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Panel Cointegration Tests with Deterministic Trends
and Structural Breaks

Joakim Westerlund* and David Edgerton

October 11, 2005

Abstract

This paper proposes Lagrange multiplier (LM) based tests for the null
hypothesis of no cointegration in panel data. The tests are general enough
to allow for heteroskedastic and serially correlated errors, individual spe-
cific time trends, and a single structural break in both the intercept and
slope of each regression, which may be located different dates for different
individuals. The limiting distributions of the test statistics are derived,
and are found to be standard normal and free of nuisance parameters un-
der the null. In particular, the distributions are found to be invariant not
only with respect to trend and structural break, but also with respect to
the presence of stochastic regressors. A small Monte Carlo study is also
conducted to investigate the small-sample properties of the tests. The
results reveal that the tests have small size distortions and good power
even in very small samples.

JEL Classification: C12; C32; C33.
Keywords: Panel Cointegration; Residual-Based Cointegration Test; Struc-
tural Break; Deterministic Trend; LM Principle.

1 Introduction

Tests based on the residuals from a static regression are undoubtedly the most
popular class of cointegration tests, in which the null hypothesis of no coin-
tegration is tested against the alternative that the variables are cointegrated
in the sense of Engle and Granger (1987). Unlike system based tests for coin-
tegration rank, these residual-based tests rely on economic theory to provide
the set of cointegrated variables. However, while economic theory may well
imply cointegration as a long-run economic equilibrium relationship, they do
not take into account many of the important features that characterizes the
actual data generating process.

One such feature is the presence of deterministic time trends. Indeed,
many economic variables, such as GDP, consumption and price levels, which
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are commonly considered to be nonstationary, are actually best described as
nonstationary with drift. With such variables, unless the cointegration vector
annihilates both the stochastic and deterministic trends, the test regression
should be fitted with a linear time trend as an additional explanatory variable.
Yet, most cointegration testing has traditionally been, and continues to be,
preformed in regressions without such trends. In fact, most researchers prefer
to run their regressions with a constant term only, and use critical values
that are appropriate in the absence of deterministic trends. Unfortunately,
the presence of deterministic trends affects the asymptotic distribution of the
test statistic whether or not the trend has in fact been included in the test
regression. Thus, these critical values are not valid when at least one of the
nonstationary variables exhibits deterministic trending behavior.

Another feature not accounted for by economic theory is structural breaks,
such as the great depression, oil price shocks and policy regime shifts. Because
no linear combination of nonstationary variables can be stationary in the pres-
ence of structural change, the long-run economic equilibrium may no longer
imply cointegration in the sense of Engle and Granger (1987). In such cases,
the appropriate test of economic theory may not be a conventional cointegra-
tion test, but rather a test for cointegration with structural break. However,
it is well known that the presence of such breaks may induce serial correlation
properties in the residuals that are akin to those of a random walk. There-
fore, the conventional tests may incorrectly accept the null hypothesis of no
cointegration when there is a break under the alternative hypothesis.

In this paper, we propose two simple tests for the null hypothesis of no
cointegration that allow for deterministic trends and structural change in panel
data. The tests are derived from the very popular Lagrange multiplier (LM)
based unit root tests developed by Schmidt and Phillips (1992), Ahn (1993)
and Amsler and Lee (1996), and they are able to accommodate heteroskedas-
tic and serially correlated errors, individual specific time trends, and a single
break in both the intercept and slope of each regression, which may be located
different dates for different individuals.! Yet, both tests are very straightfor-
ward and easy to implement.

The new LM based test statistics are analyzed when there is no break,
when the locations of the breaks are known a priori and when they are es-
timated from the data. In all three cases, we allow of for the presence of
an individual specific time trend. The asymptotic analysis reveals that the
statistics have limiting normal distributions that are free of nuisance parame-
ters under the null hypothesis. In particular, it is shown that the asymptotic
null distributions are independent of the nuisance parameters associated with
both trend and structural break. Thus, with there tests, there is no need
to compute different critical values for different deterministic specifications or
break point patterns as in e.g. Perron (1989). Moreover, in contrast to existing
cointegration tests, we find that the asymptotic null distributions of the LM
based test statistics are independent of the presence of stochastic regressors.
Another surprising property of the new statistics is that their asymptotic null

"Westerlund (2005a) also adopted an LM approach but with cointegration as the null
hypothesis.



distributions are unaffected by erroneous omission of the structural breaks in
the intercept but not in the slope.

We also evaluate the small-sample performance of the tests via Monte
Carlo simulations. The results, which generally coincide with what might be
expected from the asymptotic theory, can be summarized as follows. First,
although the size of the tests is not affected, we find that erroneous omission
of existing breaks can lead to a substantial loss of power. Second, treating the
breaks as unknown rather than known has very little effect on the performance
of the tests, which is a great operational advantage. Third, the tests generally
perform well even in very small samples.

The paper proceeds as follows. Section 2 derives the LM based test statis-
tics and their asymptotic distributions under the assumption of no breaks.
Section 3 then allows for the presence of known breaks, while Section 4 ex-
tends the results to the case with unknown breaks. Section 5 is devoted to the
Monte Carlo study. Section 6 concludes.

2 The LM based tests with no breaks

In this section, we derive the panel LM based test statistics for the simple case
when there is no structural breaks. For this purpose, we make the assumption
that the data generating process (DGP) can be described by the following
unobserved components representation

vit = o+t + 20 + zi, (1)
Zit = PiZit—1 + €it, (2)
Tyt = Tj—1 T Wi, (3)

where ¢ = 1,...,7 and ¢ = 1,..., N indexes the time series and cross-sectional
units, respectively. The vector x;; has dimension K and contains the regres-
sors. For convenience in deriving the new tests and their asymptotic distribu-
tions, the initial conditions z;p and x;y are treated as fixed, and we make the
following assumption regarding the error processes e;; and w;.

Assumption 1. (Error process.) The processes e;; and wj; satisfy the following
set of conditions:

(1) E(eier;) =0 and E(wiywy,;) = 0 for all i # k, t and j.
(i) E(ejwyj) =0 for all i, k, t and j.
(ili) The process e; is normal, independent and identically distributed (i.i.d.)
with E(e;r) = 0 and E(e?) = 2 > 0 for all 4.

(iv) E(wpwl,) = Q; is positive definite for all ¢ and ¢.

Assumption 1 establishes the basic conditions needed for developing the
new cointegration tests. Many of these are quite restrictive but are made here
to simplify the derivation of the tests and their limiting distributions, and will
be relaxed later on. Consider first Assumption 1 (i). This type of independence
assumption is typical for our panel data approach and we will use it in the



derivation of the asymptotic distribution of our test statistics. In applied
work, however, it may be useful to be able to allow for at least some kind
of dependence among the cross-sectional units. A very straightforward and
common way to do this is to assume that the dependence can be approximated
by means of common time effects, which will be discussed later on.

Assumption 1 (ii) and (iv) relate to the covariance matrix of the regressors.
Assumption 1 (ii) states that e;; and w;; are uncorrelated, which is equivalent
to imposing weak exogeneity on the regressors. Although quite restrictive, as
we shall see, our tests can be easily modified to accommodate for endogenous
regressors. Assumption 1 (iv) states that the K x K covariance matrix ); is
positive definite, which is tantamount to requiring that x;; is not cointegrated
in case we have multiple regressors. This assumption is very standard in the
related literature and will therefore be maintained throughout this study.

Assumption 1 (iii) requires that the innovations e;; are i.i.d. and normal,
which is very standard for the likelihood based framework that we consider
in this paper. It is also very convenient because it means that standard func-
tional central limit arguments can be applied to each cross-sectional unit,
which makes the asymptotic analysis relatively uncomplicated. A few differ-
ent possibilities concerning how to modify the tests to allow for more general
error dynamics will be discussed later.

Having laid out the key assumptions that characterize the DGP considered
in this paper, we now proceed by deriving the test statistics. To this end,
consider testing the null of no cointegration using equations (1) to (3). The
error z; is stationary when x; and y;; are cointegrated and it has a unit root
if they are not. Thus, the null hypothesis that all the cross-sectional units are
not cointegrated can be stated equivalently as

Hy:p;=1foralli=1,...,N,
versus
Hy:l|pil<1lfori=1,..,Nyand p;=1fori=N;+1,..,N.

This formulation of the alternative hypothesis allows p; to differ across the
cross-sectional units, and is more general than the common homogenous al-
ternative hypothesis that p; = p and |p| < 1 for all i. For consistency of
the tests, it is necessary to assume that the fraction of cointegrated units is
nonvanishing. Thus, we require that N;/N — § € (0,1] as N — oo.

The restriction that p; = 1 for all ¢ can be tested using the LM, or score,
principle that the score vector, conditional on past information, has zero mean
when evaluated at the vector of true parameters under the null hypothesis.
Consider therefore the following pooled log-likelihood function

N
NT , 1
log L = —710g27m - M;S‘S’Eﬁ (4)

where the functional expression for SSE;, the sum of squared errors, can be
found in the appendix. The LM based tests for the null hypothesis of p; = 1
can be derived by first concentrating the log-likelihood function with respect to



o2 and then evaluating the resultiong score vector at the restricted maximum
likelihood estimates. As shown in Proposition A.1 of the appendix, this score
vector is given by

Olog L
pi

T
=52 Z(ASit — AS; ) (Sit—1 — Si—1), 5)

t=2

where 52 = (TN)~ ZZ | SSE; is the maximum likelihood estimate of o?
The variables AS and S _1 are the sample means of ASzt and Szt 1, Te-
spectively, where Szt can be written as Szt = yy — Q; — Tt — tﬂz with
Q; = Yyl — 5 — ilﬁl being the restricted maximum likelihood estimate of
a; = a; + 2. The corresponding estimates 7; and Bz of 7; and (3;, respectively,
are obtained by running the following least squares regression

Ay = 7 + Azl Bi + €.

Equation (5) shows that the score vector is proportional to the numerator of
the least squares estimate of the autoregressive parameter ¢; = p; — 1 in the
following auxiliary regression

ASi = pi + ¢iSit1 + wir, (6)

where p; is an individual specific constant and u; is a stationary error term. It
follows that a test of the hypothesis of p; = 1 versus |p;| < 1 for cross-section
unit ¢ can be formulated equivalently as a test of the hypothesis of ¢; = 0
against ¢; < 0, which can be tested using either the least squares estimate of
¢; or its t-ratio. Thus, by looking at (4), it is not difficult to see that a panel
test of Hp versus Hi can be constructed by using the cross-sectional sum of
these statistics for each 7. The precise form of the panel statistics considered
in this paper is given as follows.

Deﬁmtwn 1. (The LM based statistics with no breaks.) Let Sy = (§n 1 —
S, 1, AS; —AS; )/ and S; = Zt 9 ZtSt, then the panel LM based test statis-
tics are defined in the following fashion

N

Zgﬁigm and Z, = —IZS 125
i=1

Remark 1. In this paper, we are not concerned with the LM test itself, but
rather with LM based tests. The LM test statistic of Hy versus H; under
Assumption 1 is derived in Proposition A.1 of the appendix. It is shown that
it takes the form of a sum of N terms corresponding to the square of a t-ratio
of the hypothesis of a zero slope in a regression of A:S’\it on §it,1 for each i.
The proposed statistics are computationally more convenient and, as pointed
out by Ahn (1993), asymptotically as efficient as this statistic.

Remark 2. Analogous to the unit root case studied by Schmidt and Phillips
(1992), we see that the parameters used to compute Sy are estimated from the
first differentiated data. By contrast, the Dickey and Fuller (1979) versions of
Z4 and Z; studied by e.g. Banerjee and Carrion-i-Silvestre (2005), Gutierrez



(2004) and Westerlund (2005¢) are based on estimating the parameters using
the data in levels. Thus, since the variables are nonstationary, a regression
of y;t on x4, intercept and trend in levels is spurious, so that the estimated
regression parameters do not converge to constants, but remain random even
asymptotically. As we shall see, this lower degree of randomness makes the
asymptotic properties of Z, and Z; relatively simple.

Remark 3. Since Ay; is a stationary process with intercept 7; and slope
B; under the null hypothesis, the restricted maximum likelihood estimators
of these parameters can easily be obtained using least squares as explained
earlier, and are in fact consistent at rate T%/2. However, while identifiable
under the alternative, the parameters «; and z;y cannot be identified separately
under the null. Therefore, we estimate ¢; rather than «;, which entails no loss
of generality in large samples. Moreover, as shown in the appendix, since
the population intercept is zero, equation (6) could be specified without the
constant term. However, as pointed out by Ahn (1993), because «; and z;y are
not separately identifiable, &; may be biased in small samples, which implies
that S may be biased too. To ease this problem, we fit (6) with a constant.
This specification also performed best in the simulations, which corroborates
the finding of Schmidt and Lee (1991) that the exclusion of the constant term
makes the tests dependent on z;g.

Remark 4. Relaxing Assumption 1 (iii) mean that e; could be both het-
eroskedastic and serially correlated as well as nonnormal. This implies the
LM based statistics are no longer asymptotically similar and that they need
to be modified to account for the temporal dependence in the DGP. To facil-
itate this, we must replace Assumption 1 (iii) with something else. Towards
this end, we make the assumption that the linear process conditions of Phillips
and Solo (1992) are satisfied, which allows for a very general class of errors
including all stationary autoregressive moving average processes. Under these
conditions, similar statistics may be obtained using either the semiparametric
correction of Schmidt and Phillips (1992) or the parametric correction of Ahn
(1993) and Amsler and Lee (1996). The former involves multiplying Z, by
6%, % and Z; by 5,0; ', where 67 and O are consistent estimates of the con-
temporaneous and long-run variances of u;, respectively. The latter involves
augmenting the right-hand side of (6) with, say p, lagged values of Agit, where
p should be sufficiently large to whiten the remaining error. Our Monte Carlo
results suggest that the parametric correction method works best and it will
therefore be applied in this paper.

Remark 5. Relaxing Assumption 1 (ii) is equivalent to allowing for endogenous
regressors. As with the relaxation of Assumption 1 (iii), this implies that the
LM based statistics are no longer similar with respect to the DGP unless they
can be appropriately modified to account for the endogeneity of the regressors.
One simple way to accomplish this is by estimating (3; using instrumental
variables rather than least squares. In this case, the instruments should be
uncorrelated with e;; but highly correlated with Az;;. Obvious candidates are
lagged values of Ax;;.

Remark 6. Assumption 1 (i) requires that the cross-sectional units are in-



dependent of each other. Although the potential effects of the breakdown of
this assumption have been stressed by e.g. Banerjee et al. (2004), the ac-
commodation of such dependence has yet to become standard in the panel
cointegration literature. One simple solution is to use data that has been
demeaned with respect to common time effects, in which case the statistics
are calculated as before but with Z;; = z;; — N1 Zfi 1 Ti¢ in place of x;; and
Uit = yir — N1 Zl]\; 1 Yit in place of y;;. This approach not only preserves
the simple structure of our test statistics but also leaves their asymptotic
distributions unaltered, which is very convenient. Another advantage of this
approach is that subtracting the cross-sectional average may be quite effective
even against very general forms of cross-sectional correlation structures (see,
e.g. Westerlund, 2005b).

The asymptotic distributions of the test statistics are derived next. For
this purpose, sequential limit theory is employed, which is a very convenient
method for obtaining the limiting distribution of a double indexed sequence.
In particular, the following theorem shows that both Z; and Z; have limit-
ing normal distributions when standardized by the first two moments of the
following Brownian motion functionals

1 —1/2 1 ~1
Ui=— (4/ Vi(r)zdr> and K; = — (2/ Vi(r)er> ,
0 0

where W;(r) is a standard Brownian motion defined on the unit interval r €
[0,1], Vi(r) = W;(r) — rW;(1) is a standard Brownian bridge and V;(r) =
Vi(r)— fol Vi(s)ds is a demeaned standard Brownian bridge. Let = signify weak
convergence, and let ©® and ¥ denote the expected value and the covariance
of the vector (U;, K;)', respectively. The following result now holds.

Theorem 1. (Asymptotic distribution with no breaks.) Under Hy and Assump-
tion 1, as T' — oo prior to N — o0

N~YV2z, - NY29, = N(0,%1),
TNY2Z5 - NY20y = N(0,%9).

Remark 7. The proof of Theorem 1 is given in the appendix but it is con-
structive to consider briefly why it holds. For this purpose, let ¢; denote the
time seties average of e;;. The proof begins by showing that 7Y 2§it is equal
to T—1/2 22:2 (fz’k —¢;.) plus a term that is asymptotically negligible suggest-
ing that T~1/2S;, converges in distribution to o times a standard Brownian
bridge as T — oo for a fixed N. This implies that 72 Zf:Q(gz't—l — §2-._1)2
converges to o2 times the square of an integral demeaned Brownian bridge.
Also, because T} 23:2(@-15,1 — S’\i,,l)(Aé\it — Agl) converges to —a?/2, we
obtain the required intermediate limit distributions described by K; and U;.
Therefore, since these functionals are i.i.d. across i, the asymptotic results
follow directly by standard Lindberg-Lévy central limit arguments as 7" and
N grow large in sequence.

Remark 8. Since the limit of 77 2§¢t does not depend on x;;, this means that
the panel LM based statistics have the surprizing property that their limiting



distributions are unaffected by the presence of stochastic regressors. Hence,
the same set of moments can be applied regardless of the number of regressors,
which make the statistics computationally very convenient. On the other hand,
the limit of 7-/ 2§it does depend on the estimation of the trend parameter 7;,
which is seen by the fact that the distributions of the tests involve the Brownian
bridge V;(r) instead of the Brownian motion W;(r). Therefore, if it is known
that 7; = 0 for all ¢, then the moments of the LM based test statistics should
be based on the demeaned Brownian motion W;(r) — fol W;(s)ds rather than
the demeaned Brownian bridge V;(r). However, if it is not known whether
7; = 0 for all ¢ or not, the model with a trend is recommended. In addition,
preliminary simulation results indicate that the tests with the trend included
performs best in small samples.

The moments of the test are obtained by simulation methods. That is, the
elements of the Brownian motion functionals K; and U; are approximated by
functions of sums of partial sums of T independent draws from the standard
normal distribution. Specifically, we generate 100,000 samples of length T' =
1,000, which are then used to obtain numerical values of the moments in
Theorem 1. The simulated values of ©1 and 11 using this method are —1.9675
and 0.3301, respectively. The corresponding values of ©2 and X9 are —8.4376
and 25.8964, respectively. Because the normalized statistics diverge towards
negative infinity under the alternative hypothesis, the computed value of the
test statistic should be compared with the left tail of the normal distribution.
If the computed value is greater than the appropriate left tail critical value,
we reject the null hypothesis.

Moreover, although this paper is concerned with panel data, it is obvious
that our approach also applies to the pure time series case, in which Z4 and
Z; reduce to their corresponding time series quantities for each individual.
The asymptotic distributions for these statistics are easily deducible from the
appendix, where it is shown that Z; = U; and Zy = K; as T' — oo. The
appropriate critical values for these distributions are tabulated by Schmidt
and Phillips (1992).

3 The LM based tests with known breaks

We now extend the tests derived in the previous section to the more general
case when there is a structural break in both the intercept and slope of each
individual regression. Many of the results given here follow directly from the
same kind of arguments used in Section 2 and hence only essential details will
be given.

We begin with the level shift case, in which the slope parameter (3; is not
subject to structural change. The DGP can be characterized by equations (2)
and (3) but with equation (1) replaced with the following expression

Vit = o + Tt + 8; Dyt + Ty Bi + 2t (7)

In this parametrization of the DGP, «a; represents the intercept before the
break and §; represent the change in the intercept at the time of the shift. If



we let T; denote the location of this shift for cross-section unit ¢, then D;; = 1
if t > T; and zero otherwise. The location of the break is assumed to be a
fixed fraction A\; € (0,1) of T such that T; = N\;T for all i, where the limit is
taken as T'— oo in a sequence that ensures an integer value of T;. For now,
it is assumed that the location of each break is known, which simplifies the
presentation. The case with unknown breaks will be dealt with in Section 4.

As in the case when there is no break, the LM based statistics can be
obtained on the basis of the following auxiliary regression

AS = g + ¢85 + ua. (8)

In this case, however, in order to account for the level break, the variable Sft
is constructed as Slt Yit — Qj — Tit ' iDit — ltﬁl, where the new restrlcted
maximum likelihood estimate of &; is given by a; = y;1 — 73 — 52D11 xhy 51.
Analogous to the no break case, the restricted maximum likelihood estimates
i SZ and BZ of 7;, §; and 3;, respectively, can be obtained by using the following
least squares regression

Ayis = 7; + 0;ADjy + A}, B + €.

As before, a test of Hy versus Hi can be based on the least squares estimate
of ¢; in (8) or its t-ratio. The test statistics in the level break case can
thus be constructed exactly as in Definition 1 with Se . in place of Slt The
resulting modified versions of Zy and Z; will henceforth be denoted Z; and
Zg, respectively. If follows that the LM based statistics in the case with level
breaks are computationally as convenient as in the case with no breaks. In
fact, the only novelty here is the break dummy D;;, which is needed in order to
obtain tests that are unaffected by the break under the alternative hypothesis
of cointegration. The asymptotic results for the level break model is given
next.

Theorem 2. (Asymptotic distribution with level shifts.) Under Hy and As-
sumption 1, as T' — oo prior to N — o0, then the following results hold:

() The modified statistics Z§ and Zf are distributed as Z; and Z; in The-
orem 1, respectively.

(ii) The asymptotic distributions of the unmodified statistics Z4 and Z; are
unaltered by the presence of a level break.

Remark 9. Theorem 2 (i) states that allowing for a single known structural
break in the intercept of each individual does not affect the asymptotic dis-
tributions of the modified LM based statistics under the null hypothesis of
no cointegration. This is true whether there are breaks or not. Hence, the
asymptotic distributions of the statistics are unaffected by allowing for breaks
even when there are no breaks. This is, of cause, very convenient as it means
that we can use the same moments as derived in Section 2, and proceed with
the modified statistics as if there were no breaks at all. Thus, there is no
need to tabulate different critical values for different break structures as in
e.g. Perron (1989).



Remark 10. Analogous with the unit root case studied by Amsler and Lee
(1995), Theorem 2 (ii) shows that the asymptotic null distributions of the LM
based statistics computed under the assumption of no break are unaffected
by the presence of structural breaks. Hence, the null distributions of these
statistics do not depend on breaks that are misplaced or even excluded in the
estimation. The intuition behind this result follows from the fact that the LM
based statistics are obtained using a regression in first differences, and AD;;
equals one only at one point, so its inclusion has no effect asymptotically. The
problem is that incorrect placement, or exclusion, of the breaks make the tests
biased towards accepting the null hypothesis. Thus, although the presence of
breaks does not affect the null distribution, it does affect the tests by reducing
their power, which is why accounting for breaks is important.

Remark 11. Since the breaks are allowed under both the null and alternative
hypotheses, there is no confusion about the interpretation of the test outcome.
As an example, consider the univariate unit root test of Zivot and Andrews
(1992), which allows for a single unknown break to affect the level and trend of
the series. The problem with this test is that the break is only permitted under
the alternative hypothesis of stationarity. Thus, a rejection of the null does
not necessarily imply a rejection of a unit root per se but rather a rejection
of a unit root without breaks. This outcome calls for a careful interpretation
of the test result in applied work. Particularly, in the presence of breaks
under the null, researchers might incorrectly conclude that a rejection of the
null indicates evidence of stationarity with a break, when in fact the series
nonstationary with breaks.

Next, we extend the results of the level break model to the case when
there is a structural break in both the intercept and slope of each individual
regression. As before, we assume that (2) and (3) holds but that y;; evolves
according to the following equation

Vit = a; + Tit + 6; Dy + Diyxlyyi + x5 8i + 2t 9)

In this case, the parameters «;, 7; and J; are as in the level shift model, G;
is the slope parameter before the shift and ~; represents the change in the
slope. Thus, the relation in (9) is permitted to rotate as well as shift parallel.
Following the terminology introduced by Gregory and Hansen (1996), we shall
refer to this DGP as the regime shift model. As before, the LM based statistics
can be derived from the of the following auxiliary regression

ASG = i + ¢iSii_1 + uit. (10)
Analogous to the level shift case, the variable §7Q may be written as §Z"t =
Yit — Qi — Tit — 0;Diy — Dya}y; — 2}, B;, where we use &; = yi1 — 7 — 6;Din —
Dj125,7; — x}, i to denote the new restricted maximum likelihood estimate of

;. As in the previous section, the restricted maximum likelihood estimates
of 7, d;, 7v; and [3; can be obtained from the following least squares regression

Ayie = 75 + 8;ADj; + A(Djzit)'7i + Axét@- + €it.

10



As expected, the LM based statistics in the regime shift case can be con-
structed as in Definition 1 with §£‘, in place of S’\it. The modified versions
of Zy and Z; will henceforth be written in an obvious notation as Z; and
Zy, respectively. Their asymptotic distributions are given in the following
theorem.

Theorem 3. (Asymptotic distribution with regime shifts.) Under Hy and As-
sumption 1, as T' — oo prior to N — 00, the modified statistics Z;; and Z7
are distributed as Z, and Z; in Theorem 1, respectively.

Remark 12. Analogous with the level break case, Theorem 3 shows that the
asymptotic distributions of the modified statistics Zg and Z] are unaffected
by the presence of regime shifts. Thus, in this sense, the modified LM based
statistics derived from the level and regime shift models are very similar. One
important difference is that the unmodified statistics in the regime shift model
are not asymptotically invariant with respect to the breaks as in the level shift
model. Thus, it is no longer possible to disregard or misspecify the structural
breaks without affecting the asymptotic null distributions of the test statistics.
The intuition behind this result is that, although A D;; vanishes asymptotically
when normalized by -1 2 the first difference of z; D;; does not. Thus, unless
the breaks have been correctly accounted for, the distributions of the statistics
will depend on both the regressors and the locations of the structural breaks.

4 The LM based tests with unknown breaks

In the previous section, we assumed that the locations of the structural breaks
are known. This is not necessary. In fact, if there is no a priori knowledge
about the breakpoints, one can treat them as endogenous variables that can
be estimated from the data.

Towards this end, note that, because the LM based test statistics are
asymptotically similar with respect to the breaks, their null distributions will
be unaffected by dispensing with the assumption of known breaks, which is
likely to be unduely restrictive for most empirical purposes. In fact, the breaks
could be misplaced or even ignored without affecting the distributions of the
test statistics. Hence, the properties of the tests under the null remain un-
altered even if we employ an inconsistent estimator of the breakpoints. The
problem here is that incorrect placement of the breaks makes the tests biased
towards accepting the null hypothesis. Thus, employing a poor estimator is
expected to result in a loss of power.

Arguably, the single most popular cointegration testing procedure with
unknown breaks is that employed by e.g. Gregory and Hansen (1996) and
Westerlund (2005¢), in which the location of a single break can be estimated
via grid search at the minimum of the individual test statistics. However, our
simulation results suggest that the size of our tests based on this procedure can
be highly unreliable with serious distortions in many cases. Another drawback
of this procedure is that it cannot be easily extended to allow for more than
one break. Indeed, extending this grid search beyond the single break case
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would be computationally extremely demanding and practically infeasible for
more than three breaks, say.

An alternative approach, that is computationally very convenient and read-
ily extendable to the case with multiple breaks, is that developed by Bai (1994,
1997) and Bai and Perron (1998), in which the break locations are estimated
by minimizing the sum of squared residuals among all possible sample splits.
Let u;; denote the least squares residual from (8) or (10), then the break point
estimator is defined as follows

where n is a trimming parameter that imposes a minimum length for each
subsample. Consider the level break model, in which §; denotes the magnitude
of the break for each i. Bai (1994) shows that T, — Ty is Op(6; %), which implies
that A; — A; must be Op,(T _15; 2). Thus, even though )\; is consistent for A;
as T grows, the break date estimator is by itself not consistent for the break
date. Fortunately, consistent estimation of the model under both the null
and alternative hypotheses requires only that the break fraction A; can be
estimated consistently. Thus, this procedure is expected to generate tests
with good power. Note also that the accuracy of the estimated breakpoints
depend on the parameter §;, which governs the size of the break. This is to be
expected since a smaller break is more difficult to discern. The same argument
applies to the regime shift model.

5 Monte Carlo simulations

In this section, we investigate the small-sample properties of the LM based
tests through Monte Carlo simulations. The DGP used for this purpose is
given by the following system of equations

Vit = 0Dy + Dyxyy + il + 2it,
Zig = PRit-1+ e,

Tig = Tjp—1 T Wit

For the error process, we have two scenarios. In the first, e;; = u; + Oujr_1
so e;; follows a first order moving average process. In the second, we have
et = Yejr—1 + U, in which case e;; follows a first order autoregressive process.
In both cases, we have u; ~ N(0,1) and w; ~ N(0,1), and we use the value
zero to initiate x;¢, 2, e;; and w;;.

The DGP is parameterized as follows. For the structural breaks, we have
two different configurations, each of which correspond to one of our two model
specifications. For the level break model, we have v = 0 and § = 5, whereas,
for the regime shift model, v = § = 5. For convenience, we assume a common
break fraction A for all ;. The parameter p determines whether the null hy-
pothesis it true or not. As with the other parameters, we make the simplifying
assumption that p takes on a common value for all ¢. Under the null hypoth-
esis, we have p = 1, while, under the alternative hypothesis, we have p < 1.
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The data is generated for 1,000 panels with IV cross-sectional and T+ 50 time
series observations. The first 50 observations for each cross-section is then
disregarded in order to avoid possible initial value effect.

In constructing the LM based test statistics, we need to decide on how
to remove the serial correlation in the regression errors. Towards this end,
consistent with the results of e.g. Schwert (1989) and DeJong et al. (1992),
we find that the semiparametric adjustment method proposed by Schmidt and
Phillips (1992) does not work very well for typical sample sizes. Therefore,
in this section we report only the results based on the parametric long au-
toregression method of Ahn (1993) and Amsler and Lee (1995). In so doing,
we follow the recommendation of Zivot and Andrews (1992) and let the order
of the lag augmentation to increase with 7. In particular, since there is no
obvious choice, we follow Newey and West (1994) and set the lag order to the
largest integer less than 4(7/100)%/9.

For brevity, we only report the size and size-adjusted power of a nominal
5% level test. The results on the accuracy of the estimated breakpoints are not
presented but will be discussed when appropriate. These results are available
from the corresponding author upon request. All computational work was
performed in GAUSS.

Consider first the results of the size presented in Table 1 for the level shift
model and Table 2 for the regime shift model. There are several things that
are noteworthy. First, it has been well documented in the earlier literature
that negative moving average errors may cause substantial size distortions
when testing the null hypothesis of no cointegration (see, e.g. Haug, 1996).
In agreement with these results, Tables 1 and 2 suggest that the Z; type
tests tend to reject the null hypothesis too frequently when v < 0 or 6 < 0.
In most cases, there is even a compounding effect as the distortions tend to
accumulate and to become very serious as N grows. By contrast, the Z,
type tests generally maintains the nominal level well and do not suffer from
this kind of distortions in the presence of negative autoregressive or negative
moving average errors. Thus, the parametric correction method seem to work
very well for this test.

Second, the best size accuracy in the level break model is obtained by
using the test based on no breaks. The tests based on estimated and known
breakpoints are about equally accurate, and perform only slightly worse. This
is not unexpected given that the tests based on the assumption of no breaks
are asymptotically independent of the breaks under the null in the level shift
case. Hence, even the tests based on no breaks are expected to perform well
here. The ranking of the tests is reversed in the regime shift model, in which
case the tests based on estimated and known breakpoints perform best.

Third, the results for the level break model reveal that the performance
of the LM based tests under the null hypothesis is not affected much by the
location of the structural break, which corroborates the results given in The-
orem 2. By contrast, the size of the unmodified LM based tests in the regime
shift model is seen to be highly dependent on the location of the break. This
accords well with the asymptotic theory suggesting that these tests should
depend on both the regressors and the location of the breaks.
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The results of the power of the tests, which are presented in Tables 3 to 6,
generally coincides with what might be expected from the asymptotic theory.
First, the power increases faster when increasing 7' rather than N, which is
presumably a reflection of the sequential limit method used in the derivation of
the test. Second, the power increases as p departs form its hypothesized value
of one. Third, the tests based on the assumption of no break are generally
the least powerful, thus corroborating the result that erroneous omission of
structural breaks should affect the tests by lowering their power. This effect
is particularly prominent in the regime shift model, in which case the results
suggest the power of the no break tests need not be much larger than their
size.

Fourth, the tests based on estimated breakpoints together with those based
on known breakpoints produce the best power. In particular, it is seen that
there is generally no loss of power involved in estimating the breaks rather than
treating them as known. This is due to the accuracy of the estimated break-
points, which is almost perfect in all cases considered. In fact, the results on
the estimated breakpoints suggest that the correct selection frequency rarely
falls below 95%. Of course, as indicated in Section 4, the accuracy of these
estimates will in general depend on the magnitude of the structural breaks.
Thus, smaller values of the break parameters § and ~ are expected to lead to
lower accuracy and vice versa.

Overall, the simulations lead us to the conclusion that the LM based tests
perform well in general with good power and small size distortions in most
experiments. However, in the presence of negative autoregressive or moving
average errors, we find that the Zy statistic can perform quite poorly. As a
practical matter, we therefore recommend using the Z; statistic.

6 Conclusions

This paper proposes two new panel cointegration tests that are appropriate
when the cross-sectional units are independent of each other. The tests are
based on the univariate unit root tests developed by Schmidt and Phillips
(1992), Ahn (1993) and Amsler and Lee (1996), and they are derived by ap-
plying the LM, or score, principle to an unobserved components representation
of the data. Allowable features include heteroskedastic and serially correlated
errors, individual specific time trends, and a single break in both the intercept
and slope of each regression, which may be located different dates for different
individuals. Yet, both tests are shown to be surprisingly straightforward and
very easy to implement.

The new statistics are analyzed when there is no break, when the locations
of the breaks are assumed to be known and when they are unknown. By using
sequential limit arguments, we show that the statistics have limiting normal
distributions, which are free of nuisance parameters under the null hypothesis.
In particular, we show that the asymptotic null distributions are independent
of the both the trend and structural break. This makes the tests very simple
to implement since there is no need to consult a table for the critical values
for every possible combination of breakpoint and deterministic specification,
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which may be a very tedious undertaking.

Secondly, we show that the asymptotic distributions of the test statistics
are independent of the presence of stochastic regressors, which make them even
simpler to implement. Finally, we show that erroneous omission of structural
breaks does not affect the asymptotic null distribution of the statistics in the
intercept break case.

The small-sample performance of the tests is evaluated via Monte Carlo
simulations. The results, which generally accords well with the asymptotic
theory, suggest that the tests generally perform well with small size distortions
and good power even in very small samples.
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Appendix: Mathematical proofs

In this appendix, we derive the LM statistic and the limiting distributions of
the LM based statistics under the null hypothesis. For brevity, the notations
introduced in the main text are taken as given and are thus not repeated.

Proposition A.1. (The panel LM test statistic.) Under Assumption 1, the
panel LM test statistic of Hy versus Hj is given by

N /T 2 T -1
Nt = Z(ZAS#S#,l) <5225i2t—1> :
=2

=1 \t=2

Proof of Proposition A.1
We begin by rewriting equations (1) and (2) in the text as follows

yir = a;+ 7+ 20 + pizio + €, (A1)
vit = piYi—1 +ai(1—p;) +7(t + pi(1 - 1))
+  (wit — pizie—1)'Bi + e, (A2)

where the last equality holds for ¢t = 2,...,T. Assume that z; is fixed and that
Assumption 1 holds, then (A1) and (A2) imply the following log-likelihood
function

NT , 1

where SSE; = Y.L €2 and e; is defined by (A1) and (A2). Tt easy to
verify that this log-likelihood is maximized for 5% = ﬁ Zf\; 1 SSE; and so
the concentrated log-likelihood function becomes
NT NT NT
logL = ——1log2mr — — — ——logd>. (A4)
2 2 2
Let ~; denote the vector containing the true parameters a;, 7; and G;, then
the score of the concentrated log-likelihood is given by

dlogL LE)SSEZ-

8’}/2' N 26'\2 8%

(A3)

We begin by deriving the maximum likelihood estimators of &;, 7; and 3; under
the null hypothesis. These can be obtained by minimizing SSE; under the
null. Towards this end, let Si; = y;ix — &@; — 73t — «},0; and assume that p; = 1,
in which case SSFE; reduces to

T
SSE; = Si+> ASh
t=2
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Direct calculation reveal that the elements of the score of SSFE; with respect
to ; are given by

O0SSE;
a&z — _2S7,17 (AG)
9SSE; T
L= =2571-2) AS;
3r Si ; Sit
= =251 —2(Sir — Sin)
= =257, (A7)
T
0SSE;
3,32 = —2.%1'152'1 -2 ; A.%’ztASn (AS)

By the first order condition, and some algebra, we obtain the restricted max-
imum likelihood estimators as explained in the text.

Now, to derive the LM test statistic, we need to obtain the score of SSFE;
with respect to p;. This is given by

T

= —2zjpej — 2 Z eit(Sit—1 + zio)- (A9)
=2

0SSE;
pi

If we let p; = 1, then (A9) reduces to the following expression when evaluated
at the restricted maximum likelihood estimators

T T
agSEZ = 22051 — 2210 ) ASiy — 2 A58
pi =2 =2
~ ~ A~ T o~ ~
= —22081 — 2zi0(Sir — Sin) =2 AS;iSiss
=2

T
= 22057 —2) A8 Sy

t=2

= —2) A8y 1. (A10)

The last equality follows from the fact that §iT is equal to zero, which can be
seen by writing

Sir = yir — 0 — ?z‘T — zipfi
= yir — (yn — Zlﬂz) 7T — zip i
= YT — Yil — ?i(T —1) — (zir — za1)'Bi-

If we let Ay; and Ax; denote the sample averages of Ay;; and Ax;, respec-
tively, then this expression becomes

§7jT = Z Ayzt - Tz Z sztﬁz

= Z Ay — (Ay;. — Al’ ﬂ, Z Az tﬂzv

t=2

17



which is zero.

Next, we show that the Hessian of the restricted log-likelihood is asymp-
totically block-diagonal between p; and +;, in which case the LM statistic of
Hj versus Hi has the simple form

N 2 o -1
Olog L 0°log L
= . All
v ;(api><ap?> (A1)
From (A5), we can see that
2 2 .
0 log{J _ _éa SS’E/‘l' (A12)
0707, 202 07;07]

Straightforward calculations yield the following second order partial deriva-
tives when evaluated at the restricted maximum likelihood estimators

9?SSE;

= 2z Al
Dpida; w0 (A13)
9*SSE; oo R
opiom 2T z0 + 2;(A5it(t — 1)+ Si1)
PO T
= 2Tz + Q(SiT — Sil)(t — 1) +92 Z S 1
t=2
T ~
= 2Tz +2)  Su-1, (A14)
t=2

where the last equality holds because Si is zero, which follows by writing
Si = ya— & — 7 —ThB;
= yn — (v — T — 23 Bi) — T — w1 B
For 0SS E;/0p;03;, we have

2SS E; £l

B0 = 2wjzi0+2 ;(A$it(§itl + zjo) + SEitAAgit)
T
= 2x512i0 + 2(xir — Ti1)zio + 2 Z(Aﬂfitsitfl + 2~ 1ASt)
=2
T ~ o~
= 2mirzi0 + 2 Z(A«Titsit—l + 2i—1AS;). (Al5)
=2

The appropriate normalizing order of these derivatives is determined by the
order of the second derivative with respect to p;. Similar calculations yield

92SSE; d
o7 225 + 2 Z(Sit—l + zi0)°
Pi t=2
T ~
= 2> S . (A16)
t=2
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The second equality follows by evaluating the second term at the restricted
maximum likelihood estimators, and by ignoring the first, which is 0,(1).

In the proof of Theorem 1, we show that T—1/25j is O,(1), which implies
that 72 Zthz §i2t_1 is Op(1) too. Hence, the appropriate normalizing order
for the Hessian is T~2. Moreover, by standard asymptotic arguments, we can
show that the scaled quantities 73/2 Zthz S\it,l, 71 Zthz AzySiy—1 and
71 2?22 xit_lAgit are Op(1). This shows that the expressions appearing in
(A13) to (A15), when normalized by 72, must be o,(1). Hence, the Hessian
is indeed asymptotically block-diagonal.

By using (A10) and (A16), we can thus show that the expression in (A11)
has the following asymptotically equivalent representation

N T L 2 —1
Enr = Z(ZASﬁSﬁ_1> (AQZ 2 1) : (A17)

i=1 \t=2

This completes the derivation of the LM test statistic. |

Proof of Theorem 1.

We begin by considering the limit of §it. This variable can be written as

S’\it = Vit — az - Tz ztﬁz
= ya—vyn—7(t—1) — (zy —zin)'Bi
¢
= ek — (Tt — ) (Bi — Bi) — (7 — ) (£ — 1). (A18)

k=2

For the third term, we have

Ti—Ti = Ay;. — ASU;@ —T;
= e — Az} (Bi — By),

where Ay; , Ax; and e; are the sample means of Ay, Ax; and ezt, respec-
tively. Further, let w; be the mean of wj, then 7, — 7; = ¢;, — W, (ﬁz 5i).
This implies that (A18) can be rewritten as follows

t
§it = Zeik_ei.(t_l szk - Bi) +w (ﬁz‘—ﬁz‘)(t—l)

t t

= Z ik — 61 Z Wik — wz 51) (A19)
k=2 k=2

As shown by Schmidt and Phillips (1992), we have T~Y/23F (e — ;) =
oVi(r) as T — oo for a fixed N. For the second term in (A19), note that
T2 (i — w;) = Qi/QVi(r) as T — oo, where Vj(r) is a standard
Brownian bridge process. Also, if we let AZ;; and ¢€;; denote the deviations
of Az and e from their respective mean values, then T/2 (6; — Bi) can be

19



written as

T -1
TV2(3; - 3;) = T2 (Z A:EitAfgt) > Adie
t=2

t=2
T

= (T—l > AazitA:zgt>
t=2

If we let 2 signify convergence in probability, then the denominator of this
expression is 71 Zthz Az AT, 20,>0 by Assumption 1 (iv) and standard
asymptotic arguments for stationary processes. For the numerator, we have
T-1/2 Z;‘Fﬁ AZ;ei = Op(1) since wy and e;; are orthogonal by Assumption 1
(ii). It follows that TI/Q(@ — Bi) = Op(1). Therefore, we get

1 T
TS A
t—2

t t
T8 = T2 (e —ei) =T (wip —w ) TV2(B; — 3y)
k=2 k=2

= T2 g (eir, — €i.) + Op(l)
k=2
= aVi(r). (A20)

It is useful to rewrite git as

Si = yi—ya -7t —1)— (2 — z01)'B;
= yi —yi1 — (Ay; — Az B;)(t — 1) — (zir — x1)'Bi
¢
= > (AGi — AT B). (A21)
=2

It follows that Agit = Ay — Aiﬁgt@. The model in first differences is given
by Ay = 7; + Ax;t@ + €y or Ayy = Ai;t@ + €;¢, where ¢;; now denotes the
deviation of €;; from its mean value. Thus, by using (A21), we can deduce
that Agit is equal to €.

Now, consider Zy. This statistic can be written as

N
TZy = T SqiSiu2
=1

N ~ N1 ~
= Z (T_2SZ‘11) T_ISilg. (A22)
i=1
For the denominator, we have the following limit passing 7' — oo

T
TS = T2 Z(gitq - gz’.fl)Q
=2

= o’ /1 Vi(r)?dr. (A23)
0
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Similarly, for the denominator, we have

T
T 28, = T7! Z(git—1 — 5i1)(AS; — AS;)

T
1 ~
= -3 (:rlZ(AS,~t—A5*z )2>
t=2
1 T
= -3 (T—lzé?t>
t=2
», —%02. (A24)

For the second equahty, we use Lemma 1 of Schmidt and Phllhps (1992) from

which it follows that Zt 2( it 1—S )(ASZ,:—AS )=—3 Zt Q(ASzt AS )2
Equations (A23) and (A24) imply that the limit of TZ4 as T — oo with N
held fixed is equal to

N N1
TZy = Z <T72Si11) T7'Si12
= i\f: —; (/01 V,-(r)er) B . (A25)

~ \-1 ~
Now, to derive the sequential limit of Zy, define E; = (T_QSiu) 7718519
and then expand the statistic as follows

N
TN~Y2Z, - NY2@, = N*/? <N—1 Y Ei- @2) :

Assume that E(K?) = ¥j; < oo exist. Then, by Assumption 1 (i) and the
Lindberg-Lévy central limit theorem, as T' — oo and then N sequentially,
TN*1/22¢ —NY29, = N(0,X92). This establishes the first part of the proof.

Consider next the limiting distribution for Z;. Similar to the analysis Zg,

since 52 & 02, we obtain the following limit as T — oo

Zy = ZN:<8_2§2'11>1/2E1'

i=1

N

~ N\1/2
> (a—QT—Qsm) TE;
1 1 . 71/2

=Yy - < / Vi(r)2d7“> : (A26)

. 2 \Jo
If we define Q; = §i11/ 12 E;, then Z; can be rewritten as

N
N2z, — N'/?@, = N'/? (N—l > 571Qi - @1) .
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Given that E(U?) = Sgs < 00 exist, then TN~Y/2Z, — N'/205 = N(0, $2)
as ' — oo and then N — oo by similar arguments used for Zs. This
establishes the second part of the proof. |

Proof of Theorem 2.

To prove Theorem 2 (i), we need to show that T 25’\” is asymptotically
unaffected by the inclusion of the break dummy D;;. In so doing, we begin by
rewriting S5, as follows
S& = i — @ — 7it — 0;Diy — i
= yi —yin — 7i(t — 1) = 0;( Dy — Din) — (wir — xq1)' B;
¢
= > ew— (8; — 6;)(Dit — Dir) — (wir — zir)' (B — Bi)
k=2
- @m-m)(t-1). (A27)

Let Ay;., Ax; and e; be the sample averages of Ay;, Az and e;, respectively,
and note that the sample average of AD;; is (I'—1)~!. Then, the fourth term
on the right-hand side of (A27) can be written as
F-no= Ay, —(T—-1)7'0— A2} B —
= e~ (T =178 — &) — Az (B; - By)
= e — (T =170 =) —wi.(B; = Bi).
Hence, by using (A27), we get

t t
T8, = Ty e —en(t—1) TV wli (B - B)
k=2 k=2

+ wl (B - Bt —1) = T7Y2(5; — 5) <Dit — Dj1 — ;__11>

' t
Y e ) - T - ) - )
k=2 k=2

- t—1
712G sy (D — Dy — L1
T12(6; — &) (th Diy = 7 1)

= I—1II-1III. (A28)

Now, part II is 0,(1) by similar arguments used in the proof of Theorem 1.
Therefore, to prove part (i) of Theorem 2, we only need to show that I17 is
op(1), in which case T_1/2§ft has the same distribution as 7—1/25}.

Let Az, Aﬁit and ¢;; be the deviations of Aw;;, AD;; and ey from their
respective mean values. Also, let AIN)ZX = AD; — AZl,b; and 'éff = eir — AT a4
be the errors from projecting AD;; and €;t, respectively, onto Az;. Consider
Tl/Q(;S\i —4;). This term may be written as

T -1
TG —5) = TV (2@52) >_ADiE;
t=2

t=2
T -1 T

= <T12AD;’§2> T2 ADFEY.  (A29)
t=2 =2
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The denominator of this expression can be expanded as follows

T T T
T-'N AD)? = T 'Y AD} —2T7')  ADyAR}b;
t=2 t=2 t=2

T
+ TN VAT AT

t=2
T T
— 7! Z AD% — T~ 1/2 Z AD; AT,
it it it
t=2 t=2

T -1 T
<T1 > Af@%) T7Y2N " ATy ADy.  (A30)
t=2

t=2

Now, since AD;; equals one only at one point, it is obvious that all sums
involving ADj; must be 0p(1) when normalized by T~/ or T~'. Hence,
we can deduce that T-' 71, Af??t and T2 YT, AZiADy must be op(1).
Also, since T™' 21 ) ATy AT, 2 Q; as T — oo, we get T~ L, ADX? =
op(1).

Similarly, for the numerator of (A29), we have

T T T
T-V2NCADFEy = TV ADyen — TV ADyAFa;
t=2 t=2 t=2

T T
TN @ AT + T2 aj ATy AT b

t=2 t=2
T _ T ~
= T3 ADy&, — T7'?)  ADyAT,
t=2 t=2

T -1 T
(T—l > A@tm};t> T AZyey.  (A31)
t=2 t=2

We have that 7—1/2 Zthz AD;éy = op(1) and 71! ZtTZQ AZyen B 0asT —
oo, where the latter follows from the fact that AZ;; and ¢; are independent
by Assumption 1 (ii). Thus, we can show that 7-1/2 37 Aﬁg{'éfg = op(1).

These results imply that T1/2(BZ- — Bi) = 0p(1). Hence, by using (A28), it
follows that

1 = TY(5; - &) <T‘1(Dit —Da) - T(t;p__11)>
= op(l) . Op(l).

We have thus shown that 111 is 0,(1) as required for the proof of (i).
Next, consider Theorem 2 (ii). From (A18), the variable S;; assuming no
breaks can be written as

Si = i —ya —7nt—1)— (zi — z01)'B;

t t
= S en— > wWi(Bi — B;) — (7 — ) (t — 1) + 8i(Di — Dir), (A32)
k=2 k=2
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where the equality follows from the fact that y;; —yi1 = 7 (t—1) +ZZ:2 wh B+
0i(Dit — D;1) + 2222 e;x. With a break in the DGP, 7; — 7; can be written as
F-n o= Ay A fi-m
ei. — Awj (B — Bi) + (T = 1)7 4.
This suggests that (A32) can be rewritten as

t t
T8 = T (en —ei) = T2 (wi —wi ) (B; — Bi)
k=2 k=2

t—1
~1/25.(D.. — D) — T-1/25, (L=~
+ T7Y25{(Dy — D) =T 6Z<T—1>

= T2 (eq —ei) + 0p(1). (A33)
k=2

Thus, the distribution of 7/ 2§Z~t does not depend on the presence of the level
break. This establishes (ii). [

Proof of Theorem 3.

In this section, we show that the limit of 7 2§ft is equal to the limit of
T 2§it, which implies that the symptotic distributions of the LM based
statistics in the regime shift case are unaffected by the shifts. The proof is
very similar to that of Theorem 2 and hence only essential details are given.

For notational convenience, let E/, = D;a},. As in equation (A18), §Z"t can
be written as

~

t
Sho= > e — (0 — 6:)(Dit — Dir) — (wir — z1) (B; — B1)
k=2

— (B — En)' (3 —v) — (7 — )t = 1). (A34)
If we let AE; denote the sample average of AE;;, then we have
7i—mi= e~ (T=1)71 0 = 6) —wi (B — ) = AE (i — 7). (A35)
Equation (A35) imply that (A34) can be reformulated as
7128 = 7712 zt:eik —T V2 (t—1) =T /2 Zt:w;k(@ — B)
k=2 k=2
+ T2 (B - Bi)(t— 1) — T7V2(5; — ) (Dz‘t — Dy — H)

T-1

_ t—1 "
- T (E —En = = (B — E; )) (i =)

. ¢
= T2 Z(eik — ) —T7? Z(wik N wi')/(@ -5
k=2 k=2

—~ t—1
— 71205 — ) Diy — Diy —
(51 61) ( it 71 T _ 1)

t—1 !
— T2 Ey—En— ——(Eqx—En) ) 3 — )
T —1
= [ —-II—-1II-1V. (A36)
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As with Theorem 2, proving Theorem 3 requires showing that I'I, I1] and IV
are op(1). Part II is an immediate consequence of the proof of Theorem 1 and
is thus omitted.

Consider ITI. Let AE; = AE; — AFE; , and let Af)l)t( = ADj — X/,b; and
~f§ = €;t — X/,a; be the errors from projecting Aﬁit and €, respectively, onto
AEL). Then, TY/2(5; — ;) may be

the generic projection vector X;; = (AZ},,

written as

-1
TYV2(5; — &) = ( 1ZAD ) 1/2ZAD§§~5§ (A37)

The denominator of this expression can be expanded as

T T T
T7'Y AD)Y? = T7') AD} -T7'> ADyX}
t=2 t=2 t=2
—1

T T
(Tl > XitX{t> T XuADy.  (A38)
t=2

t=2

For the second term in (A38), we have

T T SO
~ Az AD;
Ty XyADy = T L
Z e Z < AEjADj
t=2 t=2
We have that 71 ZZ:Q AZyADy = op(1) and 71 23;2 AEyAD; = op(1)
so T' S, Xy ADy = 0,(1).
Next, consider 7~ ST, X;; X/,. This term can be written as

T — ~
AT AT, ATGAE!

Ty XuXxl, = 17! s
z_: it 1t Z < AEZtszt AEztAE;t

Since 7! ZZ;Q AT AT, L0 as T — 00, while the remaining three terms
in 77! Z;‘FZQ X X!, converge in probability to €; if ¢ > T; and zero otherwise,
we have that 71 Zthz Xi X!, = Op(1). Therefore, as the first term on the
right hand side of (A38) is 0,(1), we can show that T1 ZZ;Q Af)ftm is also
op(1).

For the numerator of (A37), we have

T T T
T-1/2 Z Afo’éff = 7712 Z Af?i{éit -7 Z Aﬁith(t

t=2 t=2 t=2
T -1 T
<T—1 > XitX{t> T2 Xueu. (A39)
t=2 t=2

Because T1/2 Zt -2 ADltelt, T Zt 5 €t X and T-1/2 Zt 9 ADZtX are all
op(1), and T-' 01, X3 XL, is O,(1 ), it follows that 7"~ 1/2 Zt 2AD5§~5§ =
op(1). Hence, since both T~ Isr, D:LX2 and T-1/2 5T QADz)t( e;; are op(1),
we can deduce that TV2(5; — ;) = o,(1).
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By using this result, we can show that
IIT = TY?(5;— &) (T Dy — Dit) — =1
T(T —1)
— op(1) - 0p(1).

Next, consider IV. The term T'/2(5; — v;) appearing in this expression
can be written as

T - T
PG - (TS ABLSEY) Ty ARy
t=2 =

where X = (AZ,, AINDit)’, AE’ff = AE; — X[b; and € =¢; — X},a;. As in
(A37), the denominator of T'/2(3; — ~;) can be expanded as

T T T
T AEFAEY = T7'Y AE4AE,-T7'Y EquX},

t=2 t=2
T -1 T N
(T—l > XitX{t> T XuAE};. (A40)
t=2 t=2

By using the results derived earlier, it is obvious that both terms on the right
hand side of (A40) are O,(1) if t > T; and o, (1) otherwise, which implies that
TS AEXAEY is also O,(1).

The numerator of TV/2(5; — ;) is qual to

T
T2 Z AEYEX = T171/2 Z AEjey — T2y AE} X,
t=2
—1

T
<T—1 > XitX{t> T Xueu.  (A4l)
t=2 t=2

In this expression, the terms with normalizing order 7-'/2 are Op(l) by stan-
dard arguments for stationary processes. Therefore, since 71 Zt s AXjiei =
op(1) and T~ ST, X X!, = O (1) we can deduce that T-1/2 Zt 9 Eft(’?f =
op(1). Consequently, as T~ 1/2 Zt 9 AEZ)t( ex and T1 Zt 9 AEZ)fAEg’ are
both O, (1), TY/?(7; — ~;) must also be O,(1).

This shows that IV must be op(1) as seen by writing

v = <T1(Ez-t —Eq) — (T(tT__ll)> (Eir — Eu)>/T1/2(% =)

= op(1) - Op(1),

where we have used the fact that E; — E;1 = 2222 wy, if ¢ > T; and zero
otherwise. We have thus shown that 11, I1I and IV are o,(1), which implies
that (A36) reduces to

t
T7V25, = TV (e —ei) + op(1).
k=2

This completes the proof. |
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