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1. Introduction

Many control systems have a global dynamical be-
havior that in addition to a desired stable equilib-
rium has one or more unstable equilibria or other ex-
ceptional trajectories. Typical examples of such sys-
tems are pendulums or so called phase locked loops.

The objective of this paper is to compare two differ-
ent methods for analysis of the global behavior in
such systems. The first method is LaSalle’s invari-
ant set theorem [3]. The second method is the cri-
terion for almost global stability introduced by the
author in {4},

The phase locked loop (PLL), Figure 1, is a wide-
spread technique which has contributed significantly
fo communications and servo contrel for many years
[2]. The purpose is to synchronize two signals by ad-
justing the phase of the second signal squ(t) by com-
paring it to the first signal si,(t). Most often, such
loops are designed using linearized models, but the
nonlinearities are of fundamental importance and
put constraints on achievable performance. The ap-
plication of Lyapunov redesign to PLL's was studied
in [1].
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Figure 1: Schematic piéture of a phase locked loop for
synchronization of the signals s, (¢} and s,..(f)
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Figure 2: Approximate model for a phase locked loop
with the filter (s + 1)/s

2. PLL using LaSalle’s theorem

OQur objective is to study the global behaviour of a
system with several equilibria. The following result
by LaSalle is classical. '
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Proposition 1 ([3]) Suppose that V € CYR"R)
with

VV-flx}<0 for all x,t
Let E = {x : VV{(x)  f(x) = 0} and let M be the
largest set in E that is invariant to the dynamics
£(t) = f(x). Then |x(¢t)| — M U {oo} as ¢ — co.

This theorem will now be used to analyze a phase-
locked loop. With idealized models for the phase de-
tector and the oscillator {VCO) and a phase refer-
ence equal to zero, the phase locked loop with filter
(s + 1)/s can be modelled as {Figure 2)

]|

(The same equations can be used to describe a pen-
dulum on a cart with proportional feedback.} Intro-
duce the Lyapunov function

¥
—sine — ycose

V{e,y) = 1 —cos(e) + (v + sine)?/2
Then

av.
de

ov

V=[ r ]f(e,y)

= [ sine + (y +sine)cose y+sine ] f{ey)

= —sin%(e)

The possibility that (y,e) — oo can be excluded, so
LaSalle’s theorem shows that all trajectories eventu-
ally will approach the set

M = {{kx,0) : k=1,2,...}

Note, however, that only the even multiples of & cor-
respond to the desired stable equilibria of synchro-
nization. Indeed some initial states will (in theory)
give rise to trajectories that end up in a phase error
of 180°. To prove that this event is exceptional, one
could use the theory of stable manifolds to verify that
the set of such initial states i3 a manifold of lower
dimension.

3. PLL analysis using density functions
The following is a modification of a theorem in [4]:
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Figure 3: Phase diagram for the system in Figure 2

Theorem 1 Consider the equation x(t) = f(x(t}),
where f € CY{R™,RY), f(x)/(1+ |xi) is bounded and
f(0) = 0. Suppose p € C'(R"\ {0},R*) with
Sz P}z < 00 1)
[V-(fo)l(x) >0 (2)

Then, for almost all initial states x(Q) the trajectory
x(t) tends to zero as t — oo,

for almost all x

Moreover; if f(xy,....%3) = Flay + T,%2,...,%,) for
all x, let X = ([0,7) x R*"1)\ {0}, If there exists
p € CHX,R*) such that (1)-{2) kold in domain X
and p(0,x2,...,%,) = p(t,x2,...,%,) for all x, then
for almost all initicl states xz(0) the trajectory x(t)
tends to an integer multiple of (1,0,...,0).

Proof. The first statement is a special case of The-
orem 1in {4]. The second statement is proved anal-
ogously: Theorem 2 in [4], restated below, is applied
with P = {x € X,: |x| > r}, (Y} = [, p(x)dx and
T:X — X defined by T'(x) = ¢1(x) mod 7.

Theorem 2 { [4]) Consider a« measure space
{(X,A,1), a set P C X of finite measure and a
measurable mep T : X — X. Suppose that

w(T1Y) < (Y} for all measurable Y C X (3}

Define Z as the set of elements x € P such that
T*(x) € P for infinitely many integers n > 0. Then
H(TZ) = p(2).

The same phase-locked loop as before can be studied
using the density function

(e,3) = 1 1
ey = T 12 2cose+ ysine
Calculations give
1 2 . g8 2 €
= = gi = (4 — -} >
"4 (y+281ne) + sin 2(4 cos 2)__0

900

and

¥ (V-fp)
=(V-fw-Vy f
= (—cose)(y? +2—2cose+ ysine)
— | 2sine + ycose 2y +sine | f(e¥)
= —2cose + 2cos’ e + sine
= (1—cose)?>0

with strict inequality except for e = 2kn, k= 1,2,.. ..
Hence Theorem 1 shows that almost every trajectory
tends toward a stable equilibrium,

4. Comparison and conclusions

At first sight, it looks like the two approaches give
the same result. In both cases, the conclusion is
that for almost all initial states the trajectory tends
towards the stable equilibrium. However, the robust-
ness properties of the two criteria are different. Con-
sider the modified system

i J-re-|

where d() is a perturbation. Then §(e) must vanish
when e is integer multiple of 7 in order for LaSalle’s
theorem to work with V unchanged. The condition
with density functions may still work as long as §(e)
vanishes when ¢ is an integer multiple of 2z. Hence
the location of the unstable equilibrium may change.

y
—sine— ycose + d(e) ]

In conclusion, the phase locked loop provides a very
illustrative example for global analysis of systems
with several equilibria. Much more remains to be
said and investigated in this field.
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