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Abstract—We investigate the out-of-sequence measurements
particle filtering problem for a set of conditionally linear Gaussian
state-space models, known as mixed linear/nonlinear state-space
models. Two different algorithms are proposed, which both
exploit the conditionally linear substructure. The first approach is
based on storing only a subset of the particles and their weights,
which implies low memory and computational requirements.
The second approach is based on a Rao-Blackwellized forward
filter/backward simulator, adapted to the out-of-sequence filter-
ing task with computational considerations for enabling online
implementations. Simulation studies on two examples show that
both approaches outperform recently reported particle filters,
with the second approach being superior in terms of tracking
performance.

I. INTRODUCTION

During the past decade there has been an increase in the
number of sensors used in tracking systems, as well as an
increase in the number of distributed, heterogeneous sensing
systems. Hence, the ability to account for that some measure-
ments arrive after that a more recent measurement from the
same target has already been processed is becoming crucial in
modern tracking systems. These delayed measurements are de-
noted out-of-sequence measurements (OOSMs) [1], and occur,
for example, because of data preprocessing and communication
delays. They arise in a variety of applications, one example
being an automotive application where network links cause
transmission delays of radar sensors [2]. Another example is
tracking of autonomous vehicles, where cameras have become
increasingly important for giving spatial information. Here,
it is often the processing times of the vision algorithms
that cause the OOSMs [3]. Discarding the OOSMs implies
discarding information, and may thus lead to deficient tracking
performance. However, incorporating the measurements into
nonlinear tracking systems can be challenging.

In this paper we propose two novel algorithms for process-
ing OOSMs in a Rao-Blackwellized particle filter setting con-
sidering mixed linear/nonlinear state-space models. This model
class is common in, for example, tracking, positioning, and
navigation [4]. Earlier work has provided the exact Bayesian
inference solution and its particle filter implementation to the
OOSM problem, see [5]. By exploring a conditionally linear
Gaussian substructure in the model class considered, however,
we are able to provide both improved performance and reduced
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computational demands. The first algorithm is both storage
efficient and computationally fast while improving perfor-
mance compared to previous approaches. It can be seen as a
generalization of the storage efficient particle filters reported in
[6], with the derivations adapted to the mixed linear/nonlinear
setting. It is developed under the assumption that only a subset
of the particles and their associated weights, together with
the measurements, are stored. Because of its simplicity it is
well suited for real-time applications, even for systems of
considerable size. The second algorithm is developed with
focus on tracking performance. Naturally, this performance
improvement comes with increased computational complexity.
Using two simulation examples, we show that both approaches
outperform recently reported particle filter algorithms, [5], [7],
for processing OOSMs.

A. Related Work

There has been a large amount of research performed
in trying to incorporate OOSMs for linear-Gaussian (LG)
systems. Two suboptimal algorithms can be found in [8] and
[9]. Examples of OOSM algorithms which are optimal in the
mean-square sense for the LG case are found in [1], [10], [11].

For nonlinear systems, several algorithms using the particle
filter framework have been derived. An example is found in
[12], which, however, needs a linear state-transition model to
form the proposal density of the state. Moreover, to be able to
retrodict the state vector back to the OOSM time, [13] assumes
an invertible state-transition matrix. To enable nonlinear state-
space models, [6] presented the storage efficient particle filter
(SEPF). SEPF is computationally fast and memory efficient,
since it only stores and processes means and covariances
through an extended Kalman smoother to update the estimates
with the OOSMs. However, the performance of SEPF suffers
when the OOSMs change the particle weights too much in the
measurement update step. This problem was solved in [14],
where the approach in [6] was extended with an algorithm
for detecting the problematic OOSMs. Another approach for
increased performance was given in [7], where the SEPF
in [6] and the smoother in [11] were combined to enhance
performance and decrease storage requirements. In [5], an
exact Bayesian solution and its corresponding particle filter
implementation for nonlinear models with Gaussian noise was
derived, denoted A-PF. The drawback with this algorithm is
that it is computationally expensive. For OOSMs that have
larger delays than one sample, its complexity is roughly
O((l − 1)N3 + N2), where l is the delay in the number of
time steps, and N is the number of particles.



B. Outline

The outline of the rest of the paper is as follows: In
Sec. II we give the problem statement and the notation
used. Section III reviews particle filters and smoothers, both
for the non-Rao-Blackwellized and the Rao-Blackwellized
approaches. The two proposed algorithms are presented in
Sec. IV. In Sec. V, the performance of the proposed methods
is assessed through comparison with the algorithms in [5] and
[7]. Finally, we conclude the work in Sec. VI.

II. PROBLEM FORMULATION

The conditional distribution density of the variable x at an
arbitrary time tk ∈ R conditioned on the variable y from time
tm to time tk is denoted p(xk|ym:k). For each time tk, we
assume that the state vector xk ∈ R

nx can be partitioned into
a linear part, zk, and a nonlinear part, ηk, as xk = (zk ηk)

T.
We consider discrete-time mixed linear/nonlinear state-space
models of the form

zk+1 = f(ηk) + A(ηk)zk + F (ηk)v
z
k, (1)

ηk+1 = g(ηk) + B(ηk)zk +G(ηk)v
η
k , (2)

yk = h(ηk) + C(ηk)zk + ek, (3)

where f(·), g(·), and the measurement function h(·) are vector-
valued, possibly nonlinear functions. Further, A(·), F (·), B(·),
G(·), and C(·) are matrices of suitable dimensions, with a
possibly nonlinear dependence on η. For brevity, we write fk
for f(ηk), Ak for A(ηk), et cetera. Note that given ηk , (1) is
linear with the measurement relations (2) and (3). The process
noise vzk is white Gaussian with zero mean and unit covariance
matrix according to vzk ∼ N (0, I). Similarly, the process
noise vηk is distributed as vηk ∼ N (0, I), and the measurement
noise ek is distributed according to ek ∼ N (0, R(ηk)). The
timestamp is referred to as tk. For the OOSM filtering task, we
denote the set of in-sequence measurements generated in the
interval [0, k] as Yk . Moreover, we refer to the set of OOSMs
generated in the interval [0, k] available at time index k as Zk.
For simplicity, we express the set Yk ∪ Zk−1 with y0:k.

Suppose that we at time tk in the estimation process have
an estimate of the filtering posterior p(zk, ηk|y0:k), where zk
is conditioned on η0:k. Assume that an OOSM yτ ∈ Zk

with timestamp tτ ∈ [tk−l, tk−l+1) arrives, see Fig. 1 for an
illustration. The Rao-Blackwellized OOSM filtering task is to
update the weights and linear estimates at time tk with yτ , that
is, to obtain p(xk|y0:k, yτ ) = p(zk, ηk|y0:k, yτ ).
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Fig. 1. An illustration of the l-step lag OOSM problem, where the circles
denote OOSMs and squares refer to the in-sequence measurements.

III. BACKGROUND

Here, we briefly review particle filtering and smoothing,
both for pure nonlinear and mixed linear/nonlinear state-space
models.

A. Particle Filtering and Smoothing

Consider a standard Markov process with the dynamics and
measurement equation as xk+1 = f(xk)+vk , yk = h(xk)+ek,
where f(·) and h(·) are nonlinear functions, and vk and ek
have known densities. In general a closed form representation
of the posterior density p(x0:k|y0:k) is impossible to obtain.
Particle filters (PFs) are sequential Monte Carlo methods trying
to represent the posterior density with a set of weighted
samples, or particles [15]. Each particle represents a state
trajectory x0:k , which results in the approximation

p(x0:k|y0:k) ≈
N
∑

i=1

wi
kδxi

0:k
(x0:k). (4)

In (4), δ(·) is the Dirac delta function and wi
k is the associated

weight for the ith particle given the measurements y0:k. The
particle weights are typically updated as wi

k ∝ p(yk|xi
k)w

i
k−1.

To propagate forward in time, new samples are drawn from
an importance density, often, but not always, the dynamics
itself. An approximation to the marginal (filtering) density is
given by marginalization of (4), that is, discarding x0:k−1,
yielding p(xk|y0:k). To account for sample diversity, a re-
sampling step is typically performed if 1/

∑

(wi
k)

2 < Neff ,
where 0 < Neff ≤ N . In this step, particles that have negligible
weights are replaced with particles with larger weights, mean-
ing that probable particles are cloned and improbable particles
are discarded.

In particle smoothing, p(x0:T |y0:T ) is the density of in-
terest. Note that the marginal and fixed-interval smoothing
densities can be found by marginalization, similarly to the
particle filter case described earlier. If all particle histories are
stored in the particle filter, and if the resampling step resamples
whole trajectories instead of only the latest time step, the
particle filter approximation (4) is also an approximation to
the smoothing density [16]. However, this estimate is often
degenerate, which means that all trajectories collapse to the
same for k ≪ T . For this reason the smoothing problem is
often approached with other algorithms. One example is the
forward filter/backward simulator (FFBS) smoother [17]. The
FFBS utilizes the sequential factorization

p(x0:T |y0:T ) = p(xT |y0:T )
T−1
∏

k=0

p(xk|xk+1:T , y0:T ), (5)

where p(xk|xk+1:T , y0:T ) = p(xk|xk+1, y0:k). Starting by
sampling a state x′

T from the filtering approximation
p(xT |y0:T ) at time index T , the Markov property

p(xk|xk+1, y0:k) ∝ p(xk+1|xk)p(xk|y0:k) (6)

is utilized to form the approximation

p(xT−1|x
′
T , y0:T ) ≈

N
∑

i=1

wi
T−1|T δxi

0:T−1
(x0:T−1),



where wi
T−1|T ∝ wi

T−1p(x
′
T |x

i
T−1). Iterating backward in

time, xT−1 is formed by sampling from the filtering distribu-
tion at time index T − 1 with probability wi

T−1|T . This proce-

dure is repeated until time index k = 0 is reached, whereby an
approximation can be formed as p(x0:T |y0:T ) ≈ δx′

0:T
(x0:T ).

For a better approximation of the smoothing density, the
algorithm is repeated M times to yield

p(x0:T |y0:T ) ≈
1

M

M
∑

j=1

δxj

0:T

(x0:T ). (7)

B. Rao-Blackwellized Particle Filtering and Smoothing

Particle filters and smoothers can be used for many dif-
ferent types of dynamic models. However, to decrease the
number of samples needed in the filter it is often advantageous
to exploit model structure. This is the idea behind Rao-
Blackwellization, where the subset of the state space which
allows for analytic expressions is marginalized out. Thus, the
state space to be covered by samples is smaller, and it should
therefore be possible to use significantly fewer samples [18].

The structure of the mixed linear/nonlinear model consist-
ing of (1)–(3) can be exploited to give a Rao-Blackwellized
particle filter (RBPF), see [4] for details. The idea is to use
the factorization

p(zk, η0:k|y0:k) = p(zk|η0:k, y0:k)p(η0:k|y0:k), (8)

where p(η0:k|y0:k) in (8) is approximated by the particle filter
(4). Given the nonlinear state trajectory the first part in (8) is
linear Gaussian, and can hence be estimated with constrained
Kalman filters, one for each particle. The main difference
compared to a standard Kalman filter consists of performing
an extra measurement update using ηk. The first part in (8)
equals

p(zk|η0:k, y0:k) = N
(

zk; ẑk|k(η0:k), Pk|k(η0:k)
)

. (9)

In (9), N
(

zk;µ,Υ
)

is the Gaussian probability density func-
tion given mean µ and covariance matrix Υ, ẑk|k(η0:k) is the
linear state estimate given the trajectory η0:k and measure-
ments y0:k, and Pk|k(η0:k) is its associated covariance. For
brevity, we make the dependence on the trajectory implicit.
By combining (4) and (9), an approximation to (8) is given by

p(zk, η0:k|y0:k) ≈
N
∑

i=1

wi
kN
(

zk; ẑ
i
k|k, P

i
k|k

)

δηi
0:k

(η0:k). (10)

The weights wi
k are updated similarly to the standard particle

filter, and the density p(zk, ηk|y0:k) is found by a marginal-
ization of (10).

In Rao-Blackwellized particle smoothing (RBPS), an ap-
proximation to the density p(zk, ηk|y0:T ) for k < T is sought,
in accordance with (7), as

p(zk, ηk|y0:T ) ≈
1

M

M
∑

j=1

N
(

zk; ẑ
j
k|T , P

j
k|T

)

δηj

k

(ηk), (11)

where ẑjk|T and P j
k|T are conditioned on ηjk:T . Since condi-

tionally linear state-space models such as (1)–(3) do not have
the Markov property (6), the FFBS-based smoothing approach
is not straightforward for RBPS. The non-Markovian property

implies that the measurement likelihood depends on the whole
nonlinear trajectory η0:T . Therefore, whole trajectories must be
sampled from the RBPF in order to preserve Gaussianity.

Recently, an RBPS considering the mixed linear/nonlinear
model class was derived in [19]. The novelty lies in that
the smoother only samples the nonlinear part of the state
vector. This RBPS starts with drawing a sample η′T from the
RBPF particles at time index T . Then the task is to extend
the trajectory to time index k ≤ T − 1. To this end, one
of the RBPF particles {ηi0:k}

N
i=1 are drawn with probability

wi
k|T , and by discarding ηi0:k−1 the trajectory is appended,

yielding {ηk, η′k+1:T }. This procedure is repeated for each
time step k = T − 1, . . . , 0, resulting in a backward trajectory
that can be used to approximate (5). To compute wi

k|T (i.e.,

p(xk|xk+1:T , y0:T )) in (5), Bayes’ rule is utilized, yielding

p(η0:k|ηk+1:T , y0:T ) ∝ p(yk+1:T , ηk+1:T |η0:k, y0:k)

× p(η0:k|y0:k). (12)

The second factor in (12) is approximated by the RBPF. This
results in

p(η0:k|ηk+1:T , y0:T ) ≈
N
∑

i=1

wi
k|T δηi

0:k
(η0:k),

where

wi
k|T ∝ wi

kp(yk+1:T , η
′
k+1:T |η

i
0:k, y0:k). (13)

The density in (13) is calculated by noting that

p(yk+1:T , η
′
k+1:T |η

i
0:k, y0:k)

=

∫

p(yk+1:T , η
′
k+1:T |z

i
k, η

i
k)p(z

i
k|η

i
0:k, y0:k) dz

i
k, (14)

where the second factor is given by (9). The density
p(yk+1:T , η

′
k+1:T |z

i
k, η

i
k) is found by propagating zero, first,

and second order moments, namely {Zk, λk,Ωk}, dependent
on ηk but independent of zk, backward in time as the trajec-
tory η′k+1 is drawn. Given the set of statistics {Zk, λk,Ωk},

p(yk+1:T , η
′
k+1:T |z

i
k, η

i
k) equals, up to proportionality,

p(yk+1:T , η
′
k+1:T |zk, ηk) ∝ Zke

(

− 1
2 (z

T
k Ωkzk−2λTzk)

)

.

Marginalizing out zik gives the sought density (14) as

p(yk+1:T , η
′
k+1:T |η

i
0:k, y0:k) ∝ Zk|Λk|

−1/2e(−
1
2
ζk), (15)

where

ζk = ‖ẑk|k‖Ωk
− 2λT

k ẑk|k − ‖ΓT
k (λk − Ωkẑk|k)‖Λ−1 , (16)

Pk|k = ΓkΓ
T
k , (17)

Λk = ΓT
kΩkΓk + I, where ‖µ‖Ω = µTΩµ. (18)

When the full backward trajectory η′0:T has been found, the
algorithm is typically repeated M times to give a set of
backward trajectories {ηj0:T }

M
j=1 similarly to (7). Note that (14)

is calculated for all N particles, thus giving the complexity
O(TMN). To find smoothed estimates of the linear states,
constrained Rauch-Tung-Striebel (RTS) smoothers are used
[20], for each trajectory. This finally gives the approximated
smoothing density as in (11). For further details, see [19].



IV. RAO-BLACKWELLIZED OUT-OF-SEQUENCE

PROCESSING

As described in Sec. II, in the Rao-Blackwellized OOSM
filtering task the aim is to estimate the density

p(zk, ηk|y0:k, yτ ), (19)

where an estimate of p(zk, ηk|y0:k) already exists. To utilize
the linear structure in (1)–(3), we factorize (19) as

p(zk, ηk|y0:k, yτ ) = p(zk|ηk, y0:k, yτ )p(ηk|y0:k, yτ ). (20)

By using Bayes’ rule on the second factor of (20) we obtain

p(ηk|y0:k, yτ ) ∝ p(yτ |ηk, y0:k)p(ηk|y0:k). (21)

The factor p(ηk|y0:k) in (21) can be approximated with the
RBPF, which results in the approximation

p(ηk|y0:k, yτ ) ≈
N
∑

i=1

wi
k|k,τ δηi

k
(ηk), (22)

where
wi

k|k,τ ∝ wi
kp(yτ |η

i
k, y0:k). (23)

Further,

p(yτ |η
i
k, y0:k) =

∫

p(yτ |z
i
k, η

i
k, y0:k)p(z

i
k|η

i
k, y0:k) dz

i
k. (24)

Thus, in order to update the posterior p(ηk|y0:k) with
yτ to form (22), we need to estimate the likelihoods
{p(yτ |z

i
k, η

i
k, y0:k)}

N
i=1.

To incorporate the OOSM yτ into the first factor in (20),
we recast (20) as

p(zk|ηk, y0:k, yτ ) =
p(yτ |zk, ηk, y0:k)p(zk|ηk, y0:k)

∫

p(yτ |zk, ηk, y0:k)p(zk|ηk, y0:k) dzk
.

(25)
We use the RBPF (9) to approximate the second factor in the
numerator of (25). The first term in the numerator equals the
first term on the right-hand side of (24). What is remaining,
then, is to evaluate the densities {p(yτ |z

i
k, η

i
k, y0:k)}

N
i=1. In the

following we present two different approaches for performing
the particle filter and the Kalman filter measurement update,
that is, to compute p(yτ |x

i
k, y0:k) = p(yτ |z

i
k, η

i
k, y0:k).

A. OOSM Processing with Supporting RBPF

For the first algorithm we focus on finding a computation-
ally efficient method that computes p(yτ |xi

k, y0:k), while still
improving performance over existing OOSM algorithms.

Utilizing the Chapman-Kolmogorov equation, the density
p(yτ |xi

k, y0:k) is rewritten as

p(yτ |x
i
k, y0:k) =

∫

p(yτ |zτ , η0:τ )p(zτ , η0:τ |x
i
k, y0:k) dzτdη0:τ .

(26)

The density p(zτ , η0:τ |xi
k, y0:k) in (26) can be regarded as

a fixed-point (marginal) Rao-Blackwellized smoothing density,
which we approximate by rewriting it as

p(zτ , η0:τ |x
i
k, y0:k) ∝ p(xi

k, yk−l+1:k−1|zτ , η0:τ )

× p(zτ , η0:τ |y0:k−l). (27)

In (27), we have dropped yk since xi
k is given. We see that

p(zτ , η0:τ |y0:k−l) is given by the forward RBPF (8). The
first density on the right-hand side in (27) is a measurement
update using both yk−l+1:k−1 and xi

k as measurements. Thus
we need to propagate the past, {zτ , η0:τ}, to update with
{xi

k, yk−l+1:k−1}.

As discussed in Sec. III-A, the PF (or RBPF) is also
an approximate solution to the smoothing problem. Thus, an
efficient way to approximate the smoothing densities is to run
a supporting (additional) RBPF to find (27), which can then be
inserted into (26) to update the weights in (23) and linear states
in (25): At time index k− l we start an additional, supporting
RBPF. Since (27) is a smoothing density it can be represented
by fewer particles than for the original RBPF. Therefore we
start with sampling M ≤ N estimates {ẑjk−l|k−l, η

j
k−l}

M
j=1

from the filtering density at time index k − l, where ẑk−l|k−l

is conditioned on η0:k−l. Note that in practice we perform
this sampling already in the original forward RBPF, at each
time step, thus decreasing storage requirements. The density
p(zτ , η0:τ |y0:k−l) is given by the original RBPF (8) using a
time update to time index τ . At time index τ we augment the
linear state vector to

ζm =

(

ζ1m
ζ2m

)

=

(

zm
zτ

)

, (28)

and initialize it with

ζτ =

(

ẑτ |k−l

ẑτ |k−l

)

, P̄τ =

(

Pτ |k−l Pτ |k−l

Pτ |k−l Pτ |k−l

)

. (29)

Then, for each m ∈ [k − l + 1, k − 1], we run the supporting
augmented RBPF, where ζ2k−1 = ẑτ |k−1 yields the linear,

smoothed estimate and P̄ 2,2
k−1|k−1 (the lower right block in

P̄k−1) the smoothed covariance at time tk−1. Note that the

samples {ηj0:τ}
M
j=1 must be kept track of throughout the

recursion. Finally, at time tk we use the estimates {ẑik|k, η
i
k}

N
i=1

as measurements. Thus, at the end of the recursion an approx-
imation to the smoothing density is given by

p(zτ , η0:τ |x
i
k, y0:k) ≈

M
∑

j=1

qjτ |k,iN
(

zτ ; ẑ
j
τ |k,i, P

j
τ |k,i

)

δηj
0:τ

(η0:τ ).

(30)
Here, qjτ |k,i are the smoothed weights given measurements up

to time tk−1 and the estimates at time tk, xi
k. Given (30), we

find an approximation to (26) as

p(yτ |x
i
k, y0:k) ≈

M
∑

j=1

qjτ |k,ip(yτ |ẑ
j
τ |k,i, η

j
0:τ ), (31)

with the measurement likelihood given by:

p(yτ |z
j
τ |k,i, η

j
0:τ ) = N

(

yτ ; ŷ
j
τ |k,i,Σ

j
τ |k,i

)

(32)

where ŷjτ |k,i = hj
τ + Cj

τ ẑ
j
τ |k,i, with hj

τ = h(ηjτ ) and similarly

for Cj
τ and Rj

τ , and where Σj
τ |k,i = Cj

τP
j
τ |k,i(C

j
τ )

T + Rj
τ .

With (31) inserted into (24), we have that the weights after
the OOSM update, (23), are

wi
k|k,τ ∝ wi

k

M
∑

j=1

qjτ |k,ip(yτ |ẑ
j
τ |k,i, η

j
0:τ ). (33)



To find the linear estimates and their covariances after the
update with the OOSM, and hence to find (25), we utilize
results in [4] and [11] of how to calculate expected means
and their covariances in RBPFs and update linear states with
the OOSM, respectively. Then, for each i, the means and
covariances are calculated using

ẑik|k,τ = ẑik|k + Ei

P i
k|k,τ = P i

k|k +
M
∑

j=1

qjτ |k,i

(

(Ej,i − Ei)(Ej,i − Ei)T

−W j,i
k,τΣ

j
τ |k,i(W

j,i
k,τ )

T
)

Ei =

M
∑

j=1

qjτ |k,iW
j,i
k,τ e

j,i
τ , Ej,i = W j,i

k,τe
j,i
τ

ej,iτ = yτ − hj
τ − Cj

τ ẑ
j
τ |k,i

W j,i
k,τ = P j

k,τ |k,i(C
j
τ )

T(Σj
τ |k,i)

−1.

(34)

Here the crosscovariance between the state estimates at time
index k and τ , P j

k,τ |k,i, is calculated in the smoother recursions

as P̄ 2,1
k|k .

A summary of the algorithm, denoted SERBPF, is
given in Algorithm 1. The storage requirements are
{{ẑjm|m, P j

m|m, ηjm}km=k−lmax
, {ym}km=k−lmax+1

}Mj=1, where

lmax is the predetermined maximum delay in the number of
time steps. Further, the algorithm needs O(lM+N) operations.

Algorithm 1: SERBPF

1: Input: {ẑjk−l|k−l, P
j
k−l|k−l, η

j
k−l, yk−l+1:k−1}Mj=1

2: Predict up to time tτ , yielding p(zjτ , η
j
0:τ |y0:k−l).

3: Set new weights as qjτ |k−l = wj
k−l.

4: Augment the state vector as in (28) and initialize with
(29).

5: for m = k − l + 1 to k − 1 do
6: Predict the particles to time tm and perform particle

filter measurement update according to measurement
likelihood

7: if 1∑
(qjm)2

< Neff then

8: Resample M new particles, with replacement.

Keep track of {ηj0:τ}
M
j=1, and equalize weights,

qjτ |m = 1/M .

9: end if
10: Perform augmented Kalman filter measurement update.
11: end for
12: At time tk, use {ẑik|k, η

i
k}

N
i=1 as measurements, using

(1) and (2) as measurement likelihoods, yielding qjτ |k,i,

ẑjτ |k,i, P
j
τ |k,i, and P j

k,τ |k,i. Optionally, resample between

the measurement updates.
13: Update weights as in (33).
14: Update linear estimates by applying (34).

Remark 1: This algorithm is a generalization and expan-
sion of the storage efficient particle filter in [6], thus the name
SERBPF. Note that if τ < 1, steps 5–11 in the algorithm may
be skipped.

B. Rao-Blackwellized OOSM Update Using Backward Simu-
lation

Algorithm 1, SERBPF, uses a supporting RBPF while only
saving a subset of the particles in order to keep the complexity
low. Here we instead focus on estimation performance, thus
taking a backward-simulation approach to the smoothing prob-
lem. This time, we rewrite p(yτ |xi

k, y0:k) as

p(yτ |x
i
k, y0:k) =

∫

p(yτ |zτ , η0:τ )

× p(zτ , ητ , η0:k−1|x
i
k, y0:k)dzτdητdη0:k−1 (35)

for later use in (24), where

p(zτ , ητ , η0:k−1|x
i
k, y0:k)

= p(zτ , η0:τ |ηk−l:k−1, x
i
k, y0:k)p(zτ |η0:τ , ηk−l:k−1, x

i
k, y0:k)

× p(η0:τ |ηk−l:k−1, x
i
k, y0:k)p(ηk−l:k−1|x

i
k, y0:k),

and as

p(yτ |x
i
k, y0:k) =

∫

p(yτ |zτ , ητ )

× p(zτ , ητ , ηk−l:k−1|x
i
k, y0:k)dzτdητdηk−l:k−1 (36)

for later use in (25), where the second term on the right-hand
side can be factorized similarly to the second term in (35). In
both (35) and (36), we factorize p(ηk−l:k−1|xi

k, y0:k) in the
same manner as (5):

p(ηk−l:k−1|x
i
k, y0:k) =p(ηk−l|ηk−l+1:k−1, x

i
k, y0.k)

×
k−1
∏

m=k−l+1

p(ηm|ηm+1:k−1, x
i
k, y0.k). (37)

This smoothing density can be solved for in a similar way
as (12) is solved for in [19], however, with adaptions to the
OOSM scenario as follows: At time tk, instead of choosing
η′k = ηjk with probability wj

k for j = 1, . . . ,M , we choose
η′k = ηik for each forward particle. Then, at time tk−1, we draw
D forward particles {ηdk−1}

D
d=1 with probability wd

k−1. For
these D particles, we calculate the right-hand side of (15) using
(16)–(18). The smoothing weights wd

k−1|k,i are then found by

applying (13), which implies that we at this point have found
(37) as

p(ηk−1|η
i
k, y0:k) ≈

D
∑

d=1

wd
k−1|k,iδηd

k−1
(ηk−1),

To proceed in the algorithm, we set J = d with probability
wd

k−1|k,i and set η′k−1:k = {ηJk−1, η
i
k}. This recursion is

performed down to time tk−l, for M times. At time tk−l (37)
approximates to

p(ηk−l:k−1|x
i
k, y0:k)

≈
1

M

M
∑

j=1

D
∑

d=1

wj,d
k−l|k,iδηd

k−l
(ηk−l). (38)

For later use, we note that by drawing a last sample,
η′k−l = ηdk−l, we have also found an approximation of (37)
based on the mean of the full backward trajectories as

p(ηk−l:k−1|x
i
k, y0:k) ≈

1

M

M
∑

j=1

δηj

k−l:k−1

(ηk−l:k−1). (39)



Note that ηjk−l:k−1 depends on xi
k. To update the weights, we

insert (38) into (35), yielding

p(yτ |x
i
k, y0:k) ≈

1

M

M
∑

j=1

D
∑

d=1

wj,d
τ |k,ip(yτ |ẑ

d
τ |k−l, η

d
0:τ ), (40)

where wj,d
τ |k,i = wj,d

k−l|k,i since only a time update differs

between tτ and tk−l. By insertion of (40) into (24) and
applying (23), we may calculate the weights after processing
the l-step lag OOSM as

wi
k|k,τ ∝ wi

k

M
∑

j=1

D
∑

d=1

wj,d
τ |k,ip(yτ |ẑ

d
τ |k−l, η

d
τ ), (41)

where p(yτ |ẑdτ |k−l, η
d
τ ) is calculated similarly to (32).

To update the linear density p(zk|ηk, y0:k, yτ ) (i.e., (25)),

we need the smoothing density p(zτ |ητ , η
j
k−l:k−1, x

i
k, y0:k) in

the measurement update step (36). For this we can resort
to different linear smoothers (conditioned on the generated
backward trajectories and the measurements), iterating back to
time tk−l and then performing a time update to tτ . Here, we
choose an RTS-smoother, which for the mixed linear/nonlinear
model class is given as follows:

ẑm|k = ẑm|m +Hm

(

ẑm+1|k − ẑm+1|m

)

Pm|k = Pm|m +Hm

(

Pm+1|k − Pm+1|m

)

Pm,k|m = Pm+1,k|m+1H
T
m

Hm = P ∗
m|mAT

mP−1
m+1|m

ẑm+1|m = fm +Amẑ∗m|m

Pm+1|m = AmP ∗
m|mAT

m + FmFT
m

ẑ∗m|m = ẑm|m + Lm(ηm+1 − gm −Amẑm|m)

P ∗
m|m = Pm|m − LmNmLT

m

Lm = Pm|mBmN−1
m

Nm = BmPm|mBT
m +GmGT

m.

(42)

Equations (42) follow from a derivation using a Bayesian
setting similar to that of the Kalman filter derivations for the
RBPF [4], but it is omitted due to lack of space. After the
RTS-backward recursions we conclude that

p(zτ |ητ , η
j
k−l:k−1, x

i
k, y0:k) = N

(

zτ ; ẑ
j
τ |k,i, P

j
τ |k,i

)

. (43)

With (39) and (43) inserted in (36), we get

p(yτ |x
i
k, y0:k) ≈

1

M

M
∑

j=1

p(yτ |η
j
τ , ẑ

j
τ |k,i), (44)

where, again, the measurement likelihood is calculated sim-
ilarly to (32). Finally, we update the linear estimates and
the associated covariances, and thereby find (25) using the

measurement update (44), as

ẑik|k,τ = ẑik|k +
1

M

M
∑

j=1

W j,i
k,τe

j,i
τ

P i
k|k,τ = P i

k|k −
1

M

M
∑

j=1

W j,i
k,τΣ

j
τ |k,i(W

j,i
k,τ )

T

W j,i
k,τ = P j

k,τ |k,iC
T
τ (Σ

j
τ |k,i)

−1

Σj
τ |k,i = Cj,i

τ P j
τ |k,i(C

j,i
τ )T +Rτ

ej,iτ = yτ − hj,i
τ − Cj,i

τ ẑjτ |k,i.

(45)

A summary is given in Algorithm 2, denoted RBOOSMBS.

The storage requirements are {ẑjm|m, P j
m|m, ηjm, ym}

max(M,D)
j=1

for m = k − lmax, . . . , k, and requires roughly O(lNMD)
operations, as compared with O(lM + N) for SERBPF and
O((l − 1)N3 +N2) for A-PF in [5].

Remark 2: By sampling D ≤ N particles in Algorithm 2
we can trade tracking performance against complexity. For
example, for certain densities it may suffice with D ≪ N
particles, thus saving processing time. We can also use it as a
tradeoff with the number of smoothing iterations M .

Remark 3: If the measurements are stored it is theoreti-
cally possible to reorder and reprocess the measurements once
an OOSM arrives. However, reprocessing includes redoing
the data association, which in itself can be an overwhelming
task [5]. Further, SERBPF is still faster than reordering and
reprocessing.

Algorithm 2: RBOOSMBS

1: Input: {ẑim|m, P i
m|m, ηim, ym}Ni=1 where k − l ≤ m ≤ k.

2: for i = 1 to N do
3: for j = 1 to M do

4: Set ηjk = ηik.
5: for m = k − 1 to k − l do
6: for d = 1 to D do
7: Sample forward particle ηdk−1 with probability

wd
k−1.

8: Calculate (15) using (16)–(18).
9: Find unnormalized smoothing weight wd

m|k,i
using (13).

10: end for

11: Normalize weights, wd
m|k,i = wd

m|k,i/(
D
∑

d=1

wd
m|k,i).

12: Set J = d with probability wd
m|k,i, and set

ηjm:k = {ηJm, ηjm+1:k−1, η
i
k}.

13: Perform a backward RTS step using (42) condi-

tioned on ηjm:k.
14: end for
15: end for
16: Update weight wi

k using (41), yielding wi
k|k,τ .

17: Update mean and covariance using (45).
18: end for

V. NUMERICAL RESULTS

We evaluated the proposed algorithms on two examples
by comparing their performance against two recently reported



particle filter algorithms. For a fair comparison of the algo-
rithms’ abilities to process the OOSMs, all filters used identical
bootstrap RBPFs in the forward direction [4]. We used the
root-mean square error (RMSE) at each time step and the
time average of it as performance measures. The time-averaged
RMSE is found by taking the mean of the RMSE.

The methods compared were: An RBPF discarding all
OOSMs (RBPFDISC); an idealized RBPF collecting all mea-
surements from both sensors with zero delay (RBPF); the
particle filter derived from exact Bayesian inference in [5]
(A-PF); the modified storage efficient particle filter described
in [7] (SEPFFPS), which uses an augmented-state fixed-point
Extended Kalman smoother for processing the OOSMs; the
first method proposed in this paper, described in Sec. IV
and summarized in Algorithm 1 (SERBPF); and the proposed
backward-simulation based method described in Sec. IV and
summarized in Algorithm 2 (RBOOSMBS).

A. Example 1

We consider the fourth order mixed linear/nonlinear system

zk+1 =

(

1 0.3 0
0 0.92 −0.3
0 0.3 0.92

)

zk + 0.1vzk, (46)

ηk+1 = arctan(ηk) + (1 0 0)zk + 0.1vηk , (47)

yk =

(

0.1η2ksign(ηk)
0

)

+

(

0 0 0
1 −1 1

)

zk + ek, (48)

where sign(·) is the signum function. The process noise is
considered white, Gaussian, and mutually independent, and
ek ∼ N (0, 0.1I2×2). This model has previously been used
in, for example, [21]. Measurement two (i.e., the second
element in yk) is assumed to have communication issues: A
measurement arrives with probability pOOSM = 0.5. Further,
when the measurement arrives, it is delayed according to a
discrete uniform distribution in the interval [1, 4]. Note that
since only 50 % of the measurements arrive, the performance
of RBPF is impossible to achieve with either of the proposed
methods.

In Fig. 2 we show the RMSE using N = 200 particles in
the forward filters for all four states, numbered row-wise from
the top left. Further, SERBPF uses M = 200 particles in the
supporting RBPF and RBOOSMBS uses M = 1, D = N . The
number of time steps are T = 50. We used 10000 Monte Carlo
simulations to obtain the results. Clearly, RBOOSMBS gives the
most accurate results in terms of RMSE, followed by SERBPF.
For the delays in this example, the performance difference
between RBOOSMBS and SERBPF for the nonlinear state is
small. However, it can be expected to increase when the delay
increases. Note that there is a rather significant performance
difference for the linear states, caused by that we condition
on the nonlinear, backward simulated states in RBOOSMBS.
The low performance of A-PF is due to that 200 particles
is not enough to reliably estimate the smoothing weights in
all four dimensions when the model structure in (46)–(48) is
unexploited. Further, SEPFFPS hardly outperforms RBPFDISC,
caused by too few particles in the RBPF.

For this particular example, we found that SERBPF executed
the simulations ten times faster than RBOOSMBS, which in its
turn was a factor five faster than A-PF.
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Fig. 2. RMSE of the four states in Sec. V-A numbered row-wise from the top
left with the nonlinear state in the second row, second column. We executed
10000 Monte Carlo simulations. The number of particles is set to N = 200.
SERBPF uses M = 200 particles in the supporting RBPF. RBOOSMBS uses
M = 1 backward trajectory, something we noticed is enough in most cases for
the lags considered. RBOOSMBS performs best, followed by SERBPF. Note that
SERBPF consistently outperforms A-PF, despite its computational simplicity.

B. Example 2

In this evaluation we use a fifth order mixed lin-
ear/nonlinear system. The nonlinear part is given by

ηk+1 = 0.5ηk + θk
ηk

1 + η2k
+ 8 cos (1.2k) + 0.07vηk, (49)

yk = 0.05η2k + ek, (50)

where ek ∼ N (0, 1). The case with θk = 25 has been used in
several papers, among them [5]. Here, θk is the output from a
linear system with dynamics given by

zk+1 =







3 −1.691 0.849 −0.3201
2 0 0 0
0 1 0 0
0 0 0.5 0






zk + 0.1vzk, (51)

θk = 25 + (0 0.04 0.044 0.008)zk. (52)

Again, the process noise is white, Gaussian, and mutually
independent. Combined, (49)–(52) is a mixed linear/nonlinear
system, and as such it has previously been used in, for
example, [19]. We ran the simulations with 20 time steps
in each simulation. We generated two data sets by executing
10000 Monte Carlo simulations twice. In both data sets we let
N = 400. In the first data set we let every second measurement
be delayed one time step (i.e., l = 1), whereas in the second
data set we let every third measurement be delayed two time
steps (i.e., l = 2). Note that in this example all measurements
arrive. Hence, at the OOSM arrival times the performance
of RBPF should, at least theoretically for a sufficiently large
number of particles, be possible to achieve. In this example,
SERBPF uses M = N particles in the supporting RBPF, and
RBOOSMBS uses M = 1, D = N for the smoothing.

We present the time-averaged RMSE values at the OOSM
arrival times (i.e., k = 1, 3, . . . , 19 and k = 1, 4, . . . , 19,
respectively) in Table I for ηk and θk. The results of SEPFFPS



TABLE I. TIME AVERAGED RMSE VALUES AT THE OOSM ARRIVAL

TIMES USING 10000 MONTE CARLO EXECUTIONS FOR THE EXAMPLE IN

SEC. V-B. THE DELAYS USED ARE INDICATED IN THE TOP ROW.

l = 1 l = 2
Algorithm ηk θk ηk θk

RBPFDISC 0.189 0.607 0.205 0.525
A-PF 0.180 0.598 - -
SERBPF 0.162 0.537 0.194 0.516
RBOOSMBS 0.162 0.548 0.192 0.515
RBPF 0.156 0.531 0.189 0.513

have been omitted due to inadequate handling of multimodal
distributions. Further, for the data set with two samples de-
lay (columns three and four in Table I), A-PF was omitted
because of its computational complexity. We observe that
the tracking performances of RBOOSMBS and SERBPF are
very close to RBPF for both delay settings, which also are
the tracking performances achievable in theory. Moreover,
there is only minor advantage in using A-PF compared to
discarding the OOSMs. For l = 1 the smoothing in SERBPF

yields a better approximation for the linear states than using
M = 1 in RBOOSMBS, which is the reason why the RMSE
for θk is smaller for SERBPF. The last two columns show
that RBOOSMBS has a better relative tracking performance
compared to SERBPF when we increase the OOSM delay,
implying better robustness.

C. Discussion

During the extensive simulations we noticed that for the
delays considered it was often enough to only use one back-
ward trajectory in RBOOSMBS, yielding complexity O(lND)
and thus possibly opening up for online applications. For
the examples considered, a suitable number of particles in
the supporting RBPF in SERBPF considering the tradeoff
between performance and computation time, turned out to be
N/2 ≤ M ≤ N .

We found that for small OOSM delays, the differences
in tracking performance between the two proposed methods
were minor. This is no surprise since for small delays both
approaches compute good approximations of the smoothing
density. For small delays, then, SERBPF is the best option; at
least when computational complexity is taken into account.
However, for larger delays RBOOSMBS clearly outperforms
SERBPF, as seen in Sec. V-A.

VI. CONCLUSIONS

We derived and presented two new algorithms for OOSM
processing considering the class of mixed linear/nonlinear
state-space models, which is a model structure that is fre-
quently used in positioning and navigation applications. The
two approaches both use Rao-Blackwellization to exploit the
conditionally linear Gaussian substructure in the model. They
differ in the way they tackle the smoothing problem; one
being focused on fast execution, and the other aiming at
tracking performance. Simulation examples have shown that
both approaches yield improvements in terms of RMSE when
comparing to recent particle filter algorithms for OOSM pro-
cessing. SERBPF is the most viable option when considering
online applications. However, the results indicate that for small
lags it is often sufficient to set M = 1 in RBOOSMBS, possibly
enabling real-time applications also for this algorithm.
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