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Six DOF Eye-to-Hand Calibration from 2D Measurements
Using Planar Constraints

Fredrik Bagge Carlson* Rolf Johansson Anders Robertsson

Abstract—This article presents a linear, iterative
method to solve the eye-to-hand calibration problem
between a wrist-mounted laser scanner and the tool
flange of a robot. Measurement data are acquired
from a set of non parallel planes whereafter the plane
equations and desired rigid transformation matrix are
found in a two-step, iterative fashion. The method is
shown to handle large error in the initial estimate
of the transform and results are verified in both
simulations and experiments using a seam tracking
laser sensor for welding applications.

Index Terms—calibration, laser scanner, eye to
hand, eye in hand, kinematic calibration

I. INTRODUCTION
Laser scanners have been widely used for many years in

the field of robotics. A large group of laser scanners, such
as 2D laser range finders and laser stripe profilers, provide
accurate distance measurements confined to a plane. By
moving either the scanner or the scanned object, a 2D
laser scanner can be used to build a 3D representation
of an object or the environment. To this purpose, laser
scanners are commonly mounted on mobile platforms or
robots.

This work considers the calibration of a wrist mounted
laser scanner for robotic 3D scanning and weld seam
tracking applications. To relate the measurements of
the scanner to the robot coordinate system, the rigid
transformation between the scanner coordinate system
and the tool flange of the robot is needed.

A naive approach to the stated calibration problem is
to make use of the 4/5/6-point tool calibration routines
commonly found in industrial robot systems. These
methods suffer from the fact that the origin and the
axes of the sensor coordinate system are invisible to the
operator, which must rely on visual feedback from both
the workspace and a computer monitor simultaneously.
Further, the accuracy of these methods is very much
dependent on the skill of the operator and data collection
for even a small amount of points is very tedious.
Other well known algorithms for eye-to-hand cali-

bration include [1], [2], [3], which are all adopted for

*The reported work was supported by the European Commission
under the 7th Framework Programme within the project Flexifab
under grant agreement 606156.
The authors are members of the LCCC Linnaeus Center and the
eLLIIT Excellence Center at Lund University.
Lund University, Dept Automatic Control, PO Box 118
SE22100 Lund Sweden
Fredrik.Bagge_Carlson@control.lth.se
Rolf.Johansson@control.lth.se
Anders.Robertsson@control.lth.se

Fig. 1. ABB IRB140 used for experimental verification.

calibration of a wrist-mounted camera using a calibration
pattern. A laser scanner is fundamentally different in the
information it captures, which must be considered by the
calibration algorithm employed.
Kinematic calibration of robotic manipulator using

planar constraints in various formats has been considered
before. In [4], the proposed method begins with an initial
estimate of the desired parameters, which is improved
with a non-linear optimization algorithm. The authors
also discuss observability issues related to identification
using planar constraints. The method focuses on im-
proving parameter estimates in the kinematic model of
the robot, and convergence results are therefore only
presented for initial guesses very close to their true values
(0.01mm/0.01◦).

In [5], the transformation between a camera and a laser
range finder is found using a checker board pattern and
computer vision to estimate the location of the calibration
planes. With the equations of the calibration planes
known, the desired transformation matrix is obtained
from a set of linear equations.
Planar constraints have also been considered in [6]

where the authors employ a non-linear optimization
technique to estimate the kinematic parameters. The
method requires careful definition of the planes and can
not handle arbitrary frame assignments.
A wrist mounted sensor can be seen as an extension

of the kinematic chain of the robot. Initial guesses can
be poor, especially if based on visual estimates. This
paper presents a method based solely on solving linear



sets of equations. The method accepts a very crude initial
estimate of the desired kinematic parameters, which is
refined in an iterative procedure. The placement of the
calibration planes is assumed unknown, and their loca-
tions are found together with the desired transformation
matrix.
The article is structured as follows, preliminary equa-

tions and notation are covered in Sec. II followed by
the introduction of the proposed approach in Sec. III.
Section IV presents a simulation study of convergence
properties as well as experimental verification of the
approach. Conclusions are finally given in Sec. V.

II. Preliminaries
Throughout the paper the following notation will be

used. A subscript denotes the frame of reference, such
that the coordinates of a point pA are given in the frame
A. TB

A ∈ SE(4) denotes a transformation matrix from
frame A to frame B such that [7]

TB
A pB = pA (1)

The matrix TB
A can be decomposed into RB

A and pB
A such

that
TB

A =
[
RB

A pB
A

0 1

]
(2)

The normal of a plane from which measurement point i
is taken, given in frame A, will be denoted ni

A.
A plane is completely specified by

nᵀp = d,
∥∥n∥∥2 = 1 (3)

where d is the orthogonal distance from the origin to the
plane, n the plane normal and p is any point on the plane.

A. Laser scanner characteristics
The laser scanner consists of a camera and a laser source

emitting light in a plane which intersects a physical plane
in a line. The three dimensional location of a point along
the projected laser line may be calculated by triangulation,
based on a known geometry between the camera and
the laser emitter. A single measurement from the laser
scanner typically yields the coordinates of a large number
of points in the laser plane, alternatively, a measurement
consists of a single point and the angle of the surface,
which is easily converted to two points.

III. METHOD
The objective of the calibration is to find the trans-

formation matrix TS
T F ∈ SE(4) that relates the measure-

ments of the laser scanner to the coordinate frame of the
tool flange of the robot.
The kinematic chain of a robot manipulator will here

consist of the transformation from the robot base frame
to the tool flange T T Fi

RB , given by the manipulator forward
kinematics in pose i, and the transformation from the
tool flange to the sensor TS

T F . The sensor, in turn, projects
laser light onto a plane with unknown equation. A point

Find plane equations
nᵀp = d

Find transformation
matrix TS

T F

Initial estimate of TS
T F

End

Fig. 2. Illustration of the two-step, iterative method.

observed by the sensor can be translated to the robot
base frame by

pRBi
= T

T Fi
RB TS

T F pSi
(4)

where i denotes the index of the pose.
To find TS

T F , an iterative two-step method is proposed,
which starts with an initial guess of the matrix. In
each iteration, the equations for the planes are found
using eigendecomposition, whereafter a set of linear
equations is solved for an improved estimate of the desired
transformation matrix. The scheme, illustrated in Fig. 2,
is iterated until convergence.

A. Finding the calibration planes
Consider initially a set of measurements, PS =

[p1, ..., pNp
]S , gathered from a single plane. The normal

can be found by Principal Component Analysis (PCA),
which amounts to performing an eigendecomposition of
the covariance matrix C of the points [8]. The eigenvector
corresponding to the smallest eigenvalue of C will be the
desired estimate of the plane normal1. To this purpose,
all points are transformed to a common frame, the robot
base frame, using (4) and the current estimate of TS

T F .
To fully specify the plane equation, the center of mass

µ of PRB is calculated. The distance d to the plane is
then calculated as the length of the projection of the
vector µ onto the plane normal

d =
∥∥n̄(n̄ᵀµ)

∥∥ (5)

where n̄ is a normal with unit length given by PCA.
This distance can be encoded into the normal by letting∥∥n∥∥ = d. The normal is then simply found by

n = n̄(n̄ᵀµ) (6)

This procedure is repeated for all measured calibration
planes and results in a set of normals N that will be used
to find the optimal TS

T F .

B. Solving for TS
T F

All measured points should fulfill the equation for the
plane they were obtained from. This means that for a
single point p

n̄ᵀp = d⇔ nᵀp =
∥∥n∥∥2 (7)

1This eigenvalue will correspond to the mean squared distance
from the points to the plane.



A measurement point obtained from the sensor in the
considered setup should thus fulfill the following set of
linear equations

pSi
=
[
pᵀSi

1
]ᵀ =

[
xSi

ySi
zSi

1
]ᵀ (8)

pRBi
= T

T Fi
RB TS

T F pSi
(9)

nᵀpRBi
=
∥∥n∥∥2 (10)

where bold-face notation denotes a point expressed in
homogeneous coordinates according to (8). Without loss
of generality, the points pS can be assumed to lie on the
plane zS = 0. As a result, the third column in TS

T F can
not be solved for directly. The constraints on RS

T F to
belong to SO(3), will however allow for reconstruction of
the third column in RS

T F from the first two columns.
Let T̃ denote the remainder of TS

T F after removing the
third column and the last row. Solving the linear equations
(9)-(10) for the parameters in T̃ can be expressed as

Aiw + qi =
∥∥ni

∥∥ ⇔ Aiw =
∥∥ni

∥∥− qi (11)

where w = vec(T̃ ) ∈ R9×1 consists of the stacked columns
of T̃ and

Ai =
[
nᵀi R

T Fi
RB xSi

nᵀi R
T Fi
RB ySi

nᵀi R
T Fi
RB

]
∈R1×9 (12)

qi = nᵀi p
T Fi
RB ∈R (13)

Since Eqs. (9) and (10) are linear in the parameters, all
elements of TS

T F can be extracted into w and Ai can
be obtained by performing the matrix multiplications in
Eqs. (9) and (10) and identifying terms containing any of
the elements of w. Terms with which do not include any
parameter to be identified are associated with qi. The
final expressions for Ai and qi given above can then be
obtained by identifying matrix multiplication structures
among the elements of Ai and qi.
Equation (11) does not have a unique solution. A set

of at least nine points gathered from at least three planes
is required in order to obtain a unique solution to the
vector w. This can be obtained by stacking the entries in
Eq. (11) according to

Aw = Y, A =


A1
A2
...

ANp

 , Y =


∥∥n1

∥∥− q1∥∥n2
∥∥− q2
...∥∥nNp

∥∥− qNp

 (14)

The vector w∗ of parameters that minimizes

w∗ = arg min
w

∥∥Aw −Y
∥∥

2 (15)

can then be obtained from the equation2 [9], [10]

w∗ = (AᵀA)−1AᵀY (16)

Eq. (16) is known as the least-squares solution and the
full-rank matrix (AᵀA)−1Aᵀ is commonly referred to as
the pseudo inverse of A. If A is a square matrix, the

2Commonly solved by w = A\Y in Matlab

pseudo inverse reduces to the standard matrix inverse. If
A however is a tall matrix, the equation Aw = Y is over
determined and Eq. (16) produces the solution w∗ that
minimizes Eq. (15).
Since w only contains the first two columns of RS

T F ,
the third column is formed as

R3 = R1 ×R2 (17)

where × denotes the cross product between R1 and R2,
which produces a vector orthogonal to both R1 and R2.
The resulting RS

T F will in general not belong to SO(3).
The closest valid rotation matrix can be found by Singular
Value Decomposition according to [11]

R = USV ᵀ (18)

R⊥ = U

1
1

det(UV ᵀ)

V ᵀ (19)

or using the matrix square root3 as [11]

R⊥ = R (RᵀR )−
1
2 (20)

The procedure of orthoganalizing R will change the
corresponding entries in w∗ and the resulting coefficients
will no longer solve the problem (15). A second opti-
mization problem can thus be formed to re-estimate
the translational part of w, given the orthogonalized
rotational part. Let w be decomposed according to

w =
[
R̃∗ p

]
R̃∗ ∈ R1×6, p ∈ R1×3 (21)

and denote by An:k columns n to k of A. The optimal
translational vector, given the orthonormal rotation
matrix, is found by solving the following optimization
problem

Ỹ = Y−A1:6R̃
∗ (22)

p∗ = arg min
p

∥∥A7:9p− Ỹ
∥∥

2 (23)

with the solution

p∗ = (Aᵀ
7:9A7:9)−1Aᵀ

7:9Ỹ (24)
C. Final Refinement
As noted in [5], solving an optimization problem

like (15) is equivalent to minimizing the algebraic distance
between the matrix, parameterized by w, and the data.
There is no direct minimization of the distances from
measurements to planes involved. Given the result from
the above procedure as initial guess, any suitable, iter-
ative minimization strategy can be employed to further
minimize a cost function on the form

J(TS
T F ) =

Np∑
i=1

(nᵀi pRBi
(TS

T F )−
∥∥ni

∥∥)2 (25)

which is the squared distance from the measurement point
to the plane. Here, pRBi

is seen as a function of TS
T F

according to (9).
3This method may produce a result with det(R)=-1 if the initial

guess is very poor.
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Fig. 3. Convergence results for simulated data during 100 realizations. 30 poses in total on 3 planes. Measurement noise level σ = 0.5mm
is marked with a red, dashed line. On the left, the Frobenius norm between the true matrix and the estimated, on the right, the RMS
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Fig. 4. Errors in TS
T F before and after calibration for 100 realizations

with 30 calibration iterations. 30 poses in total on 3 planes. The
measurement noise level σ = 0.5mm is marked with a dashed line.
On the left, the translational error between the true matrix and the
estimated, on the right, the rotational error.

IV. RESULTS

The performance of the method was initially studied
in simulations, Sec. IV-A, which allows for a comparison
between the obtained estimate and the ground truth. The
simulation study is followed by experimental verification,
Sec. IV-B, using a real laser scanner mounted on the wrist
of an industrial manipulator.

A. Simulations
To study the convergence properties of the proposed

approach, a simulation study was conducted. A randomly
generated TS

T F was used together with measurements from
a set of random poses. The initial guess of TS

T F was chosen
as the true matrix with an error distributed uniformly
according to Table I. The measurements were obtained
from three orthogonal planes and corrupted with Gaussian
white noise with standard deviation σ = 0.5mm.

Figure 3 illustrates the convergence for 100 realizations
of the described procedure. Most realizations converged to
the true matrix within 15 iterations. Analysis shows that

TABLE I
Distribution of errors in initial estimate of TS

T F .

x, y, z roll, pitch, yaw

Distribution U(−200mm, 200mm) U(−30◦, 30◦)

Fig. 5. A visualization of the reconstructed planes used for data
collection. The planes were placed so as to be close to orthogonal
to each other, surrounding the robot.

careful selection of poses results in faster convergence. The
random pose selection strategy employed in the simulation
study suffers the risk of co-linearity between measurement
poses, which slows down convergence.
Figure 4 illustrates the final results in terms of the

accuracy in both the translational and rotational part of
the estimate of TS

T F .

B. Experiments
Experimental verification of the proposed method was

conducted with a ABB IRB140 robot equipped with a
Meta SLS 25 [12] weld seam tracking sensor, see Fig. 1. A
whiteboard was placed on different locations surrounding
the robot, see Fig. 5, and several measurements of each
plane was recorded.

The algorithm was started with the initial guess

TS
T F =


1 0 0 0
0 1 0 0.15
0 0 1 0.15
0 0 0 1

 (26)



0 10 20 30 40 5010−4

10−3

10−2

Number of iterations

RMS distance from points to plane [m]

Mean
Individual planes

Fig. 6. Convergence results for experimental data gathered from
5 planes. The RMS distance between measurement points and the
estimated planes are shown together with the mean over all planes.

and returned the final estimate

TS
T F =


0.9620 0.2710 0.0010 0.0850
−0.2710 0.9620 −0.0240 0.1170
−0.0070 0.0230 1.0000 0.1610

0 0 0 1

 (27)

The translational part of the initial guess was obtained by
estimating the distance from the tool flange to the origin
of the laser scanner, whereas the rotation matrix was
obtained by estimating the projection of the coordinate
axes of the scanner onto the axes of the tool flange4.
The convergence behavior, illustrated in Fig. 6, is

similar to that in the simulation and the final error was on
the same level as the noise in the sensor data. A histogram
of the final errors is shown in Fig. 7.

V. CONCLUSION

This paper has presented a robust, linear method for
the kinematic calibration of a wrist mounted laser sensor.
Large uncertainties in the initial estimates are handled
and the estimation error converges to below the level of
the measurement noise. The calibration routine can be
used for any type of laser sensor that measures distances
in a plane, as long as the forward kinematics is known,
such as when the sensor is mounted on the flange of an
industrial robot or on a mobile platform or drone, tracked
by an external tracking system.

4The fact that the initial estimate of the rotation matrix was the
identity matrix is a coincidence

−1 −0.5 0 0.5 1

·10−3

0

0.2

0.4

0.6

Error [m]

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Histogram of errors

Fig. 7. Histogram of errors Y−Aw∗ for the experimental data.
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