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Abstract
We present an estimator of the general measure of correlation for bicompo-

sitional data for a sample from a bicompositional Dirichlet distribution. Two
confidence intervals are also presented and we examine their empirical confi-
dence coefficient using a Monte Carlo study. Finally we apply the estimator to
a data set analysing the correlation between the 1967 and 1997 composition of
the government GDP for the 50 U.S. states and District of Columbia.

Keywords: Composition; Correlation; Dirichlet distribution; Empirical confi-
dence coefficient; Estimation; Joint correlation coefficient

1 Introduction
A composition is a vector of positive components summing to a constant, usu-
ally taken to be 1. The components of a composition are what we usually
think of as proportions (at least when the vector sums to 1). Compositions
arise in many different areas; the geochemical compositions of different rock
specimens, the proportion of expenditures on different commodity groups in
household budgets, and the party preferences in a party preference survey are
all examples of compositions from three different scientific areas. For more
examples of compositions, see for instance Aitchison (2003).

The sample space of a composition is the simplex. Without loss of gener-
ality we will always take the summation constant to be 1, and we define the
D-dimensional simplex S D as

S D =
{

(x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}
,
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where R+ is the positive real space.
We will refer to compositions with two components, i.e. D = 2, as bicom-

ponent.

2 Estimation of the correlation
Following the ideas of Kent (1983), Bergman and Holmquist (2009) derived
a general measure of correlation r2

J for data from a bicompositional Dirich-
let distribution. The bicompositional Dirichlet distribution, defined on the
Cartesian product S D ×S D, was introduced by Bergman (2009a). The dis-
tribution has three parameters a = (a1, . . . , aD)T, b = (b1, . . . , bD)T and g,
and the probability density function is

f (x, y;a, b, g) = A(a, b,g)

 D∏
j=1

x
aj−1
j y

bj−1
j

(xTy
)g

, (1)

where x = (x1, . . . , xD)T ∈ S D, y = (y1, . . . , yD)T ∈ S D, and aj, bj ∈ R+

(j = 1, . . . ,D). The parameter space of g depends on a and b; however,
all non-negative values are always included. Expressions for the normalization
constant A(a, b,g) are given in Bergman (2009a). If g = 0, the probability
density function (1) is the product of two Dirichlet probability density func-
tions with parameters a and b respectively, and hence the two compositions are
independent in that case.

The general measure of correlation (or joint correlation coefficient) is de-
fined as

r2
J = 1− exp{−G(j1 : j0)}, (2)

where G(j1 : j0) is the information gain of modelling the data with j1 ∈ J1

instead of j0 ∈ J0 ⊂ J1 in the parametric model f (x, y; ji) (i = 0, 1). The
information gain is defined as

G(j1 : j0) = 2{F (j1)− F (j0)}, (3)

where F (ji) (i = 0, 1) is the maximized Fraser information

F (ji) = max
j∈Ji

∫
log f (x, y; j)g(x, y)dxdy; (4)

here g(x, y) is the true probability density function.
We assume that g(x, y) is a bicompositional Dirichlet probability density

function and restrict our estimation to the bicomponent models. Since we are
interested in modelling the correlation between two compositions (the inter-
compositional correlation), we want to calculate the information gained by
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allowing dependence between the compositions as compared to independent
compositions. The parameter spaces are then

J1 = {a1 > 0, a2 > 0, b1 > 0, b2 > 0,g > −min(a1 + b2, a2 + b1)}

and
J0 = {a1 > 0, a2 > 0, b1 > 0, b2 > 0,g = 0}.

According to Kent (1983), the information gain G(j1 : j0) may be esti-
mated by

Ĝ(ĵ1 : ĵ0) =
2
n

(
n∑

k=1

log f (xk, yk; ĵ1)−
n∑

k=1

log f (xk, yk; ĵ0)

)
, (5)

where ĵ1 and ĵ0 are the maximum likelihood estimates under the parameter
spaces J1 and J0, respectively.

2.1 Maximum likelihood estimates
If we assume a sample of n independent observations (xj, yj) (j = 1, . . . , n)
from a bicomponent bicompositional Dirichlet distribution with parameters
a, b and g, the likelihood function becomes

L(a, b, g) = {A(a, b,g)}n
n∏

k=1

(xT
kyk)g

2∏
j=1

x
aj−1
kj y

bj−1
kj

 (6)

and the log likelihood function is

`(a, b,g) = −nc(a, b, g) + g
n∑

k=1

log(xT
kyk)

+

n∑
k=1

2∑
j=1

{(aj − 1) log xkj + (bj − 1) log ykj} (7)

where c(a, b,g) = − log A(a, b, g) = log
(
2−g

∑∞
i=0

(
g
i

)
SaSb

)
. Here

Sa =
i∑

j=0

(
i
j

)
(−1)i−jBij(a), (8)

Sb =
i∑

j=0

(
i
j

)
(−1)i−jBij(b), (9)

with
Bij(a) = B(a1 + j, a2 + i − j), (10)
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where B(·, ·) denotes the Beta function.
The maximum likelihood estimates are of course the parameter values that

yield the maximum value of (7). However, finding those values will in gen-
eral require numerical methods. We have used the R function constrOptim,
which also utilizes the score function

U(a, b,g) =
[

∂`
∂g

∂`
∂a1

∂`
∂a2

∂`
∂b1

∂`
∂b2

]T

, (11)

where

∂`

∂g
= −n

∂c
∂g

+

n∑
j=1

log(xT
j yj), (12)

∂`

∂a1
= −n

∂c
∂a1

+
n∑

j=1

log xj1, (13)

∂`

∂a2
= −n

∂c
∂a2

+
n∑

j=1

log xj2, (14)

∂`

∂b1
= −n

∂c
∂b1

+
n∑

j=1

log yj1, (15)

∂`

∂b2
= −n

∂c
∂b2

+

n∑
j=1

log yj2. (16)

The maximum likelihood estimate of j = (a, b, g) under the parameter
space Ji (i = 0, 1) is denoted ĵi. Trivially, the estimate of g under J0 is
ĝ = 0.

An estimator of the general measure of correlation is thus

r̂2
J = 1− exp{−Ĝ(ĵ1 : ĵ0)}. (17)

2.2 Confidence intervals
Kent (1983) gives two proposals concerning confidence intervals for G(j1 :
j0): when the value of G(j1 : j0) is “large” and when it is “small”. Kent does
not indicate which values of G(j1 : j0) that are to be considered “large” and
which are to be considered “small,” other than that it depends on the number
of observations n. He notes though that “the asymptotics for ‘small’ G(j1 : j0)
are likely to prove most useful.”

The first 1− a confidence interval (“large”) isĜ(ĵ1 : ĵ0)−

√
s2q2

1;a

n
, Ĝ(ĵ1 : ĵ0) +

√
s2q2

1;a

n

 (18)
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where s2 is the sample variance of

2 log
f (xj, yj; ĵ1)

f (xj, yj; ĵ0)
(j = 1, . . . , n)

and q2
1;a is the upper a quantile of the q2

1 distribution.
The second 1 − a confidence interval (“small”) is (corrected for an appar-

ently misprinted â instead of â)(
mk1;a/2(â/m)

n
,
md1;a/2(â/m)

n

)
, (19)

where
â = nĜ(ĵ1 : ĵ0)

and k1;a(a) and d1;a(a) are the values of the non-centrality parameters of a non-
central chi square distribution defined as

Pr[q2
1{k1;a(a)} ≥ a] = a, Pr[q2

1{d1;a(a)} ≤ a] = a.

The constant m is the common value of the eigenvalues, which are assumed
to be equal, of a rather complicated matrix. However, for our purposes m is
always equal to 1, as we are convinced that the true density function belongs
to {f (x, y; j)|j ∈ J1}. (The a in (18) and (19) is one minus the confidence
coefficient, not to be confused with the parameter a = (a1, a2)T of the bicom-
ponent bicompositional Dirichlet distribution.)

We thus transform the confidence intervals of G(j1 : j0) yielding the
“large”[

1− exp

{
−Ĝ(ĵ1 : ĵ0) +

√
s2q2

1;an−1

}
,

1− exp

{
−Ĝ(ĵ1 : ĵ0)−

√
s2q2

1;an−1

}]
(20)

and the “small”[
1− exp

{
−
k1;a/2(â)

n

}
, 1− exp

{
−
d1;a/2(â)

n

}]
(21)

1− a confidence intervals of r2
J .

3 Comparison of the confidence intervals
If the first confidence interval (18) “includes or nearly includes 0, then,” ac-
cording to Kent (1983), “provided n is large enough for the asymptotics to
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be valid, the confidence interval of the next section [(19)] is probably more
reliable.”

In order to examine the properties of the two confidence intervals (20)
and (21), we conduct a Monte Carlo study for seven models with different
r2

J and for different numbers of observations (n = 50, 100, 250). For every
combination of model and number of observations we generate random variates
(Bergman, 2009b), estimate r̂2

J , compute the two confidence intervals, and
record in how many cases the true value of r2

J is covered by the two intervals
(the empirical confidence coefficient). The results are presented in Table 1.
The nominal confidence coefficient in the study is 0.95 and we see clearly from
the table that most of the empirical confidence coefficients are close to this; the
empirical confidence coefficients vary between 0.88 and 1.00. We note that
especially the “large” confidence intervals seem to have a too high empirical
confidence coefficients, indicating overly wide confidence intervals.

The ratios between the average widths of the “small” and “large” confidence
intervals are plotted in Figure 1. We see in the figure that the average ratio
between the widths of the “small” and the “large” confidence intervals is about
0.5 when r2

J < 0.2, and around 0.6 for larger r2
J . We also note that, perhaps

not very surprisingly, the ratio increases as the sample size and the correlation
coefficient are increased. However, for 250 observations and r2

J = 0.867, the
average width of the “small” confidence interval is less than 0.75 of that of the
“large” one. It should be noted though that as the “large” confidence intervals
are not guaranteed to be non-negative, the comparisons are from a practical
point of view not entirely fair; a confidence interval with a lower limit less than
zero would in practice of course have it replaced by zero as both the information
gain and the general measure of correlation are non-negative. On the other
hand, a confidence limit that is not restricted to the appropriate parameter
space is of course of less practical use.

4 Bias correction
Kent (1983) notes that the estimator (5) is biased and suggests a less biased
estimator

Ĝ(ĵ1 : ĵ0)− B̂
n

(22)

where
B̂ = tr{Ĥ(ĵ1)−1Ĵ(ĵ1)} − tr{Ĥll(ĵ0)−1Ĵll(ĵ0)}. (23)

In (23), Ĵ(ĵ) is an estimate of the expected squared score matrix J(j) = E{U(j)U(j)T}

Ĵ(j) =
1
n

∑
U(j)U(j)T, (24)
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Table 1. The empirical confidence coefficient is presented for seven different
models (a, b, g) and three different numbers of observations n. For each model
and number of observations, 500 samples of random variates are generated and
the two confidence intervals (“large” and “small”) for the correlation coefficient
are calculated. We then calculate the proportion of the confidence intervals that
cover the true value of the correlation coefficient r2

J for that model.

Parameter values Interval
a b g r2

J n “large” “small”

(3, 2.3) (4, 2) 1.5 0.038 50 0.932 0.970
100 0.946 0.964
250 0.980 0.958

(9, 7) (4, 2) 4.5 0.099 50 0.964 0.950
100 0.972 0.882
250 0.988 0.948

(4, 3) (4, 2) 4.5 0.174 50 0.968 0.954
100 0.980 0.910
250 1.000 0.946

(4, 3) (3, 4) 4.5 0.244 50 0.992 0.954
100 0.994 0.962
250 0.998 0.954

(4, 3) (3, 4) 6.5 0.418 50 0.996 0.968
100 1.000 0.982
250 1.000 0.968

(4, 3) (3, 4) 9.5 0.652 50 1.000 0.992
100 1.000 0.996
250 1.000 0.984

(4, 3) (3, 4) 14.0 0.867 50 0.998 0.996
100 1.000 0.994
250 1.000 0.994
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Figure 1. The average ratio between the widths of the “small” (DS) and “large”
(DL) confidence intervals plotted for the seven different models (r2

J ) in Table 1
and for 50 (•), 100 (N) and 250 (�) observations.
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and Ĥ(ĵ) is the estimate of minus the expected score derivative matrix H(j)=
−E{∂U(j)/∂jT}

Ĥ(j) = −1
n

∑ ∂U(j)
∂j

. (25)

The matrices above with the subscript ll refers to the 4× 4 part of the matrix
not depending on g, that is the top left part Hll if the matrix is partitioned

H =

[
Hll Hlg

Hgl Hgg

]
and of course analogously for Jll .

Calculating Ĥ(j) requires calculating the second derivatives of the log like-
lihood ∂2`(j)/∂j2 = ∂U(j)/∂j. An expression for (25) may be found, but
it is not presented here as it would require a large amount of space. However
to give an example of the complexity of the calculations necessary we present
five of the second derivatives. We first introduce some notation (to enable the
expressions to fit into the page).

Let a. = a1 + a2 and b. = b1 + b2. We use the digamma and trigamma
functions

Y(z) =
d logG(z)

dz
, (26)

y1(z) =
d2 logG(z)

dz2 =
dY(z)

dz
, (27)

and define

Y (1)
ij (a) = Y(a1 + j)−Y(a. + i), (28)

Y (2)
ij (a) = Y(a2 + i − j)−Y(a. + i). (29)

The first and second derivatives of the binomial coefficient are denoted(
g

i

)′
=

d
dg

(
g

i

)
, (30)(

g

i

)′′
=

d2

dg2

(
g

i

)
. (31)

Calculation of the second derivative of the binomial coefficient (31) is discussed
in Appendix A. We also define

S (k)
a =

∂Sa
∂ak

=
i∑

j=0

(
i
j

)
(−1)i−jBij(a)Y (k)

ij (a) (32)

S (kl)
a =

∂2Sa
∂ak∂al

=

i∑
j=0

(
i
j

)
(−1)i−jBij(a){Y (k)

ij (a)Y (l)
ij (a)− y1(a. + i)}, (33)
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where Bij(a) is given in (10), and we define S (k)
b and S (kl)

b analogously. We finally
define

K =

∞∑
i=0

(
g

i

)
SaSb, (34)

where Sa is given in (8) and Sb is given in (9).
Using this notation we present five of the elements in Ĥ(j):

∂2`

∂g2 = −n

(∑∞
i=0

(
g
i

)′′SaSb
)
K −

(∑∞
i=0

(
g
i

)′SaSb
)2

K 2

∂2`

∂g∂a1
= −n

(∑∞
i=0

(
g
i

)′S (1)
a Sb

)
K −

(∑∞
i=0

(
g
i

)′SaSb
)(∑∞

i=0

(
g
i

)
S (1)
a Sb

)
K 2

∂2`

∂a2
1
= −n

(∑∞
i=0

(
g
i

)
S (11)
a Sb

)
K −

(∑∞
i=0

(
g
i

)
S (1)
a Sb

)2

K 2

∂2`

∂a1∂a2
= −n

(∑∞
i=0

(
g
i

)
S (12)
a Sb

)
K −

(∑∞
i=0

(
g
i

)
S (1)
a Sb

)(∑∞
i=0

(
g
i

)
S (2)
a Sb

)
K 2

∂2`

∂a1∂b1
= −n

(∑∞
i=0

(
g
i

)
S (1)
a S (1)

b

)
K −

(∑∞
i=0

(
g
i

)
S (1)
a Sb

)(∑∞
i=0

(
g
i

)
SaS (1)

b

)
K 2

The remaining the elements of the matrix may be expressed in a similar fashion.
Assuming that the true density belongs to {f (x, y; j)|j ∈ J1}, then, ac-

cording to Kent (1983), tr{Ĥ(ĵ1)−1Ĵ(ĵ1)} is equal to the number of parame-
ters in the model, in our case five.

However, numerical examples indicate that the bias corrected estimates are,
contrary to Kent’s claim, actually more biased than the uncorrected ones, espe-
cially for models with large r2

J . We believe that this increased bias might be due

to numerical issues in calculating Ĥ(ĵ), which, as demonstrated above, consists
of a multitude of infinite sums. Due to this lack of improvement we have not
used this bias correction in our estimations.

5 An application
We illustrate the estimation of the general measure of correlation presented in
Section 2 with an example. The data consist of the composition of the gov-
ernment Gross Domestic Product (GDP) for the 50 U.S. states and District of
Columbia, for the years 1967 and 1997. The composition is originally (Fed-
eral civilian, Federal military, State and local), but we have collapsed the Federal
military and the State and local, to create a bicomponent composition. Data
come from the Bureau of Economic Analysis, U.S. Department of Commerce.

The maximum likelihood estimates of the parameters under J1 are

â = (16.32, 14.41)T, b̂ = (17.31, 43.20)T, ĝ = 57.41.
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The data and the contour curves of the bicompositional Dirichlet distribution
with the above parameter estimates are shown in Figure 2. The estimate of the
general measure of correlation is

r̂2
J = 0.3027,

with a “small” confidence interval of

(0.0993, 0.5371)

thus indicating that composition of the government GDP in 1967 is correlated
with the composition of the government GDP in 1997.

6 Discussion
The compositional data analysis has through history primarily been concerned
with modelling the dependence between the components of a composition,
the intra-compositional dependence. However, understanding and modelling
the dependence between compositions, the inter-compositional dependence,
is also of interest; this is of course especially evident when we are studying
compositional processes.

Kent (1983) introduced a general measure of correlation and this was devel-
oped by Bergman and Holmquist (2009) for two compositions using the only
known distribution on the Cartesian product S D × S D (Bergman, 2009a).
In this paper we have shown how to estimate the general correlation coefficient
r2

J with a point estimate and two confidence intervals. We have also compared
the two confidence intervals and it is apparent for the models that we have
examined that the so called “small” confidence interval (based on non-central
q2-distributions) will produce the smaller intervals, yielding an empirical confi-
dence coefficient for almost all models of approximately 95 %, when the nom-
inal confidence coefficient is 95 %. The “large” confidence intervals will in
general be wider.

As an example we have also estimated the general measure of correlation for
GDP data from the 50 U.S. states and District of Columbia.

A Derivatives of binomial coefficients
Theorem 1. The second derivative of the binomial coefficient with respect to r is

d2

dr2

(
r
n

)
=

1
n!

n−1∑
i=0

n−1∑
j=0
j 6=i

n−1∏
k=0
k 6=i
k 6=j

(r − k). (35)
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Figure 2. The federal civilian proportion of the government part of GDP for
the 50 U.S. states and District of Columbia plotted for 1997 versus 1967 and
the contour curves of the estimated bicompositional Dirichlet distribution.

Source: Bureau of Economic Analysis, U.S. Department of Commerce
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Proof. Bergman and Holmquist (2009, Theorem A.2) give an expression for
the first derivative of the binomial coefficient:

d
dr

(
r
n

)
=

1
n!

n−1∑
i=0

n−1∏
j=0

I (i, j)

where

I (i, j) =

{
1 (i = j),

r − j (i 6= j).

This is thus a sum of n terms each consisting of a product of n factors r − j,
where the jth factor of the jth term is replaced by 1; hence each term in practice
consists of a product of n− 1 factors:

(r − 1)(r − 2) · · · (r − n + 1)

+(r − 0)(r − 2) · · · (r − n + 1)

+ · · ·
+(r − 0)(r − 1) · · · (r − n + 2)

Differentiating this expression yields a sum of n terms (i = 0, . . . , n − 1),
each consisting of a sum n − 1 terms (j = 0, . . . , n; j 6= i), each in turn
consisting of a product of n − 2 factors (k = 0, . . . , n; k 6= i, k 6= j) where
every factor is r − k.
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