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Bayesian Detection and Tracking for Joint
Positioning and Multipath Mitigation in GNSS

Bernhard Krach, Michael Lentmaier, and Patrick Robertson

Abstract— A sequential Bayesian estimation algorithm for joint
positioning and multipath mitigation in global navigation satellite
systems is presented, with an underlying process model that
is especially designed for dynamic user scenarios and dynamic
channel conditions. In order to facilitate efficient integration
into receivers it builds upon complexity reduction concepts
that previously have been applied within maximum likelihood
estimators. To demonstrate its capabilities simulation results are
presented.

Index Terms— Global Navigation Satellite Systems, Position-
ing, Time-of-Arrival, Signal Parameter Estimation, Bayesian
Estimation, Multipath Mitigation, Synchronization.

I. INTRODUCTION

Within global navigation satellite systems (GNSS), such
as the Global Positioning System (GPS) or the future Eu-
ropean satellite navigation system Galileo, the user position
is determined based upon the code division multiplex access
(CDMA) navigation signals received from different satellites
using the time-of-arrival (TOA) method [1]. A major error
source for positioning comes from multipath, the reception
of additional signal replica due to reflections caused by the
receiver environment. The reception of multipath introduces a
bias into the time delay estimate of the delay lock loop (DLL)
of a conventional navigation receiver, which finally leads to a
bias in the receiver’s position estimate.

For efficient removal of this bias it is possible to formulate
advanced maximum likelihood (ML) estimators that incorpo-
rate the echoes into the signal model [2], [3], [4], [5], [6],
[7] or to exploit the properties of the position domain [8],
[9]. In case of static user and channel scenarios the ML
approach is optimal and performs significantly better than
other approaches as it is capable of achieving the theoretical
limits given by the Cramer Rao bound. The drawback of ML
estimator techniques is that the parameters are assumed to be
constant during the time of observation. Independent estimates
are obtained for successive observation intervals, whose length
has to be adapted to the dynamics of the user and the channel.
No explicit use of the user’s and channel’s temporal or spatial
dynamics is made.

It has been proposed in [10] to consider the important
practical case of a dynamic user and channel scenario. In
this paper we take further advantage of the properties of the
position domain likelihood [9] and formulate the line-of-sight
(LOS) path delays through a transformation of the position and
clock parameters, leading to a combined position, clock, and
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channel estimator, which allows to exploit available knowledge
about the statistical properties of the user, clock, and the
channel dynamics.

Our approach is based on Bayesian filtering, the optimal and
well-known framework to address such dynamic state estima-
tion problems. Sequential Monte Carlo (SMC) methods are
used for computing the posterior probability density functions
(PDFs) of the position and channel parameters. In contrast to
existing sequential joint positioning and multipath mitigation
approaches, which consider multipath as a bias parameter that
can be tracked [8], we incorporate the multipath signals into
our signal model. As the resulting position domain likelihood
can be factorized into the contributions of each satellite [11]
we propose to evaluate these factors via reduced complexity
methods that previously have been applied within maximum
likelihood estimators [12]. It is shown that for the proposed
sequential estimator there is no need to assume the number of
received multipath signals to be known a-priori as required for
the ML approaches, because the number of received replica
can be tracked implicitly along with all other user, clock, and
channel parameters in a probabilistic fashion.

II. SIGNAL MODEL

Assume that the receiver provides M parallel channels to
simultaneously process the signals arriving from the available
satellites [1]. After coarse removal of the Doppler shifts, e.g.
through a conventional phase lock loop (PLL), the complex
valued baseband-equivalent received signal for the receiver
channel j, j = 1, . . . , M , can be expressed as

zj(t) =
Nm∑
i=1

ei,j(t)·ai,j(t)·[cj(t) ∗ g(t− τi,j(t))] + nj(t) , (1)

where cj(t) is a delta-train CDMA code sequence that is
modulated on a pulse g(t), Nm is the total number of allowed
paths reaching the receiver (to restrict the modeling com-
plexity), ei,j(t) is a binary function that controls the activity
of the i′th path and ai,j(t) and τi,j(t) are their individual
complex amplitudes and time delays, respectively. Neglecting
CDMA interference the signal is disturbed by additive white
Gaussian noise nj(t). Grouping blocks of L samples at times
(m + kL)Ts, m = 0, . . . , L − 1, together into vectors zj,k,
k = 0, 1, . . . , and assuming the parameter functions ei,j(t),
ai,j(t) and τi,j(t) to be constant within the corresponding
time interval and equal to ei,j,k, ai,j,k and τi,j,k, the signal
for block k can be rewritten as

zj,k = CjG(τ j,k)Ej,kaj,k + nj,k (2)

=̂ sj,k + nj,k .
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In the compact form the samples of the delayed pulses g(τi,j,k)
are stacked together as columns of the matrix G(τ j,k) =
[g(τ1,j,k), . . . ,g(τNm,j,k)], Cj is a matrix representing the
convolution with the code, and the delays and amplitudes
are collected in the vectors τ j,k = [τ1,j,k, . . . , τNm,j,k]T

and ak = [a1,j,k, . . . , aNm,j,k]T respectively. Furthermore, for
concise notation we use Ej,k = diag [ej,k], where the elements
of the vector ej,k = [e1,j,k, . . . , eNm,j,k]T , ei,j,k ∈ [0, 1],
determine whether the i′th path is active or not by being
either ei,j,k = 1 corresponding to an active path or ei,j,k = 0
for a path that is currently not active. The term sj,k denotes
the signal hypothesis and is completely determined by the
channel parameters τ j,k, aj,k and ej,k. The proper selection
of the block size L is crucial and depends necessarily on the
duration of the time interval for which the parameters can
be assumed to be constant. This period is equivalent to the
coherent integration time in a conventional navigation receiver,
which commonly ranges from 1-20 ms. Using (2) we can write
the associated channel likelihood function as

p(zj,k|sj,k) =

1
(2π)Lσ2L

j

· exp

[
− 1

2σ2
j

(zj,k − sj,k)H (zj,k − sj,k)

]
.(3)

The likelihood function will play a central role in the algo-
rithm discussed in this paper; its purpose is to quantify the
conditional probability of the received signal conditioned on
the unknown signal (which depends finally on the position,
clock and channel parameters as shown later).

A. Complexity Reduction

In [3] a general concept for the efficient representation of
the likelihood (3) was presented. The key idea of this concept
is to formulate (3) through a vector zc,j,k resulting from
an orthonormal projection of the observed signal zj,k onto
a smaller vector space, so that zc,j,k is a sufficient statistic
according to the Neyman-Fisher factorization [13] and hence
suitable for estimating sj,k. In other words the reduced signal
comprises the same information as the original signal itself. In
practice this concept becomes relevant as the projection can
be achieved by processing the received signal (2) with a bank
of correlators and a subsequent decorrelation of the correlator
bank outputs. A variant of this very general concept, applied
in [4], has also been referred to as the Signal Compression
Theorem in [5]. The corresponding mathematical background
will be briefly discussed below, including also interpolation
of the likelihood and elimination of complex amplitudes as
further methods for complexity reduction.

1) Data Compression: As explained above the large vector
containing the received signal samples zj,k is linearly trans-
formed into a vector zc,j,k of much smaller size. Following
this approach the likelihood according to (3) can be rewritten

as

p(zj,k|sj,k) =
1

(2π)Lσ2L
j

exp

[
−zH

j,kzj,k

2σ2
j

]
(4)

· exp

[
�{zH

j,kQc,jQH
c,jsj,k}

σ2
j

− sH
j,kQc,jQH

c,jsj,k

2σ2
j

]

=
1

(2π)Lσ2L
j

exp

[
−zH

j,kzj,k

2σ2
j

]

· exp

[
�{zH

c,j,ksc,j,k}
σ2

j

− sH
c,j,ksc,j,k

2σ2
j

]
,

with the compressed received vector zc,j,k and the compressed
signal hypothesis sc,j,k:

zc,j,k = QH
c,jzj,k, sc,j,k = QH

c,jsj,k , (5)

and the orthonormal compression matrix Qc, which needs to
fulfill

Qc,jQH
c,j ≈ I, QH

c,jQc,j ≈ I , (6)

to minimize the compression loss. According to [3] the com-
pression can be two-fold so that we can factorize

Qc,j = Qcc,jQpc,j (7)

into a canonical component decomposition, given by an L ×
Ncc matrix Qcc, and a principal component decomposition,
given by an Ncc × Npc matrix Qpc. In [3] two choices for
Qcc,j are proposed:

Qcc,j =
{

CjG(τ b
j)R

−1
cc,j Signal matched

Cj(τ b
j)R

−1
cc,j Code matched

, (8)

where the elements of the vector τ b
j define the positions of

the individual correlators.

To decorrelate the bank outputs (CG(τ b))Hy and
C(τ b)Hy the whitening matrix Rcc can be obtained from a
QR decomposition of CG(τ b) and C(τ b) respectively. Apart
from practical implementation issues both correlation methods
given by (8) are equivalent from a conceptual point of view.
For details on the compression through Qpc,j the reader is
referred to [3].

2) Interpolation: In order to compute (4) independently of
the sampling grid, advantage can be made of interpolation
techniques. Using the discrete Fourier transformation (DFT),
with Ψ being the DFT matrix and Ψ−1 its inverse (IDFT),
we get:

sc,j,k = QH
c,jCjΨ−1diag [Ψg(0)]Ω(τ j,k)Ej,kaj,k (9)

=̂ Msc,jΩ(τ j,k)Ej,kaj,k ,

with Ω(τ j,k) being a matrix of column-wise stacked vectors
with Vandermonde structure [12], [3], such that the element
at row p and column q computes with

�{[Ω(τ j,k)]p,q}=cos
(
2π(p− 1)τq,j,k/(NgTs)

)
, (10)

�{[Ω(τ j,k)]p,q}=− sin
(
2π(p− 1)τq,j,k/(NgTs)

)
. (11)
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(b) BPSK code matched

Fig. 1. Output of two types of canonical component type correlator banks
for BPSK usable for data size reduction according to (8).

Ng is the length of the pulse g in samples. The advantage
of the interpolation is that it can take place in the reduced
space. The most costly computations in (9) can be carried out
in precalculations as the matrix Msc,j , whose row dimension
corresponds to the dimension of the reduced space and whose
column dimension is Ng is constant.

3) Amplitude Elimination: In a further step we reduce the
number of parameters by maximizing (4) for a given set of
τ j,k and ej,k with respect to the complex amplitudes aj,k,
which can be achieved through a closed form solution. Using

Sc,k = Msc,jΩ(τ j,k)Ej,k (12)

and obtaining S+
c,j,k by removing zero columns from Sc,j,k

one yields the corresponding amplitude values of the active
paths:

â+
j,k =

(
S+H

c,j,kS
+
c,j,k

)−1

S+H
c,j,kzc,j,k . (13)

For the active paths as indicated by ej,k the vector â+
j,k is

equal to the ML amplitude estimates for the time instance k.
When evaluating (4) we substitute sc,j,k and sj,k respectively
by

s̃c,j,k = Sc,j,kâj,k and s̃j,k = Sj,kâj,k , (14)

whereby the elements of the vector âj,k that are indicated to
have an active path (ai,j,k : i → ei,j,k = 1) are set equal
to the corresponding elements of â+

j,k. All other elements
(ai,j,k : i → ei,j,k = 0) can be set arbitrarily as their influence
is masked by the zero elements of ej,k. The elimination
procedure introduced here is motivated further in section IV-C.

B. Parameter Transformation

For the given TOA estimation problem the LOS signal
delays τ1,j,k associated to the different satellites j are mutually
dependent because of the common receiver position and clock
offset. To exploit this fact we apply the following parameter
transformations:

1) Delay Transformation: The line-of-sight delays are re-
placed by their navigation parameter equivalents using the
TOA pseudorange equation [1]

ρj,k =
∣∣∣pt,e

j,k − pr,e
k

∣∣∣ c−1 + τ r
k . (15)

with the pseudorange ρj,k, the position of the transmitting
satellite pt,e

j,k in earth-centered earth-fixed (ECEF) coordinates,
the receiver position pr,e

k in ECEF coordinates, the receiver
clock bias τ r

k and the speed of light c. As the actual receiver
delay estimate τ1,j,k is affected by the transmitter clock offset
τ t
j,k and suffers additionally from the propagation through the

atmosphere, we obtain τ1,j,k from ρj,k using the ionospheric
correction τ iono

j,k and the tropospheric correction τ tropo
j,k :

τ1,j,k = ρj,k + τ t
j,k + τ iono

j,k + τ tropo
j,k + εj,k. (16)

Additional errors are assumed to be included in εj,k. Within
this paper we assume pt,e

j,k, τ t
j,k, τ iono

j,k ,τ tropo
j,k and εj,k to be

known.
2) Coordinate Transformation: Furthermore we apply a

coordinate transformation on the receiver position from ECEF
coordinates to a local navigation coordinate system [1] that is
suitable for characterization of the user/receiver dynamics:

pr,e
k = Aen

k pr,n
k + po,e

k . (17)

The term pr,n
k denotes the receiver position expressed in terms

of the local navigation coordinates, the rotation matrix Aen
k

and the vector po,e
k characterize the coordinate transformation

and are, of course, assumed to be known.

III. PROCESS AND SYSTEM MODEL

The position of the user as well as the receiver clock
parameters are known to be time varying but not independent
from one time instance to the next, as physical restrictions
impose constraints on their temporal evolution. We know from
channel measurements that this is also valid for the multipath
channel parameters; for example, an multipath echo usually
experiences a ”life-cycle” from its first occurrence, then a more
or less gradual change in its delay and phase over time, until
it disappears [14]. The purpose of the process model is to
characterize the temporal dependencies of these parameters
(introduced in Section II) in a probabilistic fashion. In our
modeling approach we structure the entire system process,
which is selected to have the properties of a Markovian
process, into sub-processes, which are introduced now.
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To model the temporal evolution of position and clock
parameters we employ simple Gaussian transition models as
typically applied within navigation Kalman filters [1]. The
modeling of the multipath process is motivated by [14], [10].

A. User Model

The temporal evolution of the receiver position used in (17)
can be characterized by a physical movement model of the
user or vehicle that carries the receiver. Here we use a simple
model given by

pr,n
k = pr,n

k−1 + ṗr,n
k−1 · Ts + np (18)

ṗr,n
k = ṗr,n

k−1 + nṗ (19)

with ṗr,n
k being the temporal derivative of pr,n

k−1, and np, nṗ

being vectors of element-wise uncorrelated zero-mean white
Gaussian noise, whose elements have a given variance of σ2

x,
σ2

y , σ2
z and σ2

ẋ, σ2
ẏ , σ2

ż , respectively.

B. Clock Model

The clock model is used to characterize the local receiver
clock, in particular the evolution of the user clock offset τ r

k

and the user clock drift τ̇ r
k . We use this simple model:

τ r
k = τ r

k−1 + τ̇ r
k−1 · Ts + nτ , (20)

τ̇ r
k = τ̇ r

k−1 + nτ̇ . (21)

The noise terms nτ and nτ̇ are realizations of a zero-mean
white Gaussian noise process of variance σ2

τ and σ2
τ̇ respec-

tively.

C. Multipath Channel Model

The multipath channel is determined by the parameters
ei,j,k and τi,j,k with i > 0. According to [10] their temporal
evolution is modeled by the following statistical processes:

1) Multipath Activity: According to (2) each path is either
”on” or ”off”, as defined by channel parameter ei,j,k ∈
{1 ≡ ”on”, 0 ≡ ”off”}, where ei,j,k is assumed to follow
a simple two-state Markov process with asymmetric crossover
and same-state probabilities:

p(ei,j,k = 0|ei,j,k−1 = 1) = ponoff , (22)

p(ei,j,k = 1|ei,j,k−1 = 0) = poffon . (23)

2) Multipath Delay: The associated delays of the multipath
replica are characterized by

τmp
k = τmp

k−1 + τ̇mp
k−1 · Ts + nmp , (24)

τ̇mp
k = τ̇mp

k−1 + nṁp , (25)

where for concise notation we have used

τmp
k =̂{τmp

j,k , j = 1, . . . , M} (26)

with τmp
j,k = [τ2,j,k, . . . , τNm,j,k]T . M is the total number

of received satellites. The temporal derivative of τmp
k is

denoted by τ̇mp
k and nmp, nṁp are vectors of element-wise

uncorrelated zero-mean white Gaussian noise of variance σ2
mp

and σ2
ṁp respectively. Due to physical constraints we restrict

the multipath delay process to satisfy τ1,j,k < τi,j,k, i =
2, . . . , Nm.

D. State Vector

Considering the proposed signal model including complex-
ity reduction and the introduced process model we collect the
relevant parameters into the state vector

xk = {pr,n
k , ṗr,n

k , τ r
k , τ̇ r

k , τmp
k , τ̇mp

k , ek} (27)

with

ek=̂{ej,k, j = 1, . . . , M} . (28)

Note that the model implicitly represents the number of paths
per range

Nm,j,k =
Nm∑
i=1

ei,j,k (29)

as a time variant parameter.

E. Likelihood Factorization

So far we have introduced the channel likelihood (3) associ-
ated to the receiver channel j. The objective now is to calculate
the likelihood that takes into account the observations of all
receiver channels, namely p(zk|xk) with

zk=̂{zj,k, j = 1, . . . , M} , (30)

Writing z−j,k for zk after omitting zj,k, i.e. z−j,k = zk\zj,k, we
assume independent noise realization for the receiver channels
with

p(zj,k|xk, z−j,k) = p(zj,k|xk) . (31)

In this case the overall likelihood function can be written in
product form according to the factorization of Bayes’ rule [11]
as

p(zk|xk) = C ·
M∏

j=1

p(zj,k|s̃j,k) (32)

with C being a normalizing constant. Please note that accord-
ing to (12), (13), (14), (15), (16), and (17) the signal hypothesis
s̃j,k is determined completely by xk and zj,k (for details see
section IV-C).

IV. SEQUENTIAL ESTIMATION

To overcome the drawback of the ML approaches mentioned
in Section I our objective here is to address the introduced
estimation problem with a sequential estimator that is able to
exploit not only a single set of observations zk to estimate the
hidden parameters xk (via the likelihood function), but is also
able to exploit our knowledge about the statistical dependen-
cies between successive sets of position, clock and multipath
channel parameters, in order to improve the performance of
the estimator.

A. Optimal Solution

Given the models introduced in Section II and III the
problem of positioning and multipath mitigation now becomes
one of sequential estimation of a hidden Markov process: We
want to estimate the unknown position, clock and multipath
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Likelihood

p(zk|xk)

zk-2

xk-2

zk-1 zk

xk-1 xk

Measurements (observed)

p(xk| xk-1)

State Transition PDF

Time

k-2
Time

k-1

Time

k

Hidden States

Fig. 2. Illustration of the hidden Markov estimation process for three time
instances. Our measurements are the sequence zq , q = 0, . . . , k}, and the
parameters to be estimated are xq , q = 0, . . . , k}

channel parameters, namely the hidden state xk based on
an evolving sequence of received noisy observations zk (see
Figure 2). According to Section III the user position and
clock offset as well as the multipath channel process for each
receiver channel are modeled as a first-order Markov process
as future position, clock and multipath channel parameters
given the present state of the position, clock and the channel
and all past states, depend only on the present system state
(and not on any past states). It is also assumed according to
section II that the noise affecting successive channel outputs
is independent of the past noise values; so each observation
depends only on the present channel state.

Now that our major assumptions have been established we
may apply the concept of sequential Bayesian estimation. The
reader is referred to [15] which gives a derivation of the gen-
eral framework for optimal estimation of temporally evolving
(Markovian) parameters by means of inference; and we have
chosen similar notation. The entire history of observations
(over the temporal index k) can be written as

Zk=̂{zq, q = 0, . . . , k} . (33)

As xk represents the characterization of the hidden state our
goal is to determine the posterior probability density function
(PDF) of every possible state characterization given all ob-
servations: p(xk|Zk). Once we have evaluated this posterior
PDF we can either determine the configuration that maximizes
it - the so called maximum a-posteriori (MAP) estimate; or
we can choose the expectation - equivalent to the minimum
mean square error (MMSE) estimate. In addition, the posterior
distribution itself contains all uncertainty about the current
state and is thus the optimal measure in terms of reliability
information.

It can be shown that the sequential estimation algorithm
is recursive as illustrated in Figure 3, as it uses the posterior
PDF computed for time instance k−1 to compute the posterior
PDF for instance k. For a given posterior PDF at time instance
k−1, p(xk−1|Zk−1), the prior PDF p(xk|Zk−1) is calculated

Movement Model 
1( | )k kp −x x

Likelihood
( | )k kp z x

Update
Stage

Prediction 
Stage

Posterior
( | )k kp x Z

Prior
1( | )k kp −x Z

k=k+1
Measurements 
kz

Fig. 3. Illustration of the recursive Bayesian estimator.

in the so-called prediction step by applying the Chapman-
Kolmogorov equation:

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1 , (34)

with p(xk|xk−1) being the state transition PDF of the Markov
process. In the update step the new posterior PDF for step k is
obtained by applying Bayes’ rule to p(xk|zk,Zk−1) yielding
the normalized product of the likelihood p(zk|xk) and the
prior PDF:

p(xk|Zk) = p(xk|zk,Zk−1)

=
p(zk|xk,Zk−1)p(xk|Zk−1)

p(zk|Zk−1)
(35)

=
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
.

The denominator of (35) does not depend on xk and so it can
be computed by integrating the numerator of (35) over the
entire range of xk (normalization).

To summarize so far, the entire process of prediction and
update can be carried out recursively to calculate the posterior
PDF (35) sequentially, based on an initial value of p(x0|z0)
= p(x0). The evaluation of the likelihood function p(zk|xk)
is the essence of the update step. Similarly, maximizing this
likelihood function (i.e. ML estimation) would be equivalent
to maximizing p(xk|Zk) only in the case that the prior PDF
p(xk|Zk−1) does not depend on Zk−1 and when all values of
xk are a-priori equally likely. Since these conditions are not
met, evaluation of p(xk|Zk) entails all the above steps.

B. Sequential Estimation using Particle Filters

The optimal estimation algorithm relies on evaluating the
integral (34), which is usually a very difficult task, except
for certain additional restrictions imposed on the model and
the noise process. So very often a suboptimal realization of
a Bayesian estimator has to be chosen for implementation. In
this paper we use a Sequential Monte Carlo (SMC) filter, in
particular a Sampling Importance Resampling Particle Filter
SIR-PF according to [15]. In this algorithm the posterior
density at step k is represented as a sum, and is specified
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by a set of Np particles:

p(xk|Zk) ≈
Np∑
μ=1

wμ
k · δ(xk − xμ

k) , (36)

where each particle with index μ has a state xμ
k and has a

weight wμ
k . The sum over all particles’ weights is one. In

SIR-PF, the weights are computed according to the principle
of Importance Sampling where the so-called proposal density
is chosen to be the state transition probability for the μ-th
particle p(xk|xk−1 = xμ

k−1), and with resampling at every
time step. For Np →∞ the approximate posterior approaches
the true PDF.

The key step in which the measurement for instance k is
incorporated, is in the calculation of the weight wμ

k which
for the SIR-PF can be shown to be the likelihood function:
p(zk|xμ

k). The characterization of the process enters in the
algorithm when at each time instance k, the state of each
particle xμ

k is drawn randomly from the proposal distribution;
i.e. from p(xk|xμ

k−1).

C. Exploiting Linear Substructures

If there exist linear substructures in the model, it is possible
to reduce the computational complexity of the filter by means
of marginalization over the linear state variables [16], also
known as Rao-Blackwellization [17]. In our case, since the
measurement zj,k is a linear function of the complex ampli-
tudes aj,k, we can estimate them analytically and marginalize:

p(zj,k|τ j,k, ej,k) = p(zj,k|xk) (37)

=
∫
aj,k

p(zj,k|τ j,k, ej,k,aj,k) · p(aj,k|τ j,k, ej,k)daj,k .

The term p(aj,k|τ j,k, ej,k) is a constant here, since the am-
plitudes are assumed block-wise independent. As the channel
likelihood function (3) can be written in product form as

p(zj,k|sj,k) = p(zj,k|τ j,k, ej,k,aj,k) = (38)

f(zj,k, τ j,k, ej,k) · g(zj,k, τ j,k, ej,k,aj,k) ,

where g(zj,k, τ j,k, ej,k,aj,k) is Gaussian with respect to aj,k,
using (37) and (38) leads to

p(zj,k|τ j,k, ej,k) ∝ f(zj,k, τ j,k, ej,k) . (39)

Additionally it can be shown that f(zj,k, τ j,k, ej,k) ∝
p(zj,k|s̃j,k). Thus we may write

p(zj,k|xk) ∝ p(zj,k|sj,k = s̃j,k) , (40)

and the weight factors of the SIR particle filter become
p(zj,k|xμ

k) ∝ p(zj,k|sj,k = s̃μ
j,k). Hence the elimination

procedure introduced in section II-A.3 leads to a simple
marginalized estimator.

D. Model Matching

It is important to point out that a sequential estimator is
only as good as its state transition model matches the real
world situation. The state model needs to capture all relevant
hidden states with memory and needs to correctly model

their dependencies, while adhering to the first order Markov
condition. Furthermore, any memory of the measurement noise
affecting the likelihood function p(zk|xk) must be explicitly
contained as additional states of the model x, so that the
measurement noise is i.i.d.

The multipath channel state model according to Section III-
C is motivated by channel modeling work for multipath prone
environments such as the urban satellite navigation channel
[14] [18]. In fact the process of constructing a channel model
in order to characterize the channel for signal level simulations
and receiver evaluation comes close to our task of building
a first order Markov process for sequential estimation. For
particle filtering, the model needs to satisfy the condition
that one can draw states with relatively low computational
complexity. Adapting the model structure and the model
parameters to the real channel environment is a task for current
and future work.

V. PERFORMANCE EVALUATION

To demonstrate the capabilities of the proposed estimator
simulations were carried out. The employed navigation signal
is a BPSK modulated GPS C/A code signal having a two-
sided bandwidth of 20 MHz. In the simulations it is assumed
that four satellites are received with a C/N0 of 50 dB-Hz
respectively. The geometry of the four transmitting satellites is
58, 65, 135 and 195 degrees for the azimuth values and 67, 27,
51 and 39 degrees for the elevation values. The SIR PF runs
with an observation period of 10 ms and signal compression is
applied with Ncc = 25 (code-matched correlators), Npc = 25.
The user, clock and channel parameters σ2

x, σ2
y , σ2

z , σ2
ẏ , σ2

ẋ,
σ2

ż , σ2
τ , σ2

τ̇ , σ2
mp, σ2

ṁp, and p(ei,j,k|ei,j,k−1) are selected to
approximate the statistics of a measured channel according
to [14]. The SIR PF uses the minimum mean square error
(MMSE) criterion to estimate the parameters xk from the
posterior. As reference the SIR PF results are shown together
with results obtained based upon conventional signal tracking
and least squares (LS) position estimation [1] with a non-
coherent delay lock loop with 0.15 chip early/late correlator
spacing and 2 Hz tracking loop bandwidth.

A. Static Multipath Channel

In Figure 4(a) and 4(b) the performance of the SIR PF is
shown by means of the root mean square error (RMSE) of
the minimum mean square error (MMSE) position estimates
obtained from the posterior as a function of the multipath
delay for a static multipath on the signal associated to the
satellite channel j = 1 only. The other channels do not
suffer from multipath in this simulation. It can be observed
that the proposed algorithm performs significantly better than
the conventional DLL-based LS positioning even without the
estimator modeling multipath (Nm = 1). It can be also
observed from the simulation results that further improvement
is possible, if the multipath is taken into account by the SIR
PF (Nm = 2).

From the posterior it is possible to calculate the estimated
average probability p(Nm,j,k = 2|Zk) of a two path model,
which is shown in Figure 5 and indicates the transition
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Fig. 4. Static multipath scenario on range 1: Performance of DLL+LS, SIR
PF with single path model and SIR PF with path activity tracking as function
of relative multipath delay. 4(b) is a detailed view of 4(a) for 0-45 meters.

between the models: for small delays the two paths essentially
merge to a single one. Note that in these simulations the
model parameters of the sequential estimator are still the ones
designed for the dynamic channel and not optimal for this
static scenario.

B. Dynamic Multipath Channel

Furthermore we have carried out simulations under a dy-
namic multipath scenario. Results for a randomly chosen
dynamic channel are depicted in Figure 6 and Figure 7 for
two kinds of SIR PFs, one using Nm = 1, corresponding to a
conventional receiver using a sequential positioning algorithm,
and the other using Nm = 2, both running with 20 000
particles, respectively. The SIR PF results show the magnitude
of the error of the MMSE position estimate. Figure 8 shows the
multipath channels affecting the four received satellite signals
including the MMSE estimates of the path delays. To consider
two different types of echoes the amplitude of the echoes in
the simulation is either picked randomly from 0.1 up to 0.2
times the amplitude of the direct path (weak echo) or picked
randomly from 0.6 up to 0.8 times the amplitude of the direct
path (strong echo). The performance of the DLL+LS approach
suffers significantly from the multipath reception (RMSE =
17.97 m) and the SIR PF using Nm = 1 (RMSE = 4.31
m) is able to outperform it, as it exploits the properties of
the position domain likelihood as well as the position and
clock parameter movement models. Further improvement is
achieved with the SIR PF with Nm = 2 (RMSE = 1.42 m).
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Fig. 5. Static multipath scenario: Average probability of a two path model
for the estimator with path activity tracking. 5(b) is a detailed view of 5(a)
for 0-45 meters.
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Fig. 6. Performance of DLL+LS based positioning, SIR PF with single path
model and SIR PF with path activity tracking. Simulation with multipath
environment according to Figure 8

Despite up to three echoes being active simultaneously and
the estimators restriction to two paths it can be observed that
the SIR PF tracks predominantly the strong multipath signals
as illustrated in Figure 8.

VI. CONCLUSIONS

We have demonstrated how sequential Bayesian estimation
techniques can be applied to the combined positioning and
multipath mitigation problem in a navigation receiver. The
proposed approach is characterized by complexity reduction
techniques for efficient likelihood computation in combina-
tion with a particle filter realization of the prediction and
update recursion. The considered movement model has been
adapted to dynamic user and multipath channel scenarios and
incorporates the number of echoes as a time variant hidden
channel state variable that is tracked together with the position
and clock parameters in a probabilistic fashion. A promising
advantage compared to existing ML estimation approaches is
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Fig. 7. Normalized cumulative histogram of the simulation errors shown in
Figure 6
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(c) Channel satellite 3
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(d) Channel satellite 4

Fig. 8. Multipath channel with weak (dash-dotted line) and strong (bold line)
echoes. Estimated echo tracks (grey) shown if p(Nm,j,k > 1|Zk) > 0.8.

that the posterior PDF at the output of the estimator repre-
sents reliability information about the desired parameters and
preserves the ambiguities and multiple modes that may occur
within the likelihood function. Simulation results for a GPS-
like positioning scenario show that the proposed sequential
estimator can achieve significant improvements compared to
the conventional tracking and positioning approach, that uses
a DLL with narrow correlator spacing and LS position estima-
tion. A detailed comparison with respect to performance and
complexity of the proposed algorithm against other approaches
(see Section I) will be a subject of future work.
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