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SUMMARY

Although the vinegar fly Drosophila melanogaster is
arguably the most studied organism on the planet,
fundamental aspects of this species’ natural ecology
have remained enigmatic [1]. We have here investi-
gated a wild population of D. melanogaster from a
mopane forest in Zimbabwe. We find that these flies
are closely associated with marula fruit (Sclerocarya
birrea) and propose that this seasonally abundant
and predominantly Southern African fruit is a key
ancestral host of D. melanogaster. Moreover, when
fruiting, marula is nearly exclusively used by
D. melanogaster, suggesting that these forest-dwell-
ing D. melanogaster are seasonal specialists, in a
similar manner to, e.g., Drosophila erecta on screw
pine cones [2]. We further demonstrate that the
main chemicals released by marula activate odorant
receptors that mediate species-specific host choice
(Or22a) [3, 4] and oviposition site selection (Or19a)
[5]. The Or22a-expressing neurons—ab3A—respond
strongly to the marula ester ethyl isovalerate, a vola-
tile rarely encountered in high amounts in other fruit.
We also show that Or22a differs among African pop-
ulations sampled from a wide range of habitats, in
line with a function associated with host fruit usage.
Flies from Southern Africa, most of which carry a
distinct allele at the Or22a/Or22b locus, have ab3A
neurons that are more sensitive to ethyl isovalerate
than, e.g., European flies. Finally, we discuss the
possibility that marula, which is also a culturally
and nutritionally important resource to humans,
may have helped the transition to commensalism in
D. melanogaster.

RESULTS AND DISCUSSION

Marula—Candidate Ancestral Host of Drosophila

melanogaster

The vinegar fly Drosophila melanogaster displays preference to-

ward certain fruit and strongly favors citrus for egg laying [5]. The
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presence of a distinct host partiality is intriguing and implies that

D. melanogaster during its evolutionary history likely has had a

close association with a specific fruit, or group of fruit, with char-

acteristics akin to citrus. This ancestral host is, however, likely

not found among members of the Asian genus Citrus, but rather

among fruit found within the Miombo and Mopane forests of the

fly’s predicted Urheimat in Southern Africa, more precisely in

present day Zimbabwe and Zambia [6] (Figure 1A).

TheMiombo andMopane forests carry an impressive diversity

of fruit-bearing plants [7] (Figures 1B and 1C). Based on what we

know of D. melanogaster’s physiology and preference, we can,

however, deduce some of this hypothetical ancestral host’s

characteristics (Figure S1) and thereby narrow down the list of

likely candidates. In this context, marula stands out. This fruit

is extremely abundant, only matched in terms of biomass by

figs (Ficus spp.) [7] (Figure 1D), and displays physical and

chemical properties that fit with the known preference of

D. melanogaster. In brief, marula has a thick rind similar to that

of citrus, which encloses a sugary (and highly fermentable) juicy

pulp (Figure 1E), with a pH similar to that of orange (Figure 1G),

features all favored by D. melanogaster (Figure S1). Marula emits

terpenes and esters, which in terms of total emission contribu-

tion, as well as in numbers, are the primary chemical compo-

nents, as determined via gas chromatography-mass spectros-

copy analysis of headspace collections (Figures 1H and 1I).

The twomain chemicals, ethyl isovalerate (an ester) and b-caryo-

phyllene (a sesquiterpene), together make up�55%of the head-

space. Both terpenes and esters are known to be important and

ecologically relevant olfactory cues for D. melanogaster [5, 8]. In

short, marula fulfills the criteria on essentially all counts and is

accordingly a good candidate ancestral host.

Wild D. melanogaster in the Ancestral Habitat Utilize
Marula
Do flies from native habitats then use marula? To answer this

question, wemounted an expedition to Southern Africa in search

of forest-dwelling D. melanogaster and marula. Specifically, we

searched mopane woodlands of the Matopos national park in

Southwestern Zimbabwe (Figure 2A), a site situated within the

predicted ancestral range [6]. The Matopos covers 424 km2,

hosts no permanent human habitation, and is covered in

Mopane and kopje woodlands (Figure 2B).

Once in theMatopos, we localizedmarula trees (Figure 2C), as

well as fruiting trees with fermenting fruit below (Figure 2D),
cember 17, 2018 ª 2018 The Authors. Published by Elsevier Ltd. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Fruit Diversity in a Mopane Forest and Marula Characteristics

(A) Predicted ancestral range of D. melanogaster and the dominant vegetation zones.

(B–D) Diversity and availability of fruit in aMopane forest (B), Total fruit biomass permonth (C), and yearly biomass per fruit variety (D) (as listed in B). Data from the

Matopos national park and adapted from [7].

(E and F) Ripe marula (Sclerocarya birrea) fruit (E) (photo: E.V. Jirle), and marula seeds (F).

(G) pH test sticks exposed to marula (left) and orange (right) fruit pulp, with scale below (pH 1–5).

(H) Flame ionization detection (FID) traces from a headspace collection of marula volatiles. Numbers refer to the primary volatile constituents, the structures of

which are shown below. Color code is as per (I).

(I) Contribution (%) per chemical class to the total volatile blend of marula (above) and orange (below).

See also Figure S1.
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among which we placed fly traps baited with marula. Over

the next days, these traps caught numerous D. melanogaster

(n = 147 from this single site). Traps placed under an addi-

tional 5 marula trees yielded another 67 D. melanogaster speci-

mens (Figure 2E). At all examined sites, though, D. simulans
2 Current Biology 28, 1–9, December 17, 2018
outnumbered D. melanogaster (Figure 2F). We hereafter refer

to these flies as ‘‘wild,’’ in line with their presence in undisturbed

wilderness, with the caveat that their ultimate origin remains un-

known. For more information about these flies and other

D. melanogaster specimens caught from wilderness areas in
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Figure 2. Wild D. melanogaster from Mopane Woodlands Are Closely Associated with Marula

(A) Location of the Matopos National Park, Zimbabwe.

(B) View of the park, showing extensive mopane woodland cover with interspersed kopje rock formations. Photo: M. Stensmyr.

(C and D) A marula (Sclerocarya birrea) tree (C) and fermenting fruit (D). Photo: E.V. Jirle and M. Stensmyr.

(E) The Matopos national park and the collection sites with total numbers of specimens of Drosophila melanogaster caught.

(F) Proportion of D. melanogaster to Drosophila simulans from all collection sites.

(G) Violin plots showing oviposition indices (OI) of wildD. melanogaster and D. simulans (color code as per F) provided a choice between traps baited with marula

or orange.White circles show themedian, and boxes show the 25th–75th percentiles, which are extended bywhiskers indicating 1.53 the interquartile range from

the 25th–75th percentiles; the shape denotes the density estimate and extends to extreme values. Deviation of the OI against zero was analyzed for significance

(*p < 0.05) with a one-sample Wilcoxon test (p < 0.05).

(H and I) Violin plots showing the number of D. melanogaster (H) and D. simulans (I) caught at sites with or without marula. Violin plots are as per (G). Differences

between the means were analyzed for significance (*) with a Mann-Whitney U test (p < 0.05).
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Southern Africa, we refer interested readers to an accompanying

paper [9].

We next provided the forest flies with a choice of marula

versus orange, the favorite breeding substrate of domestic

D. melanogaster [5]. We placed paired traps, containing either

marula or orange, under a fruiting marula tree. Similar to the

laboratory strain, the wildD.melanogaster showed a strong pref-

erence for marula (Figure 2G). Interestingly, though, D. simulans
displayed no suchpreference (Figure 2G), indicating that themar-

ula preference is exclusive to D. melanogaster and, moreover,

that marula is not simply overall a more suitable fruit resource to

Drosophila spp. We next dissected marula in search of fly eggs

and larvae, and in all fruit examined, we localized drosophilid

larvae, fromwhichD.melanogasteradults later emerged. In short,

wildAfricanD.melanogasterare drawn to theodor ofmarula, pre-

fer marula to orange, and use marula as breeding substrate.
Current Biology 28, 1–9, December 17, 2018 3
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Figure 3. Wild D. melanogaster from Mopane Woodlands Are Closely Associated with Marula

(A) Violin plots showing oviposition indices (OI) of Canton-S flies from a binary-choice test between standard cornmeal fly foodmixed with orange or banana pulp.

Violin plots are as per Figure 2G. Deviation of the OI against zero was analyzed for significance (*) with a one-sample Wilcoxon test (p < 0.05).

(B and C) Violin plots showing OI of Canton-S flies from a binary-choice test between standard cornmeal fly food mixed with orange or marula pulp (B) or fly food

mixed with b-caryophyllene or ethyl isovalerate (C) against fly food alone. Violin plots are as per Figure 2G. Deviation of the OI against zero was analyzed for

significance (*) with a one-sample Wilcoxon test (p < 0.05).

(D) Violin plots showing the response index (RI) of Canton-S flies toward ethyl isovalerate (10�4) in a mini T-maze (depicted left). Violin plots are as per Figure 2G.

Deviation of the RI against zero was analyzed for significance (*) with a one-sample Wilcoxon test (p < 0.05).

(E) Violin plots showing OI of Canton-S flies from a binary-choice test between standard cornmeal fly foodmixedwith orange and ethyl isovalerate against fly food

with marula. Violin plots are as per Figure 2G. Deviation of the OI against zero was analyzed for significance (*) with a one-sample Wilcoxon test (p < 0.05).

(F) Prestimulation view of Or22a-Gal4>UAS-GCaMP6m showing intrinsic fluorescence from the DM2 glomerulus.

(G) Pseudocolored image showing ethyl isovalerate-induced fluorescence changes in the antennal lobe (AL) of a Or22a-Gal4>UAS-GCaMP6m fly.

(H) Averaged traces from DM2 glomerulus of Or22a-Gal4>UAS-GCaMP6m flies stimulated with ethyl isovalerate. Shaded areas represent SEM. The gray bar

represents the stimulus duration (1 s).

(I and J) Pseudocolored image showing marula- (I) and orange- (J) induced fluorescence changes in the AL of Or22a- Gal4>UAS-GCaMP6m flies.

(legend continued on next page)
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Wild D. melanogaster Are Seasonal Specialists on
Marula
To investigate the general distribution of D. melanogaster in the

Matopos, we next placed traps (baited with fermenting marula)

at locations (n = 5) with no fruiting marula trees nearby, but

with otherwise similar vegetation (including other fruiting trees).

Strikingly, D. melanogaster was absent, or very sparse, in traps

at these locations (Figure 2H). On the other hand, D. simulans

was as abundant at sites with marula as it was in sites without

(Figure 2I). The distribution pattern of D. melanogaster in the

Matopos hence indicates niche confinement and, in turn,

a specialized lifestyle. D. melanogaster as a seasonal fruit

specialist would actually not be surprising given (1) the scarcity

of the species in Miombo and Mopane forests outside of marula

season [9], (2) the observed presence of a distinct egg-laying

preference [5], and (3) the fact that host specialization is a

prevalent feature in the melanogaster subgroup. Drosophila

sechellia exclusively breeds in noni fruit [10], whereasDrosophila

erecta and Drosophila orena are seasonal specialists on

Pandanus cones [2] andSyzygiumwaterberries [11] respectively.

Drosophila teissieri is closely associated with Parinari fruit, which

limits its geographic range [2, 11, 12], whereasDrosophila santo-

mea is found with figs from Ficus clamydocarpa trees [13]. Thus,

seasonal host specialization in D. melanogaster would fall into

the pattern displayed by most (if not all) of its close relatives.

Outside of marula season, these forest flies may go into

diapause, much like they do in temperate regions [14], or switch

to opportunism, utilizing alternate breeding substrates. One

such alternative could be figs, which are present year-round in

the Matopos (Figure 1B) and in terms of biomass are even

more abundant than marula (Figure 1D). D. melanogaster has

moreover been reared from figs in Africa [15], which are also

an alternate host for the seasonal specialist D. erecta outside

of Pandanus season [16].

Laboratory D. melanogaster Shows Oviposition
Preference for Marula and Marula Volatiles
Wild African D. melanogaster hence not only utilize marula for

parts of the year, marula appears to be exclusively utilized. We

next wondered how domestic flies react to this fruit. To this

end, we used a two-choice assay [17] to examine egg-laying

preference in Canton-Special (Canton-S) wild-type flies. The

Canton-S strain was established sometime before 1916 from a

population in Canton, Ohio [18], well outside the sub-Saharan

range of marula. We first verified the citrus preference of these
(K and L) Averaged traces from DM2 glomerulus of Or22a-Gal4>UAS-GCaMP6m

The gray bar represents the stimulus duration (0.5 s).

(M) Marula-odor-mediated upwind flight attraction of Or22a-Gal4>UAS-TNT flie

with different letters indicate significant difference as analyzed by a binomial gen

(N) Geographic origin of examined D. melanogaster populations. Abbreviations a

(O) Genetic differentiation among populations at Or22a and Or22b is depicted vi

populations with unusually high FST values (elevated genetic differentiation) are sh

less than 0.1% of windows on the same chromosome arm have an FST value thi

(P) Frequency of the Or22ab allele across the examined D. melanogaster popula

(Q) Representative single sensillum recording trace from an ab3 sensillum. The l

duration of stimulus delivery (0.5 s) is marked by the black bar.

(R) Dose-response curve of ab3A neurons from the RG18N strain and Canton-

standard deviation.

See also Figures S2 and S3.
flies in the oviposition assay. Given a choice between orange

and banana, the flies clearly preferred citrus as oviposition sub-

strate (Figure 3A). Having confirmed the assay, we subsequently

tested orange versus marula, and indeed, flies provided this

choice strongly preferred marula, similar to Wild African

D. melanogaster (Figure 3B). The ancestral marula preference

is accordingly conserved in non-African flies.

Which chemicals then mediate the marula preference? We

used the same two-choice assay and next tested the major

chemical components of the headspace individually. We have

previously shown that fly food spiked with terpenes confers pos-

itive egg-laying site selection [5], and thus we only re-tested the

main terpene (b-caryophyllene), which as expected generated

preferential oviposition (Figure 3C). The main ester component,

ethyl isovalerate, also conferred oviposition preference (Fig-

ure 3C), as well as attraction in a T-maze assay (Figure 3D).

The preference of marula over orange may hence be mediated

by the high presence of esters in the former. In line with this

reasoning, flies provided with a choice of orange spiked with

ethyl isovalerate against marula failed to make a choice

(Figure 3E).

The Marula Volatile Ethyl Isovalerate Activates
Or22a-Expressing Neurons
In D. sechellia and D. erecta, host specialization is linked to

the Or22a circuit, which in both species is activated by distinct

esters from the respective hosts [3, 4]. We thus wondered

whether the primary marula ester ethyl isovalerate also

activates Or22a-expressing olfactory sensory neurons (OSNs)

inD.melanogaster. To investigate this issue, we performed func-

tional imaging of the antennal lobe in flies expressing the calcium

reporter GCaMP6m [19] under the control of Or22a-Gal4 [20]

(Figure 3F). Stimulation with ethyl isovalerate yielded strong cal-

cium signals in the DM2 glomerulus (the target of the Or22a-ex-

pressing OSNs [20, 21]) already at 10�7 dilution (Figure 3G, H). In

line with its chemistry, marula odor also triggered strong Ca2+

signals from DM2 (Figures 3I and 3J), whereas orange odor trig-

gered weak to no activity from the same glomerulus (Figures 3K

and 3L). Thus, similar to its specialized siblings, the main ester

from the preferred host activates Or22a. Silencing of the Or22a

pathway via Or22a-Gal4>UAS-TNT did not, however, abolish

the marula oviposition preference (data not shown), suggesting

that additional pathways are involved in this behavior. Rather

than mediating egg-laying preference, the primary function of

Or22a may instead be locating the host over distance. Hence,
flies stimulated with marula (K) and orange (L). Shaded areas represent SEM.

s in comparison to Or22a-Gal4>UAS-TNTIMP and Canton-S (cs). Bars labeled

eralized linear model (GLM) followed by Tukey’s test (p < 0.05).

re as per [5].

a Circos plots [39] based on FST quantiles (Q(FST)). Only connections between

own. The red color, for example, indicates that between this pair of populations,

s high.

tions.

arger-amplitude spiking neuron, i.e., ab3A, responds to ethyl isovalerate. The

S (S) toward ethyl isovalerate and ethyl hexanoate. Shaded area shows the
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we next examined up-wind flight navigation toward marula of

flies with Or22a silenced (via Or22a-Gal4>UAS-TNT) in a wind

tunnel assay [22]. Flies with non-functional Or22a input showed

a reduced ability to localize marula compared to control flies

(Figure 3M), suggesting that these neurons’ predominant func-

tion is to assist the fly in locating its host over distance. The

importance of these neurons in this context is also evident

from D. sechellia, which has a numerical increase of Or22a-ex-

pressing OSNs, which likely affords an improved ability to find

noni over distance [3].

Or22a Shows Signs of Local Adaptation
Since marula is restricted to sub-Saharan Africa, most D. mela-

nogaster have to make do with alternative hosts. If Or22a indeed

is linked to the specific chemistry of the host, we would accord-

ingly expect to see local adaptation of the Or22a locus between

D. melanogaster populations from diverse environments that

may utilize disparate hosts. Thus, we next estimated local ge-

netic differentiation (as indexed by FST [23, 24]) within the OR

family between genomes from 10 African populations, plus one

European (Figure 3N). For each window centered on an olfactory

receptor gene, we then evaluated the FST quantile for each pair-

wise population comparison (the proportion of all windows on

the same chromosome arm that showed stronger allele fre-

quency differences [higher FST]) between these same two popu-

lations (Figure 3O). The Or22a locus, and the adjacent tandem

paralog Or22b, shows striking genetic differentiation between

almost all population pairs (Figure 3O), in stark contrast to

most of the other ORs, for which little or no sign of local adapta-

tion can be discerned (Figure S2).

In cases where other ORs did show strong FST outliers (quan-

tiles < 0.0001), differentiation in one or a few populations was

often most apparent. These genes included Or33a, Or65b, and

Or67a (Figure S2). Interestingly, these receptors also appear to

have important functions. Or33a has unknown function [25],

but like Or22a, it shows variable expression across species

[26]. Or67a detects aromatic esters (e.g., methyl benzoate) [27]

and has undergone serial duplication in Drosophila suzukii and

Drosophila biarmipes [28]. Or65b is expressed in pheromone-

sensing neurons [29], but its function has not been established.

In short, unlike most members of the OR family in D. mela-

nogaster, Or22a (and its closely linked paralog, Or22b) shows

strong signs of local adaptation, in line with a function associated

with host-specific chemistry.

At the molecular level,Or22a (andOr22b) thus differs between

populations, but does this local differentiation also translate into

functional changes in the ab3A neurons where these genes are

expressed [20, 21]? The most conspicuous alteration among

the investigated populations in the Or22a/Or22b locus is a dele-

tion allele, whereby a segment stretching from the second exon

of Or22a to the start of the second exon of Or22b has been

deleted, generating a chimeric receptor, Or22ab (Figure S3A)

[30]. In light of the chimeric appearance of Or22ab, this variant

appears to be a derived deletion (following a more ancient dupli-

cation to create these paralogs), rather than a representation of

the ancestral state of the Or22 locus [30].

Our data support the prior suggestion [30] that the Or22ab

fusion variant is quite ancient. This variant is at a very high

frequency within the ancestral range (e.g., 88% in Zambia).
6 Current Biology 28, 1–9, December 17, 2018
Nucleotide diversity of flanking sequences, which should accrue

on the order of 4 Ne z 10 million generations in this species, is

at or above typical levels among Zambia haplotypes carrying

this deletion (Figure S3B). Hence, it is likely that the fusion

variant existed well before the species expanded beyond its

ancestral range on the order of 150,000 generations ago, or

�10,000 years ago [9, 31]. In contrast, putatively ancestral

full-length Or22a/Or22b haplotypes from Zambia show strongly

reduced diversity across the deletion region (Figure S3B). This

pattern could reflect a low long-term population size of the

full-length allele, in accordance with its current rarity in the

ancestral range. In some populations, such as in Europe or

the Ethiopian highlands, the full-length allele has become pre-

dominant (Figure 3P). Many of these haplotypes show identical

or nearly identical sequences (Figures S3C and S3D), in line with

prior evidence for positive selection linked to the Or22a/Or22b

haplotype in Europe [30]. We note that some populations with

similarly high frequencies of the fusion variant are strongly differ-

entiated from each other at the Or22a/b locus (Figure 3O), which

could imply either parallel increases of the fusion variant on

distinct haplotypes or additional variants under spatially varying

selection at this locus.

Consequently, most D. melanogaster in Southern Africa will

likely carry the Or22ab allele, which prompts the question: do

their ab3A neurons respond to the marula ester? We selected

a strain in which Or22ab is fixed (RG18N) and subsequently per-

formed single-sensillum recordings (SSRs). Measurements from

ab3A neurons revealed strong responses to stimulation with

ethyl isovalerate (Figure 3Q). The ab3A neurons in RG18N actu-

ally responded more strongly to ethyl isovalerate than to ethyl

hexanoate—the primary ligand of Or22a [27] (Figure 3R)—in

contrast to ab3A neurons from Canton-S flies (which carry

both Or22a and Or22b [32]), where ethyl hexanoate yielded a

stronger response than ethyl isovalerate (Figure 3S). In short,

African D. melanogaster not only detect ethyl isovalerate, but

also are even more sensitive to this marula compound than flies

from outside Africa. We note that the distribution of populations

with a high frequency of Or22ab overlaps with the distribution of

marula. However, whether the Or22ab allele is an adaptation

toward marula remains to be shown. Heterologous expression

and detailed functional characterization of this interesting recep-

tor variant will be a topic for future studies.

Marula as a Vehicle for the Domestication of
D. melanogaster

The Matopos is best known for its elaborately painted caves

(Figure 4A)—made by now-vanished San tribes during Late

Pleistocene to Early Holocene [7]. For these tribes, marula

played a pivotal role, and archeological excavations of their

cave homes have uncovered enormous quantities of marula

stones [7, 33](Figure 1F). From the Pomongwe cave alone, re-

mains of at least 24 million marula stones were recovered, which

only represents the carbonized remains, and hence but a fraction

of the marula that must have once been brought into this cave

[33]. The San evidently spent considerable time collecting

and processing marula, which would have been the staple

food item during many months of the year. Thus, just like

D. melanogaster, these San tribes appear to have been seasonal

specialists on marula as well.
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Figure 4. Marula and the Domestication of D. melanogaster

(A) San rock paintings from the Nswatugi cave depicting the local wildlife. Photo: M. Stensmyr.

(B) View from inside the Nswatugi cave. Photo: M. Stensmyr.

(C and D) Violin plots showing proportion of wildD.melanogaster andD. simulans caught in traps placed inside Nswatugi cave (C), and outside (D). Violin plots are

as per Figure 2G. Deviation of the OI against zero was analyzed for significance (*) with a one-sample Wilcoxon test (p < 0.05).

(E) Schematic model of the process leading up to commensalism. Wild D. melanogaster on fallen marula (1), a resource of equal importance to now-extinct San

hunter-gatherers (2) (adapted from [33]) that co-inhabited the same habitat. The San brought large numbers of marula into their cave homes, and with the fruit

likely also flies (3). The massive amounts of marula that evidently were stored in these caves (4) would have generated a potent scent trail, dominated by ethyl

isovalerate (5), attracting flies (6). Inside the caves, flies would have adapted to their new environment and preference of their close neighbors, ultimately leaving

as human commensals (7).
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The marula-San link offers a plausible scenario by which

D. melanogaster became a human commensal. The smell of

the stored marula emanating from the caves would have

attracted flies from far and wide. Flies would have found a

steady supply of marula and fermenting leftovers inside the

caves, long after the fruit’s presence in the surrounding wood-

lands had diminished. In other words, the time frame for using

the optimal breeding substrate would have been increased

considerably. Inside the caves, the flies would also have

benefitted from a reduced risk of predation, as well as protec-

tion from adverse weather conditions. Over time, the cave flies

would have accumulated adaptations helpful for human

commensalism. Relevant traits may have included a willingness

to enter darker enclosures [34] and an increased tolerance of

ethanol, both of which differentiate D. melanogaster from its

closest relatives [35]. Thus, we next wondered whether

D. melanogaster actually enter these caves. To this end, we

placed traps (n = 4) baited with fermenting marula along the

far wall of the Nswatugi cave [7] (Figure 4B). Over three days,

these traps caught a number of D. melanogaster specimens

(n = 35), but no D. simulans (Figure 4C), in contrast to the
closest traps (n = 3) placed under fruiting marula trees outside

the cave, where D. simulans greatly outnumbered D. mela-

nogaster (Figure 4D).

The archeological record indicates that systematic and inten-

sive marula use began�12,000 years ago. At�9,500 years ago,

marula harvesting reached massive proportions, finally ebbing

out �8,000 years ago [7]. These dates coincide with demo-

graphic data fromD.melanogaster, which point to awithin-Africa

expansion starting �10,000 years ago [9, 31], an expansion pre-

sumably representing the dispersal of the commensal popula-

tion throughout its new niche. In short, archeological and

demographic data would support the notion that marula use

by the San may have been a factor in turning the woodland spe-

cies D. melanogaster into the cosmopolitan species of today

(Figure 4E).

Conclusions
We have here demonstrated that D. melanogaster from a mo-

pane forest within the predicted ancestral range are seasonal

specialists on marula fruit. The odor of this seasonally abun-

dant and widely distributed fruit activates select key odorant
Current Biology 28, 1–9, December 17, 2018 7
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receptors previously implicated as having particular importance

to D. melanogaster, and we argue that marula is the ancestral

primary host of the fly. We moreover show that flies from sub-

Saharan Africa carry a specific allele of one of these odorant re-

ceptors and are also more responsive to a key marula chemical.

Finally, we speculate that the marula specialization might have

been important in driving commensalism.

The finding of a woodland population of D. melanogaster

within the ancestral habitat opens up a range of interesting ques-

tions to be addressed. For example, how do these flies differ

from their commensal relatives, i.e., which genetic factors under-

lie this shift in lifestyle? The finding thatD. melanogaster appears

to have a close association with a single host fruit will further-

more facilitate studies relating to host specific chemosensory

adaptations, which so far have had to be conducted in other in-

sects in which the wealth of tools available in D. melanogaster

are unavailable.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Marula (Sclerocarya birrea) Matopos forest N/A

Orange (Citrus X sinensis) Ica Supermarket, Lund N/A

Chemicals, Peptides, and Recombinant Proteins

Ethyl isovalerate (CAS# 108-64-5) Sigma-Aldrich Cat#112283

b-caryophyllene (CAS# 87-44-5) Sigma-Aldrich Cat#22075

Experimental Models: Organisms/Strains

D. melanogaster Or22a-Gal4 Bloomington Drosophila Stock Center BDSC:9951 and BDSC:9952

D. melanogaster 20XUAS-IVS- GCaMP6m Bloomington Drosophila Stock Center BDSC: 42748 and BDSC:42750

D. melanogaster UAS-TeTxLC.tnt.E2 Bloomington Drosophila Stock Center BDSC: 28837

D. melanogaster UAS-TeTxLC.(-)V.A2 Bloomington Drosophila Stock Center BDSC 28840

D. melanogaster Canton-S(pecial) Baumgartner lab, Lund university N/A

D. melanogaster RG18N Pool lab, University of Wisconsin-Madison N/A

D. melanogaster Matopos wt Matopos forest N/A

D. simulans Matopos wt Matopos forest N/A

Software and Algorithms

Fiji [36, 37] https://Fiji.sc

AutoSpike Syntech http://www.ockenfels-syntech.com/download-2/

Circos [39] http://www.circos.ca

Illustrator CC 21.02 Adobe https://www.adobe.com/

Photoshop CC Adobe https://www.adobe.com/

R R core team 2013 https://cran.r-project.org

GC/MSD ChemStation Agilent https://www.agilent.com/en/products/software-

informatics/massspec-workstations/gc-msd-

chemstation-software

NIS elements Nikon https://www.nikoninstruments.com/Products/

Software
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marcus

Stensmyr (marcus.stensmyr@bio.lu.se).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly collections and husbandry
Field traps were made from standard 0.5l PET water bottles (purchased at a supermarket in Bulawayo, Zimbabwe) with a horizontal

slit cut to allow flies to enter. The traps were baited with marula (or with oranges for certain experiments). The traps were placed at

ground level in the vegetation. Flies were aspirated from the bottles, frozen and then transferred to 90% ethanol for later identification

(using morphological characters). Laboratory strains of D. melanogaster were reared on standard yeast corn meal medium and kept

at 23�C under a 12 h/12 h light cycle. The following strains were used; Canton-S (gift from Dr Stefan Baumgartner), RG18N (Pool lab),

Or22a-Gal4 (Sachse lab), UAS-TeTxLC.tnt.E2 (BDSC 28837), UAS-TeTxLC.(-)V.A2 (BDSC 28840), and 20XUAS-IVS- GCaMP6m

(BDSC 42748 and 42750).

METHOD DETAILS

Odor analysis and GC-MS
Fruit collected in the field were enclosed in cooking bags (Matlagningspåse M, Toppits) and volatiles evacuated through custom

made Tenax (GR 60/80, Grace Davison Discovery Science) filters for 2-3 h via modified aquarium pumps (of unknown original
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make) drawing air at 0.5 l min-1. The filters were subsequently flushedwith heptane (Sigma). Eluates were then injected into an Agilent

7890A gas chromatograph equipped with a 5975C Network Mass Selective Detector (Agilent Technologies), fitted with a HP-5MS

column (30 m, 0.25 mm, 0.25 mm). Helium was used as carrier gas at a constant flow of 1 mL min-1. The oven temperature was

set at 60�C for 1 min, which was followed by a heating gradient of 10�C min-1 to 230�C, and then held for 10 min. Chromatograms

were analyzed using ChemStation (Agilent Technologies), with compounds tentatively identified by comparison to reference spectra

in the NIST library and finally verified using synthetic standards of highest purity available (Sigma).

Electrophysiology
For single sensillum recordings, flies were first aspirated, then inserted and immobilized in pipette tips (200 ml, VWR). Recordings

were performed using electrolytically sharpened (KNO2) tungsten microelectrodes (TW5-3, Harvard Apparatus). The recording elec-

trode was positioned through a DC- 3K/PM10 piezo driven micromanipulator (M€arzh€auser), whereas the reference electrode was

inserted into the eye using a manually controlled micromanipulator (MM-3, Narishige). Odors were delivered via a Syntech CS-55

stimulus controller into a humidified air stream (1 l min-1) via cartridges made from Pasteur pipettes (VWR) containing a small piece

of filter paper (0.5 cm x 0.5 cm, Grade: 1002, Munktell) soaked with 10 mL of the stimulus solution, or solvent only. Stimulus duration

was set to 0.5 s. Recordings were digitally converted via a IDAC 4 acquisition controller (Syntech) and stored on a PC (Custom config-

ured) and analyzed (i.e., spikes sorted and counted) using the AutoSpike software (Syntech).

In vivo calcium imaging
For imaging, flies were cold anesthetized and immobilized with paraffin wax on a custommade stage, the dorsal side of the headwas

then covered with artificial haemolymph solution and a small window opened in the cuticle to expose the brain. A pE-300 CoolLED

(Nikon instruments) was used as light source (488 nm excitation, dichroic 500 nm, long-pass filter 515 nm) and emitted light captured

with a Andor Zyla sCMOS camera (Andor Technology) fitted onto a Nikon Eclipse FN1microscope (Nikon Instruments) equippedwith

a NIR Apo 40x 0.8 NA objective (Nikon Instruments). Data was acquired at 2563 256 pixels at a rate of 4 Hz using the NIS elements

software (Nikon Instruments). To deliver odor stimulus, a Syntech CS-55 stimulus controller (Syntech) was used to switch a charcoal-

filtered airstream (1 l min-1) between a 4mL vial (VWR) containing the solvent and a 4mL vial containing the stimulus. In control exper-

iment the air streamwas switched between two vials. Analysis of fluorescence intensity dynamics was performed in Fiji [36, 37] using

the measure stack function.

Behavioral experiments
For the egg-laying assay, 15-20 newly mated females were introduced to two-choice Petri dishes. Two- choice dishes were made

by dividing a 47 mm Petri dish (VWR) into two halves. One half as a treatment; odorant (150 mL of a 10�2 dilution) mixed with

standard cornmeal fly food and the other half as control; fly foodmixedwith solvent. Experiments with fruit were performed in a similar

manner. About 5g of ripe fruit, either marula or orange (chopped and briefly run through a kitchen blender), was mixed with fly food.

Two-choice dishes were covered by a 6-oz fly stock bottle (VWR). After 24 hours, the number of eggs in each side was counted and

an oviposition index (OI) calculated (OI = (Number of eggs in treatment – Number eggs in control)/ Total number of eggs). T- maze

experiments were carried out in an assay constructed from two transparent plastic 4 mL screw-cap vials (VWR) connected by a

T-shaped tubing connector (VWR). Stimulus, as well as solvent control was pipetted (10 ml) onto filter papers (0.5 cm x 0.5 cm,

Grade: 1002, Munktell) and placed in respective chambers. 10 lightly cold anesthetized female flies were inserted into the assay

through the T-connection. After allowing one minute for the flies to recover, the number of flies in respective chamber was recorded

after three minutes. For the wind tunnel experiments, female flies (4-7 days old and mated) were starved 24 hours prior testing.

Individual flies were released at the down-wind end of a wind tunnel (30x30x100 cm, made out of glass, and diffusely lit from above)

[22] and exposed to a charcoal filtered air stream (0.15 m s-1) carrying a plume of marula odor released upwind. For odor delivery,

marula fruit was kept inside a 250 mL glass jar (VWR) with a 38 mm wide opening that was covered with a metal mesh (mesh size

2 mm). The side of the jar was covered with aluminum foil to prevent visual fruit signals stimulating the flies. Charcoal filtered air

(0.5 l min-1) was injected into the jar through a Pasteur pipette placed vertically above the mesh-covered opening. The air stream

containing the fruit volatiles emanated as a wide plume from the opening of the jar into the center at the upwind end of the tunnel.

Flies were recorded for upwind flight and landing at the odor source (i.e., on top of the metal mesh or the tip of the pipette) during

4 minutes.

Population genetic analysis
Genetic variation at olfactory receptor genes was analyzed based on previously-sequenced, town-collected population samples [38]

and newly-sequenced genomes fromKafue National Park [9]. Sub-Saharan population samples with at least 10 sequenced genomes

were included, in addition to population samples from Egypt and France. FST [23, 24] between each pair of analyzed populations was

calculated for all genomic windows on euchromatic chromosome arms, where windows were scaled by their genetic diversity con-

tent to contain 250 non-singleton SNPs in the Zambia-Siavonga population sample. FST was also evaluated for a similarly-defined

window centered on the transcription start site of each olfactory receptor gene. For each population pair, an olfactory receptor gene’s

FST quantile was evaluated as the proportion of windows on the same chromosome arm for which this population pair showed a

greater FST value than the focal gene’s window. Circos [39] was then applied to visualize population pairs showing low FST quantiles
Current Biology 28, 1–9.e1–e3, December 17, 2018 e2
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for each gene. Genomes carrying fusion (deletion) variants at the Or22 locus were readily detected based on a bimodal distribution of

the number of sites with missing data within the known deletion region.

QUANTIFICATION AND STATISTICAL ANALYSIS

Values are shown as violin plots; white circle show the median, box the 25th-75th percentiles, extended by whiskers indicating 1.5x

the interquartile range from the 25th-75th percentiles; shape denotes density estimate and extend to extreme values, as stated for

each graph in the figure legends. All statistics were performed using R (https://cran.r-project.org/). Statistical details related to sam-

ple size and p values are reported in the figure legends, with a star denoting p < 0.05.
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The fly ur-host
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Figure S1. Putative characteristics of  the ancestral host. Relates to Figure 1.
i) The citrus partiality indicates a fruit with thick rind [S1], ii) surrounding a soft and juicy pulp; 
allowing mobility of the larvae [S2]. iii) The fruit should be sour, since D. melanogaster preferentially 
lays eggs on acid-containing media [S3]. iv) The fruit should be sweet, given that D. melanogaster 
preferentially lays eggs on sugar rich substrates [S4]. v) The high sugar content would also ensure 
abundance of yeast – D. melanogaster’s favorite food [S5] – and enable rapid fermentation. vi) The 
fruit should have features that promote sustained high ethanol levels, under which D. melanogaster has 
a competitive advantage [S6]. vii) High ethanol levels also protect the larvae from parasitoid wasps 
[S7]. viii) The fruit should be palatable to humans, given that a shared human-fly preference would 
constitute the most direct route to commensalism. Drawing: Rakel Stensmyr. 
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Figure S2.  Local genetic differentiation within the OR family. Relates to Figure 3.  
Circos plots based on FST quantiles for all drosophila odorant receptors. Only connections between populations 
with unusually high FST values (elevated genetic differentiation) are shown. Color code as in Figure 3O.
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Figure S2.  Local genetic differentiation within the OR family. Relates to Figure 3.  
Continued
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Figure S2.  Local genetic differentiation within the OR family. Relates to Figure 3.  
Continued
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Figure S2.  Local genetic differentiation within the OR family. Relates to Figure 3.  
Continued
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Figure S2.  Local genetic differentiation within the OR family. Relates to Figure 3.  
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Figure S3. Genetic variation at the Or22 locus. Relates to Figure 3. 
(A) The Or22a/Or22b locus, with the chimeric Or22ab deletion variant below, in D. melanogaster. 
(B) Rates of pairwise sequence differences: among Zambia genomes carrying the full Or22a/Or22b 

haplotype (pi_full), among Zambia genomes carrying the deletion yielding the Or22ab fusion variant 

(pi_del), between Zambia full and Zambia deletion alleles (dxy) and average sequence divergence 

between Zambia D. melanogaster and the D. simulans reference (divided by 5 to show on the same scale).

(C) A neighbor joining tree for a 500 bp section of the Or22 region just upstream of the Or22ab dele-

tion (1520.1 - 1520.6 kb), and (D) a comparable tree for a 500 bp region just downstream of this 

deletion (1522.9 - 1523.4 kb). Population labels are as in Figure 3O; “full” and ”deletion” alleles are 

noted. 
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