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Abstract

This paper presents the incorporation of an auto-tuning

real-time garbage collector into a feedback-based on-line

scheduling system. The studied feedback scheduler is de-

signed to dynamically adjust the sampling periods of a set

of controller tasks in order to maximize the overall control

performance. In the suggested approach, the memory man-

agement overhead is made explicit and taken into account

by the feedback scheduler when scheduling the tasks. It is

also described how priorities for memory allocations can

be used to control the allocation rates of the application

threads in order to optimize the trade-off between memory

and CPU time usage. A case study, comparing theoretical

analysis and simulated results support the feasibility of the

approach.

1. Introduction

Real-time control systems are today often implemented

using embedded microcomputers characterized by severe

resource constraints in terms of, e.g., CPU and memory.

In these resource-constrained environments, much can be

gained in performance by using dynamic feedback-based

resource allocation.

A characteristic property of feedback is that it can be

used to reduce the effects of disturbances and to deal with

uncertainties. The idea of feedback scheduling (FBS) is to

use feedback to master uncertainty with respect to resource

scheduling, such as, e.g., variations in task execution times.

[12, 11] present strategies, where feedback is used to control

the CPU utilization and deadline miss ratio of tasks with

non-deterministic execution times and arrival patterns.

If the application tasks implement control algorithms, it

is also necessary to take the control performance into ac-

count in the dynamic scheduling process. Controller tasks

1This work was financially supported by the Swedish Foundation

for Strategic Research (SSF) and EU FP6, through the FLEXCON and

SIARAS projects.

are generally not truely hard real-time tasks, but should

rather be viewed as adaptive, in the sense that missing sin-

gle deadlines does not jeopardize correct system behavior,

but only leads to a performance degradation. Occasional

deadline misses can be seen as disturbances acting on the

control system.

Feedback scheduling schemes for control tasks designed

to optimize the control performance are presented in, e.g.,

[7, 8]. These schemes adapt to changing requirements of

the applications and tune the sampling periods of the tasks

in order to keep the CPU utilization at a safe level while op-

timizing the quality of control. Feedback scheduling is also

very suitable for systems which change between different

operating modes [6] with different resource utilization pat-

terns. For these control systems, designs based on worst-

case assumptions would yield an unacceptably low CPU

utilization and slow sampling. Thus, in the real-time sys-

tems community, the on-line resource management problem

applied to CPU time has been thoroughly studied and the

theoretical foundation of on-line scheduling is well built.

Recently, with the development of processors with variable

clock frequency, the relation between CPU time and power

consumption has also been investigated [2]. Memory man-

agement, on the other hand, has been regarded as part of the

application, and has not yet been considered in this context.

With the introduction of safe object-oriented languages

with automatic memory management, like Java, the mem-

ory management overhead is moved from the application

code to the run-time system. While viable in traditional

systems, this introduction of automatic memory manage-

ment complicates the picture when used in real-time sys-

tems. As the overhead of memory management is moved

from application code to the run-time system, the isolation

between tasks and the boundary between tasks and the run-

time system is broken — there is still a cost of memory

management, but it is no longer explicit. That is especially

true for systems with a concurrent garbage collector (GC),

an approach to real-time GC gaining in popularity [3, 16].

In this paper, we will study ways to incorporate the mem-

ory management problem within the existing framework for
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feedback scheduling of control tasks. This framework is

based on the formulation and solution of a constrained op-

timization problem, where the performance is maximized

subject to a utilization constraint [17]. First we will study

how to make the cost of automatic memory management

explicit in the period time optimization problem, so that it

can be taken into account by the scheduler. We will then go

on to present how to optimize the trade-off between mem-

ory usage and CPU time at run-time. The key problem here

lies in the fact that both the CPU time and the memory are

constrained resources, and that they cannot be managed in-

dependently.

1.1. Paper Outline

The remainder of the paper is organized as follows. Sec-

tion 2 presents some preliminaries. Section 3 derives ap-

proximative models for estimating and optimizing the GC

scheduling parameters together with the period assignment.

Section 4 investigates how the mechanisms for different pri-

orities on memory allocation requests presented in [13] can

be utilized in a feedback scheduling context, where control-

ling the allocation rate of processes gives another degree of

freedom when optimizing overall performance. This sec-

tion also includes a case-study with analysis and simulation

of the presented techniques applied to a control application.

Finally, Section 5 concludes the paper.

2. Preliminaries

This section presents previous results in feedback

scheduling and GC scheduling, on which the paper is based.

2.1. Feedback Scheduling

Feedback scheduling is an approach to handling tempo-

ral non-determinism, where the main goal is to optimize the

resulting quality of service rather than aspects of the real-

time scheduling, such as, for instance, the deadline miss-

ratio. By using feedback control, the scheduling parameters

are automatically adjusted at run-time in order to keep the

CPU utilization at a safe level while optimizing the quality

of service of the application [17, 1, 5, 7]. One area where

this approach is useful is control systems, where it has been

shown that the total quality of control can be dramatically

increased if the real-time requirements are relaxed.

The structure of a basic feedback scheduler is as follows:

A set of tasks generates jobs that are passed to a run-time

dispatcher. The execution times of the jobs and the total

CPU utilization, U , are assumed to be measured. Based on

this, the scheduler adjusts the period times of the tasks, Ti,

in order to keep the CPU utilization at the set-point, Usp.

(See also Figure 1.)

If a system contains both hard and soft real-time tasks, it

is reasonable that the CPU utilization of the soft processes

should be decreased more than that of the hard processes.

This can be done by using elastic scheduling [4], where a

stiffness value is assigned to each process and the scaling of

period times is done in proportion to that value.

The general period assignment problem can be expressed

as follows. A set of n tasks, τi, i ∈ {1 . . . n} with execution

times Ci, adjustable periods hi, and cost functions Ji(hi)
share the same computer. The task of the feedback sched-

uler is to assign new sampling intervals h1 . . . hn so that

the global cost is minimized and the total CPU utilization

is kept below a set-point, Usp. This could be formulated as

the optimization problem

min
h1...hn

n
∑

i=1

Ji(hi)

subject to

n
∑

i=1

Ci

hi

≤ Usp (1)

The cost functions, Ji(hi), measure the performance of

the control loops, often expressed as a weighted quadratic

sum of the control signal and the deviations of the controlled

variables from the desired reference. The behavior of the

individual cost functions depend on the complexity of the

controllers and the controlled processes. However, linear or

quadratic functions can often be used to approximate (or in

some cases exactly model) the true cost functions.

If the cost functions, Ji(hi), are given by linear or

quadratic functions, it has been shown [5] that a closed-

form solution to the optimization problem (1) can be found.

For example, with linear cost functions

Ji(hi) = αi + γihi, (2)

or, as functions of the sampling frequncies, fi,

Ji(fi) = αi +
γi

fi

, (3)

the optimal frequencies, f?
i , are given by

f?
i =

(

γi

Ci

)
1
2

·
Usp

∑n

j=1(Cjγj)
1
2

. (4)

For the case of quadratic approximations of the cost func-

tions, a similar explicit solution can be found [5].

2.2. Garbage Collection Scheduling

The discussion of GC scheduling is based on the time-

triggered GC scheduling principle, where a concurrent GC

is scheduled as a separate task, with an explicit deadline [16,

14]. Expressions for the GC cycle time have been derived.
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Assume a set of n tasks, with frequencies fi, and allocation

requirements of ai bytes per period; a heap size H , and a

maximum total amount of live memory, Lmax. It is then

guaranteed that every GC cycle will be completed before

the available memory is exhausted if the cycle time, TGC,

satisfies

TGC ≤
H−Lmax

2 −
∑n

i=1 ai
∑n

i=1 fi · ai

(5)

If a priori analysis is not available, on-line auto-tuning of

TGC can be done in a similar way, based on measuring the

amount of available memory and the allocation rate. Let F

be the amount of free memory and ˆ̇a(t) be an estimate of an

unknown but constant allocation rate, ȧ, such that ˆ̇a(t) ≥ ȧ.

During GC cycle k, with release time R(k) and deadline

D(k) — i.e., for R(k) ≤ t < D(k), the GC cycle will be

completed before the available memory is exhausted if the

cycle time, TGC, satisfies

T̂GC(t) ≤
1

2

(

t +
F (t)

ˆ̇a(t)
− R(k)

)

(6)

Thus, previous work has studied how to calculate the

scheduling parameters for a time-triggered garbage collec-

tor in two different cases. In the first one, all parameters

(Lmax, ai, etc.) were known and constant. In the second

case, the parameters were estimated based on run-time mea-

surements. In a FBS system, the GC scheduling problem

comes in a third form. Here, the parameters of the applica-

tion (or mutator) tasks are known at any particular instant,

but may change as the scheduler changes sampling rates in

order to maximize the overall performance. Thus, there are

dependencies between the GC and the feedback scheduler.

3. GC-aware Period Assignment

In a system with a scheduled garbage collector, the re-

quired CPU utilization of the GC, UGC, must be taken into

account when assigning task periods in order to keep the

utilization below the setpoint. To get the total CPU utiliza-

tion Usp, the reference utilization for the mutator tasks in

the feedback scheduler must therefore be reduced to

Uref = Usp − UGC . (7)

The utilization of the garbage collector is UGC = CGC

TGC
and

thus, the constraint of the period assignment problem be-

comes
n

∑

i=1

Ci

hi

+
CGC

TGC
≤ Usp . (8)

Given the previously derived expressions for the GC cy-

cle and execution time, we get the the general expression

for the required CPU utilization for GC,

UGC =
CGC(heap state)

TGC(H, L, a1, . . . , an, h1, . . . , hn)
. (9)

Scheduler Tasks Dispatcher

Memory manager and

GC auto-tuner

Usp {Ti} {jobs}

Ci, U

TGC , CGC job

CGC

Figure 1. Feedback scheduling of both appli-

cation tasks and GC. The GC task issues jobs
which are dispatched just as any other jobs.

The only difference between the GC task and
the application tasks is that the GC is allowed

to set its own period time while the feedback

scheduler changes the application tasks’ pe-
riod times in order to keep U ≤ Usp.

However, at run-time, all parameters are typically not

known, and therefore an approximate model must be used.

We will now formulate such models for compensating for

UGC in FBS period assignment. In the first one, we will

simply use a GC auto-tuner, as described in [16] and [14], as

a reference generator to the feedback scheduler. In the sec-

ond, we will incorporate the GC tuning into the optimiza-

tion problem of the feedback scheduler, in the case where

Lmax is known. In the third one, we assume that Lmax is

unknown and derive similar expressions based on the previ-

ously described GC auto-tuning techniques.

As far as the optimization problem is concerned, we will

assume that CGC is constant. This just means that in the for-

mulation of the optimization problem, we assume that CGC

is independent of the period times of mutator tasks, and that

the effects that changes to the schedule have on CGC are

captured by the feedback loop. The interaction between the

GC cycle parameter estimation and the feedback scheduling

is done only through the model for TGC.

3.1. Separate GC tuning and FBS

The most simple way of taking garbage collection work

into account is to use the GC auto-tuner as a reference gen-

erator for the feedback scheduler. Figure 1 shows how

the adaptive garbage collection scheduler fits into a general

feedback scheduling system. The GC thread is scheduled

as a normal application thread, but with the important dif-

ference that it is allowed to set its own deadline whereas the

feedback scheduler changes the deadlines of the application

threads in order to optimize CPU utilization.

As mentioned, the special treatment of the GC thread is

necessary since the GC will stop all application threads if

the system runs out of memory and that must be avoided
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as it leads to long GC pauses and unacceptable real-time

performance. In this case, the GC tuner and the feedback

scheduler are independent of each other, and the feedback

scheduler simply uses Uref as in (7), where TGC and CGC

are estimated using some of the described techniques.

However, in general, the different tasks have differ-

ent memory requirements, and thus any changes to the

scheduling will affect the GC workload. As the GC

scheduler is decoupled from the feedback scheduler, such

effects cannot be taken into account in the period as-

signment, and this is a limitation of the described ap-

proach. Instead, any changes to the allocation rate —

and, hence, to TGC and UGC — caused by the changes

in period times are compensated for by the feedback

to the GC tuner. That may, in turn, cause Uref to

change, and therefore, this model may show oscillating

behaviour. Such oscillations can, however, be avoided

by using conservative settings in the GC auto-tuner. For

instance, if the UGC prediction is filtered using the max-

imum value and a forgetting factor close to unity, a well

damped system can be achieved, at the price of lower aver-

age utilization.

Another, and potentially more important, drawback of

the separated approach is that the measured GC overhead is

divided evenly across all mutator tasks. Thus, even if one

task is responsible for the majority of the memory usage,

the sampling rates of all tasks will be affected. In systems

with competing (as opposed to cooperating) tasks, that may

be an issue, as far as fairness in the scheduling is concerned.

3.2. Integrated GC and FBS

If the GC estimation and tuning is incorporated in the

feedback scheduler itself, the effects on the GC utilization

of changing period times can be taken into account in the

period time optimization. In principle, we want to be able

to express the cost of GC per task and sample, in a way that

the constraint in the optimization problem is on a form that

allows the existing closed-form solution (4) to be used.

Under the previously stated assumption that CGC is con-

stant, UGC will be a function of the GC cycle time, which,

in turn, depends on the allocation rate. Thus, we get a uti-

lization constraint with one term for the CPU requirement

and one for the memory requirement of each task,

n
∑

i=1

Ci + KGC · ai

hi

≤ Usp (10)

where KGC can be viewed as the cost, in CPU utilization,

of memory allocation in CPU seconds per byte. With this

formulation, the utilization constraint is in the same form

as (1), as the extra term is constant (assuming ai is inde-

pendent of hi), and thus the existing explicit solution to the

optimization problem can be used. We will now see how

the utilization constraint can be expressed when the max-

imum amount of live memory is known and unknown, re-

spectively.

3.2.1 Using worst case live memory information

Given the maximum amount of live memory, Lmax, and the

amount of memory allocated per period of each task, ai, we

can use (5) to find the maximum allowed TGC and, hence,

the CPU utilization:

UGC = CGC ·

∑n

i=1
ai

hi

H−Lmax

2 −
∑n

j=1 aj

. (11)

Inserting (11) into (8) gives the constraint

n
∑

i=1

Ci + CGC
H−Lmax

2 −

P

n
j=1 aj

· ai

hi

≤ Usp (12)

which, assuming that CGC and {a1 . . . an} are independent

of {h1 . . . hn}, can be written as (10).

In practice, the period time of the GC will be much

longer than that of the mutator tasks, and thus
∑n

j=1 aj is

typically very small compared to H − Lmax. Further, if

a conservative estimation of UGC is used, and Usp < 1,

there will always be some slack in the schedule. For these

reasons, sufficient safety margins can be achieved, making

it reasonably safe to approximate (12) with

n
∑

i=1

Ci + CGC
H−Lmax

2

· ai

hi

≤ Usp . (13)

I.e.,

KGC =
CGC

H−Lmax

2

(14)

which is precisely the GC CPU time per allocated byte.

3.2.2 Without a priori analysis

The above discussion assumes Lmax to be known and that

it is reasonable to use the worst case live memory. If that

is not the case, TGC can be estimated using (6), and the

constraint (8) becomes

n
∑

i=1

Ci

hi

+
2 CGC

F (t)
P

n
i=1 ȧi

+ t − R
≤ Usp (15)

which, with ȧi = ai

hi
, gives

n
∑

i=1

Ci

hi

+
2 CGC

F (t)
P

n
i=1

ai
hi

+ t − R
≤ Usp (16)
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which can be reorganized as

n
∑

i=1

Ci + 2 CGC

F (t)+(t−R)
P

n
i=1

ai
hi

ai

hi

≤ Usp . (17)

I.e.,

KGC =
2 CGC

F (t) + (t − R)
∑n

i=1
ai

hi

(18)

Unfortunately, the constraint (17) is not linear, meaning that

the existing closed-form solution is not directly applicable.

Worse yet, in this form, we get an optimization problem

where both the objective function and the constraint are

concave, and that makes it practically useless.

In order to remedy that, an approximation that turns (17)

back into a linear constraint is sought. It is observed that, if

ȧ is constant, the denominator in (18) is equal to F (R). If

that is used to linearize the constraint, we get

n
∑

i=1

Ci + 2 CGC

F (R) ai

hi

≤ Usp (19)

and

KGC =
2 CGC

F (R)
. (20)

The error in the TGC approximation of (19) will increase

with increasing changes in ȧ and the effect will be greater

if the change occurs later in the GC cycle. Figure 2 shows

how the approximation error depends on the change in ȧ

and the time of change. For instance, if the allocation rate

is doubled half-way into the GC cycle, the relative error in

the TGC approximation will be 20 %. However, as the total

GC utilization typically is 5–20 %, the overall impact of the

error in the approximated utilization will only be a few per-

cent. For robustness, a safety margin to accommodate such

uncertainties can be added when setting Usp.
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Figure 2. Relative error in TGC approximation

as function of change in ȧ and time of switch.
The lines represent changes in ȧ from a fac-

tor of 0.5 to a factor of 2. An increase in ȧ

causes underestimation of UGC.

3.3. Experiments

The performance of the two approaches was studied in

a simulated environment. The set-up consisted of a system

with two periodic tasks running under feedback schedul-

ing. Figure 3 shows the reference utilization for the mutator

(Uref ), and the sampling period of the first task (h1), under

both the separate and the integrated feedback scheduler. In

all plots, the solid line represents the integrated scheduler,

and the dashed line is the version with separate GC tuner.

The integrated scheduler used the simplified constraint (20).

As the approximation introduces errors, for a better compar-

ison the resulting period times of the integrated scheduler

were scaled to get a mutator utilization of exactly Uref .

These experiments show similar performance for both

the separate and integrated versions. That supports the

claim that the most important difference is the fairness is-

sue, as in the integrated version, the amount of allocation

affects the period assignment. This is apparent in the right

plot, where the difference in h1 for the two schedulers is

larger than in the other experiments, due to the bigger dif-

ference in memory usage. It can also be seen that as the GC

utilization decreases, the variation in Uref also decreases.

Thus, with suitable approximations, the CPU require-

ment of the GC task can be included in the period assign-

ment, while keeping the optimization problem on a form

that allows the existing closed-form solutions to be used.

3.4. Utilizing Slack

In order to get a system that is robust to variations in

execution times, the utilization setpoint is typically set be-

low 100 %. Also, to get stable estimates of GC scheduling

parameters, the estimation needs to be conservative. That

means that, in the average case, there will be some slack in

the schedule, allowing the GC to finish before its deadline.

The feedback scheduler reserves a fraction of the CPU

time for garbage collection. However, when the GC is not

running, this CPU time could be used for mutator threads.

In a system with a time-triggered GC, it is known that when

the GC has finished a cycle it will not need to run again until

at its next release time, R(k + 1) = D(k). If the feedback

scheduler is aware of the state of the GC, this means that

when the GC has completed a cycle, a higher mutator uti-

lization can be allowed until the next GC release time. That

is, if the GC finishes at time tf ; R < tf < D,

Uref(t) =

{

Usp − UGC, R ≤ t ≤ tf
Usp, tf < t < D − δ

(21)

where δ is used to take into account the fact that increasing

the mutator utilization may increase the allocation rate and,

hence, shorten the time until the next GC release.
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Figure 3. Comparison of separate and integrated scheduling, when heapsize (H), and allocation per
sample (ai) is varied. The plots show Uref and h1. Left: a1 = 300, a2 = 640, H = 100000, Middle:a1 =
300, a2 = 640, H = 200000, Right: a1 = 300, a2 = 64, H = 200000.

The GC cycle time, and consequently the release time of

the next GC cycle, was estimated based on worst case as-

sumptions about floating garbage, but when a GC cycle has

finished, it is known how much memory was actually re-

claimed. Thus, δ depends on both the amount of free mem-

ory and the allocation rate. We know that the amount of

free memory at the time the GC has completed the cycle,

F (tf ) ≥ Fmin. The requirement is the same; when the

next GC cycle starts, the amount of free memory must be

no less than Fmin. Therefore, the adjusted release time of

the next GC cycle must satisfy

R′

GC(ȧ) ≤ tf +
F (tf ) − Fmin

ȧ
(22)

and, with equality, we get

δ = D − R′

GC(ȧ) = D −

(

tf +
F (tf ) − Fmin

ȧ

)

. (23)

Thus, a sufficient degree of conservatism can be used to

give robustness against inaccuracies in the GC scheduling

parameter estimates due to variations and approximations,

without the low average CPU utilization normally associ-

ated with such conservative scheduling.

4. Controlling the Allocation Rate

As we have seen, the fraction of CPU time that must be

reserved for garbage collection depends on the allocation

rate of the mutator, which, in turn, depends on the period

times of the individual threads. Therefore, in a system with

garbage collection, the FBS controls the CPU usage of a

thread directly, through the period assignment, but also in-

directly as the period time affects the allocation rate. If it

were possible to directly control the allocation rates of the

individual threads, that would increase the flexibility of a

feedback scheduler, by making it possible to separate allo-

cation of memory and CPU time. As higher memory usage

means more GC work, that allows the scheduler, or resource

manager, to trade off memory usage for CPU time.

In [13], it was observed that if not all parts of a hard real-

time system are critical to the operation of the system, the

non-critical parts of the system could be turned off in order

to avoid overload. That led to the notion of priorities for

memory allocations, where non-critical allocation requests

can be denied by the run-time system if memory is scarce.

Assuming that each task has a critical and a non-critical

part, with memory requirements of a(c) and a(nc), respec-

tively, we extend the cost function with a term correspond-

ing to the increase in quality from the non-critical parts

J(h, a(nc), . . .) = . . . ; 0 ≤ a(nc) ≤ a(nc)
max (24)

which gives the optimization problem

min
h1...hn

∑n

i=1 Ji(hi, a
(nc)
i , . . .)

subject to
∑n

i=1

Ci+KGC·

“

a
(c)
i

+a
(nc)
i

”

hi
≤ Usp (25)

In the general formulation, (25) is expensive to solve on-

line. In order to test the fundamental principle, we will

now investigate a simplified case, where the problem is re-

duced to either allowing all or no non-critical allocations of

a thread in each sample.

4.1 Case study: Ball-and-beam

Control of a ball-and-beam system will be used as an

application example. This system consists of a horizon-

tal beam, on which a ball should be balanced. The input

to the system is a voltage controlling the angular velocity

of the beam, and the measurements consist of the current
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Figure 4. Left: The calculated costs and the linear approximations. Middle:Sample rate as function
of KGC. Right:Cost as function of KGC. For high values of KGC, the system with the observer will

outperform the one with measured angle, due to the large CPU cost of memory allocation.

beam angle and ball position along the beam. The con-

troller for this example is designed using linear-quadratic

theory, where the objective is to minimize a quadratic sum

of the control signal and deviations of the plant states. A

Kalman filter is also designed to cope with the fact that not

all states of the plant are available for measurement.

It is assumed that the beam angle can either be mea-

sured (which requires a measured-value object to be allo-

cated and passed to the controller) or estimated using the

Kalman filter. I.e., the allocation of the angle measurement

is non-critical. Depending on the state of the memory sys-

tem, KGC — and hence, the total available CPU utilization

— will vary.

Using Matlab-based tools, the effects of the schedul-

ing on control performance in the described scenario is

analysed and simulated. For control performance anal-

ysis, the Jitterbug toolbox is used. Jitterbug is a tool

for studying how timing affects the performance of a

computer-controlled system [10]. The simulation is done

using the TrueTime [9] real-time kernel simulator in Mat-

lab/Simulink, with simulated heap and GC [14, 15], the con-

troller task, and one disturbance task.

Theoretical analysis

The analysis is done for two versions of the ball-and-beam

controller: with or without angle measurements. The con-

troller with the angle measurement will allocate more mem-

ory per sample, and therefore, under the discussed feedback

scheduling, it will suffer a bigger penalty from the GC over-

head. On the other hand, for the same sampling rate, the

controller using angle measurements will perform better. In

order to optimize quality of control, the cost of memory

management must be balanced against the control perfor-

mance, to choose which of the two controllers to use, given

a certain KGC.

Figure 4 shows the calculated total cost for a range of

sampling rates, the sampling rate as a function of KGC,

and the resulting J as function of KGC for the two sys-

tems (using linear cost functions). The controller without

angle measurements has lower memory requirement, and is

therefore much less sensitive to KGC. The intersection of

the lines in the right plot is the value of KGC where the sys-

tem with observed angle starts outperforming the one with

measured angle as a lower memory usage allows a higher

sampling rate — the optimal Kswitch.

Simulation

In order to measure the control performance of the LQG

regulator, if qn is the weight of the nth state (i.e., Q =
diag(q1 . . . qn)), and x is the state vector, we define the total

cost as

Jtot =

∫ t n
∑

i=1

qix
2
i (t) dt . (26)

Running the system with different values of the switch-

ing point Kswitch and measuring Jtot gives the plot shown

in Figure 5, where the minimum corresponds to the optimal

Kswitch. The cost is the total cost of a 160s execution, and

it is not normalized. The absolute values of the cost are not

very interesting, as a direct comparison with the analysis is

not possible as they show different things. The analysis cal-

culated the cost for different, constant, values of KGC. In

the simulation, KGC varied throughout the execution and at

each scheduling instant the controller with the lowest cost

was used. The GC was scheduled as described in [16], and

the feedback scheduler used UGC to adjust the utilization

reference, according to Section 3.1.

In theory, the minimum in Figure 5 should be at the same

KGC value as the intersection of the lines in the right part

of Figure 4. The discrepancy between the theoretical and
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simulated results can be explained by a combination of in-

accuracies in both the models and the run-time system. The

theoretical results are based on an optimal feedback sched-

uler, but at run-time, some approximations are required.

Notably, in order to determine the mutator utilization, both

the GC cycle time and the GC execution time has to be pre-

dicted. The GC cycle time is dependent on the allocation

rate and object distribution, which are both affected by the

mode changes. Also, in order to get a high enough KGC to

reach Kswitch, the system had to be stressed by increasing

CGC in the simulator, resulting in a UGC around 45 – 55 %.

Thus the impact of the discussed approximations and uncer-

tainties, which would be small in a system with lower UGC,

became significant.

While the setup in this simple case study is not entirely

realistic, it still illustrates the fundamental idea that if mem-

ory usage can be controlled, the total quality of control of

a system can be improved by on-line optimization of the

trade-off between memory and CPU usage.

5. Conclusions

This paper has presented extensions to feedback-based

on-line scheduling of control tasks, where the effects of

an auto-tuning real-time garbage collector has been taken

into consideration. Approximate models were developed

for estimating and optimizing the GC scheduling param-

eters. These models were then used as added constraints

when optimizing the sampling periods of the control tasks.

The use of priorities for memory allocation was also inves-

tigated in the same context. The methods are supported by

evaluation in a simulated control application case study.
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