
i hi/N |2∑

j 6=i |hH
i hj/N |2

, (2)

converges to a positive constant as N → ∞ and N/K → α.
Since |hH

i hi|2 and |hHi hj |2 relate to the power in the desired
channel and to the inherent interference power between two
users, ζLSP is a fundamental performance metric, measuring the
ratio of the desired channel power to interference.3 Hence, the
condition that ζLSP converges to a positive constant ensures
that the power of signals carried on the desired channel is
never dominated by the total interference, and also indicates
that the simplest linear processing (MRC) has the potential
to handle large systems. Note that the limiting regime used
for LSP, which supports double sided massive MIMO, is far
more challenging than traditional massive MIMO. In practice,
the number of users will never grow without bound but the
asymptotics are still useful in identifying the key properties of
systems, which are large in both N and K.

III. CHANNEL HARDENING AND FP

In this section, channel hardening and FP are considered for
ray-based channel models. For ease of notation, let air be the

2For ease of notation we do not specifically itemize clusters but the P paths
include any clustered rays.

3The expression in (2) can also be interpreted as the SIR of MRC processing
with perfect CSI.



steering vector for user i, path r, so that air = a(φir). Then,

hH
i hi
N

=
1

N

P∑
r=1

γ∗ira
H
ir

P∑
s=1

γisais

=

P∑
r=1

|γir|2 +
1

N

P∑
r=1,r 6=s

P∑
s=1

γ∗irγisa
H
irais

= Xi + Ei, (3)

where Xi =
∑P
r=1 |γir|2 is independent of N . Thus the

limiting value depends entirely on limN→∞Ei, which in turn
depends on limN→∞ aH

irais/N , where r 6= s. Now,∣∣∣∣aH
irais
N

∣∣∣∣ =
1

N

N−1∑
n=0

e−j2πdnsinφirej2πdnsinφis

=
1

N

∣∣∣∣ sin (Nι/2)

sin (ι/2)

∣∣∣∣ a.s.−−→ 0, (4)

where ι = 2πd[sinφis−sinφir] using simple results on geomet-
ric series. Almost sure convergence follows from the fact that
convergence is guaranteed unless sinφir = sinφis, an event
with probability zero for continuous angular variables. Thus
we have hH

i hi/N
a.s.−−→ Xi as N →∞. Note that for random

phase models, Xi = βi and traditional channel hardening
occurs where hH

i hi/N
a.s.−−→ βi, a deterministic limit. In

contrast, for complex Gaussian models, |γir|2 = βir|uir|2,
which gives a random limit, as Xi =

∑P
r=1 |γir|2 is a

weighted sum of exponential variables. Hence, we see that
the existence of channel hardening depends on the nature of
the model for the ray coefficients.

In terms of FP, results are simple following the same
methodology as for channel hardening. First, we write

hH
i hj
N

=
1

N

P∑
r=1

P∑
s=1

γ∗irγjsa
H
irajs,

and then we use (4) to show that∣∣∣∣aH
irajs
N

∣∣∣∣ =
1

N

∣∣∣∣ sin (Nτ/2)

sin (τ/2)

∣∣∣∣ a.s.−−→ 0, (5)

as N → ∞, where τ = 2πd[sinφjs − sinφir]. Hence,
FP is proven very simply for all ray-based models where
sinφir = sinφis has probability zero. A simple condition for
this to hold is that the angles are continuous random variables,
a property held by all proposed models. Therefore, FP, the key
property enabling single sided massive MIMO, holds for all
ray distributions considered to date.

IV. LARGE SYSTEM POTENTIAL

In this section, we analyse the LSP of ray-based channel
models in the limiting regime where K → ∞, N → ∞
and N/K → α. The ratio ζLSP in (2) has a numerator
satisfying |hH

i hi|
2
/N2 as−→ X2

i from Sec. III. Hence, LSP
depends on the asymptotic properties of the denominator,
η =

∑K
j=1,j 6=i |h

H
i hj |2/N2. For the denominator, we focus

on E[η] since LSP would require a finite value of E[η].

E [η] = E

 1

N

K∑
j=1,j 6=i

1

N

∣∣∣∣∣
P∑
r=1

P∑
s=1

γ∗irγjsa
H
irajs

∣∣∣∣∣
2


=
1

N

K∑
j=1,j 6=i

P∑
r=1

P∑
s=1

E
[
|γir|2

]
E
[
|γjs|2

] 1

N
E
[∣∣aH

irajs
∣∣2]

= βi

(∑K
j=1,j 6=i βj

N

)
µ(N, d), (6)

using the basic properties of the γir terms and the notation

µ(N, d) =
1

N
E
[∣∣aH

irajs
∣∣2]

=
1

N

N−1∑
n=0

N−1∑
m=0

E
[
ej2πd(m−n)sinφir

]
E
[
ej2πd(n−m)sinφjs

]
=

1

N

N−1∑
n=0

N−1∑
m=0

∣∣∣E [ej2πd(m−n)sinφir
]∣∣∣2 . (7)

Now we set φ̂ir = 2πdsinφir, and rewrite (7) as

µ(N, d) = 1 + 2

N−1∑
s=1

(
1− s

N

)
|E[e−jsφ̂ir ]|2. (8)

Assuming that
∑K
j=1 βj/K converges to β̄ as K → ∞,

where β̄ is a finite mean power, we have limN→∞ E [η] =
βiβ̄ limN→∞{µ(N, d)}. Hence, the asymptotic behaviour of
E [η] depends on µ(N, d) which in turn depends on how
quickly |E[e−jsφ̂ir ]|2 decays. In the following theorem, we
present a general answer to this question.

Theorem 1. The term E[e−jsφ̂ir ] decays as s−
1
2 as s → ∞

with the asymptotic representation:

E[e−jsφ̂ir ]

∼ 1√
ds

(
fφ

(
−π
2

)
ej(2πds−

π
4 ) + fφ

(π
2

)
e−j(2πds−

π
4 )
)
,

(9)

where fφ(·) is the probability density function (PDF) of φir.

Proof. The proof is given in Appendix A. �

A. Implications of Theorem 1

Equation (9) in Theorem 1 is a remarkable result with
a simple and intuitive interpretation, wide generality and
important implications for massive MIMO.

• In terms of generality, (9) only requires the angular PDF,
fφ(·), not to have singularities which are worse than
O(x−1/2) at x = 0. This covers all proposed models.

• Interpreting (9) we see that if the end-fire direction has
no energy, fφ(±π/2) = 0, then E[e−jsφ̂ir ] = 0. Alterna-
tively, if some end-fire radiation occurs then fφ(±π/2) >

0 and E[e−jsφ̂ir ] = O(s−1/2).



• From the above, it follows that if there is no end-fire
radiation, µ(N, d) is finite and the mean interference
cannot dominate the power of the desired channel.

• Further, if there is end-fire radiation, then LSP does
not hold as µ(N, d) → ∞. This conclusion holds by
inspection of (8). When E[e−jsφ̂ir ] is O(s−1/2) then∑N
s=1 |E[e−jsφ̂ir ]|2 is O(logN) using well known prop-

erties of the series
∑N
s=1

1
s . Also,

∑N
s=1

s
N |E[e−jsφ̂ir ]|2

is finite so that µ(N, d) grows to infinity, but at a very
slow logarithmic rate.

• The importance of the end-fire direction can be un-
derstood in the following way. For a ULA, it is not
the proximity of two incoming ray angles that drives
the interference, but the difference in the sines of the
angles (see τ in (5)). For angles close to broadside the
difference in sines is largest and for angles near end-fire
the difference is smallest, resulting in greater interference.

• Overall, the result in (9) is extremely positive for double
sided massive MIMO. We have shown that in the chal-
lenging scenario where both K and N grow large, the
interference, relative to the power of the desired channel,
grows very slowly (logarithmically). Also, the scaling of
this growth factor is very small, since a large amount of
end-fire radiation is unlikely and practical deployments
employ array patterns which focus on a given sector and
massively attenuate the end-fire direction.

Given the power of these results, it is useful to validate the
conclusions with some closed form special cases.

B. Special Cases: Uniform Distribution

When φir ∼ U [0, 2π], fφ(x) =
1

2π
for −π ≤ x ≤ π and

(9) becomes

E[e−jsφ̂ir ] ∼ 1

π
√
ds

cos
(

2πds− π

4

)
. (10)

This limiting value is verified in the uniform case where the
exact solution is known as E[e−jsφ̂ir ] = E[e−js2πdsinφir ] =
J0(2πds) [22, p. 375]. For large values of s, J0(2πds) ∼
cos(2πds− π

4 )/π
√
ds [22, p. 364], which agrees with (9).

Hence, the general asymptotic analysis in (9) is supported and
the exact value of E[e−jsφ̂ir ] can be used in (8) to give the
exact value of µ(N, d).

C. Special Cases: Von-Mises Distribution
The von-Mises (VM) distribution has also been used in

angular modelling [23] and has the PDF given by

fφ(x) =
eκcos(x−µ)

2πI0(κ)
, −π ≤ x ≤ π, (11)

where µ is a measure of location and κ is a measure of
concentration. Substituting the VM PDF into (9) we obtain

E[e−jsφ̂ir ]

∼ ej2πds√
ds

(
eκcos(−π2−µ)

2πI0(κ)
e−j

π
4 +

eκcos(π2−µ)

2πI0(κ)
ej

π
4

)
. (12)

The exact solution can be found by integration, giving

E[e−jsφ̂ir ] =
I0

(√
κ2cos2(µ) + (κsin(µ)− j2πds)2

)
I0(κ)

.

(13)

Some further analysis, omitted here for reasons of space,
shows that (13) is asymptotically equal to (12). Hence, for
the VM case also, we have verified (9) and given an exact
solution for E[e−jsφ̂ir ].

V. NUMERICAL RESULTS

In Fig. 1 we demonstrate the channel hardening and FP
results discussed in Sec. III for K = 2 and an increasing
number of antennas. We adopt the non-line-of-sight (NLOS)
3GPP angular and cluster parameters in [15]. The number of
clusters is C = 20, and the number of subpaths per cluster is
L = 20. Referring to the channel model in (1), P = CL. Each
subpath angle of arrival (AoA) is modeled by a central cluster
angle with a Gaussian distribution (zero mean and a standard
deviation of 76.5◦) along with a subray offset angle which
is Laplacian with a standard deviation of 15◦. We assume
subrays with equal powers.4 From the upper plot of Fig. 1,
we can see that the normalized power in the desired channel,
S = |hH

i hi|/N ≈ 1 for large numbers of antennas. Similarly,
the lower plot shows the interference term, I = |hH

i hj |/N
decreasing to zero as N →∞. Note that Fig.1 plots E[I] for
both the ray-based model (via simulation) and i.i.d. Rayleigh
fading (via analysis) so that the variations don’t obscure the
trend. As expected, the convergence to FP is slower for the
ray-based model but the initial rate of convergence is similar
for both channels. Hence, both channel hardening and FP are
shown to occur for a typical parameter set as predicted by the
analysis. Fig. 1 shows channel hardening and FP occurring
for a clustered channel model with wrapped Gaussian central
cluster angles and Laplacian offsets. This numerical example
is useful as it verifies the analysis for a commonly used ray-
based model structure. The analysis goes much further and
proves the existence/non-existence of channel hardening and
the existence of FP for all ray-based of the form in (1) for a
comprehensive range of ray distributions.

In Fig. 2, we show that the power of the desired channel will
either converge to a constant or a random variable, verifying
the analysis in Sec. III. We assume the same model as in Fig. 1
but with two possibilities for the ray coefficients, γir. The
Akdeniz model [15] uses a complex Gaussian variable for γir,
while the 3GPP model [15] uses a random phase. As shown
in Fig. 2, as the number of antennas grows, the cumulative
distribution function (CDF) of the normalized desired channel
power, S = hH

i hi/N , with the Akdeniz model remains almost
the same, indicating convergence to a random variable. In
contrast, with the random phase model the CDF converges
to a step function indicating that S converges to a constant.

4Equal ray powers are adopted for simplicity in Fig. 1 and Fig. 2 for initial
verification of the FP and channel hardening results, βir = 1/CL, and phases
are uniformly distributed, φir ∼ U [0, 2π].
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Fig. 2. Channel hardening for two types of channel models.

Hence, as shown in Sec. III, channel hardening can occur for
ray-based models but this depends on the models employed
for the ray coefficients.

In Fig. 3, we show both the simulated and analytical results
for µ(N, d) with uniform and VM distributions using the
results in Secs. IV-B and IV-C. We also show simulated values
of µ(N, d) by adopting the angular parameters of the 3GPP
model in [15] as in Fig. 1. The number of antennas and
users are growing at the same ratio N/K = α = 2, while
φir ∼ U [0, 2π] for the uniform model and κ = 4.23 (for 30◦

angle spread) and µ = 0 for VM. From Fig. 3 we can see that
the analysis agrees well with simulation for both uniform and
VM models. We also notice that the growth rates of µ(N, d)
are different for all three models, due to the differences in
the AoA distributions. In the following figure, we give more
details of the growth rate with regard to angular distributions.

In Fig. 4, we demonstrate the logarithmic growth rate of
µ(N, d) against the number of antennas, N , for VM and
uniform models with different parameters. Note that although
the analysis in Theorem 1 predicted logarithmic growth, it
is hard to verify from Fig. 3. Hence, we substitute (9) into
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Fig. 3. µ(N, d) vs N for three different angular distributions.

1 2 3 4 5 6 7 8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Fig. 4. Logarithmic growth of µ(N, d).

(8) and identify the dominant component of µ(N, d) giving
µ(N, d) ∼ mslopelog(N) + C0, where C0 is a constant and

mslope =
2(f2φ(π2 ) + f2φ(−π2 ))

d
. (14)

Hence, mslope determines how quickly µ(N, d) will grow. The
uniform distribution has the highest interference growth rate,
which is muniform

slope = (π2d)
−1. For the VM model, the slope

depends on κ and µ. In Fig. 4 we observe that µ(N, d) is
clearly logarithmic in N as predicted and that the slope is
correctly identified by (9) as shown by the dotted lines which
have slope mslope. The analytical results in Secs. IV-B and
IV-C were used in generating the results.

As well as verifying the logarithmic growth, Fig. 4 demon-
strates some interesting angular properties. For both κ = 4.23
(angle spread = 30◦) and κ = 1.49 (angle spread = 60◦),
µ(N, d) decreases as µ is reduced from µ = 0.52 (30◦) to
µ = 0. This is because shifting the mean towards broadside
reduces the interference inflation that occurs near end-fire.
Secondly, for both µ = 0 and µ = 0.52 there is a cross-
over as N increases. For small N , increased angle spread is



beneficial as it spreads the rays and reduces the chance of high
interference caused by rays in close proximity. However, for
high N the higher angle spread puts more probability near end-
fire and this begins to dominate and causes higher interference.
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Fig. 5. E[η] vs N for three angular distributions.

Finally, in Fig. 5, we confirm via simulation for the 3GPP
parameters and via analysis for the uniform and VM models
that the mean global interference term, E[η], grows logarith-
mically as predicted by the analysis. For the uniform case,
φir ∼ U [0, 2π], for VM, κ = 4.23, µ = 0, and for 3GPP
we use the parameters considered in Fig. 1. For the uniform
and VM models all user link gains and ray powers are equal,
βir = (CL)−1. For the 3GPP parameters, we also consider
unequal ray powers and unequal user link gains. To avoid the
substantial extra variation caused by shadowing models with
large arrays we employ a simple deterministic model for these
powers. The link gains decay exponentially from user 1 to
user K such that βK = 1

10β1 and the cluster powers behave
similarly. The desired users is then randomly allocated one
of the K distinct link gains. The levels are then adjusted to
give the same total power as in the uniform and VM models
and subrays in a particular cluster all have the same power as
assumed in [24]. Fig. 5 shows the same logarithmic growth as
Fig. 3, confirming the analysis.

VI. CONCLUSION

The fundamental properties of massive MIMO have been
identified with great generality for a broad class of ray-
based models with a ULA at the BS. The generality and
insight possible is considerably more than can be achieved
with statistical channel models. In particular, we show that
channel hardening may or may not occur depending on the
model used and FP is guaranteed for all continuous angular
distributions. Although LSP will not normally hold, as the
interference grows logarithmically relative to the desired chan-
nel, the implications for massive MIMO are excellent. As the
number of users grows, the interference does grow relative to
the desired channel but extremely slowly and this is further
reduced by practical considerations, such as the attenuation of
end-fire radiation caused by typical array patterns.

APPENDIX A
PROOF OF THEOREM 1

We note that

E[e−jsφ̂ir ] =

∫ 2πd

−2πd
e−jsxfφ̂(x)dx, (15)

where fφ̂(·) is PDF of φ̂ir. Now, φ̂ir = 2πdsinφir is a non
one-to-one transformation of φir. Using standard transforma-
tion theory, we obtain

fφ̂(x) =
p(x)√
l2 − x2

, −l ≤ x ≤ l, (16)

where l = 2πd and

p(x) =

{
fφ
(
sin−1

(
x
l

))
+ fφ

(
π − sin−1

(
x
l

))
, x ≥ 0

fφ
(
sin−1

(
x
l

))
+ fφ

(
−π − sin−1

(
x
l

))
, x < 0.

(17)

Hence, (15) is rewritten as

E[e−jsφ̂ir ] =

∫ l

−l
e−jsx

p(x)√
l2 − x2

dx. (18)

Using the notation in [25, Eq.1, p. 15], the Fourier transform
(FT) of a function f(x) can be written as

g(y) =

∫ ∞
−∞

f(x)e−j2πxydx. (19)

If we set y =
s

2π
, then

g
( s

2π

)
=

∫ ∞
−∞

f(x)e−jsxdx. (20)

Using the Heaviside function, H(x), we can write (18) as a
FT in the same format as (20) as follows,

E[e−jsφ̂ir ] =

∫ ∞
−∞

e−jsx (H(x+ l)−H(x− l)) p(x)√
l2 − x2

dx.

(21)

Hence, defining f(x) = (H(x+ l)−H(x− l)) p(x)√
l2 − x2

,

allows E[e−jsφ̂ir ] to be computed as the FT of f(x).

This formulation is particularly useful as we can now
leverage known results on the asymptotics of FTs as s→∞
[25]. These results depend on the singularities of f(x) so we
first discuss the nature of these singularities. Clearly, f(x)
has singularities at x = ±l and at any singularities of p(x).
Note that the singularities at x = ±l are infinite discontinuities
(indicating that the value of f(x) will grow infinitely large as x
approaches ±l). In contrast, the singularities of p(x) are never
infinite discontinuities for any proposed, practical angular dis-
tribution models. Models such as the wrapped Gaussian have
no singularities inside (−l, l) while the Laplacian has only a
non-differentiable point at the peak. Hence, the singularities at
x = ±l are the worst. The general principle presented in [25,



p. 55] is that the ’worst’ singularity5 of a function contributes
the leading term to the asymptotic expression for its FT. Thus
in our case, we only need to consider the two singularities
at x = ±l. Near x1 = −l, f(x) behaves like F1(x) =
H(x+ l)p(−l)(2l(l + x))−1/2 and similarly near x2 = l,
f(x) behaves like F2(x) = (1−H(x− l))p(l)(2l(l−x))−1/2.
Rewriting, we obtain

F1(x) =
H(x+ l)p(−l)√

2l
|x+ l|− 1

2 , (22)

F2(x) =
p(l)√

2l
|x− l|− 1

2 − H(x− l)p(l)√
2l

|x− l|− 1
2 . (23)

From [25, Theorem 19, p. 52], we know that if a gener-
alised function, f(x), has a finite number of singularities at
{x = x1, x2, x3, ..., xm}, and for each of them f(x)−Fm(x)
has absolutely integrable N th order derivatives in an in-
terval including xm, where Fm(x) is a linear combination
of functions of type |x − xm|β , |x − xm|βsgn(x − xm),
|x−xm|β log|x−xm|, |x−xm|β log|x−xm|sgn(x−xm), and if
f (N)(x) is well behaved at infinity, then g(y), the FT of f(x),
satisfies g(y) =

∑M
m=1Gm(y) + o(|y|−N ), as |y| −→ ∞,

where Gm(y) is the FT of Fm(x). Using this, we have

g
( s

2π

)
∼ G1

( s

2π

)
+G2

( s

2π

)
, (24)

where G1 and G2 are the FTs of F1(x) and F2(x) in (22) and
(23) and ∼ denotes asymptotic equivalence defined in [22,
p. 15]. From [25, Table 1, p. 43], the FTs required are

F(|x− l|− 1
2 ) = e−2πjly|y|− 1

2 ,

F(H(x+ l)|x+ l|− 1
2 ) = e2πjly−

1
4 jπsgn(y)|2y|− 1

2 , (25)

F(H(x− l)|x− l|− 1
2 ) = e−2πjly−

1
4 jπsgn(y)|2y|− 1

2 .

Using (25), we obtain

g
( s

2π

)
∼ G1

( s

2π

)
+G2

( s

2π

)
,

=

√
π

ls

(
p(−l)√

2
ej(ls−

π
4 ) + p(l)e−jls − p(l)√

2

√
π

s
e−j(ls+

π
4 )

)
.

(26)

Substituting p(l) = 2fφ(π2 ), p(−l) = 2fφ(−π2 ) and l = 2πd
into (26), and after some simplification we obtain the result
in Theorem 1.
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