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Panel Cointegration and the Neutrality of Money∗

Joakim Westerlund† and Mauro Costantini‡

August 9, 2006

Abstract

Most econometric methods for testing the proposition of long-run mon-

etary neutrality rely on the assumption that money and real output do

not cointegrate, a result that is usually supported by the data. This paper

argues that these results can be attributed in part to the low power of

univariate tests, and that a violation of the noncointegration assumption

is likely to result in a nonrejection of the neutrality proposition. To alle-

viate this problem, two new and more powerful panel cointegration tests

are proposed that can be used under very general conditions. The tests

are then applied to a panel covering 10 countries between 1870 and 1986.

The results suggest money and real output are cointegrated, and that the

neutrality proposition therefore must be rejected.

JEL Classification: E30; E50; C12; C22; C23.
Keywords: Monetary Neutrality; Panel Cointegration Testing.

1 Introduction

There are few propositions in classical economics that are less controversial than
the long-run neutrality of money, which states that permanent changes in the
stock of money have no long-run effects on the level of real output. Yet, for
an idea so widely accepted among economists, the empirical evidence on the
neutrality of money has been very mixed and far from convincing.

Like in many other areas, most early empirical studies on the neutrality
proposition focused on United States, and many used conventional reduced-form
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regression analysis. However, it has now become clear that this sort of reduced-
form estimates cannot be used as a basis for testing the neutrality proposition,
as they do not consider permanent changes in the stock of money. In fact,
as shown by Fisher and Seater (1993), meaningful neutrality tests can only be
constructed if money and real output are nonstationary, and thus subject to
permanent shocks. The authors also show that the proper implementation of
such tests generally calls for structural econometric methods.1

King and Watson (1997) recognize these deficiencies, and develop a new
econometric framework for testing the neutrality proposition when the variables
are nonstationary but noncointegrated.2 Their point of origin is a final-form
vector autoregression in the first differences of money and real output, which,
in contrast to traditional reduced-form methods, can be used to identify the
dynamic response of the variables to the underlying structural disturbances.

The King and Watson (1997) approach to identify these disturbances is
eclectic. Rather than imposing a single identifying restriction, such as money
exogeneity, they suggest systematically investigating a wide range of restrictions,
which leads to the estimation of multiple observationally equivalent structural
models. In particular, in this framework, the estimated long-run elasticity of
output with respect to money depend critically on what is assumed about one of
three other elasticities, namely the short-run elasticity of output with respect to
money, the short-run elasticity of money with respect to output or the long-run
elasticity of money with respect to output. The idea is to iterate each of these
parameters over a reasonable range of values, each time obtaining an estimate
of the long-run elasticity of output with respect to money. If money is truly
neutral, then these estimates should be close to zero, as monetary shocks should
have no long-run effect on real output.

King and Watson (1997) apply their approach to United States, using data
that cover the years 1949 to 1990. Based on a wide range of restrictions, they
find little evidence against the neutrality of money. Although robust to a wide
spectrum of identifying assumptions, this finding is, however, tampered by at
least three important caveats.

Firstly, the results hinge on money and output being nonstationary in their
levels, and with only 40 years of data, inference on such long-run features is
necessarily uncertain. This is especially important as conventional tests for unit
roots are known to suffer from low power, as a trend stationary process can be
easily mistaken for a unit root in small samples. Many authors have therefore
adopted the strategy of using many tests, in hope that this will make their
results more robust in this regard.

Another, related, caveat is that, even if it were known that money and output
1Using structural model, Evans (1996) shows that money should be not neutral in the

long-run if it is not neutral in the short-run and the money growth rate is endogenous.
2The King and Watson (1997) approach has not only been very popular for testing money

neutrality but also in many other related areas, see Bullard (1999) for a recent survey of this
literature.
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are indeed nonstationary, the analysis still relies critically on the variables being
noncointegrated. This is important not only because a violation makes the
vector autoregression of King and Watson (1997) misspecified, thus making their
structural estimates suspect, but also because the presence of cointegration is
by itself sufficient for rejecting the neutrality proposition, see Fisher and Seater
(1993).

Finally, although King and Watson (1997) do verify the noncointegration
assumption, their test is implemented as a unit root test on the difference be-
tween money and output. As such, this test is also subject to the first critique,
and is therefore expected to suffer from low power. Another problem with this
testing approach is that a rejection of the no cointegration null does not just
imply cointegration but cointegration with a unit slope on money. Hence, a
nonrejection could very well be due to cointegration but with a slope that is
different from one.

As mentioned, most empirical evidence on the neutrality of money is for
United States, and there have been only a few studies based on international
data, see Bullard (1999) and the references therein. One of the most notable
contributions within this latter field is that by Serletis and Koustas (1998), in
which the authors apply the King and Watson (1997) approach to a panel of 10
industrialized countries covering approximately the years 1870 to 1986.

Serletis and Koustas (1998) make a more ambitious attempt than King and
Watson (1997) to test the validity of the noncointegration assumption. They
do this by subjecting each country in their sample to a battery of cointegration
tests, and find that the null hypothesis of no cointegration cannot be rejected,
which suggests that the King and Watson (1997) approach is applicable. The
ensuing results entail that it is difficult to reject the neutrality proposition under
plausible identifying restrictions. The authors also produce evidence to suggest
that parts of their results are robust with respect to structural change.

Of course, being based on the same econometric method, the Serletis and
Koustas (1998) study is subject to the same line of critique as the King and
Watson (1997) study. Moreover, although the cointegration testing approach
of Serletis and Koustas (1998) represents a significant improvement upon the
King and Watson (1997) approach, it is still expected to suffer from low power,
for much of the same reasons that tests for unit roots are expected to have low
power.

In his review of the literature on monetary neutrality, Bullard (1999) stresses
the importance of accurate unit root and cointegration tests, and suggests that
a panel approach might be more appropriate in this respect. This paper is an
attempt in this direction. Using the same data as Serletis and Koustas (1998),
we begin by showing that the King and Watson (1997) approach is very unlikely
to detect deviations from the neutrality proposition when money and output
are cointegrated but slowly error correcting, which seems like a very plausible
alternative scenario for most applications of this kind.
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This finding suggests that the cointegration testing should be considered as
an integral part of the neutrality test, and not only as a diagnostic preliminary
as is usually the case. Therefore, since conventional tests do not seem to be
powerful enough, we develop two new panel cointegration tests that account for
the variation in the cross-section, and are expected to produce more accurate
results.

However, the new tests are not only appealing from a power point of view.
In fact, there are at least three other advantageous features that are worth men-
tioning here. Firstly, because they derive from a simple error correction general-
ization of the vector autoregression considered by King and Watson (1997), they
seem like a natural extension of what has previously been done. Secondly, the
tests are general enough to allow for important features such as cross-sectional
dependence, structural breaks as well as unbalanced panels, which are not only
highly relevant in this particular study, but in almost every macroeconomic and
financial application. Thirdly, since the tests are asymptotically normal, there
is no need for a special table of critical values, which make them easy to imple-
ment. Another operational advantage is that the distribution of the tests are
independent of the regressors.

When we apply the new tests to the Serletis and Koustas (1998) data, we find
that the null of no cointegration can be rejected at all conventional significance
levels. Thus, in contrast to these authors, we find that permanent changes in
the level of money stock do in fact affect real output, which implies that the
long-run neutrality of money must be rejected.

The rest of this paper proceeds as follows. Section 2 provides a brief account
of the King and Watson (1997) approach, and motivates our study. Section 3
then introduces the new tests and Section 4 is concerned with their small-sample
properties. Section 5 presents our empirical results and Section 6 concludes.
Proofs of important results are given in the appendix.

2 Cointegration and the neutrality of money

Let yit and mit denote the logarithm of real output and nominal money supply
at time t = 1, ..., T for country i = 1, ..., N , respectively. Our starting point
is a conventional bivariate error correction model for ∆yit and ∆mit, the first
difference of yit and mit, respectively, which can be written as follows

αyi(L)∆yit = φyi(yit−1 − βimit−1) + γyi(L)∆mit + eyit, (1)

αmi(L)∆mit = φmi(yit−1 − βimit−1) + γmi(L)∆yit + emit, (2)

where αyi(L) = 1−∑pi

j=1 αyijL
j and γyi(L) = γyi +

∑pi

j=1 γyijL
j are pi ordered

polynomials in the lag operator L, which governs the short-run dynamics of the
first equation. The corresponding polynomials αmi(L) and γmi(L) of the second
equation are defined in exactly the same way. The disturbances eyit and emit
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are assumed to be serially uncorrelated, but not necessarily uncorrelated with
each other.

The above model is very similar to the King and Watson (1997) model used
by Serletis and Koustas (1998). The only difference lies in the first term on the
right-hand side, which captures the error correction properties of the data. If
φyi and φmi are zero, then there is no error correction, whereas, if at least one
of φyi and φmi are less than zero, then there is error correction, and yit and mit

are cointegrated with cointegrating slope βi. Thus, βi relates to the long-run
part of the model, while the remaining parameters relate to the short-run part.

Serletis and Koustas (1998) assume that φyi and φmi are zero, in which case
the long-run elasticity of output with respect to a permanent shock in money is
given by γyi(1)/αyi(1). Let us denote this parameter by βyi, and let βmi denote
the corresponding long-run elasticity of money with respect to a permanent
shock in output. Hence, in this notation, the problem of testing the hypothesis
of long-run money neutrality is equivalent to testing the restriction that βyi

is zero. Note also that, since both the short- and long-run parts of (1) are
normalized with respect to output, βyi is identically φyiβi, which implies that
φyi < 0 is sufficient to reject money neutrality.

Since money is endogenous, however, the above system is not identified so
the neutrality restriction is not really testable. In fact, as is well-known, only
three of the unidentified parameters var(eyit), var(emit), cov(eyit, emit), γyi and
γmi can be recovered. Thus, to identify this system, two identifying restric-
tions are required. Serletis and Koustas (1998) assume that eyit and emit are
uncorrelated, which means that only one additional restriction is needed.

A common way of doing this, which we will make use of later, is to assume
that money is exogenous so that γmi(L) and φmi are jointly zero, see Fisher
and Seater (1993).3Alternatively, we may follow Serletis and Koustas (1998),
and assume a prespecified value for one of the elasticities γyi, γmi and βmi. The
idea is that if the restriction is true and money is neutral, then the estimates
of the remaining parameters should lie close to their true values. In particular,
the estimate of βyi should be close to zero. By using this approach, the authors
find that the neutrality proposition cannot be rejected.

Unfortunately, the properties of the above approach becomes suspect if yit

and mit are cointegrated, as the estimated model then becomes misspecified due
to an omitted error correction term. To illustrate this effect, we conducted a
small simulation exercise using (1) and (2) to generate the data. For simplicity,
we set αyi(L) and αmi(L) to unity, and γyi(L) and γmi(L) to zero. We also
set φmi to zero so that output is error correcting, while money is a pure unit
root process. Thus, in this setup, γyi, γmi and βmi are all zero, but yit and mit

are cointegrated with slope βi. The disturbances eyit and emit are first drawn

3In a recent study, Hatemi and Irandoust (2006) report results suggesting that the exo-
geneity hypothesis holds for Denmark, Japan and the United States over the period 1961 to
2000.
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from the normal distribution and then rescaled to have variance var(emit) and
var(eyit), respectively. We make 1, 000 replications of panels of the same size
as that used by Serletis and Koustas (1998), and we use their data to calibrate
φyi, βi, var(emit) and var(eyit).

Figure 1 present the rejection frequencies for testing the hypothesis that βyi

is zero, while varying γyi, γmi and βmi as in Serletis and Koustas (1998).4 The
estimates of φyi are all less than zero, with an average of −0.05, so money is
not neutral in this experiment. We therefore expect the test to reject the null
with high frequency for all values of γyi, γmi and βmi. However, this is not
what we observe. In fact, quite oppositely, we see that the power tend to be
low, especially in the neighborhood of zero, where the identifying restrictions
are true. Another interesting observation is that power can be very low when
the identifying restrictions are far from true.

Figure 1: Power as a function of γyi, γmi and βmi.
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This finding is important because it suggests that the inability of Serletis
and Koustas (1998) to reject money neutrality may not reflect the actual data
generating process, but rather the low power of their test. A natural way to
alleviate this problem would be to check for cointegration before conducting

4For comparability with Serletis and Koustas (1998), we estimate (1) and (2) using the
instrumental variables estimator of King and Watson (1997). The number of lags is set to
five.
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the neutrality test. Serletis and Koustas (1998) employ a country-by-country
approach whereby each country is subjected to a battery conventional cointe-
gration tests. The results suggest the null of no cointegration cannot be rejected
at conventional significance levels.

However, it is well-known that tests of this kind are bound to result in a
nonrejection unless the number of time series observations is very large. Thus,
the cointegration results of Serletis and Koustas (1998) might also be due to
low power. But if these tests are unable to discriminate between the null and
alternative hypotheses, then how should we determine which one is true?

The approach taken in this paper is based on using not only the time series
dimension of the data, but also the cross-sectional dimension. The idea is that
by pooling all the information in the sample, it should be possible to construct
more powerful tests.

Unfortunately, existing tests suffer from many weaknesses that make them
unsuitable for our application. First, most tests are based on the assumption
that the cross-sectional units are independent, which is unlikely to hold in the
money and output data due to strong inter-economy linkages. Second, most tests
become prohibitively difficult to implement when the panel is unbalanced, which
is not only relevant for this study but in almost every other macroeconomic
application of this kind. Third, as noted by Serletis and Koustas (1998), there
is generally no simple way to modify this type of tests for nonstationary data to
accommodate structural change, which would seem as a very plausible scenario
in this type of data.

This discussion indicate that, before any serious attempt to determine the
neutrality of money can be mounted, there is a need to develop more general
panel cointegration tests, and the next two sections do exactly that.

3 The panel cointegration tests

The purpose of this section is to device two panel cointegration tests that are
consistent with the data generating process of the previous section, and that fit
the test requirements given in the above. We begin by describing the model of
interest, and then we describe the tests and their asymptotic properties.

3.1 Model and assumptions

The panel model that we consider is given by

αyi(L)∆yit = δ′idt + φyi(yit−1 − βimit−1) + γyi(L)∆mit + eyit, (3)

αmi(L)∆mit = emit. (4)

Note that this is exactly the model used in the previous section. The essential
difference is that we have now restricted money to be exogenous by setting

7



both γmi(L) and φmi equal to zero.5 Another difference is the vector dt, which
contains deterministic terms. The conventional elements of dt include a constant
and a linear time trend. However, in this paper, other deterministic components
such as polynomial trends and break dummy variables are also possible.

The rest of the assumptions needed for developing our new panel tests are
laid out next.

Assumption 1. (Error process.) The disturbances eyit and emit satisfy the
following set of conditions:

(a) The groups eyit and emit are mean zero, and independent and identically
distributed across both i and t.

(b) var(eyit) > 0 and var(emit) > 0.

(c) E(eyktemij) = 0 for all k, t, i and j.

Assumption 1 establishes the basic conditions needed for developing the
new cointegration tests. Some may appear quite restrictive but are made here
in order to make the analysis of the tests more transparent, and will be relaxed
later on.

For example, Assumption 1 (a) states that the individuals are independent
over the cross-sectional dimension. This condition is not necessary but will be
convenient to retain initially as it will allow us to apply standard central limit
theory in a very simple manner. A suggestion on how to relax this condition
will be given in Section 3.3. Similarly, independence over time is convenient
because it facilitates a straightforward asymptotic analysis by application of
the conventional methods for integrated processes. In particular, Assumption 1
(a) ensures that an invariance principle holds for each cross-section as T grows.
Also, since our approach can be readily generalized to the case when mit is a
vector, Assumption 1 (b) ensures that var(emit) is positive definite suggesting
that there cannot be cointegration within mit.

Assumption 1 (c) requires that emit and eyit are independent. Although this
might seem somewhat restrictive at first, our model is actually quite general
when it comes to the short-run dynamics. In fact, the only requirement is
that the regressors are strongly exogenous with respect to the parameters of
interest, which is implicit in our model since the errors are uncorrelated and
mit is not error correcting. Weak exogeneity can be readily accommodated
by augmenting (3) not only with lags but also with leads of ∆mit, so that
γyi(L) becomes double-sided.6 Moreover, since αyi(L), αmi(L) and γyi(L) are

5Fisher and Seater (1993) also assume that φmi is zero, an assumption they refer to as
long-run money exogeneity. Our model is more restrictive in the sense that it also sets γmi(L),
the short-run response of money to output, at zero. However, as will be argued later in this
section, since a nonzero γmi(L) can be accommodated by simply augmenting (3) not only
with lags but also with leads of ∆mit, this assumption is not particularly restrictive.

6Thus, although money need not be strictly exogenous, as in Fisher and Seater (1993), the
requirement that φmi is zero cannot be relaxed.
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permitted to vary between the individuals of the panel, we are in fact allowing
for a completely heterogeneous serial correlation structure.

In the reminder of this section, we present the new panel cointegration tests.
We begin by considering the simple case when the cross-sectional units are
independent, and then we continue to the case with dependent units.

3.2 Independent units

In constructing the new tests, it is useful to rewrite (3) as

∆yit = δ′idt + φyi(yit−1 − βimit−1) +
pi∑

j=2

αyij∆yit−j +
pi∑

j=1

γyij∆mit−j

+ γyi∆mit + eyit.

The problem is how to estimate the error correction parameter φyi, which forms
the basis for our new tests. One way is to assume that βi is known and to
estimate φyi by least squares. However, as shown by Boswijk (1994) and Zivot
(2000), such tests are generally not similar and depend on nuisance parameters
even asymptotically.

Alternatively, note that the above regression can be reparameterized as

∆yit = δ′idt + φyiyit−1 + λimit−1 +
pi∑

j=2

αyij∆yit−j +
pi∑

j=1

γyij∆mit−j

+ γyi∆mit + eyit. (5)

In this regression, the parameter φyi is unaffected by imposing an arbitrary βi,
which suggests that the least squares estimate of φyi can be used to provide a
valid test of the hypothesis that φyi = 0. Indeed, because λi is unrestricted,
and because the cointegration vector is implicitly estimated under the alterna-
tive hypothesis, as seen by writing λi = −φyiβi, this means that it is possible
to construct a test based on φyi that is asymptotically similar and whose dis-
tribution is free of nuisance parameters, see Banerjee et al. (1998).

Although this makes inference by least squares possible, in this paper, we
propose another approach, which is based on estimating φyi using ∆yit−1 and
∆mit−1 as proxies for yit−1 and mit−1.7 This approach has previously been used
by Im and Lee (2005) to test for a unit root.8 To our knowledge, however, this
is the first time it has been used for testing cointegration. The idea is that by
approximating with stationary variables, we can construct statistics with limit
distributions that are free of the usual dependence on Brownian motion.

7To clarify, the differenced series are not used here because they are good approximations
of their levels, but because they eliminate the unit root dependence under the null.

8Im and Lee (2005) refer to their test as an instrumental variables approach to unit root
testing, which is somewhat misleading because what they do is to approximate the levels of
the variable with their first differences, as described above in the text.
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The estimated proxy version of (5) is given by

∆yit = δ̂′idt + φ̂yi∆yit−1 +
pi∑

j=2

α̂yij∆yit−j +
pi∑

j=1

γ̂yij∆mit−j

+ γ̂yi∆mit + error. (6)

Note that, in this notation, the second polynomial absorbs not only the lags of
∆mit in (5) but also our proxy for λimit−1. Now, let τi denote the individual
t-statistic for testing the hypothesis that φyi = 0 in (6). If we let ⇒ signify
weak convergence, then the asymptotic distribution of this statistic is given in
the following theorem.

Theorem 1. (Asymptotic distribution under the null.) Under Assumption 1
and the null hypothesis of no cointegration, then

τi ⇒ N(0, 1) as T →∞.

The fact that the distribution of τi is normal is actually much stronger
than one might think. First, since the critical values are readily available using
the standard normal table, the new test is much simpler to implement than
other cointegration tests where the asymptotic distribution is a nonstandard
mixture of Brownian motion. Second, since there is no dependence on the
regressors, the same critical values apply regardless of the dimension of mit,
which is also different from the conventional test situation. Third, as long
as the proxy regression in (6) has been appropriately modified, there is no
dependence on the underlying deterministic specification. In particular, in the
case of structural break, the asymptotic distribution of the test is free of the
usual nuisance parameter indicating the location of the break.

Another advantage with Theorem 1 is that it permits for easy testing in the
panel setting. The panel statistic that we consider in this section is given by

τN = N−1/2
N∑

i=1

τi.

This statistic is comparable to most existing panel cointegration tests, and is
proposed here as a test of H0 : φyi = 0 for all i versus H1 : φyi < 0 for at least
some i. In view of Theorem 1, since the time series limit of each individual
τi is standard normal, it is easy to see that the asymptotic distribution of τN

is also normal. Moreover, because of the normality of τi, τN is expected to
perform better under the null than other tests where the corresponding limit as
T grows is usually highly noncentral and skewed. The fact that τN is nothing
but a sum of individual tests means that unbalanced panels can be very easily
accommodated.
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It is important that a test is able to fully discriminate between the null and
alternative hypotheses. In our case, there are at least two reasons to suspect the
power to be low, although still better than for pure time series tests. First, since
we are in effect dealing with a stationary regression, φ̂yi is no longer consistent
at the usual rate of T , but rather

√
T . Second, φ̂yi is not consistent for φyi

under the alternative hypothesis.
To illustrate the second point, suppose that there is no serial correlation,

and that dt = 0, in which case (3) can be written as

∆yit = φyi(yit−1 − βimit−1) + γyi∆mit + eyit. (7)

If we define the signal-to-noise ratio Ni = (γyi − βi)2var(emit)/var(eyit) and let
→p denote convergence in probability, then the limit of the proxy estimator φ̂yi

of φyi under the cointegrated alternative is given in the following theorem.

Theorem 2. (Test consistency.) Under the conditions laid out in the above
and the alternative hypothesis of cointegration, then

φ̂yi →p
φyi(1− (1 + φyi)Ni)

2− φyiNi
as T →∞.

It is interesting to evaluate the limit of φ̂yi depending on whether Ni is
zero or not, which in turn depends on whether the common factor restriction
γyi = βi is satisfied or not. If it is satisfied, then it is clear that φ̂yi converges
to φyi/2, which implies that

√
T φ̂yi diverges to negative infinity as T grows so

the test is consistent. Nevertheless, since φ̂yi converges to φyi/2 and not φyi,
in small-samples it seems reasonable to expect the power to be lower than for
tests based on a consistent estimate of φyi.

On the other hand, if γyi 6= βi and the common factor restriction does not
hold, then the direction of the divergence depends on the magnitude of Ni and
−2 < φyi < 0. If φyi → −2, then φ̂yi goes to minus unity so

√
T φ̂yi diverges

towards negative infinity as T grows. Note also that if φyi goes to zero, then
so does

√
T φ̂yi, thus corroborating Theorem 1 that τi is mean zero under the

null. For intermediate values of φyi, the probability limit of φ̂yi is either positive
or negative, depending on the particular combination of Ni and φyi. Thus, in
contrast to many existing tests, τi and τN are double-sided.

One exception from the above analysis is the special case when Ni > 1 and
φyi is identically (1 − Ni)/Ni, in which φ̂yi converges to zero, suggesting that
for this particular value of φyi the test is inconsistent. Thus, in general we need
to assume that Ni < 1 or that φyi is bounded away from (1−Ni)/Ni, or both.
Since the probability that both these conditions are violated is essentially zero,
however, this assumption is not very restrictive. In fact, in comparison to the
conventional residual-based approach, which requires that the common factor
restriction is satisfied, it is actually a great improvement.
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3.3 Dependent units

Although the assumption of cross-sectional independence allows for the con-
struction of a very simple test, in applications such as ours, it can be quite
restrictive. In this section, we therefore generalize our earlier results to the case
with dependence among the cross-sectional units.

In order to do so, however, Assumption 1 (a) must be replaced with some-
thing else. Here we assume that the dependence can described in terms of a
common correlation between the individual statistics so that

E(τiτj) = ρ for i 6= j,

where −1/(N − 1) < ρ < 1 ensures the positive definiteness of the resulting
covariance matrix. Note that, if ρ where known, since the variance of

∑N
i=1 τi

is given by N + N(N − 1)ρ, we could easily generalize τN using

τ̃N = (N + N(N − 1)ρ)−1/2
N∑

i=1

τi.

As with τN , this statistic is very simple because it is normally distributed. The
problem is that the dependence on ρ makes τ̃N infeasible. However, as noted
by Hartung (1999), ρ may be estimated consistently as N →∞ using

ρ̂ = max
(
− 1

N − 1
, ρ̃

)
where ρ̃ = 1− 1

N − 1

N∑

i=1

(
τi − 1

N

N∑

i=1

τi

)2

.

The test statistic recommended by Hartung (1999) may be written as

τ̃N =
(
N + N(N − 1)

(
ρ̂ + ω

√
var(ρ̂ )

))−1/2 N∑

i=1

τi, (8)

where ω > 0 is a weight parameter and var(ρ̂ ) = 2(1 − ρ̂ )2/(N + 1) is the
estimated variance of ρ̂.9 The intuition behind the factor ω

√
var(ρ̂ ) is that

because the square root function is concave, the denominator of τ̃N will tend
to be underestimated, which can be corrected by adding a small amount of
the standard error of ρ̂. Again, due to Theorem 1, τ̃N has a limiting normal
distribution under the null.

4 Monte Carlo simulations

In this section, we investigate the small-sample properties of the new tests
through a small simulation study using the following data generating process

∆yt = φy(yt−1 −mt−1) + γy∆mt + eyt,

9Following the recommendation of Hartung (1999), in this paper we use ω = 0.2, which
generally led to good test performance in the simulations.
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∆mt = emt,

where all variables are stacked N vectors and emt ∼ N(0, 1). The error eyt

is generated by drawing N vectors eyt = (ey1t, ..., eyNt)′ from N(0, cov(eyt)),
where cov(eyt) is a symmetric matrix with ones along the main diagonal and ρ

elsewhere. There are two different values of ρ. If ρ = 0, there is no cross-section
dependence, whereas if ρ = 0.8, then there is strong cross-section dependence.
We will refer to these two parameterizations as Cases 1 and 2, respectively. In
both cases, γy = 1 so the common factor restriction is satisfied. The effect of a
violation of this restriction is studied in Case 3 when γy = 3.

To study the effect of the deterministic component dt, we consider three
models. In Model 1, dt = 0, in Model 2, dt = 1 and in Model 3, dt = Dt,
where Dt is a break dummy taking the value one if t > T/2 and zero other-
wise. All tests are constructed with the lag length chosen according to the rule
4(T/100)2/9, which seems as a fairly common choice. As suggested earlier, the
tests are constructed as double-sided, using the 5% critical value 1.96 to reject
the null. The number of replications is 1, 000.

The results on the size and size-adjusted power on the 5% level are reported
in Table 1. Consider first the results on the size of the tests when φy = 0.
We see that the two tests perform well with only small distortions in most
experiments. One notable exception is Case 2 when τN rejects the null too
frequently. Of course, since τN is constructed under the assumption of cross-
section independence, this effect is well expected. The good performance of τ̃N

in this case indicates that our suggestion on how to get rid of the dependence
works well.

The results on the power of the tests generally coincide with what might be
expected based on theory, and can be summarized as follows. First, except for
Case 2 when the powers are about equal, we see that τN is more powerful than
τ̃N . Second, the power is increasing in both the sample size and departure from
the null, as indicated by φy. Third, the power of the tests can sometimes be
poor if the common factor restriction is not satisfied.

5 Empirical results

In this section, we apply our new tests to check the robustness of the coin-
tegration results provided by Serletis and Koustas (1998). The data that we
use for this purpose is taken directly from these authors, and consists annual
data on real GDP and money covering approximately the years 1870 to 1986
for 10 countries, Australia, Canada, Denmark, Germany, Italy, Japan, Norway,
Sweden, United Kingdom and United States. However, most series have miss-
ing observations, which not only makes the panel unbalanced but also reduces
the effective number of time series observations, thus making the cross-sectional
dimension a very important source of information.
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5.1 Unit root tests

Before we carry on with the cointegration testing, we subject the variables to a
battery of panel unit root tests. In particular, we use the G++

ols , Pm and Z tests
of Phillip and Sul (2003), the ta and tb tests of Moon and Perron (2004), and
the Bai and Ng (2004) P c

e test, which all permit for cross-sectional dependence
by assuming that the variables admit to a common factor representation.

All tests take nonstationarity as the null hypothesis, and all tests except
ta and tb permit the individual autoregressive roots to differ across countries,
which is likely to be important in this kind of heterogenous data. Each statistic
is normally distributed under the null hypothesis. Moreover, while G++

ols , Pm,
ta and tb are left-tailed, Z and P c

e are right-tailed.
For the implementation of the tests, we use the Bartlett kernel, and all

bandwidths and lag lengths are chosen according to the rule 4(T/100)2/9. To
determine the number of common factors, we use the Bai and Ng (2004) IC1

criterion with a maximum of five factors. The results reported in Table 2 indicate
that there is an overwhelming support of the unit root null. We therefore
conclude that the variables appear to be nonstationary, which corroborates the
findings of Serletis and Koustas (1998).

5.2 Cointegration tests

One way to do the cointegration testing is to follow Serletis and Koustas (1998),
and to subject each individual pair of time series to a conventional cointegration
test. However, as argued in Section 2, this approach is likely to suffer from poor
power, in which case a panel test is expected to result in more accurate inference.

Consistent with this story, Serletis and Koustas (1998) are unable to reject
the no cointegration null for all countries when using the usual residual-based
approach, and for all but two countries when using the Johansen (1988) max-
imum likelihood approach. Note that this difference may be due to an invalid
common factor restriction, which is expected to reduce the power of the residual-
based approach. Thus, there are actually two good reasons for believing that
the Serletis and Koustas (1998) tests may suffer from low power, the finiteness
of the sample and an potentially invalid common factor restriction.

Therefore, to be able to circumvent these problems, we now employ our new
panel tests, which are constructed exactly as described in Section 4, with an
individual specific intercept in the baseline specification. Table 3 summarizes
the results from both the individual and panel cointegration tests. Based on
the individual tests, we see that the no cointegration null can be rejected on
the 10% level for all but two countries, Germany and Japan. Thus, even on
a country-by-country basis, we find only weak evidence of the hypothesis of
monetary neutrality. As expected, this finding is reinforced by the panel tests,
from which we conclude that the no cointegration null can be safely rejected at
all conventional significance levels. Thus, in contrast to Serletis and Koustas
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(1998), we find that money is not long-run neutral. We also see that this
conclusion is unaffected by the inclusion of a linear time trend.

As a final robustness check of our test results, we consider the possibility
of structural change, which, as pointed out by Serletis and Koustas (1998),
appears very likely given the vide range of monetary arrangements covered in
the sample. Although the timing of the breaks can in principle be determined
by visually inspecting the data, in this section, we estimate the breakpoints by
minimizing the sum of squared residuals from the proxy regression in (6). As
seen from the table, the allowance of a break in the intercept of each regression
does not affect the test outcome. Thus, our conclusion remain unaltered even
if we permit for structural change.

Table 3 also report the estimated break points obtained by minimizing the
sum of squared residuals. The results suggest that all breakpoints have taken
place somewhere during the period 1891 to 1950. From an historical point of
view, this seems very reasonable. First, there are only two breaks prior to the
advent of the First Wold War, which agrees with the stability of the classical
gold standard regime. Second, there is a preponderance of breaks occurring
between 1917 and 1950. This accords approximately with the interwar period,
and seems consistent with the findings of Serletis and Koustas (1998).

6 Concluding remarks

Most studies on the long-run neutrality of money are based on the assumption
that money and real output do not cointegrate, which is typically also supported
by the data.

In this paper, we argue that these findings could be partly due to the low
power of univariate tests, and that a violation of the noncointegration assump-
tion is likely to result in a nonrejection of the neutrality of money. In order
to mitigate this problem, two new and powerful panel cointegration tests based
on error correction are proposed. What make these tests advantageous in com-
parison to the already existing test menu is that they are equipped to handle
most of the many challenging features of the money and output data, such as
cross-sectional dependence, structural breaks and unbalanced panels.

The tests are applied to a panel of 10 industrialized countries covering the
period 1870 to 1986. The results suggest that the null hypothesis of no coin-
tegration between money and real output can be rejected, and thus that the
neutrality of money can also be rejected.

The conclusion of this study is therefore that permanent changes in the stock
of money have real effects that can persist for appreciable periods of time, which
is of course good news for central banks since it implies that they can affect
real variables. Although seemingly unrealistic and at odds with fundamental
economic theory, there are in fact many rationales for this result.

Firstly, the long-run effect of an increase in money supply on prices could be
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dampened by a change in the velocity of money, brought about by for example
institutional changes or financial innovations. Indeed, as shown by Bordo and
Jonung (1987), the money velocity of many developed countries appear to have
followed a nonlinear pattern over time.10 Between 1870 and 1914, velocity
declined before it eventually started to increase again somewhere in the interwar
period. The point being that if velocity is unstable, prices may not adjust
perfectly to offset monetary changes, in which case real output will ultimately
be affected.

A second, related, rationale is that there appears to be an inverse relationship
between the stability of velocity and the narrowness of the monetary measure,
and that only broad measures of money should be neutral. As an example, using
data for the G7 countries, Weber (1994) finds that for broader measures, such
as M2 or M3, there is strong evidence in favor of the neutrality of money, while
for the narrower M1 measure, the evidence is much weaker. This suggests that
our monetary measure, M2, may not be broad enough to ensure that velocity
is stable.11

Yet another rationale relates to the fact that monetary neutrality rests on
the assumptions of no contracting frictions and, in particular, no unemployment.
Lengthy time series data make periods of recession and unemployment more
likely, which could well explain why the neutrality of money fails.

10The long-run behavior of money velocity and its relation with inflation is also studied by
Mendizàbal (2006).

11Similar results has been found by Coe and Nason (2004) for Australia, Canada, United
Kingdom and United States.
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Appendix: Mathematical proofs

This appendix derives the asymptotic properties of the new tests. For ease of
exposure, we shall prove the results for the case with no deterministic compo-
nents.

Proof of Theorem 1

Note that φ̂yi under the null may be written as

φ̂yi =

(
T∑

t=2

(∆y∗it−1)
2

)−1 T∑
t=2

∆y∗it−1∆y∗it

=

(
T∑

t=2

(∆y∗it−1)
2

)−1 T∑
t=2

∆y∗it−1e
∗
yit,

where the star notation indicate the projection errors from the vector wit =
(∆yit−2, ..., ∆yit−pi , ∆mit−1, ..., ∆mit−pi)

′.
Consider the numerator of φ̂yi. By using the rules for projections, we obtain

T∑
t=2

(∆y∗it−1)
2 =

T∑
t=2

(∆yit−1)2 −
T∑

t=2

∆yit−1w
′
it

(
T∑

t=2

witw
′
it

)−1 T∑
t=2

wit∆yit−1

=
T∑

t=2

(∆yit−1)2 + Op(
√

T )Op(T−1)Op(
√

T )

=
T∑

t=2

(∆yit−1)2 + Op(1), (A1)

where we have used the fact that ∆yit−1 and wit are stationary. Now, the null
model in Case 1 can be written as

αyi(L)∆yit = uit, (A2)

where uit = γyi(L)∆mit +eyit. From the Beveridge-Nelson (BN) decomposition
of γyi(L) as γyi(L) = γyi(1) + γ∗yi(L)(1− L), we obtain

uit = γyi(L)∆mit + eyit = γyi(1)∆mit + γ∗yi(L)∆2mit + eyit. (A3)

Similarly, the BN decomposition of αmi(L) gives

αmi(L)∆mit = αmi(1)∆mit + α∗mi(L)∆2mit = emit,

or, equivalently

∆mit = − α∗mi(L)
αmi(1)

∆2mit +
1

αmi(1)
emit.
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This implies that (A3) can be rewritten as

uit = πi(1)emit + eyit + Op(1),

where πi(1) = γyi(1)/αmi(1) so that as T →∞

T−1
T∑

t=2

u2
it = πi(1)2T−1

T∑
t=2

e2
mit + 2T−1

T∑
t=2

πi(1)emiteyit + T−1
T∑

t=2

e2
yit

= πi(1)2T−1
T∑

t=2

e2
mit + T−1

T∑
t=2

e2
yit + op(1)

→p πi(1)2var(emit) + var(eyit), (A4)

where we have used Assumption 1 (c) that eyit and emit are orthogonal.
Another application of the BN decomposition gives

αyi(L)∆yit = αyi(1)∆yit + α∗yi(L)∆2yit = uit,

which can be rewritten as

∆yit = − α∗yi(L)
αyi(1)

∆2yit +
1

αyi(1)
uit =

1
αyi(1)

uit + Op(1).

By using (A4) this implies that the limit of (A1) as T →∞ can be written as

T−1
T∑

t=2

(∆y∗it−1)
2 = T−1

T∑
t=2

(∆yit−1)2 + op(1)

→p
1

αyi(1)2
(πi(1)2var(emit) + var(eyit)). (A5)

Next, consider the denominator of φ̂yi, which can be written as

T∑
t=2

∆y∗it−1e
∗
it =

T∑
t=2

∆yit−1eit −
T∑

t=2

∆yit−1w
′
it

(
T∑

t=2

witw
′
it

)−1 T∑
t=2

witeit

=
T∑

t=2

∆yit−1eit + Op(
√

T )Op(T−1)Op(
√

T )

=
T∑

t=2

∆yit−1eit + Op(1). (A6)

If we let Qi = (πi(1)2var(emit)+var(eyit))/αyi(1)2, since T−1
∑T

t=2(∆y∗it−1)
2 →p

Qi from (A5), we have the following limit as T →∞

T−1/2
T∑

t=2

∆y∗it−1e
∗
it = T−1/2

T∑
t=2

∆yit−1eit + op(1) ⇒ N(0, var(eyit)Qi).
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Together with (A5) this implies that

√
T φ̂yi =

(
T−1

T∑
t=2

(∆y∗it−1)
2

)−1

T−1/2
T∑

t=2

∆y∗it−1e
∗
yit

⇒ N

(
0, var(eyit)

1
Qi

)
.

The τi statistic is given by

τi =
φ̂yi√

var(φ̂yi)
.

Thus, in order to obtain the limit of this statistic, we need to evaluate var(φ̂yi),
which may be written as

var(φ̂yi) =

(
σ̂−2

i

T∑
t=2

(∆y∗it−1)
2

)−1

.

Consider σ̂2
i . The limit as T →∞ of this term is given by

σ̂2
i = T−1

T∑
t=2

e∗2it

= T−1
T∑

t=2

e2
it − T−1

T∑
t=2

eitw
′
it

(
T∑

t=2

witw
′
it

)−1 T∑
t=2

witeit

= T−1
T∑

t=2

e2
it + T−1Op(

√
T )Op(T−1)Op(

√
T )

= T−1
T∑

t=2

e2
it + op(1) →p var(eyit).

This, together with (A5), implies

Tvar(φ̂yi) =

(
σ̂−2

i T−1
T∑

t=2

(∆y∗it−1)
2

)−1

→p var(eyit)
1
Qi

,

which ensures that

τi =
φ̂yi√

var(φ̂yi)
=

√
T φ̂yi√

Tvar(φ̂yi)
⇒ N(0, 1).

This completes the proof. ¥
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Proof of Theorem 2

The proxy estimator of φy in (6) is given by

φ̂y =

(
T−1

T∑
t=2

(∆y∗it−1)
2

)−1

T−1
T∑

t=2

∆y∗it−1∆y∗it, (A7)

where ∆y∗it−1 and ∆y∗it are the errors from projecting ∆yit−1 and ∆yit onto
wit = (∆mit, ∆mit−1)′.

The numerator of (A7) can be expressed as

T−1
T∑

t=2

(∆y∗it−1)
2 = T−1

T∑
t=2

(∆yit−1)2 − T−1
T∑

t=2

∆yit−1w
′
it

·
(

T−1
T∑

t=2

witw
′
it

)−1

T−1
T∑

t=2

wit∆yit−1. (A8)

Now, (6) can be written in first differences as

∆yit = (φyi + 1)∆yit−1 + λi∆mit−1 + γyi∆2mit + ∆eyit

=
1

1− (φyi + 1)L
((λi − γyi)∆mit−1 + γyi∆mit + eyit − eyit−1).

By expanding ∆y2
it, and some algebra, we get

(∆yit)2 = γ2
yi(∆mit)2 +

1
1− (φyi + 1)2L

φ2
yi(γyi − βi)2(∆mit−1)2

+ e2
yit +

1
1− (φyi + 1)2L

φ2
yie

2
yit−1 + ... ,

where the remaining terms are cross-products with zero expectation. Thus, we
can show that as T →∞

T−1
T∑

t=2

(∆yit−1)2 →p

(
γ2

yi +
1

1− (φyi + 1)2
φ2

yi(γyi − βi)2
)

var(emit)

+
(

1 +
1

1− (φyi + 1)2
φ2

yi

)
var(eyit).

Also, we have that

T−1
T∑

t=2

∆yit−1w
′
it →p (0, γyivar(emit)),

T−1
T∑

t=2

witw
′
it →p

(
var(emit) 0

0 var(emit)

)
.
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Putting everything together, we obtain the following limit of (A8) as T →∞

T−1
T∑

t=2

(∆y∗it−1)
2 →p

(
1

1− (φyi + 1)2
φ2

yi(γyi − βi)2
)

var(emit)

+
(

1 +
1

1− (φyi + 1)2
φ2

yi

)
var(eyit)

=
1

1− (φyi + 1)2
(−2φyivar(eyit)

+ φ2
yi(γyi − βi)2var(emit)). (A9)

Consider next the denominator of (A7). We have

∆yit∆yit−1 = γyiφyi(γyi − βi)(∆mit−1)2

+
1

1− (φyi + 1)2L
φ2

yi(φyi + 1)(γyi − βi)2(∆mit−2)2

+ φyie
2
yit−1 +

1
1− (φyi + 1)2L

φ2
yi(φyi + 1)e2

yit−2 + ... ,

where, as before, the remainder includes only cross-products that have zero
expectation. It follows that

T−1
T∑

t=2

∆yit∆yit−1 →p

(
γyiφyi(γyi − βi) +

1
1− (φyi + 1)2

φ2
yi(γyi − βi)2

)

· var(emit) +
(

φyi +
1

1− (φyi + 1)2
φ2

yi(φyi + 1)
)

· var(eyit).

Since T−1
∑T

t=2 ∆yitw
′
it →p (γyivar(emit), φyi(γyi − βi)var(emit)) as T → ∞,

we get

T−1
T∑

t=2

∆y∗it∆y∗it−1 = T−1
T∑

t=2

∆yit∆yit−1 − T−1
T∑

t=2

∆yitw
′
it

·
(

T−1
T∑

t=2

witw
′
it

)−1

T−1
T∑

t=2

wit∆yit−1

→p

(
1

1− (φyi + 1)2
φ2

yi(γyi − βi)2
)

var(emit)

+
(

φyi +
1

1− (φyi + 1)2
φ2

yi(φyi + 1)
)

var(eyit)

= − 1
1− (φyi + 1)2

φ2
yivar(eyit)

+
1

1− (φyi + 1)2
φ2

yi(φyi + 1)(γyi − βi)2var(emit)).

This result, together with (A7) and (A9), establishes the proof. ¥
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Table 2: Panel unit root tests.

Output Money

Study Test Value p-value Value p-value

Bai and Ng (2004) P c
e −0.211 0.583 0.495 0.310

Phillips and Sul (2003) G++
ols 2.150 0.984 6.918 1.000

Z 0.129 0.551 4.093 1.000

Pm 0.105 0.458 −1.902 0.971

Moon and Perron (2004) ta 0.039 0.516 1.052 0.854

tb 0.469 0.681 9.484 1.000

Notes: The tests are computed using the Bartlett kernel. All bandwidths and lag

lengths are set equal to 4(T/100)2/9. The maximum number of common factors is

set to three.
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