
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Contributions to Declarative Implementation of Static Program Analysis

Öqvist, Jesper

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Öqvist, J. (2018). Contributions to Declarative Implementation of Static Program Analysis. [Doctoral Thesis
(compilation), Faculty of Engineering, LTH]. Department of Computer Science, Lund University.

Total number of authors:
1

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/82b210fc-6d15-4f0a-82ff-24b024925d23

Contributions to
Declarative Implementation of

Static Program Analysis

Jesper Öqvist

Doctoral Dissertation, 2019

Department of Computer Science

Lund University

ISBN 978-91-7753-944-5 (printed)
ISBN 978-91-7753-945-2 (electronic)
ISSN 1404-1219
Dissertation 61, 2019
LU-CS-DISS: 2019-01

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: jesper.oqvist@cs.lth.se

Typeset using LATEX.
Printed in Sweden by Tryckeriet i E-huset, Lund, 2019.

© 2019 Jesper Öqvist

jesper.oqvist@cs.lth.se

iii

Abstract

Programming languages are ever evolving, with new languages being invented to
solve new problems, and old languages being extended to solve old problems in
new ways. With the continued evolution of programming languages, and with new
and improved static program analyses, we need flexible systems for building our
static analyses and compilers. Declarative programming with Reference Attribute
Grammars (RAGs) is a fruitful approach for building extensible and maintainable
static program analyses and compilers. With declarative programming, code is easier
to write, easier to understand, and easier to extend.

This thesis presents contributions to declarative static program analysis imple-
mentation with RAGs. In particular, I have developed new language extensions for
the Java programming language, as well as new static analyses and tools for Java,
based on the extensible Java compiler ExtendJ. Language extensions include an im-
plementation of Java 7, and a new programming mechanism, multiplicities. A new
static analysis-based tool presented in this thesis is a regression test selection tool,
which reduces testing time for Java software development.

My contributions also include new design patterns for declaratively specifying
static analyses in RAGs, and significant improvements to the ExtendJ compiler. My
work in ExtendJ includes developing the first version of the compiler with fully
declarative static analysis.

This dissertation also includes contributions to RAGs, including new algorithms
for concurrent attribute evaluation with implementation in the JastAdd metacompiler.
With these new algorithms, it is possible to parallelize any RAG-implemented anal-
ysis. In particular, I parallelized static analysis in the ExtendJ compiler to achieve a
twofold speedup and orders of magnitude reduction of latency.

iv

Acknowledgements

This work was in part funded by the Swedish Research Council under grant 621-
2012-4727 and by a 2015 Google Faculty Research Award for supporting concurrent
analyses in interactive programming tools.

This dissertation would not exist if not for Prof. Görel Hedin. Görel convinced
me to start my PhD studies and supervised me along the way. She told me what to
do, corrected my mistakes, and listened to my weird ideas. I owe Görel my greatest
thanks in helping me complete all of this work.

I owe much gratitude to my beloved wife, Elise. She is the chillest wife, in the
parlance of our times. Elise kept me sane and healthy while writing this thesis. I
am also very grateful for our many fun travels and outings during my time as Ph.D.
student.

Thank you Prof. Boris Magnusson for co-supervising me and for the test selection
collaboration.

Thank you Emma Söderberg for co-supervising me, for getting me into running
(RuntimeException), for hosting me at Google for my first internship, and for many
fun collaborations related to JastAdd and other projects during my PhD studies.

Thank you Prof. Friedrich Steimann for the multiplicities collaboration. It was
fun to visit your department in Germany and to work intensely to complete most of
the implementation in a week.

Thank you Niklas Fors, Alfred Åkesson, and Christoff Bürger for collaborations
related to JastAdd development and compiler construction.

For entertaining and enlightening discussions during the time-honored tradition
of fika, I would like to thank Christoph Reichenbach, Flavius Gruian, Linus Åkesson,
Maj Stenmark, Pierre Moreau, Jonas Skeppstedt, Gustav Cedersjö, Noric Couderc,
and all of my other colleagues at the computer science department in Lund, past and
present.

Thank you Erik Hogeman for the Java 8 project.
Thank you to all the excellent people whom I had the pleasure to work with

at Modelon (Jesper, Jon, Jonathan, Axel) and Google Mountain View (Ciera, Karl,
Valentyn, Hans, Eddie). Thank you Arun Chauhan for hosting me during my second
internship.

The diagrams in this thesis would not look as nice without a few essential
LATEXpackages. Thus, I owe my gratitude to the authors of the PGF/TikZ pack-
ages, and especially Sašo Živanović for developing the excellent Forest package
which I used for drawing all trees in the thesis.

I was considering making a list of enemies and placing Måns Magnusson on it for distracting me with

programming problems. However, I finished the thesis on time so I think we can continue to be friends.

v

Contribution Statement

The following papers are included in this dissertation:

Paper I Jesper Öqvist and Görel Hedin. “Extending the JastAdd Extensible Java
Compiler to Java 7”. In Proceedings of the 10th International Conference
on Principles and Practicies of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ’13), ACM, pp. 147–152. Stuttgart,
Germany, 2013.

Paper II Friedrich Steimann, Jesper Öqvist, and Görel Hedin. “Multitudes of Ob-
jects: First Implementation and Case Study for Java”. In Journal of Object
Technology, Vol. 13, no. 5 (November 2014), pp. 1:1–33.

Paper III Jesper Öqvist, Görel Hedin, and Boris Magnusson. “Extraction-Based
Regression Test Selection” In Proceedings of the 13th International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ’16), ACM, pp. 5:1–5:10. Lugano,
Switzerland, 2016.

Paper IV Jesper Öqvist and Görel Hedin. “Concurrent Circular Reference Attribute
Grammars”. In Proceedings of the 10th ACM SIGPLAN International Confer-
ence on Software Language Engineering (SLE 2017), pp. 151–162. Vancouver,
BC, Canada, 2017.

This thesis includes an extended version of this paper, with correctness proofs
for the algorithms. This extended version of the paper was published as a
technical report (report number 103, Lund University, 2017).

The table below indicates the responsibilities Jesper Öqvist had in writing each paper:

Paper Writing Concepts Implementation Evaluation Algorithm

I YES YES YES YES N/A
II partial no YES YES N/A
III yes partial YES YES yes
IV YES YES YES YES YES

Capital letters indicate roles where Jesper Öqvist took primary responsibility for
the given role. For Paper III, Jesper Öqvist wrote the first drafts of the paper, and
then took main responsibility to finish the implementation and evaluation parts. For
Paper II, Friedrich Steimann wrote the majority of the paper, with Jesper Öqvist
taking responsibility for writing about implementation and evaluation as well as
designing some of the figures/diagrams. For all papers, Jesper Öqvist developed
the implementation and empirical evaluation. For Paper IV, Jesper Öqvist wrote all
proofs, with feedback from Görel Hedin.

Contents

Introduction 1

I Introduction 3

1 Introduction . 3
2 Background . 6
3 Using RAGs for Extensible Analyses 27
4 The ExtendJ Java Compiler . 36
5 Contributions . 54
6 Conclusions . 66
References . 66

Included Papers 75

I Extending the JastAdd Extensible Java Compiler to Java 7 77

1 Introduction . 77
2 The JastAddJ Compiler . 78
3 Try With Resources . 80
4 The Diamond Operator . 84
5 Evaluation . 86
6 Related Work . 90
7 Conclusion . 91
References . 91

II Multitudes of Objects: First Implementation and Case Study for Java 95

1 Introduction . 95
2 Using Collections for Representing Multitudes of Objects 97
3 Programming with Multiplicities 100
4 Multiplicities for Java . 104
5 Implementation . 109
6 Case Study . 112
7 Related Work . 122

viii CONTENTS

8 Future Work . 125
9 Conclusion . 126
References . 127

III Extraction-Based Regression Test Selection 131

1 Introduction . 131
2 Extraction-Based Test Selection 133
3 Updating the dependency graph 140
4 Dependencies for Java . 140
5 Tool implementation . 143
6 Evaluation . 144
7 Related Work . 150
8 Conclusion . 151
References . 152

IV Concurrent Circular Reference Attribute Grammars 155

1 Introduction . 155
2 Circular Reference Attribute Grammars 157
3 Correctness . 158
4 Non-Circular Attribute Implementation 158
5 Circular Attribute Implementation 165
6 Mixed Circular Evaluation . 172
7 Empirical Evaluation . 174
8 Related Work . 179
9 Conclusions . 180
References . 181
Appendices . 183
A Circular Attribute Correctness Proofs 183
B DrAST Screenshot . 191

Popular Science Summary in Swedish 193

Introduction

Introduction

1 Introduction

Static Program Analysis is the automated analysis of a computer program before
it is executed [MS18; Bin07]. Static program analysis is essential for software
development in several ways: it is used for translating programs to executable machine
code, uncovering bugs, optimizing program performance, and assisting software
developers in constructing and testing programs. Programmers use static analysis via
smart code editing tools in modern integrated development environments for efficient
software editing and for improving code organization. Tools like declaration lookup
and code completion suggestions are used for navigating and writing code, while
code refactoring tools are used to improve code structure. In addition, static analysis
is an important part of automated software quality assurance and testing at many
software companies, like Google [Sad+18] and Facebook [Cal+15].

When developing static program analyses we face similar problems as in other
types of software development, including the perennial challenge of building a flexible
software architecture that enables future additions after initial development. Static
analyses should have a flexible architecture to ease the process of expanding the
analysis to support new language features as programming languages evolve and as
new analyses are invented. The challenge of developing a flexible architecture can be
addressed by Declarative Programming.

Declarative programming is a programming paradigm in which the programmer
specifies the desired result of a computation rather than exactly enumerating the
necessary steps to compute the result. A common view of declarative programming is
that the programmer writes what should be computed, rather than how it is computed.
Side effect-free code is an important aspect of declarative programming. Observable
side effects are any effect a function call has on the state of the program which can
change the result of other function calls [Nau05]. When side effects are present, the
ordering of function calls is significant for the result of the program. A key advantage
of declarative programming is that the programmer need not carefully order function
calls to avoid unwanted side effects, instead they are free to focus on what should be
computed.

4 Introduction

Declarative programming benefits flexible software architectures by making it
easy to break the code up into smaller parts which can be cleanly combined. This
makes it possible to have clearly separated computations for separate tasks in the
software, making it easier to extend the software with new features, since fewer
existing parts of the software will need to be taken into account when making changes
or additions. Furthermore, side effect freedom makes it easier to combine different
computations, aiding analysis composition and extensibility.

One way of developing static analyses and compilers declaratively is by using
Attribute Grammars (AGs), a declarative formalism proposed by Knuth [Knu68b]
for describing the semantics of programming languages. Although plain AGs can
be used to declaratively implement static analyses, the task of implementing a full
programming language was onerous due to drawbacks like “repetition, overwhelming
detail, and the interleaving of many activities” [DC90]. Furthermore, static analyses
often rely on computations with information flow along a graph structure, and these
are not well suited for classical AGs which work with information flow along a tree
structure. Reference Attribute Grammars (RAGs) [Hed00] is an extension to plain
AGs with attributes that can have reference values. These reference attributes enable
us to compute graphs on top of a tree, and allow computations to flow along those
graphs, substantially simplifying the task of implementing static analyses. Reference
attributes proved very useful in practice for implementing real programming lan-
guages (in contrast to most previous attempts with classical AGs which were mostly
minimal toy languages). Reference attributes are often very elegant, compactly defin-
ing the relations that are being computed. Compilation, and other static analyses, can
be implemented with RAGs, leading to elegant declarative implementations which
are easy to compose and extend.

Past development efforts have proven the feasibility of building large-scale com-
pilers using RAGs. For example, the JastAdd [HM03a] metacompiler supports
compiler development with RAGs and has been used to develop large-scale compil-
ers for the Java and Modelica languages. In particular, ExtendJ [EH07b] is a full
Java compiler, and JModelica.org [Åke+10] is a compiler for the Modelica model-
ing language. Both ExtendJ and JModelica.org are developed using JastAdd and
using reference attributes for declarative static analysis. Silver [Wyk+10a] is another
example of a metacompiler for RAGs, which has been used for implementing com-
pilers for Java [Wyk+07], C [Kam+17], and PROMELA [MW11]. RAGs have also
been implemented as embedded libraries, including Kiama (a Scala library) [Slo09],
RACR (for Racket) [Bür15], and JavaRAG (a Java embedding) [FCH15]. With a
few supporting features, like static Aspect-Oriented Programming, and an attribute
replacement mechanism, it is possible to extend a compiler implemented with RAGs
by adding new attributes [AET08a]. This can be used to implement new static anal-
yses, tools, and language extensions upon an existing compiler, for example adding
non-null type checking to a Java compiler [EH07a].

This thesis presents new applications and algorithms for RAGs. Central to
the contributions are practical applications and tools implemented in the JastAdd
metacompiler and the ExtendJ Java compiler. Specifically, my main contributions
are the following:

1 Introduction 5

• An extension of the ExtendJ compiler to support Java 7 (Paper I).

• An extension for ExtendJ with new static analyses and code generation for a
new programming mechanism, Multiplicities, implemented as a Java language
extension (Paper II).

• A new algorithm for regression test selection with implementation based on
ExtendJ (Paper III).

• A new concurrent evaluation algorithm for RAGs with support for circular
(fixpoint) attributes, implemented in JastAdd and evaluated by parallelizing
ExtendJ (Paper IV).

My research shows that RAGs are very effective for building static analyses,
programming language extensions, and static-analysis based tools. By using RAGs
to develop declarative compiler extensions, I have demonstrated that the declarative
nature of RAGs benefits composability and extensibility in static analysis. As part of
my thesis work I have made substantial improvements to both ExtendJ and JastAdd.
My improvements to ExtendJ have enabled it to support nearly all of Java 8, as well
as fixing numerous bugs which prevented many real-world programs from compiling
correctly. To verify the improvements to ExtendJ, I developed a large regression test
suite for the compiler. The impact of my work is demonstrated by multiple research
groups publishing results based on extensions for ExtendJ to support new language
features and analyses.

An important improvement to ExtendJ was also to weed out some side effects
that had been introduced in the specification in order to speed up compilation. I have
managed to replace that code with completely declarative code with only negligible
effects on performance. While those side effects were carefully crafted to not have
any effect on sequential evaluation, they did not work correctly for parallel evaluation.
Complete lack of observable side effects is crucial in order for the parallel evaluation
algorithms to work correctly.

1.1 Methodology

The work in this dissertation was carried out using a problem-oriented methodology.
I looked at different interesting problems, designed potential solutions, implemented
promising solutions to explore what worked, and finally evaluated the effectiveness
of the solution. Zobel describes a similar methodology [Zob14, p. 54].

Solutions were implemented using aspects of agile software development
[Mar02], like iterative development and continuous testing. For example, I developed
an extensive regression test suite for the ExtendJ compiler with about a thousand tests
for bugs and features. One bug fix or feature was implemented at a time and the tests
were run after each change to the compiler, to ensure there were no regressions.

I evaluated the correctness and performance of each compiler extension, static
analysis, and algorithm presented in this thesis by compiling real-world Java pro-
grams. The subject programs I used were sourced from the Java open source com-
munity, and from curated corpora of Java programs for static analysis and runtime
benchmarking, in particular:

6 Introduction

DaCapo 2009 A corpus of Java programs for Java runtime benchmarking [Bla+06].

Qualitas Corpus 20130901 A collection of Java programs for static analysis and
software studies [Tem+10].

I evaluated the correctness of compiler extensions in Paper I to III by compar-
ing the compilation result to the ground-truth result of the OpenJDK compiler, the
reference compiler for Java. For Paper III, I measured the test results of the sub-
ject programs to check that all tests that failed were identified by the test selection
tool I developed for that paper (in this case, the subject programs were compiled
with OpenJDK for test running). For performance evaluation, I measured overall
compilation time (in Paper IV, I additionally measured individual attribute evaluation
times). For performance evaluations, I used elements of the steady-state performance
method described by Georges et al. [GBE07a]. The exact method varied between
evaluations, but typically the solution was run on a subject program multiple times
while measuring only the running time without Java start-up time. The steady-state
performance method aims to eliminate variance between runs caused by the Java
runtime system, including garbage collection and runtime code optimizations.

All implementations I developed for the included papers in this dissertation have
been published as open source software, freely available online for other researchers
to use and extend. Additionally, the implementation and empirical evaluation for
Paper IV was accepted by a peer review process known as artifact evaluation [KV15],
and the artifact itself was published together with the paper.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Section 2 gives an introduction to
static program analysis, in particular: applications and implementation concerns.
Section 2.3 presents a basic theoretical background to reference attribute grammars,
including most of the kinds of attributes supported by the JastAdd metacompiler. An
introduction to the JastAdd metacompiler itself is given in Section 2.5.

Section 3 shows how declarative and extensible static analyses can be developed
with RAGs using the JastAdd metacompiler. In this section, I also show a new pattern
for generic tree traversal with RAGs.

Section 4 describes the ExtendJ compiler: a full declarative and extensible Java
compiler which was built using JastAdd.

Section 5 details my contributions in this thesis, including, but not limited to, the
contributions in the included papers.

Concluding remarks are in Section 6, and then the included papers follow.

2 Background

This section gives an introduction to static program analysis, reference attribute gram-
mars, and the JastAdd metacompiler. These topics are needed for the presentation
of the technical contributions in this dissertation. We will start with a high-level
overview of static program analysis, then follows a theoretical background for static

2 Background 7

analysis with reference attribute grammars. Finally, we introduce the JastAdd meta-
compiler.

2.1 Static Program Analysis

Programs in general-purpose programming languages, like Java or C, are executed to
perform some computation based on varying inputs. The computation is dynamic: its
output may change for each set of inputs. The goal of static program analysis, or just
static analysis for short, is to answer questions about static properties of programs,
that is, properties that hold for all possible inputs.

Let us consider a question we can ask about a program: Can the program get stuck
forever, or will it always halt? This question is about a static property of programs,
so can we answer it with static analysis? Clearly, the question is easy to answer for
some programs. For instance, this program is obviously non-halting:

while (true) { }

Unfortunately, it turns out to be a computationally intractable problem to answer this
question for all possible programs. The question is a variant of the famous halting
problem which was proven undecidable in the general case by Turing [Tur37].

Although many interesting static analysis questions are undecidable in the general
case, we can often develop useful static analyses by limiting the scope of the question
or making the analysis conservative such that it gives a definite answer only for a
subset of all possible programs (some programs halt, some are definitely non-halting
for certain inputs, others we don’t know).

Static analysis originates from compiler construction. A compiler is a program
that translates a computer program in source form (usually text) to an executable
form (like machine code). We can view compilers as a static analysis that answers
the question: What is the machine code translation of this program? Although this
definition means that a compiler is just a type of static analysis, we normally reason
about compilers not as a single analysis, but as several distinct and interdependent
analyses.

With the advent of optimizing compilers, several new types of static analyses were
developed for optimizing program performance. Performance optimizing analyses
are often focused around removing redundant computations from a program. In
more recent years, static analysis has also become the collective term for tools that
analyze program correctness, often in integrated development tools and continuous
integration systems. This dissertation focuses more on the latter form of analyses,
as well as the original compiler-oriented static analyses (that is, the non-optimizing
kinds). The next section gives an overview of these kinds of analyses.

Methods of Static Analysis

There are many different kinds of static analysis, with different applications. Com-
pilers use static analysis to check the source program for errors and for generating
executable code. Integrated development environments provide tools to the program-
mer based on static analysis, like refactoring tools, code navigation tools, and code

8 Introduction

completion tools. After the program code has been edited by a programmer, it is
often checked for problems like code duplication [RCK09; NR15] on continuous
integration servers [DMG07; Sad+18]. Analyses that produce metrics about class
encapsulation and complexity can help guide refactoring efforts to improve existing
code in object-oriented languages [CK94; BBM96].

The field of static program analysis is diverse, with many different kinds of static
analysis. The kinds that are discussed in this dissertation can be grouped into the
following categories:

• Name Analysis,

• Type Analysis,

• Control Flow Analysis,

• Dataflow Analysis.

These are broad categories encompassing multiple different static analyses. In the
following sections we will look at examples of typical analyses from each category.

Name Analysis

The goal of name analysis is to determine the meaning of variable names, function
names, and type names in a program.1 Name analysis is required for all other forms
of useful program analysis: if we can not figure out the meaning of variable (or
function) names in a program we cannot figure out anything else useful about it.

Consider the code fragment:

int a = -1;

int fn() {

int a = 2;

return a+1;

}

The expression a+1 refers to some variable a. However, we can not be certain
which one the programmer meant since there are two declarations for a variable
named a. The expression value is either 3 or 0, depending on which declaration is
used. A reasonable programming language specification disambiguates situations
like these, and the compiler uses name analysis to implement the right behaviour.
Name analysis is also used by the compiler to assign memory locations to variables:
memory locations are assigned per declaration and each variable use refers to the
memory location its declaration was assigned.

Java uses another type of name analysis, called syntactic classification [JLS7,
§6.5.1], to determine what name scope the names in a program belong to. For
example, in a qualified expressions like a.b, the b refers to a field in some class, but

1Interpreted languages can use environments at runtime to avoid performing full name analysis before
running a program. Thus, interpreted languages can rely on dynamic name analysis rather than static name
analysis.

2 Background 9

it could be a static field or an instance field, depending on whether or not a is a class
name in the current context. Syntactic classification disambiguates the expression by
marking each name with the correct name kind.

Type Analysis

Types are used in programming for categorizing the objects of the program and
controlling which operations are permitted on them. In Java, for example, the
following statement is disallowed because it is ill-typed:

int a = "hi";

Type analysis is a broad category of analyses concerned with enforcing the typing
rules of programming languages, or for providing additional type-based analysis on
top of the rules of the language. Type analysis normally consists of the following
steps:

Type Lookup Determine the type of all typenames in the program. Typenames are
used, for example, in variable declarations and class instance expressions.

Type Analysis Assign result types for all expressions in the program. For some
expressions the result type may not be specified by the language: they are
marked as ill-typed.

Type Checking Check that the operands of each expression and statement are com-
patible according to the typing rules of the language. Report type errors for all
ill-typed expressions.

Type Inference Reconstruct types for partially typed expressions, saving work for
the programmer.

The first step, type lookup, often piggybacks on the name analysis in a compiler.
The second step, type analysis, may produce some type errors. Type errors found
during type analysis can either be reported directly or handled later in type checking.
In the latter case the type analysis will assign some kind of wrong-type to an ill-typed
expression, that is, a type that is only used for marking incorrectly typed expressions.

In languages using parametric polymorphism, many aspects of type analysis
become much more involved. Type lookup for polymorphic typenames requires
more work since these typenames can include other typenames as arguments. Another
implementation issue for nominally typed2 languages, like Java, with polymorphic
types is to assign identities to different parameterizations of a single type.

A common feature in languages with parametric polymorphism is Type Inference.
Type inference is intended to save the programmer the tedious work of typing out the
full type for all variables and functions when the compiler could instead figure out
the right type. For example, in Java 6 programs, statements similar to the following
one are not uncommon:

2Nominally typed means that types are compared by name, rather than by structure. For an introduction
to nominal and structural typing, see Pierce [Pie02, p. 251-254].

10 Introduction

List<Map<Integer ,String >> maps

= new ArrayList <new HashMap <Integer ,String >>();

There is some redundancy in this statement: a human familiar with Java 6 could
easily deduce the meaning without the type on the first line or, alternatively, the
type parameter to ArrayList. In Java 7, the programmer may instead utilize type
inference and write just

List<Map<Integer ,String >> maps = new ArrayList <>();

Similarly, the C++ language adopted type inference in C++11. The auto keyword
from C++11 can be used to simplify a variable declaration like this

std::list<int>::iterator it = list.begin ();

into this

auto it = list.begin ();

As demonstrated above, type inference clearly saves some typing for the pro-
grammer. This in itself is often a motivation for the use of type inference. It could
also be argued that reduced code size makes the code easier to read, with secondary
effects of making the code easier to understand and modify for third parties. In the
first case, the inferred type is obvious, since the type is repeated on the same line. In
the second case, however, the inferred type depends on whatever the type of list is,
possibly making the meaning less clear at a glance.

Control Flow Analysis

Control flow analysis is used for analyzing the possible orderings of expressions
and statements in a program during execution. Each possible ordering is called a
control-flow path, and these paths are represented implicitly by control flow graphs.

Control flow analysis can be used, for example, to determine if a piece of code is
unreachable, or if all paths through a function have a return statement.

An example of control flow analysis in Java compilers is the exception handling
analysis. This analysis ensures that all control flow paths where an exception can be
raised, for certain types of exceptions, encounter a corresponding exception handler.
Thus the exception handling analysis ensures that a program never gets interrupted
in an unexpected way by certain exceptions.3

Control flow analysis normally refers to the analysis of control flow within a single
procedure. Inter-procedural control flow analysis is a related, but quite different, topic.
Rapid Type Analysis is an example of an inter-procedural analysis for object-oriented
languages [BS96].

Dataflow Analysis

Dataflow analysis builds upon control flow analysis to find the possible ways data can
flow through a program. Dataflow analysis gathers all possible control flow paths

3The exception (excuse the pun) to this rule is that non-exception throwable objects, and exceptions the
programmer explicitly allowed to be thrown, may still interrupt the program.

2 Background 11

and conservatively approximates the state of variables at all points in the program.
For example, dataflow analysis can determine if a variable can ever contain a null
reference at a certain point in the program.

Definite assignment analysis is a kind of dataflow analysis, in which we analyze
variable uses to determine if the variable has definitely been assigned before that use.
Definite assignment analysis can catch uninitialized variable errors, a well-known
weakness of the C programming language.

Consider the following fragment of code:

void f() {

int a;

int b = a+1;

}

Here, variable a is used without being initialized. In the C programming language,
this results in an undefined value assigned to variable b. Most C compilers allow this
to compile, often without warning, which has led to a number of bugs in real-world
programs.4 In the worst case these bugs might not be caught in code review or testing
and make it into a software release. As of May 2018 there were 27 documented
vulnerabilities with descriptions explicitly mentioning “uninitialized variable” or
“uninitialized stack variable” in the Common Vulnerabilities and Exposures database
[CVE].

Program Models

As static analyses vary in domain and application, so do their implementations.
However, all static analyses have in common a need for some kind of program model.
Program models represent, in a structured form, the features of the program which
are of interest for the analysis at hand. The program model used for control flow and
dataflow analysis, for example, is the control flow graph.

In this dissertation we will mainly consider static analyses that are based on an
Abstract Syntax Tree (AST) as program model. For control flow and dataflow analysis,
the control flow graph can be extracted from the AST. Most compiler frontends5 are
primarily based on analyzing and transforming ASTs.

The state of the art in static program analysis based on ASTs is to use depth-first
tree traversal to compute the necessary information at each node. In this thesis, we
focus instead on computing properties of the AST with reference attribute grammars.
The next section describes the AST in more detail, and the section after that introduces
reference attribute grammars.

4GCC version 7.2.0, a popular C compiler, compiles the example code without warning. An optional
warning can be enabled by the user, giving a warning for the example code.

5Frontend refers to the parts of a compiler that are not directly concerned with generating or optimizing
the executable program output.

12 Introduction

2.2 Abstract Syntax Trees

A programming language is a formal language6 which follows a (usually unambigu-
ous) context-free grammar that can be described in a syntactic metalanguage like,
e.g., Extended Backus-Naur Form (EBNF).7 This section presents an informal view
of the formal notions of languages and grammars. See Hopcroft and Ullman [HU69]
for a more formal presentation.

Formal notations like EBNF describe the syntax of a programming language in a
way that can be mechanically processed and reasoned about (using a metacompiler).
Here is a concrete example of part of an EBNF grammar for a simple procedural
C-like programming language:

Program ::= Function ∗

Function ::= Type ⟨ID⟩ ‘(’ Parameter ∗ ‘)’ Block

Parameter ::= Type ⟨ID⟩

Block ::= ‘{’ Statement ∗ ‘}’

Statement ::= IfStmt | Call

IfStmt ::= ‘if’ ‘(’ Expr ‘)’ Block [‘else’ Block]

Call ::= ⟨ID⟩ ‘(’ Expr ∗ ‘)’ ‘;’

. . .

Each line gives a production rule composed of symbols, specifying how to write a
declaration or statement in the language. Each rule defines a so-called nonterminal
symbol of the language, which is composed of other symbols (terminal and non-
terminal). Terminal symbols are keywords (‘if’), punctuation symbols (‘{’), and
identifiers (⟨ID⟩). The left-most part of a rule gives the name of the nonterminal,
then the component symbols follow on the right (after ::=). Programs in the language
should exactly match a rule of the grammar; in the present example, a valid program
should match the Program rule.

Any valid program can be proven to be part of a formally defined program-
ming language by building a derivation tree of grammar rules matching the program.
Parsers are programs that match a valid program to the nonterminals of the parsed pro-
gramming language. A successful parse produces a rooted tree of the (non)terminals
of the program. This tree is called an Abstract Syntax Tree (AST), where internal
nodes are nonterminals and leaf nodes are terminals. An AST is abstract in the sense
that it does not contain the punctuation symbols and keywords from the concrete
grammar of the language and instead follows the abstract grammar for the language,
from which all the punctuation/keyword symbols can be reconstructed (called un-
parsing).8

6As opposed to natural languages which are informal and highly ambiguous.
7Backus-Naur Form was first used in the Algol 60 report by Backus et. al. [Bac+60]. Extended

Backus-Naur Form adds repetition and optional symbols.
8An alternative form of parsing output is the parse tree, which contains the literals and tokens of the

concrete syntax. Either form constitutes a proof that the program belongs to the parsed programming
language. The AST matches a derivation tree for the proof.

2 Background 13

int greet(bool mom) {

if (mom) {

print ("Hi Mom !");

} else {

print ("Hi!");

}

}

Program

Function

Type ID Parameter∗ Block

IfStmt

Expr Call Call

Figure 1: Simple imperative program. On the left: the source code of the program.
On the right: a simplified AST matching the program.

An AST is a tree representation of the statements and expressions of a source
program. The root of the AST represents the whole program. The next level typically
contains global declarations like classes, constants, and functions. Figure 1 illustrates
a typical AST for a small program in the language described by the above EBNF
grammar.

A context-free grammar described in EBNF is a declarative description of a
language. This in itself has all the advantages of declarative programming and,
additionally, a formal language like EBNF can be mechanically processed by a type
of metacompiler known as a parser generator to obtain an efficient parser for the
language.9 By using a parser generator, the language designer need only design
the syntactic rules of their language and write them down in a suitable syntactic
metalanguage. Certain parser generators can even guarantee, for certain classes of
languages, that the language is unambiguous (if it is LR(1), for example). It is entirely
feasible to hand-construct a parser, but this requires a larger amount of code to be
written, and the resulting code is neither easy to manually prove correct nor readily
machine-checkable for correctness.

2.3 Reference Attribute Grammars

Attribute Grammars (AGs) were introduced by Knuth [Knu68b] as a formalism for
defining the semantics of a programming language with attributes on the nonterminals
of an AST and equations on production rules. An attribute value can represent static
properties like the type of an expression, or whether or not a variable use has a
previous assignment. We can view attributes as derived properties of the AST: the
attribute values are computed as functions of the AST and their values are used in
computing other attribute values.

Reference Attribute Grammars (RAGs) are an extension of attribute grammars
to object oriented programming proposed by Hedin [Hed00]. In RAGs, attributes
can be references pointing to nonterminals. Reference attributes work well, for

9Some parser generators can even build parsers for ambiguous or non-deterministic grammars. For
example, the Spoofax language workbench implements SGLR parser generation [KV10], based on gener-
alized LR parsing which was invented by Lang [Lan74].

14 Introduction

example, for computing graphs derived from the AST, like control flow graphs and
class dependence graphs, among others.

RAGs are useful for building extensible and modular language implementations
and static analyses, a task that was by some considered impractical in classical AGs.10
Modularity has long been an active research topic in attribute grammars. Previous
proposals for improving modularity in AGs include modular AGs by Dueck and
Cormack [DC90], composable AGs by Farrow et al. [FMY92], and generic AGs
by Saraiva and Swierstra [SS99], among others.11 RAGs have been particularly
successful compared to the previous approaches to modularity in AGs. The main
difference is that RAGs use reference attributes which point to nodes in the AST.
RAGs also incorporate higher-order attributes [VSK89a], a previous extension to
AGs which was also useful for modularity.

In an object-oriented setting, nonterminals correspond to abstract classes, and
production rules correspond to concrete subclasses. However, it is often convenient
to create subclasses of concrete classes, and this does not directly correspond to
nonterminals or productions. Thus, in the following, we will only view attributes and
equations as properties of AST classes, or AST nodes when speaking of a particular
instantiation.

An important property of attributes is that they are declarative: attribute equations
specify what is computed, not the exact order of attribute evaluations needed to
compute the result. An attribute evaluator is used to dynamically schedule attribute
evaluation in order to compute the required attribute values.

Attribute evaluators are free to memoize attributes. Memoization, also referred
to as caching, means that the attribute value is stored after it has been computed so
that it can be reused the next time the attribute value is needed. Memoization can be
used to minimize attribute computation time [Jou84].12 In addition to memoization,
attribute evaluators may even parallelize attribute computation, or incrementally up-
date attributes when the underlying AST changes. My most important contribution
in this thesis is concurrent evaluation algorithms for RAGs (Paper IV). Concurrent
evaluation can be used for parallelizing an existing attribute-based compiler without
editing attribute equations, provided that the attributes are well-defined. Paralleliza-
tion is possible due to the fact that well-defined attributes are observationally pure,
meaning that they always compute the same value given identical inputs (just like
pure functions) [Nau05].

It is important to note that the presence of reference attributes makes it impossible
to compute a static attribute evaluation schedule, as is possible with Knuth style AGs.
Reference attributes can, in general, point to any nonterminal in the AST and it
is not possible to know their dependencies a priori. Reference attributes are thus
dynamically scheduled and evaluated on demand.

10Dueck and Cormack [DC90] mention some of the problems in using plain AGs for language imple-
mentation in practice. Additionally, Farrow and Stanculescu [FS89] reports advantages and disadvantages
of using AGs for a large compiler implementation (40+ thousand lines).

11For an overview of modular and composable AGs, see Kastens and Waite [KW94].
12Söderberg developed a method to automatically select which attributes to memoize to improve per-

formance in practice [SH10].

2 Background 15

The following sub-sections introduce several different kinds of attributes which
are part of RAGs and common extensions to AGs available in the JastAdd metacom-
piler. The JastAdd metacompiler itself is introduced in Section 2.5.

Synthesized Attributes

The simplest kind of attribute is the synthesized attribute. A synthesized attribute
can be seen as propagating information upwards through the AST (towards the root).
Synthesized attributes are defined by equations on AST nodes. An attribute equation
can use other attributes or children of the node that the equation belongs to.

A simple synthesized attribute is declared using the following notation:

syn int A.x

eq A.x = 3

This declares a synthesized attribute x on the AST class A. Any AST node of type
A will have an instance of the attribute. The equation for the attribute is given on the
second line. An equation must exist for each concrete subclass of A. If an equation
is given on A itself, then classes lacking an equation will just use the equation from
A.

For a more practical example of synthesized attributes, we will consider an at-
tribute that determines if an expression has a static constant value. Such expressions
are useful to find because they can be simplified by replacing them with the corre-
sponding constant value, known as constant value folding. The following abstract
grammar declares a small expression language for this example:

abstract Expr

Add : Expr ::= Left:Expr Right:Expr

IntLiteral : Expr ::= ⟨VALUE⟩

VarUse : Expr ::= ⟨NAME⟩

In this grammar, IntLiteral represents constant numbers like 1024 or −37, VarUse
represents variable uses like a, and Add means an addition expression like a + 5.
Note that Expr is declared abstract: this just means that Expr itself can never occur
in any valid expression, and thus we need not write equations for attributes on Expr.13

13In some cases it is convenient to have equations on abstract classes like Expr. This is discussed in
more detail in Section 3.2.

16 Introduction

For identifying constant expressions, observe that an addition expression has a
constant value if both terms are constant. Second, a literal value is always constant.
For example, the expression 2 + 3 has a constant value of 5, as opposed to the
expression a+5 which can vary depending on the value of variable a. A synthesized
attribute based on these ideas could look like this:

syn boolean Expr.isConstant

eq Add.isConstant = Left.isConstant ∧ Right.isConstant

eq IntLiteral.isConstant = true

This declares the synthesized attribute isConstant. On the first line, the attribute is
declared on Expr and its subtypes with type boolean, after which equations are given
for Add and IntLiteral. The equations are specified with the eq keyword and without
repeating the attribute type. Note that the equations directly encode the facts about
constant expressions which we observed previously.

From the above equations it appears as if there only exists constant expressions,
but we have not given an equation for isConstant on variable uses yet. Our goal is to
handle expressions with variables, like 5 + x, as illustrated in Figure 2. To achieve
this, we add a new attribute equation so that variables are not considered constant:

eq VarUse.isConstant = false

With just the three attribute equations above we have made a very simple but
functional constant value analysis. Better yet, we could combine the above equations
with a complete language specification to enable simple constant value folding in
a real compiler. Constant value folding also requires that we compute the constant
value, which can be done with these attributes:

syn int Expr.constValue

eq Add.constValue = Left.constValue + Right.constValue

eq IntLiteral.constValue = parseInt(VALUE)

eq VarUse.constValue = 0

The last equation here is meaningless and will never be used. However, we must
include it or else the constValue attribute is incomplete as it is conceivable that it
could be used in some computation.14

With the isConstant and constValue attributes, a compiler can perform constant
folding of subexpressions by replacing each subtree which has isConstant = true

with an IntLiteral containing the value of constValue. For instance, in our example
language, the expression a+32+64 can be replaced by a+96 without affecting the
meaning of the expression. Figure 3 shows the corresponding AST before and after
constant folding.

14The metacompiler that compiles this attribute code does not use precise enough static analysis to
allow omitting the equation.

2 Background 17

Add

IntLiteral "5" VarUse "x"

Le
ft

Right

isConstant = false

isConstant = true isConstant = false

Figure 2: Attributed AST for the expression 5+x. The isConstant attribute instances
are displayed as gray boxes attached to nonterminals (AST nodes).

Add

VarUse "a" Add

IntLiteral "32" IntLiteral "64"

Le
ft

Le
ft

Right

constValue = 96

constValue = 32 constValue = 64

Add

VarUse "a" IntLiteral "96"

Le
ft

Right

Figure 3: AST for the expression a + 32 + 64, before (above) and after (below)
constant value folding.

18 Introduction

Inherited Attributes

Inherited attributes are used to access information from a parent of an AST node. This
is in contrast to synthesized attributes which only directly use values and attributes
of the AST node they belong to.

The name for inherited attributes comes from the fact that they inherit their value
through the AST structure. Note that this is different from object-oriented inheritance.
In an object-oriented setting, it is also possible for a subclass to inherit an attribute
equation from a superclass, through the class hierarchy. To avoid confusion I explicitly
refer to the latter case as object-oriented inheritance.

Equations for an inherited attribute are specified on edges of the AST. For example,
the following notation declares an inherited attribute x on class B, with a matching
equation on the edge A→ B:

inh int B.x

eq A.B.x = 3

This attribute is illustrated in Figure 4. In this case, A is a parent of B, in some AST
following the abstract grammar. If B could also be a child of some other class P ,
say, then another equation must be added on edge P → B.

For the simplest form of inherited attributes, an equation must exist for all possi-
ble parent edges. However, this may result in many so-called copy attributes which
just pass an attribute value along down the AST. This can be neatly solved by a
generalization of inherited attributes known as broadcasting [Hed11]. With broad-
casting, an equation is needed only for at least one ancestor edge for each possible
AST instance. Broadcasting is illustrated in Figure 5: node D inherits the value
for attribute y through the equation on the edge A → C. Without broadcasting, an
equation would have been needed on edge C → D. The closest ancestor edge with a
matching equation is the one used to evaluate the attribute value. This means that a
closer equation can shadow one that is further up in the tree, as in Figure 6.

For an example of a practical inherited attribute, consider the problem of finding
the receiver expression of a method call in a language where methods are invoked on
objects via dot expressions:

a.m().n()

The receiver expression is just the left-hand side of the dot. In the above case, a is
the receiver expression in the call to m(), and a.m() is the receiver of n().

Here is the relevant part of the abstract grammar for the small method call
language:

abstract Expr

Dot : Expr ::= Left:Expr Right:Expr

Id : Expr

Call : Expr

2 Background 19

A

B C

D E
A
.B

.x
=

3

x = 3

Figure 4: The value of B.x is given by an equation on the edge A→ B.

A

B C

D E

A
.C
.y

=
6

y = 6 y = 6

Figure 5: The values of D.y and E.y
are given through broadcasting from
the equation on edge A→ C.

A

B C

D E

A
.C
.y

=
6

C.E.y = 8

y = 6 y = 8

Figure 6: For node E, the equation
on edge C → E shadows the one on
edge A→ C.

Dot

Id Dot

Call Call

Dot.Right.receiver = Left

Dot.Right.receiver = Left

receiver receiver

Figure 7: AST for the expression a.m().n(). Note that the receiver of the left-hand
call is defined by the upper equation, whereas the receiver of the right-hand call is
defined by the lower equation.

20 Introduction

Assuming that AST nodes contain a parent reference, we could access the receiver
without using attributes by following the parent link of a Call and then inspecting
the left-hand child of the parent. However, we then have to consider the case when
calls are chained, leading to calls occurring also as the left-hand side of a Dot. In the
case with a call in the left-hand side we would have to go up one additional level to
find the matching receiver expression. The problem of finding the receiver can more
simply be expressed as an inherited attribute:

inh Expr Call.receiver

eq Dot.Right.receiver = Left

This attribute specification works directly with chained calls. There will be one
equation for each Dot but it applies only to the receiver attributes of the Right child.
For the Left child, an equation of an enclosing Dot applies.15 Figure 7 illustrates this
situation.

Broadcasting is used in the receiver attribute to get the right reference for left-hand
children of a Dot without directly giving an equation for that child. The equation
given for the right child of a Dot does not distinguish between which part of the right
child the attribute is in. Note that with broadcasting, an inherited attribute equation
defines an attribute value for a subtree at a particular AST edge and broadcasts the
value to matching attributes below that edge.

Parameterized Attributes

A natural extension to attributes is to allow parameterization of the attribute equation.
This is useful when an attribute answers a question with one or more unknowns. A
common example is an attribute that checks if a variable declarator declares a variable
with a given name:

Declarator ::= ⟨NAME⟩

syn boolean Declarator.declares(String n) = (n = NAME)

Another application for parameterized attributes are attributes that select one of sev-
eral possible values, like the individual declarations in a multiple variable declaration
statement:

VarDecl ::= Declarator∗

syn Declarator VarDecl.declAt(i) = Declarator[i]

Both synthesized and inherited attributes can be parameterized, as well as a few
other types of attributes discussed in the following sections (circular and higher-
order).

15This example assumes that a Call in this language is never allowed to be used outside a Dot expression.
Otherwise, we would need additional equations for the receiver attribute to be complete.

2 Background 21

Parameterized attributes have many practical uses in compilers and static anal-
ysis construction. A typical use case is for name lookup, where the name lookup
attributes take as parameter the name being looked up. Other interesting applications
for parameterized attributes occur when combined with higher-order attributes, for
instance the parameterized type lookup attribute in ExtendJ (see Section 4.7).

In the formalization of RAGs by Buckley and Sloane [BS17], inherited attributes
are implemented with parameterized synthesized attributes and by having a parent
reference as an intrinsic attribute of each node in the AST.

Higher-Order Attributes

Higher-Order Attributes (HOAs) [VSK89a] are attributes which compute a derived
subtree of the AST. The derived subtree is considered as part of the AST it belongs to
and can itself have attributes. Lazy evaluation is necessary for HOAs, because they
can represent infinite trees.

HOAs, also known as Non-Terminal Attributes (they are both nonterminals and
attributes), are declared by adding the nta keyword to an ordinary attribute declara-
tion:

syn nta X A.x = newX

To illustrate HOAs, they are shown as part of the AST but connected to the
attribute with a dashed edge, like this:

A

B X

x

A HOA must compute a fresh object. That is, a new part of the AST must be built
which is not allowed to link to an existing subtree of the AST – otherwise it would
destroy the tree structure with a subtree that has multiple parents. Existing parts
of the AST can be safely reused in a HOA by copying the relevant parts instead of
linking them directly. This is a simple rule to follow, but easy to forget or accidentally
break.

Higher-order attributes are useful for computing AST structures that were not built
directly by the parser. This has many applications, for example: normalizing syntactic
sugar and reifying implicit program elements. These applications are explained in
more detail below.

22 Introduction

Normalizing Syntactic Sugar Syntactic sugar is a term used to describe syntax
elements in a programming language which map directly to other, more elementary,
language constructs.16 Examples include the += operator in the C language, which is
equivalent to addition and assignment.

For program analysis it is useful to desugar syntactic sugar into a corresponding
elementary form, so that fewer special cases must be handled by static analysis.
This normalization consists of transforming the AST where the specialized syntax
occurs.17

With HOAs, we can compute the normalized AST as an attribute. The normalized
AST must be explicitly accessed to use the transformed version. This is a small over-
head compared to using imperative tree transformations. Forwarding is an extension
of HOAs in which the attribute implicitly replaces the sugared AST [Wyk+02].

Reifying Implicit Constructs Java is an example of an object-oriented language
that has a default supertype of all classes, named Object. The Object class is
never declared but behaves as any other declared class (except that it does not have
a superclass). The Object class must be somehow represented internally in a Java
compiler, and since it behaves just like any other Java class it should be placed in the
class table among the other library classes (which are parsed from library class files).

A more complex application of reifying constructs is for polymorphic type in-
stantiation. This use case is described in more detail in Section 4.11.

Turing Machines HOAs can be used to evaluate any Turing machine. Although
this is quite an esoteric application, it illustrates how HOAs can evaluate infinite
ASTs.

For the Turing machine encoding we need an attribute that computes the next
configuration of a Turing machine:

syn nta Configuration Configuration.next

Here, Configuration is a nonterminal containing the configuration of a Turing machine
(tape content, head position, and current state). A Turing machine starts out in an
initial configuration, and the successor configuration is computed by the higher-order
next attribute, which itself has a successor configuration. To run a Turing machine
until it halts, the successor attribute is evaluated until we reach a halting state. The
next attribute is expanded indefinitely if the machine setup corresponds to a non-
halting Turing machine. The following diagram illustrates the AST for a Turing
machine:

16The term syntactic sugar was coined by Peter J. Landin in 1964.
17Normalization is additionally important during code generation, where the program is transformed

into a very simple form to enable general optimizations that work on many different surface syntaxes.

2 Background 23

TuringMachine

Instruction∗ Configuration

Configuration

· · ·

next

next

The instruction list stored at the root of the AST, in TuringMachine, represents the
action table of the Turing machine. When evaluating the next configuration, the
matching instruction for the current state and symbol under the head is found in the
instruction list. An inherited attribute is used to access the instruction list from any
configuration.

An implementation of this encoding of Turing machines in RAGs is available at
the following public repository: https://bitbucket.org/joqvist/turing.

Circular Attributes

Circular attributes are attributes which depend (indirectly) on themselves. The se-
mantics of circularly attributes were first proposed for AGs by Farrow [Far86] and
improved by Jones [Jon90]. Circular attributes were later adapted for RAGs by
Magnusson and Hedin [MH07]. A circular attribute can be used to express fixpoint
functions, which occur in control flow analysis, dataflow analysis, and type inference.
An example of such a fixpoint function is the reachable procedures from a given
procedure, which is conveniently defined as follows:

calls(p) = { procedures called by p }

reachable(p) = {p} ∪





∪

c∈calls(p)

reachable(c)





Evaluation of circular attributes is done by fixpoint iteration: the equation is
computed until its value reaches a fixed point. For circular attributes we require that
the attribute is well-defined according to the following criteria: the attribute equation
is monotone with values arrangeable in a lattice of finite height. This ensures that
there is a single least fixed point.

To declare a circular attribute, the attribute is provided with an initial value for
the fixpoint iteration. Given a well-defined circular attribute, the fixpoint iteration
will terminate and give a single well-defined value.

https://bitbucket.org/joqvist/turing

24 Introduction

// External declarations:

bool isleaf(Tree t);

int min(int a, int b);

void print(int a);

// Finding minimum leaf value:

int tmin(Tree t) {

if (isleaf(t)) {

return t.value;

} else {

return min(tmin(t.left), tmin(t.right));

}

}

void findmin(Tree t) {

print(tmin(t));

}

Procedure Calls Reachable

findmin {print, tmin} {print, findmin, tmin, min, isleaf}
tmin {tmin, min, isleaf} {tmin, min, isleaf}
min {} {min}
isleaf {} {isleaf}
print {} {print}

Figure 8: Reachable procedures for a small program for finding the minimum leaf
value in a tree. Above: the source code of the program. Below: reachable procedure
sets.

The reachable procedures function above can be implemented as a circular at-
tribute in the following way:

syn Set⟨Procedure⟩ Procedure.reachable circular(∅) =

this ∪

(

∪

c∈this.calls

c.reachable

)

The circular(∅) part gives the initial value for the fixpoint iteration. Figure 8 shows
the reachable procedures in a small imperative program.

Collection Attributes

In static analysis it is often necessary to collect a multitude of values of some kind
from different nodes in an AST. Examples include error messages, local procedure
calls, and static type dependencies. Collection attributes are an extension for RAGs

2 Background 25

by Magnusson et al. [MEH07] which supports these kinds of value collections. The
attribute evaluator traverses the AST to collect contributions for the attribute value
from disparate nodes in the tree.

To declare a collection attribute, we must declare what is to be collected and on
which class:

coll Collection⟨String⟩ Program.errors

This attribute collects error messages on the Program class (the root of the AST).
The meaning of the attribute is only implicit from the attribute name (errors); the
actual meaning of the attribute is defined by contribution statements declared for all
classes which may provide a value for this collection attribute. In this case, we need
a contribution statement for each class that may report an error message:

VarUse contributes "variable not initialized before use"

when ¬ definitelyAssigned

to Program.errors

This contribution is conditional, where the when clause contains an expression that
controls if the error message will be reported for the current node or not. It is also
possible to declare unconditional contributions, for example when collecting static
type dependencies.

2.4 Attribute-Controlled Rewrites

In Rewritable Reference Attribute Grammars [EH04], parts of the AST can be auto-
matically transformed by using attribute-controlled rewrite rules. While higher-order
attributes can also be used to transform part of the AST, they need to be explicitly
referenced in order to access the transformed version of the AST. In contrast, rewrite
rules are invisible to other attributes: they are automatically activated whenever the
rewritable part of the AST is first accessed.

Rewrite rules can have an optional condition, which decides if the rewrite will be
applied to the target node.

The following rewrite rule replaces any multiplication by zero with a constant
zero literal:

rewrite MulExpr

when Left.isZero ∨ Right.isZero

to new IntegerLiteral("0")

Rewrite rules are a simple way of transforming parts of the AST. Unlike higher-
order attributes, a rewrite rule replaces the original part of the AST that is rewritten.
With a higher-order attribute, on the other hand, it is always possible to access the
original AST, making it easier to pretty-print the original source form of the program.

Söderberg and Hedin [SH15] showed that rewrites are equivalent to circular
higher-order attributes. This mapping makes it simple to implement rewrites in a
RAG system which already has circular and higher-order attributes.

26 Introduction

2.5 The JastAdd Metacompiler

JastAdd is a metacompiler18 for Reference Attribute Grammars (RAGs) which has
found success in modular programming language composition and for real-world
programming language implementation [HM03a; Hed11; EH07c].

JastAdd generates Java AST classes to represent the nonterminals of an abstract
grammar. Attributes are generated as Java methods in these AST classes, based on
a set of attribute specifications. JastAdd attributes are specified in a domain-specific
language with embedded Java code for attribute equations. This language uses Inter-
Type Declarations (ITDs): a concept from Aspect-Oriented Programming (AOP) in
which the attribute is declared separately from the class it belongs to. It is also
possible to declare new utility methods in AST classes as ITDs.19

In previous attribute grammar examples, we have already used a simplified version
of the JastAdd notation for attributes. Here is the literal JastAdd attribute syntax for
a synthesized attribute:

syn int A.x() = 3;

This declares a synthesized attribute (hence, syn) belonging to AST class A. We will
continue using a simplified version of the JastAdd syntax that removes semicolons
and the parentheses for non-parameterized attributes.

Thanks to the use of inter-type declarations, attribute declarations can be orga-
nized into aspect files by whatever categorization is most appropriate. An aspect file
has the following layout:

import java.util.*;

aspect MyAnalysis {

<attributes and other ITDs>

}

The JastAdd abstract grammar syntax is similar to the previous grammar exam-
ples. However, there may only be one production rule per nonterminal, since each
production rule corresponds to an AST class declaration. For alternatives, JastAdd
grammars have object-oriented inheritance between grammar productions. For each
alternative, we use separate productions with a common superclass. Binary expres-
sions are a common example where alternatives are useful in the abstract grammar. In
JastAdd, we can represent all binary expressions with a common supertype Binary,
say, and we then have subtypes for each concrete kind of binary expression, like
addition, subtraction, multiplication, etc.

abstract Binary : Expr ::= Left:Expr Right:Expr

The common supertype Binary does not represent any specific kind of binary ex-
pression, in fact it will never exist in any concrete AST so we declare it abstract.
Concrete subclasses of Binary are the actual binary expressions of the language.
Following are some common examples of binary expressions:

18A compiler that compiles compilers; a compiler for a metalanguage.
19The flavor of AOP used in JastAdd is similar to subject-oriented programming [HO93].

3 Using RAGs for Extensible Analyses 27

Add : Binary

Sub : Binary

Mul : Binary

. . .

By inheriting from Binary, these classes automatically receive the child components
of Binary. It is possible to add additional child components in a subtype. In the above
example, Binary could alternatively have been declared as empty, and each subtype
could have specified the Left and Right children. This would, however, remove the
possibility for attributes common to all binary expressions to directly access the
children, which would result in less reuse.

JastAdd abstract grammars may use optional, list, and token components:

A ::= B [C] D ∗ ⟨E⟩

Lists and optional children are wrapped by implicitly generated nonterminals List
and Opt.

JastAdd supports all previously discussed attribute kinds: synthesized, inherited,
parameterized, higher-order, circular, and collection attributes. JastAdd also allows
automatic attribute-controlled rewriting of AST nodes, and JastAdd has an aspect-
oriented mechanism for replacing existing attribute equations.

JastAdd generates AST classes and weaves attributes into them. Attributes are
generated as methods of the AST classes. This forms a foundation for building
compilers and static analyses: only a parser needs to be added in order to build a
complete static analysis framework with JastAdd. In fact, JastAdd has been used
to build compilers for several languages like Java, Modelica, and Bloqqi [EH07b;
Åke+10; FH16]. In this dissertation we will look mainly at the ExtendJ Java compiler,
but the techniques covered can be applied to any other JastAdd-based compiler project,
or indeed, to other RAG-based compiler specifications.

JastAdd makes it eminently easy to build extensible compilers thanks to RAGs
and aspect-oriented programming. The following section describes how JastAdd
features are used for building extensible static analyses.

3 Using RAGs for Extensible Analyses

In this section, I show how some features of RAGs can be used to build extensible
static analyses. This is based on my experiences from working with the JastAdd
metacompiler. Although the following discussion focuses on JastAdd RAGs, many
of the results apply to other RAGs as well.

The main features of JastAdd that are of interest from the perspective of extensi-
bility are:

• inter-type declarations,

• object-oriented attribute inheritance,

28 Introduction

• attribute replacement,

• structure-shy programming with inherited attribute broadcasting,

• desugaring for reusable code generation,

• collection attributes.

The following sub-sections examine each of these features in detail.

3.1 Inter-Type Declarations

As mentioned in Section 2.5, JastAdd attributes are specified with inter-type decla-
rations (ITDs). By using ITDs, JastAdd solves the expression problem, a common
yardstick when comparing extensibility of programming language implementations.
The expression problem was defined by Wadler [Wad98] as follows:

The Expression Problem is a new name for an old problem. The goal is to
define a datatype by cases, where one can add new cases to the datatype and
new functions over the datatype, without recompiling existing code, and while
retaining static type safety (e.g., no casts).

With ITDs, new attributes (functions) can be added to pre-existing AST classes.
New AST classes (datatype cases) are also easily added by new abstract grammar
rules. There is one caveat: JastAdd RAGs require recompilation when the attribute
grammar is changed or extended. Recompilation is needed because JastAdd gen-
erates the analysis or compiler by weaving the introduced attributes into AST class
declarations during code generation.

For an example of the expression problem, I will demonstrate how to extend
a small expression language with a new operator and new functionality by using
JastAdd. We start with the expression language defined by the following abstract
grammar:

abstract Expr

ParExpr : Expr ::= Expr

IntLiteral : Expr ::= ⟨VALUE⟩

abstract Binary : Expr ::= Left:Expr Right:Expr

Add : Binary

Sub : Binary

This language can easily be extended with a new factorial operator by appending
the following abstract grammar rule:

Factorial : Expr ::= Expr

3 Using RAGs for Extensible Analyses 29

Sub

IntLiteral "10" Factorial

ParExpr

Add

IntLiteral "40" IntLiteral "2"

rpn = "40 2 +"

rpn = "10 40 2 +"

rpn = "40 2 + !"

rpn = "10 40 2 + ! -"

rpn = "10"

rpn = "40" rpn = "2"

Figure 9: Attributed AST for the algebraic expression 10 − (40 + 2)!. The rpn
attribute shows the reverse polish notation at each subexpression. The RPN for the
whole expression is 10 40 2 + ! -.

We will now extend the behaviour of the language by adding attributes for printing
an expression in Reverse Polish Notation (RPN), in which operands are written before
operators. To this end, we declare the rpn attribute on Expr:

syn String Expr.rpn

Equations for the new attribute are needed on each concrete subclass of Expr:

eq Add.rpn = Left.rpn + " "+ Right.rpn + " +"

eq Sub.rpn = Left.rpn + " "+ Right.rpn + " -"

eq ParExpr.rpn = Expr.rpn

eq IntLiteral.rpn = VALUE

eq Factorial.rpn = Expr.rpn + " !"

For the factorial operator, RPN coincides with the standard algebraic notation. For
the binary expressions Add and Sub, the operands are printed first, then the operator.
Parenthesis expressions (ParExpr), which are significant in algebraic notation, are
not needed in RPN. Integer literals (IntLiteral) need no special handling for RPN
output. Figure 9 shows the AST of an expression in the extended language and the
corresponding RPN attribute values.

3.2 Object-Oriented Attribute Inheritance

When RAGs are combined with object-oriented programming, attributes can be
inherited through the class hierarchy. This can be useful for factoring out common
attributes to an AST superclass. For instance, consider the previous RPN example:
the Binary class is a common superclass of both Add and Sub expressions. We can

30 Introduction

factor out the separate equations of the rpn attribute from Add and Sub with a new
equation on Binary, like this:

eq Binary.rpn = Left.rpn + " "+ Right.rpn + " "+ opSuffix

Now we just need opSuffix on Add and Sub:

syn String Binary.opSuffix

eq Add.opSuffix = "+"

eq Sub.opSuffix = "-"

Although we got rid of some duplicated code by moving the rpn equation to Binary,
it is of little benefit in the present example, especially since we had to add a new
opSuffix attribute to fill in the blank at Binary. This type of attribute factoring pays
off to a much greater extent in more realistic programming languages which typically
have many more binary operators.

3.3 Attribute Replacement

In addition to inter-type declarations, JastAdd has another AOP-inspired mechanism:
it is possible to replace an existing attribute by using a refine declaration, like this:

refine eq Sub.opSuffix = "?"

This changes the equation for an existing attribute Sub.opSuffix.
The refine mechanism is similar to point-cuts in AOP, but instead of inserting a

new computation it replaces the whole computation.20
Replacing attributes like this may at first seem to provide little benefit for building

static analyses with RAGs. However, it is very useful when extending an existing
analysis. When extending an analysis, there is often a need to change the meaning
of an existing attribute. This can either be accomplished by using a refine rule, or
by creating a subclass of the corresponding AST class and overriding the attribute.
The refine solution is often more lightweight: it requires less boilerplate code and
specialization to handle the new AST class.

When extending a programming language, it is often necessary to change the
behaviour of an existing attribute to accommodate some new language feature. This
can either be done by refactoring the pre-existing attribute into smaller parts that can
be overridden separately in an extension. However, this can reduce the readability of
the original code which in may outweigh the benefit of reduced code duplication in
the extension. Furthermore, if the base system can not be changed, use of refine can
allow some changes which would otherwise not be possible.

20It is possible to reuse the old equation inside the new one by using the refined keyword.

3 Using RAGs for Extensible Analyses 31

3.4 Structure-Shy Programming with Inherited Attributes and

Broadcasting

Inherited attributes with broadcasting embody a style of programming which was
named structure-shy programming by Lieberherr [Lie96]. A structure-shy program
specifies certain behaviour for some substructures and leaves handling of the rest to
a generic solution, according to Cunha and Visser [CV11]. A typical example of
a structure-shy program is an XPath query which matches only certain parts of an
XML document tree and ignores the rest [XPath]. An XPath query is insensitive to
irrelevant changes in the tree which the query does not directly match.

An inherited attribute equation (with broadcasting) is propagated to all matching
attributes in the subtree below the edge where the equation is attached. If we add a
new AST node inside some subtree which is already covered by an inherited equation,
there is often no need to add a new equation for that attribute. In several cases, it
is possible to add new language features that reuse existing inherited attributes with
little effort.

The structure-shyness of inherited attributes is particularly apparent in lookup
attributes. Name lookup is a typical example of a lookup attribute: an inherited
attribute is used for finding a reference to the declaration of a variable use. Suppose
we have the following abstract grammar:

abstract Expr

Let : Expr ::= ⟨NAME⟩ ⟨VALUE⟩ Expr

VarUse : Expr ::= ⟨NAME⟩

Add : Expr ::= Left:Expr Right:Expr

The Let expressions of this language are only allowed to define variables with constant
values, and the expression inside the Let may only use variable names defined by
some enclosing Let. An example of a valid expression in the language looks like this:

let x = 40 in

let y = 2 in

x + y

This expression computes the value 42.
The above language is almost entirely pointless. Nevertheless, name analysis for

this language works much like name analysis in any other programming language.
Here is a name lookup attribute for the let-expression language:

inh Let Expr.lookup(n)

eq Let.Expr.lookup(n) = this if n = NAME; else lookup(n)

The lookup attribute at a declaration node (Let expression) will give a reference
to the declaration if its name matches the sought-after variable. If the name n does
not match the declaration, the attribute equation uses lookup(n) of the Let expression
itself to delegate name lookup to the enclosing scope.

32 Introduction

The lookup attribute above is structure-shy in the sense that we could introduce
new name declarations outside the expression, or irrelevant name declarations inside
it, without affecting the lookup attribute value for previous nodes. For example, the
following expression has the same name bindings as in the previous one:

let unused = 1 in

let x = 40 in

let abc = 0 in

let y = 2 in

x + y

We can add many language extensions to this let-language without affecting
name lookup. For instance, if we wish to add a division operator to the language, we
could add the following abstract grammar rule:

Div : Expr ::= Left:Expr Right:Expr

Now, we can write expressions like

let x = 355 in

let y = 113 in

x / y

Importantly, this extended language works as intended without having to add new
attribute equations for the lookup attribute. This works despite the fact that the new
Div node occurs between the pre-existing Let and VarUse constructs in the AST.
Because we added a kind of expression which does not declare new names or alter
name scoping rules, the old equations just work.

3.5 Desugaring with Higher-Order Attributes

Higher-order attributes are useful for developing code generation for programming
language extensions, among other things. Code generation for a new language
construct can often be conveniently implemented by mapping the new language
mechanism to an equivalent form using pre-existing language features.

For an example of desugaring, we will look at a small extension to the ExtendJ
compiler which overloads the multiplication operator for string repetition. Multiply-
ing a string is not allowed in plain Java (as of the current latest version, Java 11).
Our goal is to allow a string to be multiplied with an integer, resulting in the string
repeated a number of times equal to the integer operand. For instance, the following
expression should store the string "gogogo" in variable msg:

String msg = "go" * 3;

The above is equivalent to the following for-loop:

StringBuilder buf = new StringBuilder ();

for (int i = 0; i < 3; ++i) {

buf.append ("go");

}

String msg = buf.toString ();

3 Using RAGs for Extensible Analyses 33

If we wish to implement the code generation for this in ExtendJ, we could create a
higher-order attribute to compute the desugared version:

syn nta Stmt Mul.desugared = new ForStmt(. . .)

Code generation can be accomplished by reusing existing code generation on the
desugared form, like this:

eq Mul.code = desugared.code

The details of a complete implementation are just a little bit more involved. A func-
tional implementation of this example, as a small extension to ExtendJ, is available
as open source from the following public repository:

https://bitbucket.org/extendj/string-repeat

The ExtendJ compiler uses desugaring for a few important features. For exam-
ple, lambda expressions in the Java 8 module are implemented by desugaring to
anonymous classes. Another example is the try-with-resources statement, introduced
in Java 7 [JLS7, §14.20.3], for which partial desugaring is used to simplify code
generation.

3.6 Collection Attributes

Collection attributes receive their values from contribution statements, which are
declared separately from the target collection attribute, using ITDs. This makes it
easy to introduce new contributions to an existing collection attribute in an extension.
In language extensions we often need to add new error messages to the compiler,
which can be easily done by adding new contributions if the error messages are
collected with a collection attribute.

For an example of adding a new error message to a compiler, suppose we want to
report when strings are compared using the equals operator in Java:

if (name == "Not Sure") {

...

}

Normally, Java allows this code without warning, though it usually does not work the
way the programmer intended. Strings should instead, in most cases, be compared
with the equals method:

if (name.equals ("Not Sure ")) {

...

}

An error message can be added to the ExtendJ compiler by just adding a new contri-
bution for a collection attribute, like this:

EQExpr contributes error("Incorrect string equality test!")

when Left.type.isString ∧ Right.type.isString

to CompilationUnit.problems

https://bitbucket.org/extendj/string-repeat

34 Introduction

Collections Over Higher-Order Attributes

Collection attributes do not normally search for contributions in higher-order at-
tributes. This is due to the fact that higher-order attributes can expand indefinitely.

In some cases, however, it is useful to have collections which range over certain
finite higher-order attributes. To this end, we can control the search during collection
attribute evaluation by using a special JastAdd mechanism that I developed for JastAdd
version 2.2.1. This new mechanism is a variation of the contributes statement that
allows specifying which nodes to search for contributions. Here is an example from
the ExtendJ compiler:

LambdaExpr contributes {

toClass (). collectContributions ();

} to TypeDecl.nestedTypes ();

I added this particular code fragment to the compiler to solve a problem in finding
all anonymous classes induced by lambda expressions. In the ExtendJ Java compiler,
extensions may need to generate new anonymous classes. In particular, the Java 8
module in ExtendJ uses anonymous classes to implement lambda expressions. Since
these anonymous classes are built with higher-order attributes at various places in
the AST (inside expressions), they need to be located during code generation in
order for the anonymous class to be written to a class file. There was already such
a collection attribute to gather ordinary anonymous class declarations. However, it
did not locate the new lambda classes because they were nested inside higher-order
attributes. This could be solved with a new contribution statement, except for lambda
expressions nested in other lambda expressions. For nested lambdas, we have the
problem of needing to look inside the anonymous class, which is a higher-order
attribute, to find all anonymous classes. The above code fragment solved this issue
by adding the anonymous class for a lambda expression, LambdaExpr.toClass, to be
searched for contributions to the nestedTypes collection attribute (the attribute for
finding anonymous classes).

3.7 Generic AST Traversal

In imperative programming, traversing a tree of nodes in a particular order is straight-
forward, for example using standard preorder traversal (as in depth-first search). How-
ever, this task is trickier with declarative attributes. Attributes typically hide their
evaluation order, and have no direct mechanism for ordering attribute evaluations.
So the question is: How can we use attributes to implement ordered traversal?

The solution is to use a reference attribute to point out the predecessor in the
required traversal order. We can then implement our traversal using this predecessor
attribute. Suppose that we need to number the nodes of an AST by their preorder
number. Let pred be a reference attribute pointing to the predecessor in the traversal
order. We can achieve the required preorder numbering with the following equations:

syn int ASTNode ASTNode.dfnum = pred.dfnum + 1

eq Root.dfnum = 0

3 Using RAGs for Extensible Analyses 35

1

2 3

4 5

6 7 8

9

10 11

Figure 10: An AST with nodes labeled by their preorder number. The red arrows
show the pred attribute references for all nodes except the root.

Here, ASTNode is the generic superclass of all AST classes, and Root is the root class
of the AST (from the abstract grammar). The equation on Root is needed to give the
base case for dfnum: a Root node is the first node in the traversal. Figure 10 shows
the preorder numbering of a generic AST.

The implementation of the pred attribute is a little bit more involved. The pred
attribute is an inherited attribute which uses prevNode to find the predecessor of the
current node in its parent. We also need an attribute, last, to point to the last node
inside a subtree. Here is the full implementation of pred for a preorder traversal:

inh ASTNode ASTNode.pred

eq ASTNode.child[i].pred = prevNode(i)

syn ASTNode ASTNode.prevNode(i) = child[i− 1].last if i > 0; else this

syn ASTNode ASTNode.last = prevNode(|child|)

Here, child is an array of the children in an ASTNode, and |child|means the length of
the child vector. This code uses a JastAdd mechanism which we have not previously
discussed: the pred equation uses the index i of the child edge which the equation is
evaluated on (this works similarly for list children).

We can apply this preorder traversal pattern to a number of useful tasks, like
numbering local variable declarations (needed for code generation). Here is an
example of a local variable numbering attribute, varNum, for a fictional procedural
language:

syn int ASTNode ASTNode.varNum = pred.varNum

eq VarDecl.varNum = pred.varNum + 1

eq Function.varNum = 0

The equation on Function resets the numbering for each function, making variable
numbering local to each function. The varNum attribute is structure-shy, as it is only
affected by the presence of VarDecl and Function nodes in the AST, and insensitive
to the structure of the rest of the tree. New language constructs can easily be added
to the language without affecting the varNum attribute.

36 Introduction

3.8 Discussion

While ITDs are useful for extensibility, it can been argued that AOP counters modu-
larity. Parnas famously promotes information hiding as the main criteria for decom-
posing a system into modules [Par72]. However, few things can be effectively hidden
in the presence of AOP [Ste06].

With ITDs we gain the ability to easily decompose a compiler into separate mod-
ules according to any cross-cutting concern. Additionally, AOP in JastAdd provides
high composability: we can build components of attributes which are combined
without having to pre-design extension points or callback mechanisms. The benefits
of the limited form of AOP combined with attributes in JastAdd were investigated in
a paper by Avgustinov et al. [AET08a].

In practice, extensibility need not be deliberately designed into a JastAdd-based
compiler. Instead, extensibility occurs as a happy coincidence of using RAGs and
AOP.

With attributes, there is no need for data structures like symbol tables, which
are external to the AST. Instead, all information that is needed for compilation can
be computed directly by attributes. Symbol tables can be replaced with reference
attributes. Lookup tables indexed by AST nodes correspond directly to attributes
where the attribute equation computes the value in the lookup table. This lack of
specialized data structures is also a benefit from the perspective of extensibility as
there are no existing data structures that need to be expanded to store more information
than they were originally designed for.

4 The ExtendJ Java Compiler

ExtendJ (formerly, JastAddJ21 [EH07b]) is an extensible Java compiler, implemented
using the JastAdd metacompiler, supporting full Java source-to-bytecode compilation
[ExJorg].

ExtendJ is free and open source, provided under The Modified BSD License
[BSD]. The source code is available from the following repository:

https://bitbucket.org/extendj/extendj

With ExtendJ, it is possible to develop new language extensions, static analyses,
source transformation tools, and other tools based on the Java language.

The rest of this section is organized as follows. The next sub-section describes
the development history of ExtendJ, then interesting examples of extensions are
presented, then continuing with a high-level overview of the design of the compiler,
and some of the most important attributes.

21Originally known as the JastAdd Extensible Java Compiler, later shortened to JastAddJ. The compiler
has occasionally been referred to as the JastAdd frontend for Java. The compiler was finally renamed to
ExtendJ to avoid confusion with the JastAdd metacompiler.

https://bitbucket.org/extendj/extendj

4 The ExtendJ Java Compiler 37

4.1 Development History

ExtendJ was originally designed as a case study in using JastAdd to construct a
practical compiler with RAGs. The result was a highly extensible compiler that
proved suitable for building static analyses and language extensions for Java.

Torbjörn Ekman developed the first versions of ExtendJ, including the Java 1.4
and Java 5 versions [EH04; EH07b]. I later took over the project, implementing new
versions for Java 6 (a minimal change to Java 5), and Java 7. Ekman had left the
project before I started working on ExtendJ. I started by learning about RAGs and how
the compiler worked. I received help from Görel Hedin and Anders Nilsson who had
some knowledge of ExtendJ. The next major Java version, Java 8, was implemented
by Erik Hogeman for his Masters Thesis project under my supervision [Hog14].
Hogeman did an excellent job, but there were some final enhancements which I
completed for the Java 8 extension (improved type inference and code generation
issues).

The following table summarizes the authorship of ExtendJ, as of version 8.1.2:

Author Commits Inserted Removed

Jesper Öqvist 890 136 043 116 391
Torbjörn Ekman 401 69 606 38 231
Erik Hogeman 17 12 273 2 477
Max Schäfer 14 8 695 172
Pavel Avgustinov 9 1 730 865
Emma Söderberg 20 563 107

Inserted/Removed: number of lines inserted/removed across
all commits.22
Sorted by decreasing number of inserted plus removed lines.
Authors with fewer than 300 lines inserted plus removed are
not listed (10 in total).

During my time working on ExtendJ, I have fixed many bugs in the compiler.
This includes code generation errors for which the compiler created faulty bytecode,
compile failures where the compiler failed to compile well-formed Java code, or
incorrectly accepting code which should have caused a compile error. About 250 of
the bugs I fixed are tracked on the current issue tracker for ExtendJ,23 many bugs
that I fixed were not tracked. I also developed the test framework and test suite for
ExtendJ, which currently contains about 1700 tests. Erik Hogeman wrote 888 tests
for the Java 8 implementation [Hog14].

In order to enable parallel compilation in ExtendJ, side effects had to be removed.
Thus, an important part of my contributions in this dissertation is a fully declarative,
side effect free, version of ExtendJ. This makes it possible to parallelize compilation,
and to run concurrent analyses in interactive tools based on ExtendJ. Previously,
ExtendJ had some known uses of side effects and imperative tree transformations
which prevented concurrent evaluation.

22The number of lines were counted by using the show command for git with the --numstat option.
Line counts include changes to non-source files like README and ChangeLog.

23The issue tracker is at the main code repository: https://bitbucket.org/extendj/extendj.

https://bitbucket.org/extendj/extendj

38 Introduction

I have also made several other refactorings to the compiler in order to improve
correctness or simplify compilation. Some of this work is presented in Section 5.

4.2 Extensions Overview

ExtendJ has been useful to researchers over several years, thanks to continued devel-
opment of the compiler and support for newer Java versions. The ability to implement
new Java versions efficiently, by only a few developers, was to a large extent afforded
by the inherent extensibility in using JastAdd to build the compiler.

While other extensible Java compilers do exist, language extensions and tools
based on ExtendJ are often smaller in terms of code size, and more maintainable
[AET08a]. The smaller implementation size and declarative coding paradigm in
ExtendJ seems to outweigh some of the drawback of using a more unconventional
RAG-based compiler architecture. Researchers who are unfamiliar with RAGs will
find learning the JastAdd code in ExtendJ to be an obstacle to overcome before they
can start implementing a project in the compiler. Still, ExtendJ has been used by
several researchers to implement their language extensions, static analyses, and other
tools.

To illustrate the variety of research that has been done with ExtendJ, here are
some of the interesting results that have been published, including work from our
own research group as well as from others who worked independently:

Language extensions:

• Pavel Avgustinov, Torbjörn Ekman, and Julian Tibble, “Modularity first: a
case for mixing AOP and attribute grammars”. In AOSD, 2008. [AET08a].

• (Paper II) Friedrich Steimann, Jesper Öqvist, and Görel Hedin. “Multitudes
of Objects: First Implementation and Case Study for Java”. In Journal of
Object Technology, Vol. 13, no. 5 (November 2014), pp. 1:1–33.

• Sukyoung Ryu, “ThisType for Object-Oriented Languages: From Theory to
Practice”. In TOPLAS, 2016 [Ryu16].

• YungYu Zhuang and Shigeru Chiba, “Expanding Event Systems to Support
Signals by Enabling the Automation of Handler Bindings”. In Journal of
Information Processing, 2016 [ZC16].

• Tetsuo Kamina and Tomoyuki Aotani, “Harmonizing Signals and Events with
a Lightweight Extension to Java”. In Programming Journal, Vol. 2, no. 3,
2018 [KA18].

• Jan C. Dageförde and Herbert Kuchen, “A constraint-logic object-oriented
language”. In SAC, 2018 [DK18].

4 The ExtendJ Java Compiler 39

Tools and analyses:

• Torbjörn Ekman and Görel Hedin, “Pluggable checking and inferencing of
nonnull types for Java”. In Journal of Object Technology, Vol. 6, no. 9, 2007
[EH07a].

• Emma Söderberg, Torbjörn Ekman, Görel Hedin, and Eva Magnusson,
“Extensible intraprocedural flow analysis at the abstract syntax tree level”. In
Sci. Comput. Program., 2013 [Söd+13].

• (Paper III) Jesper Öqvist, Görel Hedin, and Boris Magnusson.
“Extraction-Based Regression Test Selection” In Proceedings of the 13th
International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools (PPPJ’16), ACM,
pp. 5:1–5:10. Lugano, Switzerland, 2016.

• Friedrich Steimann, Jörg Hagemann, and Bastian Ulke, “Computing repair
alternatives for malformed programs using constraint attribute grammars”. In
OOPSLA, 2016 [SHU16].

• Mohammad R. Azadmanesh and Matthias Hauswirth, “Concept-Driven
Generation of Intuitive Explanations of Program Execution for a Visual
Tutor”. In VISSOFT, 2017 [AH17].

At the computer science department at Lund University, we have for the past
four years offered a course where students work in groups of two to implement
small compiler-related projects. Some of the compiler projects are implemented as
extensions to ExtendJ. Here are a few of the interesting projects that have been done
by students so far in the course:

• Olle Tervalampi-Olsson and Marcus Lacerda, “Object-oriented metrics for
Java programs”, 2014.

• Joel Lindholm and Johan Thorsberg, “Package metrics on Java projects”,
2014.

• Ella Eriksson and Zimon Kuhs, “Bug detection through static analysis”, 2015.

• Hans Bjerndell and Linus Lexfors, “Extending Java with new operators”,
2016.

• Sebastian Hjelm and Markus Olsson, “Extending the ExtendJ Java compiler
to Java 9 support”, 2017.

• Wawrzyn Chonewicz and Filip Stenström, “Extending Java with new
operators using ExtendJ”, 2017.

Although most of the student projects listed above were either very small exten-
sions or partially implemented, they still demonstrate that it is reasonably easy for
developers who are previously unfamiliar with ExtendJ to start implementing useful

40 Introduction

extensions within a couple of weeks of work. The students spend about six to eight
man-weeks of implementation work on the project (the rest of the time is spent on
reading related work and writing a report). At the beginning of the project, they have
a very basic understanding of JastAdd and RAGs from the prerequisite compilers
course.

Most of the contributions in this dissertation were implemented and/or evaluated
in ExtendJ. The Java 7 extension (Paper I) is a core extension for ExtendJ, in which
I developed design patterns which were later used in the Java 8 extension. The
Multiplicities case study (Paper II) was developed as an ExtendJ extension. The test
selection project (Paper III) was developed as an ExtendJ extension. Finally, the
concurrent evaluation algorithms for RAGs presented in Paper IV were evaluated in
ExtendJ.

4.3 Compilation Passes

Compilers are typically organized into multiple passes consisting of various static
analyses and AST transformations. Passes normally need to run in a specific order
because some passes depend on transformations or analyses done by a previous pass.
For example, name analysis is usually one of the first passes because most other
analyses require name analysis information. Passes communicate information both
through the AST and through other shared data structures like symbol tables and
control flow graphs.

ExtendJ differs from conventional compilers by having relatively few passes, and
by using practically no data structures apart from the AST. In fact, ExtendJ has only
three passes: parsing, error checking, and code generation, as illustrated in Figure 11.
Error checking is done by evaluating the collection attribute problems on each source
file in the program. The problems attribute contains error messages and warnings for
the current program. If there were error messages found, then ExtendJ proceeds by
generating the necessary Java bytecode in the code generation pass.

The reason there are so few passes in ExtendJ is that attributes do most of the work:
when the problems attribute is evaluated, it automatically causes the evaluation of
all attributes it depends on. Code generation similarly relies on additional attributes,
which are evaluated as needed. There are cyclic dependencies between a small
number of attributes, which are solved by using fixpoint iteration (with circular
attributes). Because attributes are declarative, we do not have to consider the ordering
of attributes during evaluation. Any valid attribute evaluation order24 always gives
the same result.

An alternative viewpoint is to regard each attribute as a kind of mini-pass. In this
sense, ExtendJ contains very many interleaved passes.

24Meaning a reverse dependency order, of which there are many.

4 The ExtendJ Java Compiler 41

Parse Sources

Produces AST for
each source file.

Error Checking

(With library
loading.)

Found errors? Fail

Code Generation

Produces bytecode
(class files).

no

yes

Figure 11: Flowchart for compilation in ExtendJ. Compilation is split into three
explicit passes: parsing, error checking, and code generation. ExtendJ uses dynamic
loading of library classes, interleaving some parsing (of bytecode and Java source
code) with error checking.

42 Introduction

4.4 Modular Architecture

ExtendJ is composed of a set of modules supporting different versions of Java. At
the base is a Java 1.4 module, upon which Java 5 through 8 modules are added as
extensions (each new extension version depending on the previous). The modules
consist of JastAdd aspect files, abstract grammar, and separate scanning specification
and parsing grammar. For each supported Java version, there are two modules:
a frontend module for parsing and semantic analysis, and a backend module for
generating Java bytecode.

The following table summarizes the contents of the current modules in ExtendJ,
version 8.1.2:

Module LOC LOC% AST Classes Attrs Refines

java4 f 9 129
51%

169 49 797 0
java4 b 4 146 0 27 150 0

java5 f 5 829
27%

64 8 350 53
java5 b 1 248 0 5 46 47

java6 f 21
0%

0 0 0 1
java6 b 17 0 1 0 2

java7 f 1 324
6%

8 3 101 13
java7 b 249 1 2 12 3

java8 f 3 934
16%

22 2 207 38
java8 b 309 0 0 11 5

Σ 26 206 264 97 1 674 162

The f /b suffix indicates frontend/backend module. LOC is the number of lines
of aspect code (excluding lines with only comments, spaces, and braces). AST
is the number of grammar classes added in each module. Classes are non-
grammar classes and interfaces. Attrs is the number of attribute declarations,
and Refines is the number of replaced attribute equations and methods.25

4.5 Abstract Grammar

This section gives a high-level overview of the abstract grammar of ExtendJ, omitting
many details which do not impact the rest of the discussion. This section can be
skipped if you are not interested in the technical details of the ExtendJ implementation.

The abstract grammar in ExtendJ is not too different from any other Java com-
piler. Most of the AST class names are derived from the Java specification [JLS7].
A somewhat typical ExtendJ AST is shown in Figure 12.

At the top level, we have the main AST root node, Program, which contains
multiple compilation units:

Program ::= CompilationUnit ∗

25The number of lines of code were counted with a tool based on the lexer from ExtendJ.

4 The ExtendJ Java Compiler 43

Program

CompilationUnit CompilationUnit

InterfaceDecl

MethodDecl

ClassDecl

ConstructorDecl MethodDecl

Block

ExprStmt

MethodAccess

ReturnStmt

VarAccess

Figure 12: A minimal ExtendJ AST, exhibiting most of the typical high-level
structure.

Each compilation unit represents one Java source file, containing a list of type decla-
rations:

CompilationUnit ::= [PackageDecl] ImportDecl ∗ TypeDecl ∗

Type declarations include, among others, class declarations and interface declara-
tions:

abstract TypeDecl ::= Modifiers ⟨ID⟩ BodyDecl ∗

abstract ReferenceType : TypeDecl

ClassDecl : ReferenceType ::= . . .

InterfaceDecl : ReferenceType ::= . . .

EnumDecl : ClassDecl

PrimitiveType : TypeDecl

Each type declaration contains a list of member declarations like methods, fields,
constructors, and so on:

abstract BodyDecl

abstract MemberDecl : BodyDecl

ConstructorDecl : BodyDecl ::= . . .

MethodDecl : MemberDecl ::= . . .

FieldDecl : MemberDecl ::= . . .

44 Introduction

The difference between BodyDecl and MemberDecl is minor. There are many sim-
ilar cases where we use multiple levels of abstract superclasses in the full ExtendJ
grammar. These are used both for sharing attribute code between similar statements,
and for preventing some kinds of constructs occurring in certain places of the tree.

Inside body declarations are statements and expressions. As in most program-
ming languages, methods and constructors have a list of statements, and statements
contain expressions. Statements include typical imperative programming language
statements such as for-loops, if-statements, switch statements, etc.

abstract Stmt

IfStmt : Stmt ::= Condition:Expr Then:Stmt [Else:Stmt]

WhileStmt : BranchTargetStmt ::= Condition:Expr Stmt

ForStmt : BranchTargetStmt ::= InitStmt:Stmt ∗ [Condition:Expr]

UpdateStmt:Stmt ∗ Stmt

BreakStmt : Stmt ::= ⟨Label⟩

ThrowStmt : Stmt ::= Expr

TryStmt : Stmt ::= Block CatchClause∗

ExceptionHandler:Block

The expression grammar is much larger than the statement grammar. Seen from
a high level, there are two kinds of expressions:

Access A reference to some entity: a type, variable (or parameter, field), method (a
call), this pointer, qualified expression (dot).

Non-Access A non-reference expression, e.g., literal values, arithmetic expressions,
type casts, etc.

Both access and non-access expressions are subclasses of the Expr class, and all
access expressions inherit from Access.

abstract Expr

abstract Access : Expr

There are many subtypes of Access for the different kinds of access expressions. The
following list includes the most important kinds of access expressions:

Dot : Access ::= Left:Expr Right:Access

VarAccess : Access ::= ⟨ID⟩

MethodAccess : Access ::= ⟨ID⟩ Arg:Expr∗

ConstructorAccess : Access ::= ⟨ID⟩ Arg:Expr∗

TypeAccess : Access ::= ⟨Package⟩ ⟨ID⟩

ThisAccess : Access

4 The ExtendJ Java Compiler 45

SuperAccess : Access

PackageAccess : Access ::= ⟨Package⟩

ArrayAccess : Access ::= Expr

ParseName : Access

There are many different subtypes of TypeAccess, for different kinds of references to
types including polymorphic type accesses. The ParseName access is a special kind
of ambiguous name that is reclassified automatically by syntactic classification, as
described in Section 4.7.

Continuing with the expression grammar, we have non-access expressions. These
types of expressions follow a typical imperative programming language expression
grammar:

abstract AssignExpr : Expr ::= Dest:Expr Source:Expr

abstract PrimaryExpr : Expr

ParExpr : PrimaryExpr ::= Expr

abstract Binary : Expr ::= LeftOperand:Expr RightOperand:Expr

abstract ArithmeticExpr : Binary

abstract AdditiveExpr : ArithmeticExpr

AddExpr : AdditiveExpr

SubExpr : AdditiveExpr

The AdditiveExpr class is an abstract class used solely for the convenience of
being able to declare a shared attribute on a single superclass: there are several
attributes that are common between additive expressions and thus the AdditiveExpr
class lets us specify only one attribute equation for all of them.

A special kind of statement, named ExprStmt, links expressions and statements.
Its purpose is to allow single expressions to be treated as statements. This is necessary,
e.g., for method calls:

ExprStmt : Stmt ::= Expr

46 Introduction

4.6 Attributes

The attributes in ExtendJ can roughly be grouped into these categories:

Semantic Attributes Attributes that implement a distinct part of the Java specifi-
cation [JLS7]. Some of these attributes follow the specification closely, and
can almost be read out loud as if part of the specification. Others diverge a bit
more from the specification or are simply less readable than the corresponding
natural language specification. An example of semantic attributes are the at-
tributes that implement definite assignment analysis [JLS7, §16]: they closely
follow the specification and the equations are often very readable.

Utility Attributes Attributes that are mainly concerned with collecting or organizing
auxiliary information for the semantic attributes. A typical example is the
TypeDecl.supertypes attribute which collects all supertypes of the receiver
type. Utility attributes are often useful in extensions.

Transformation Attributes Higher-order attributes that transform part of the AST,
either to implement a transformation required by the Java specification, or to
simplify the work for other attributes. Examples include enum constructor
transformation, implicit diamond access methods, etc.

The attributes in ExtendJ are divided into aspect files based on what Java version
and which kind of analysis they implement. The next sections present some of the
most important attributes in ExtendJ, and give an overview of the major static analyses
in ExtendJ.

4.7 Name Analysis

The primary name analysis tasks in Java compilers are binding uses of named entities
to corresponding declarations [JLS7, §6], and syntactic classification [JLS7, §6.5.1].

The purpose of syntactic classification is to determine the meaning of all names
in the program, classifying them as variable names, type names, method names, or
package names. Consider the following import declaration:

import treemap.Map.Entry;

The meaning of Map is ambiguous here: it could refer to a package treemap.Map, or
a class inside the treemap package.

The parser produces a ParseName node when a name is used in a context where
the parser is not able to unambiguously decide which kind of name it is. For example,
the ExtendJ parser builds the following AST subtree from the above import statement:

SingleTypeImportDecl

ParseName "treemap.Map.Entry"

4 The ExtendJ Java Compiler 47

Syntactic classification is performed in ExtendJ by using the JastAdd rewrite
mechanism: a rewrite rule for the ParseName class automatically transforms each
ParseName node into an appropriate Access when it is first referenced from an
attribute [EH04]. The ParseName node is present in the parsed AST but all attributes
are oblivious to it because they can only observe the syntactically classified result.26

Name analysis is needed to find matching declarations for variable and type
names. Name analysis is done with the idiomatic lookup pattern for JastAdd, in
which inherited attributes are used for looking up names from enclosing scopes
[Hed11]. The main attributes used for finding declarations via name analysis are:

syn Variable VarAccess.decl

syn MethodDecl MethodAccess.decl

syn ConstructorDecl ConstructorAccess.decl

syn ConstructorDecl ClassInstanceExpr.decl

syn TypeDecl TypeAccess.decl

These attributes find matching declarations for different kinds of named entities. The
Variable type is an interface used for local variables, fields, and parameter declara-
tions. Method and constructor lookup can involve overload resolution, shadowing,
and type inference. The decl attributes point to a single declaration node, but if the
declaration is undefined or ambiguous it will point to a singleton representing an
unknown declaration, using the null object pattern.

The decl attributes are implemented by lower-level attributes which are parame-
terized by the name being looked up (except for constructor lookup where the name
is not needed). These lower-level lookup attributes are:

inh Set⟨Variable⟩ Expr.lookupVariable(String name)

inh Set⟨MethodDecl⟩ Expr.lookupMethod(String name)

inh Set⟨ConstructorDecl⟩ ConstructorAccess.lookupConstructor

inh TypeDecl Expr.lookupType(String packageName, String typeName)

As a part of type analysis, typenames are resolved by name lookup via the lookup-
Type attribute. The type name may match an existing type declaration somewhere in
the program AST, or it can match a library class (either in a user library or system
library included with the Java runtime), or else it is an unknown type. For unknown
types, the UnknownType singleton is returned.

It would be wasteful to load all available libraries before starting compilation, so
instead ExtendJ uses demand-loading of libraries. Only the library types needed for
the current compilation task will actually be loaded. This dynamic library loading is
implemented by parameterized higher-order attributes: the attribute

syn CompilationUnit Program.getLibCompilationUnit(String name)

is responsible for loading a library type by its fully qualified type name. This higher-
order attribute builds an implicit part of the AST, so that the loaded type becomes
part of the full program AST once loaded and subsequent accesses to the same library
type reuse the already-loaded type.

26If syntactic classification fails, the ParseName is replaced by an AmbiguousAccess.

48 Introduction

4.8 Type Analysis

ExtendJ represents each Java type by a subclass of the AST class TypeDecl. For
example, Java classes are represented by the AST class ClassDecl, interfaces by
InterfaceDecl, and enum types by EnumDecl. Each type in a Java program has a
corresponding TypeDecl node somewhere in the AST. Even primitive types like int

and boolean have a corresponding type declaration node (reified as higher-order
attributes of type PrimitiveType) and behave for the most part like any other kind of
type declaration. In this system, user types are first-class citizens and, for the most
part, indistinguishable from library classes.

In most places where a type is used in a Java program, it is referred to by name,
as a TypeAccess. When analyzing Java code, we often need to look up the type
declaration for a given name in order to compare types or query any property of some
named type. To this end, name lookups are used to find a matching type declaration
for typenames. In particular, the attribute TypeAccess.decl and Expr.lookupType are
used for finding the type declaration matching a typename. For parameterized types,
like List<Integer>, the particular parameterization used must be instantiated. This
process is described in more detail in Section 4.11.

The attribute for computing the type of a general expression is

syn TypeDecl Expr.type

For variables (and similarly for fields and parameter uses), the type is computed by
looking up the variable declaration. The declared type in the variable declaration is
then used to compute a reference to the relevant TypeDecl node. For method calls,
the type is the declared return type of the matching method declaration. For class
instance expressions the type is the same as the constructed class. The type attribute
is in some cases straight-forwardly implemented, but there are also challenges that
occur due to type inference.

Another important task of type analysis is type checking: ensuring that all expres-
sions are correctly typed and match the expected type from the expression context.
Type checking relies heavily on the attribute

syn boolean TypeDecl.subtype(TypeDecl type)

which determines if the receiver type is a subtype of the argument type. The subtype
attribute is implemented with double dispatch to handle all combinations of different
kinds of types [EH07b]. For example, the subtype attribute for classes and interfaces
looks like this:

syn boolean TypeDecl.subtype(TypeDecl type) circular(true)

eq ClassDecl.subtype(TypeDecl type) =

type.supertypeClassDecl(this)

eq InterfaceDecl.subtype(TypeDecl type) =

type.supertypeInterfaceDecl(this)

4 The ExtendJ Java Compiler 49

For each combination of two kinds of typesX and Y, a corresponding set of attributes
TypeDecl.supertypeX(X) and TypeDecl.supertypeY(Y) are needed. As an example,
the equation for testing if a class declaration is a supertype of an interface declaration
looks like this:

eq ClassDecl.supertypeInterfaceDecl(InterfaceDecl type) = isObject

This attribute equation follows directly from the Java specification: the Object class
(from package java.lang) is the only class which is a supertype to any interface,
and it is a supertype to all interfaces.

While double dispatch enables us to extend the type system with new kinds of
types without editing all subtype equations, it still can lead to a lot of work due to the
need for many additional equations. In principle, the double dispatch pattern requires
a pair of equations for each pair in the Cartesian product of all kinds of types in the
language.

4.9 Method Call Resolution

One of the most demanding parts of the Java specification, in terms of implementation
effort required, is method call resolution [JLS7, §15.12.2]. Method call resolution is
used for finding which method declaration a method call refers to. If we gloss over the
details, we can illustrate the method resolution process as the following algorithm:

1. Determine the receiver type for instance method calls. For qualified method
calls, the receiver type is the type of the qualifying expression. For unqualified
method calls, the receiver type is the enclosing class at the call site.

2. Find matching method declarations based on the called method name. For
instance-method calls, matching methods are searched for in the receiver type,
otherwise the members of the enclosing class and imported static methods are
searched for matching declarations.

3. Filter candidate method declarations based on declaration visibility rules.

4. Filter out overridden method declarations from candidate methods.

5. Select the most specific method declaration (if one exists) based on the ac-
tual argument types used in the call. Take into account variable arity, type
parameters, and type inference.

A key attribute in the method resolution algorithm is

syn Set⟨MethodDecl⟩ MethodAccess.maxSpecific(candidates)

which implements the algorithm for determining the most specific method, a very
precisely defined concept from the Java specification [JLS7, §15.12.2.5]. The equa-
tion for this attribute was not too complicated in the Java 1.4 version of ExtendJ, but

50 Introduction

in the Java 5 extension it indirectly uses the complicated type inference system via
the attribute

syn Set⟨MethodDecl⟩ MethodAccess.potentiallyApplicable(candidates)

For generic candidate methods, potentiallyApplicable uses a utility attribute to infer
the type arguments for the current method call based on its context.

4.10 Control Flow and Dataflow Analysis

The Java specification requires several control flow and dataflow analyses, including
the following:

• exception handling checks,

• unreachable statements,

• missing returns,

• definite assignment

• finally handlers (code generation).

The following text gives some examples of how these analyses work in ExtendJ.

Exception Handling Checks

All checked exceptions must be caught by an enclosing try-statement, or else declared
to be thrown [JLS7, §11.2]. This requirement is handled in ExtendJ by handlesExcep-
tion, an inherited parameterized attribute that determines if the argument exception
type is handled by the surrounding context (an enclosing try-statement, for example).

A separate exception handling check ensures that try-statements with a catch

clause enclose a statement that can actually throw the caught exception type. For this
analysis, ExtendJ uses the synthesized parameterized attribute reachedException.
The attribute determines if the argument exception type can be thrown from the
receiver statement (e.g., a block or method call).

4 The ExtendJ Java Compiler 51

Unreachable Statements and Missing Returns

The aforementioned exception handling check for catch clauses implements a small
part of the more general requirements for unreachable statements analysis in the
Java specification [JLS7, §14.21]. The purpose of the specification is to disallow
many, but not all, kinds of unreachable code. In ExtendJ, most of the unreachable
statement analysis is done with an inherited attribute named reachable. As the name
implies, the attribute determines if the receiver node is reachable in its context (this
is necessarily an imprecise analysis).

The unreachable statement analysis is used in another kind of analysis: checking
that all paths through a non-voidmethod end with a return statement (or throw an ex-
ception). This analysis uses an attribute on statements named canCompleteNormally.
The equations for this attribute, for the most part, rely on the reachable attribute. For
example, here is the equation for canCompleteNormally on if-statements:

eq IfStmt.canCompleteNormally =

(reachable ∧ Else = nil)

∨ Then.canCompleteNormally

∨ (Else ̸= nil ∧ Else.canCompleteNormally)

This attribute equation is derived directly from the Java specification, which inten-
tionally treats if-statements with constant true conditions as if they can be false.27

Definite Assignment

Definite assignment ensures that all local variables are initialized before use [JLS7,
§16]. The central attributes for definite assignment analysis in ExtendJ are the param-
eterized attributes assignedAfter, assignedBefore, unassignedAfter, and unassigned-
Before. These attributes determine if the argument variable is definitely (un)assigned
before/after the receiver statement or expression.

The Java specification defines the meaning of definitely assigned and definitely
unassigned by many rules for all kinds of expressions and statements. For example,
one rule in the Java 7 specification states that a variable v is definitely assigned after
a variable declaration statement that contains no initializer if v is definitely assigned
before the declaration (paraphrased). This rule, combined with a few other rules, is
implemented in ExtendJ by the following attribute equation:

eq Declarator.assignedAfter(Variable v) =










Init ̸= nil, if v = this
{

assignedBefore(v), if Init = nil

Init.assignedAfter(v), if Init ̸= nil
, otherwise

In the first case, the Declarator declares a variable with the same name as v, and v is
only definitely assigned after the declaration if there is an initializer (Init ̸= nil).

27See the examples at the end of §14.21 in the Java 7 specification.

52 Introduction

The assignedBefore(v) case implements the rule described above. The remaining
case comes from another rule in the specification.

The equation above is one of the smaller definite assignment equations; some
are much larger, although they follow the Java specification closely. The definite
assignment attributes can circularly depend on themselves when loop statements are
involved. This is discussed briefly in the Java specification [JLS7, §16]. Interestingly,
the definite assignment attributes have remained mostly untouched since the Java 1.4
version of ExtendJ, with few additions for later Java versions.

Finally Handlers

Finally handlers are needed in the generated bytecode for all control-flow paths out
of a try-statement. Even though there is at most one finally block for each try-
statement, the statement may require multiple copies of the finally block to handle
if the exception is re-thrown, or if the try-block executed a return statement. To
illustrate, the following two pieces of code are equivalent:

try {

if (m()) {

return;

}

} catch(Exception e) {

print ("y");

throw e;

} finally {

doLast();

}

try {

if (m()) {

doLast();

return;

}

} catch(Exception e) {

print ("y");

doLast();

throw e;

}

doLast();

Notice that the body of the finally block (highlighted gray) is implicitly duplicated
to three places in the code on the right. The implicit finally blocks are reified with
a higher-order attribute named ntaFinallyBlock, which duplicates the code from the
finally block.

4.11 Representation of Polymorphic Types

Java has parametric polymorphism in the form of generic classes and methods with
type parameters. Type arguments can be specified at the use-site of a parametric type
or method. Alternatively, type arguments can be inferred in certain contexts.

In ExtendJ, each generic type is represented by a GenericTypeDecl. Because Java
is nominally typed, each instantiation of a generic type (a class or interface) needs
to be reified in the compiler. In ExtendJ, this reification is done by constructing a
type declaration node in the AST by using a higher-order attribute. This higher-order

4 The ExtendJ Java Compiler 53

attribute is a parameterized attribute where the parameter is the type argument list
for the specific parameterized type to be reified.

The higher-order attribute for reifying a parameterized type has the following
declaration:28

syn nta TypeDecl GenericTypeDecl.lookupParTypeDecl(typeArgs)

The declaration constructed by the attribute is a shallow copy of the generic class,
containing only the externally visible API in the form of member signatures. Member
signatures are needed for type checking any use of the class, but the specific param-
eterization of the class is not used in code generation and so the code in the methods
(and field initializers, instance initializers, etc.) can be discarded.

Previously, type variables were substituted for their corresponding type argument
when building a parameterized type in the higher-order attribute [EH07b]. However,
this can lead to problems. For generic members, this process prevents recursive type
substitutions. During the implementation for Paper IV, I refactored this so that the
original type variables are kept unmodified and substitution is instead handled by
adding new equations for the type lookup attributes on the parameterized types. This
solved the problem of recursive type substitutions in generic methods, and also seems
to have sped up parallel compilation (not specifically evaluated).

4.12 Type Inference and Generic Types

Type inference was added to the Java language in Java 5, together with generic
types and methods. Type inference can be used to compute the type parameters
for generic method invocations if they are omitted. For example, the static method
Collections.emptyList() is generic and we can call it with explicit type parame-
ters like this:

List<String > list = Collections.<String >emptyList ();

In this case it is also possible to omit the type parameter String and instead rely on
type inference to compute the right type:

List<String > list = Collections.emptyList ();

Type inference was further extended in Java 7, with the diamond expression, and
in Java 8 to make anonymous functions easier to use. In Java 8, we can write a
lambda expression (anonymous function) without specifying the types of the formal
parameters, e.g.

x -> 3*x

28The type of the parameter has been left out to make it fit in one line here. The nta keyword comes
from Non-Terminal Attribute, another name for higher-order attributes.

54 Introduction

Type inference can be implemented in several ways. For example, by using the
well-known unification algorithm [Pie02, p. 326; MS18, p. 19; Ses17, p. 102].
In ExtendJ, type inference works a bit differently: we gather a set of subtype and
supertype constraints from the context. The constraints are solved by finding the
greatest lower bound or least upper bound of constraint types in the type hierarchy.
Constraints are solved one at a time without backtracking, and at the end there
is either a most general solution or no solution. With improved type inference,
introduced in Java 8 [JLS8, §18], the constraint systems become more complicated,
by introducing new circular dependencies in type inference that were not previously
possible. Additionally, type inference can occur simultaneously at different parts of
a single expression, whereas previously sub-expression types were inferred one at a
time and bottom-up.

4.13 Code Generation

The final pass in ExtendJ generates bytecode for the Java Virtual Machine (JVM) to
run. The generated bytecode is unoptimized. Like OpenJDK, ExtendJ relies on the
JVM to optimize the bytecode during runtime. The JVM usually does a good job of
runtime optimization, resulting in high performance.

The Java bytecode consists of instructions for a stack-based virtual machine.
Most of the bytecode generation is straightforward, except for one part: since Java 7,
the JVM requires so-called stack map frames in the bytecode. Stack map frames
describe the possible types of stack and local variables at each point where control
flow merges in the bytecode instructions. The stack map frames are used for type
checking the bytecode during runtime. Previous to Java 7, the JVM automatically
inferred all stack map frames. However, inferring these stack map frames has a cost.
To avoid that cost the Java language designers decided that stack map frames should
instead be computed by the compiler and output alongside the Java bytecode. When
the stack map frames are included with bytecode, the JVM just has to perform the
computationally simpler task of type checking the bytecode against the provided stack
map frames.

During my work for this thesis I implemented the stack map frames generation in
ExtendJ, so that it can output Java 7+ bytecode.

5 Contributions

In this section I describe my key contributions in this dissertation. To give a quick
overview, the main contributions are:

• An extension of the ExtendJ compiler to Java 7 (Paper I), with two new methods
for extending a programming language with higher-order attributes.

The resulting extended compiler remains comparatively fast and the imple-
mentation was much smaller than the reference compiler for Java.

• The multiplicities Java language extension implemented as an ExtendJ exten-
sion (Paper II).

5 Contributions 55

The main contribution in this paper is the case study of a new language mech-
anism, multiplicities. The implementation is an extension of the Java type
system with new code generation for handling multiplicities.

• An automated algorithm for incremental regression testing based on program
extractions (Paper III). The implementation is an efficient dependency graph
extraction method based on the ExtendJ compiler.

• Algorithms supporting concurrent RAGs. In particular, a new algorithm for
concurrent fixpoint attribute evaluation (Paper IV).

These algorithms enable automatic parallelization of static analyses built with
RAGs. By parallelizing the ExtendJ compiler, Java error checking was sped up
by about a factor of two. Additionally, our evaluation showed reduced attribute
response time in an incremental evaluation benchmark, from seconds to below
a millisecond.

• Correctness proofs for the concurrent RAG algorithms (Paper IV).

Correctness is of paramount importance in concurrent settings, not least due
to the well-known difficulties of debugging and reproducibly testing flaws in
concurrent code. The correctness proofs are thus an essential contribution for
the new concurrent RAG algorithms. The implementation of the concurrent
RAG algorithms in JastAdd could of course still contain errors, irrespective
of the correctness of the algorithms themselves. However, the implementation
follows the algorithms closely so that the implementation is easier to manually
verify.

• Simplification of circular attributes in RAGs (Paper IV).

This is an important relaxation of the requirements for specifying circular
attributes which I discovered while working on the concurrent attribute algo-
rithms.

• ExtendJ improvements.

One of the most important improvements I have made to the ExtendJ compiler
was to remove side effects in the frontend of ExtendJ, to enable parallel error
checking for the evaluation of Paper IV. I have implemented several additional
redesigns in the compiler in order to improve correctness and/or to simplify
the design and make the compiler more usable by others.

The following sections describe each contribution in more detail.

56 Introduction

5.1 Extension of ExtendJ to Java 7

In Paper I, we describe the design of the Java 7 extension to ExtendJ. The Java 7
extension includes the following main additions to the compiler: try-with-resources,
diamond access (type inference), and strings in switch.

Try-With Resources

Try-With Resources (TWR) was the largest language change in Java 7, adding resource
declarations in try-statements. Each resource declaration contains an initializing
expression which opens a resource. At the end of the TWR statement, the resource
is closed. For example:

try (OutputStream fout = new FileOutputStream ("x");

PrintStream out = new PrintStream(fout)) {

out.println (" Solving old problems in new ways .");

...

}

This TWR statement uses two resources: a FileInputStream and a PrintStream.
When control leaves the try-statement, both resources are automatically closed.

The main challenge in implementing TWR statements in ExtendJ was code gen-
eration. There are several special cases that must be handled depending on how
many resources are used inside the resource declaration part of the statement. Each
resource declaration should be initialized in order, and each initialization may be
interrupted by an exception. If an initialization is interrupted, then all previously
initialized resources must be closed.

The implementation described in Paper I elegantly solves code generation for
TWR resources: we use higher-order attributes to unfold a TWR statement into
simpler statements that each have only a single resource declaration. This greatly
reduces the number of different cases that need to be handled with regard to handling
exceptions during resource initialization. The unfolding of TWR statements into
simpler statements is a kind of desugaring, but instead of desugaring to elementary
language features we desugar to a new language feature which is just a simplified
form of the full construct.

Diamond Access

The Diamond Access is a new way of using type inference to create instances of a
generic class. For example, the following statement

List<String > list = new ArrayList <String >();

can be replaced by

List<String > list = new ArrayList <>();

The ExtendJ implementation of diamond access reuses generic method type inference
which existed in the compiler for Java 5. Using higher-order attributes, a synthetic
method invocation is created which corresponds to the class instance expression.

5 Contributions 57

Then, for each accessible constructor for the current class, a synthetic method is
created with type parameters matching the class type parameters. The synthetic
method call is then used to infer type arguments for the method call, which gives
directly the type arguments for the diamond access.

Strings in Switch

The implementation of strings in switch was straightforward. I extended the bytecode
generation for the case when the switch argument is a string by using the refine

mechanism described in Section 3.3. Type analysis for strings in switch was similarly
extended by refining the attribute SwitchStmt.type.

Evaluation

The empirical evaluation of the Java 7 extension showed that the Java 7 version of
ExtendJ was only 52% the size of the corresponding OpenJDK compiler, the reference
Java compiler. ExtendJ has always been slower than OpenJDK, but the compile time
remained reasonably close in comparison.

The compile time evaluation was done by measuring total compilation time across
seven Java applications of varying sizes, between 5 and 87 kilo lines of code. Compile
time was measured both for cold-start and steady-state compilation. In the cold-start
case, ExtendJ compile time was within a factor 1.6 from that of OpenJDK. In the
steady-state case, ExtendJ was at most 3.3 times slower than OpenJDK.

5.2 Multiplicities Implementation

Paper II is a case study in programming with Multiplicities as a Java language
extension. The concept of multiplicities was invented by Friedrich Steimann, the
main author. I implemented these concepts as an extension to the ExtendJ compiler.

Multiplicities allow the programmer to easily change how many objects a refer-
ence can relate to, either to-one, or to-many. For example, a regular Java program
may contain the following code fragment to keep track of a single account:

Account acc = new Account(name);

acc.export ();

With multiplicities, the programmer may easily track multiple account objects by
changing adding a new modifier to change the multiplicity type of acc to any:

any Account acc = new Account(name);

acc += otherAccount ();

acc.export ();

This code will export all accounts added to the acc reference, which may be many.
The most novel part of the multiplicities implementation is the extension of the

type system in ExtendJ to support the new multiplicity types. I developed the new
typing rules in collaboration with Steimann, based on the original multiplicities
concept.

58 Introduction

The implementation of multiplicities as an ExtendJ extension is straightforward.
The type system was extended by adding new kinds of types for the new multiplicities,
with new equations extending the double dispatch framework discussed in Section 4.8.
Code generation was extended by adding new specialized bytecode generation for
some statements and expressions involving non-bare multiplicities.

We evaluated the performance of code compiled with the multiplicities extension,
to see if code that used multiplicities was slower than the corresponding code without
multiplicities. To this end, we modified a version of JUnit, a popular Java unit
testing framework, to use multiplicities in many places. The modified version of
JUnit was compiled and compared against the unmodified version of JUnit. The
performance evaluation showed a very small run-time overhead for the multiplicities-
modified version of JUnit compared to the unmodified version. We also evaluated the
correctness of the extended version of ExtendJ by verifying that the modified version
of JUnit passed all of its own unit tests.

5.3 Safe Regression Test Selection

Regression testing is the practice of running tests after each change to an application in
order to ensure that previously implemented, and tested, features do not break (which
would cause a regression). Paper III presents a new algorithm for safe regression
test selection. The goal of safe regression test selection is to reduce the number of
tests that are run after each modification to the code while still guaranteeing that no
regression will go undetected.

In Paper III we also describe the implementation of our algorithm in a tool based
on ExtendJ. The tool is a small and efficient extension for extracting a program
dependency graph from Java programs. Our test selection algorithm is then run on
the dependency graph to quickly select tests to run.

We evaluated the implementation by using real-world Java programs. The commit
history of the programs was replayed and the test selection tool was run for each
change. We ran all tests selected by our tool and verified that the tool selected all
tests that changed result from the previous commit.

The implementation of the test selection tool itself was quite straightforward, but
it showed that it was very easy to develop a tool using class dependency graphs based
on ExtendJ.

5.4 Concurrent Evaluation of Reference Attribute Grammars

Paper IV describes new algorithms that I developed for concurrent evaluation of
RAGs, with correctness proofs (in the extended version of the paper), and implemen-
tation in JastAdd. Importantly, the algorithms support circular (fixpoint) attributes,
which are needed for many types of static analyses like dataflow analyses and type
inference.

The following diagram illustrates two threads, T1 and T2, concurrently evaluating
mutually dependent attributes:

5 Contributions 59

v

x

y zu

T1

T2

Arrows illustrate the evaluation control flow, which follows the attribute dependency
graph. Thread T1 starts evaluating attribute u, and T2 starts at attribute v. The
start attributes are independent, but the other attributes are in a dependency cycle.
A locking implementation that tries to lock individual attributes would cause a
deadlock in the current scenario, getting stuck forever due to circular hold-and-wait.
The algorithms in Paper IV are lock-free, which ensures that they never deadlock.
Furthermore, different evaluation threads can cooperate by sharing partial results.
The algorithms enable threads to share results even in fixpoint iterations like the one
that arises in the illustrated scenario.

The evaluation in Paper IV is based on ExtendJ. I measured attribute evaluation
latency for short-running attributes while long-running attributes were computed
in parallel. Latency was reduced from seconds to less than a millisecond. I also
measured total error checking time for Java programs and found an approximate
twofold speedup with parallel error checking.

The parallelized version of ExtendJ is publicly available on the main ExtendJ
source code repository.29 Parallelization is done by evenly distributing source files
between threads. Each thread then performs error checking for its allocated source
file, in parallel with other threads. This division of work between threads was
implemented by hand.

An alternative way of dividing work between threads in JastAdd compilers is to
use automatic parallelization through concurrent collection attributes. Concurrent
collection attributes were only briefly mentioned in Paper IV, so I will describe them
in more detail here.

JastAdd collection attributes work in two phases [MEH07]. First, in the survey
phase, the attribute evaluator traverses the AST and looks for contribution statements
matching the collection attribute. Second, the collection phase collects values from
contribution statements. An ordinary collection attribute can be annotated with two
annotations to activate parallel evaluation of the attribute: the @Parallel annotation
makes the value collection phase run in parallel, and the @ParallelSurvey annotation
makes the survey phase parallelized. The workload is split among worker threads by
using fixed-size thread pools.30

29https://bitbucket.org/extendj/extendj

30The number of worker threads used is controlled by the numThreads option to JastAdd. The number
of worker threads can also be changed at runtime via the ASTState.numThreads field.

https://bitbucket.org/extendj/extendj

60 Introduction

Parallel Performance

Improved run-time performance is possible, but not guaranteed, when parallelizing
JastAdd code. The performance results in ExtendJ are especially pleasing given that
the Java language has many interdependencies between classes. These dependencies
mean that when evaluating an attribute in one source file, it is likely to have several
dependencies on attributes in other source files. This leads to redundant computations
in parallel attribute evaluation when two or more threads evaluate the same attribute
at the same time: at least one thread is then wasting time computing an attribute
when it would ideally be left to a single thread.

While it would be more ideal to split attribute evaluation evenly among threads,
so that each thread separately works only on attributes from its own source file, this
is not practically possible as Java code tends to be highly interconnected.

The degree of parallelization that can be achieved probably varies largely based
on language, but we have not specifically evaluated other languages to compare how
parallel performance differs with JastAdd for different languages.

5.5 Simplification of Circular Attributes

Previous work on circular attributes defined them with the assumption that all at-
tributes in a dependency cycle are treated equally, with fixpoint iteration [Far86;
Jon90]. This led to the requirement for circular attributes in JastAdd to be annotated
with the circular keyword, and that all attributes which could be in a dependency
cycle must be annotated as such [MH07, p. 27]. While working on the concurrent
circular attribute algorithm, I realized that this condition is needlessly strict. It is
possible to loosen the requirement to the following: at least one of the attributes
in each possible dependency cycle is annotated as circular (and thus evaluated with
fixpoint iteration).31

This relaxed requirement for circular attributes makes the task of writing attribute
grammars much simpler. Static analysis extensions and language extensions could
often introduce circularity by linking previously non-circular attributes. With the
relaxed circular evaluation, such extensions only need to annotate their circularity-
causing attributes for fixpoint iteration. Additionally, this saves some extra memory
overhead needed in the fixpoint iteration mechanism for circular attributes.

5.6 ExtendJ Improvements

This section describes some of the larger improvements to ExtendJ that I implemented
during my thesis work. These improvements are not described in the included papers.
The purpose of the changes was either to fix correctness problems, or to simplify the
compiler design.

The most important change to ExtendJ was to remove all extant side effects from
the frontend so that error checking could be parallelized for the evaluation in Paper IV.
The side effects that I removed were of three different kinds:

31The relaxed requirements for circular attributes do require that memoization is delayed for attributes
that are part of a circular attribute evaluation, but which are not annotated as circular.

5 Contributions 61

Imperative tree transformations Modifying the AST is not safe after any attribute
has been evaluated. This is because attribute values are derived from the AST,
and any change in the AST can affect previously memoized attribute values.
Modifications to the AST are safe if they are done before any attribute is
evaluated, for example during parsing. In ExtendJ, some transformations were
done after parsing was finished, between attribute evaluations, and this caused
errors in concurrent compilation. These side effects were replaced by using
higher-order attributes to safely compute the transformation.

Non-pure attributes As previously discussed, attributes must be observationally
pure. JastAdd does not yet have a mechanism for checking that attributes
are pure, however, and side effects can be introduced easily by accident. In
ExtendJ, there were several attributes which had unintentional side effects.

A common example of an unintentional side effects in ExtendJ were attributes
that modified a mutable data structure returned by another attribute. Mutable
data structures should be used carefully: it is not safe to modify a data structure
returned by some attribute because that same data structure may have been
memoized. Modifying the data structure is then equivalent to modifying the
memoized value of an attribute, which is not safe.

Non-fresh higher-order attributes Higher-order attributes must build fresh sub-
trees. However, there is currently no check for this requirement and it is sur-
prisingly easy to accidentally break the requirement. Non-fresh higher-order
attributes were used in a few places in ExtendJ, unintentionally.

The following sub-sections describe some of the other redesigns that I imple-
mented in ExtendJ.

Desugaring Multiple Declarations

Java allows variable (and field) declarations that declare multiple names at once
(individual name declarations are referred to as declarators). For example, this
statement:

int a, b[2] = { 1, 2 };

is equivalent to

int a;

int b[2] = { 1, 2 };

Previously, ExtendJ transformed programs using the former pattern into the equiv-
alent desugared form with single-variable declarations. This was done by using a
deprecated JastAdd feature called list rewrite. List rewrites were problematic for a
few reasons. There were doubts about the correctness of the list rewrite implementa-
tion in JastAdd, and they caused large runtime overhead when accessing list items in
certain ways.

The reason a multi-declaration transformation was used in ExtendJ is because the
different variables in a multi-declaration can have different types. To simplify the

62 Introduction

analysis of multi-declarations in the compiler, we need an easy way to access the type
of a single variable inside a multi-declaration. Without transforming the AST, this
can be accomplished in a clean way by using higher-order attributes (HOAs). Here
is the relevant part of the abstract grammar for variable declarations:

VarDeclStmt : Stmt ::= Modifiers TypeAccess:Access

Declarator:VariableDeclarator ∗

abstract Declarator : ASTNode ::= ⟨ID⟩ Dims ∗ [Init:Expr]

VariableDeclarator : Declarator

FieldDeclarator : Declarator

The two subclasses of Declarator are used to distinguish local variables from fields.
The context of the declaration also makes the difference clear, but having a subclass
for each makes it slightly easier to specialize some attributes for each case.

I added the following HOA to compute the type of each variable declarator:

syn nta Access Declarator.TypeAccess =

treeCopy(declarationType).addArrayDims(Dims)

The declarationType attribute is a helper attribute which gives a reference to the en-
closing variable declaration type (TypeAccess:Access in VarDeclStmt). The treeCopy
function is used to clone the original type access, which is necessary in order to build
a fresh tree for the HOA. The addArrayDims attribute is a helper attribute to include
any necessary array dimensions.

An advantage of using HOAs to compute single variable types instead of using
a rewrite to transform the AST is that we retain the source AST, making it easier to
pretty-print the original code or to report errors with precise source locations.

Reifying Implicit Constructs

Java compilers use many implicit constructs which the programmer never sees, but
which are necessary for generating correct Java bytecode. Examples of implicit
constructs include, among others,

Enum switch maps Implicit classes are generated with a field $SwitchMap$ that is
used in bytecode for switch statements with enum type arguments.

Accessor methods Implicit accessor methods are needed for all cases where a class
accesses a non-public field of an inner class. These are needed to bridge a gap
between the Java source language and the Java bytecode language which does
not have inner classes.

Bridge methods When generics are erased in bytecode generation, it may lead to
overriding methods that no longer override the method of a superclass. A bridge
method is implicitly generated to recover the intended overriding behaviour.

5 Contributions 63

Enclosing and super references Constructors are automatically augmented with an
implicit parameter for the superclass reference. Inner classes receive an addi-
tional implicit parameter for the enclosing class reference.

Previously, ExtendJ reified the above implicit constructs by using imperative
AST modifications during a transformation pass. The transformation pass was not
cleanly separated from static analyses (due in part to uses of attributes in the trans-
formations), which caused problems when evaluating attributes which depended on
transformed AST structures. I replaced these imperative transformations by higher-
order attributes. All implicit constructs in ExtendJ are now reified by higher-order
attributes.

Type Variable Substitution

Generic classes and methods are parameterized by one or more type variables. Type
variables are replaced by the corresponding type arguments in each parameterization
of a generic class or method. For instance, consider the following generic class:

public class Container <T> {

private T value;

public void set(T v) {

value = v;

}

public T get() {

return value;

}

}

This class has one type parameter: the type variable T. We can instantiate the class
by writing, e.g., Container<String>, which means the type of Container where
all occurrences of T are substituted by String. Here, Container<String> is called
a parameterization of Container. In ExtendJ, each parameterization of a generic
class must be reified as a type declaration, that is, an AST subtree that represents the
full type with all its public member declarations. For example, ExtendJ represents
the type of Container<String> by the following structure:

public class Container <String > {

public void set(String v);

public String get ();

}

Notice that the private field and the method bodies were removed. Only the public
interface of Container<String> is needed to reify the parameterization. As de-
scribed in Section 4.11, the parameterization is implicitly created by a higher-order
attribute. However, we have not yet discussed how the type variable is replaced by
String. The replacement process is called type variable substitution.

Previously, ExtendJ performed type variable substitution by replacing all occur-
rences of T by String when creating the parameterization Container<String>.

64 Introduction

ExtendJ created an AST matching the reified parameterization code shown above.
For various reasons, this process did not work perfectly: it led to some low-level
problems in type inference with generic methods, and it made parallel evaluation of
parameterized types run slowly.

I redesigned type variable substitution by delaying the substitution process until
type lookup. Type lookup is the latest possible time we can substitute type variables,
and it turns out to work very well for enabling correct type inference in some cases that
previously failed because of the too-eager type variable substitution. Additionally,
this change improved parallel evaluation performance because it made the higher-
order attribute for parameterized types much faster to evaluate and led to fewer threads
trying to compute the same attribute instance at the same time.

The central attribute equation which performs type variable substitution in the
redesigned implementation looks like this:

eq ParTypeDecl.BodyDecl.lookupType(String name) =

let t := Parameterization.substitute(name) in
{

t, if t ̸= nil

localLookupType(name), otherwise

The equation above is slightly abbreviated. The localLookupType attribute is used
for searching the local scope of the type declaration.

5.7 Related Work

AGs have been an active research topic in the programming language community for
many years. Classical AGs, with only synthesized and inherited attributes, were never
really used for implementing real-world programming languages.32 On the other
hand, various extended AGs have been used to develop practical implementations of
real-world programming languages, for example: Pascal [KHZ82], Ada [Uhl+82],
VHDL [FS89], and Oberon2 [Boy96]. More recently, RAGs, another AG extension,
have been successful for implementing several languages like Java [EH07b; Wyk+07],
Modelica [Åke+10], PROMELA [MW11], Grafchart [TÅJ12], Bloqqi [FH16], and
C [Kam+17].

ExtendJ is a Java compiler built with the JastAdd metacompiler [HM03a], and as
such has quite different compiler architecture compared to most other conventional
compilers, which use tree visitors for most analyses. The following table gives a quick
overview of related open source Java compilers and source code analysis frameworks:

32That is, languages other than the kind of “toy” languages that are often used in teaching and research
articles to demonstrate a handful of programming language concepts.

5 Contributions 65

Name B
yt

ec
od

e

A
na

ly
si

s

Tr
an

sf
or

m
at

io
n

Ja
va

Ve
rs

io
n

A
ct

iv
e

D
ev

el
.

Im
pl

em
en

ta
tio

n

ableJ 1.4 RAG (Silver)
Eclipse JDT 11 Java
Error Prone 11 OpenJDK
ExtendJ 8 RAG (JastAdd)
OpenJDK 11 Java
JavaParser 11 Java
Polyglot 7 Java
Spoon 11 Eclipse JDT
SugarJ 5 SDF/Stratego

Bytecode: bytecode generation is implemented.
Analysis: full static analysis for Java (following the specification).
Transformation: allows modifying the program AST to affect other analyses.
Java Version: latest supported Java version.
Active Devel.: public implementation with functional changes in the past two years.

OpenJDK is the reference implementation of Java, including a compiler, standard
library, and virtual machine. The OpenJDK compiler, javac, can either be extended
by forking and editing the compiler code, or by developing plugins for the com-
piler (including annotation processors). Plugins are used for compile-time program
transformation. It is possible to do many useful things with plugins like annota-
tion processors, but in order to extend the language with new syntax it is necessary
to modify javac itself. An advantage of extending javac is that it has near-perfect
conformance to the Java specification.

Error Prone uses the Java reflection API for javac, adding static analysis for
common bug patterns in Java code. Error Prone supports the addition of custom
checks via plugins [Aft+12]. AST transformation with analysis is not supported,
instead transformed code is printed as code patches.

The Eclipse Java Development Tools (JDT) contain an incremental Java compiler
and a collection of static analysis tools used in the Eclipse editor [JDT]. Eclipse JDT
uses a conventional visitor-based compiler architecture.

Spoon is a static analysis framework for Java that uses the Eclipse JDT internally
[Paw+16].33 Spoon provides a transformation framework which can be used to easily
construct type-safe syntax transformations.

Polyglot is an extensible compiler framework for Java based on an extensible
visitor pattern [NCM03a]. Polyglot provides similar functionality as ExtendJ, and
a detailed comparison of the two was given by [AET08a]. In Polyglot, the visitor
pattern results in large amounts of boilerplate code and monolithic data structures for
some problems which are solved more succinctly in ExtendJ.

33The connection to Eclipse JDT is neither mentioned in the documentation or in the paper about Spoon,
but can be seen its implementation.

66 Introduction

SugarJ is a library-based syntax language extension framework for Java [Erd+11].
SugarJ is implemented in Java, SDF [Hee+89], and Stratego [Vis01]. SugarJ enables
language extensions to be imported as libraries in user code [Erd+11].

JavaParser is a Java library for parsing and building ASTs of Java programs, with
name analysis provided through an additional library [JavaP].

ableJ is an extensible compiler supporting Java 1.4 and built with RAGs in the
Silver metacompiler [Wyk+07]. There seems to be no active work on the project as
the latest changes in the past few years appear to be non-functional.

6 Conclusions

This thesis presents my contributions to declarative specification of static program
analysis with RAGs. My contributions include new language extensions, static
analyses, and tools for the Java language and based on the Java compiler ExtendJ. In
developing these extensions, I found new design principles for developing declarative
language and analysis extensions with RAGs. For example, I developed a partial
desugaring technique with higher-order attributes which I used in the implementation
of try-with-resources for Java 7.

My more fundamental contributions to RAGs themselves include concurrent at-
tribute evaluation algorithms with support for circular (fixpoint) attributes. The
concurrent evaluation algorithms are presented in Paper IV, with correctness proofs
included in the extended technical report version of the paper. Another important
contribution to RAGs is a relaxation of the requirements for circular attribute specifi-
cations to be well-defined. Previous work on circular attributes required all attributes
to be evaluated with fixpoint iteration. In Paper IV, I show how this requirement can
be relaxed with a modification of the evaluation algorithm.

Static program analysis with RAGs has many benefits: declarative specification
of analyses improves their composability and readability, enabling code reuse and
extensibility for evolving programming languages. Some of the benefits of using
RAGs, like structure-shy programming, are demonstrated in Section 3. In Section 3.7,
I present a pattern for specifying generic tree traversals in a RAG.

With static analyses specified in RAGs, there is an opportunity for optimizing
the static analysis to improve run-time performance, by memoizing attributes and
parallelizing evaluation. Compilers specified with RAGs can be automatically par-
allelized using parallel collection attributes which I implemented for the JastAdd
metacompiler (see Section 5.4, and briefly mentioned in Paper IV).

The ExtendJ compiler is a main focus in this thesis. ExtendJ was used for devel-
oping implementations for the included papers, as well as empirically evaluating the
results of the included papers. A contribution in this dissertation is the development
of a fully declarative and side effect free version of ExtendJ which was possible
to parallelize. This work benefits other programming language research which use
ExtendJ to develop and evaluate language extensions for Java.

6 Conclusions 67

References

[Aft+12] Edward Aftandilian et al. “Building Useful Program Analysis Tools
Using an Extensible Java Compiler”. In: Source Code Analysis and
Manipulation. IEEE Computer Society, 2012, pp. 14–23.

[Åke+10] Johan Åkesson et al. “Modeling and optimization with Optimica and
JModelica.org - Languages and tools for solving large-scale dynamic
optimization problems”. In: Computers & Chemical Engineering
34.11 (2010), pp. 1737–1749.

[AET08a] Pavel Avgustinov, Torbjörn Ekman, and Julian Tibble. “Modularity
first: a case for mixing AOP and attribute grammars”. In: Proceedings
of the 7th International Conference on Aspect-Oriented Software
Development (AOSD 2008). ACM, 2008, pp. 25–35.

[AH17] Mohammad Reza Azadmanesh and Matthias Hauswirth.
“Concept-Driven Generation of Intuitive Explanations of Program
Execution for a Visual Tutor”. In: VISSOFT. IEEE, 2017, pp. 64–73.

[Bac+60] John W. Backus et al. “Report on the algorithmic language ALGOL
60”. In: Commun. ACM 3.5 (1960), pp. 299–314.

[BS96] David F. Bacon and Peter F. Sweeney. “Fast Static Analysis of C++
Virtual Function Calls”. In: Proceedings of the 1996 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA ’96), San Jose, California, USA, October
6-10, 1996. ACM, 1996, pp. 324–341.

[BBM96] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. “A
Validation of Object-Oriented Design Metrics as Quality Indicators”.
In: IEEE Trans. Software Eng. 22.10 (1996), pp. 751–761.

[Bin07] David Binkley. “Source Code Analysis: A Road Map”. In: 2007
Future of Software Engineering. FOSE ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 104–119.

[Bla+06] S. M. Blackburn et al. “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis”. In: OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on
Object-Oriented Programing, Systems, Languages, and Applications.
Portland, OR, USA: ACM Press, Oct. 2006, pp. 169–190.

[Boy96] John T Boyland. Descriptional composition of compiler components.
Tech. rep. University of California at Berkley, Department of
Electrical Engineering and Computer Sciences, 1996.

[BS17] Scott J. H. Buckley and Anthony M. Sloane. “A Formalisation of
Parameterised Reference Attribute Grammars”. In: Proceedings of the
10th ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2017. Vancouver, BC, Canada: ACM, 2017,
pp. 139–150.

68 Introduction

[Bür15] Christoff Bürger. “Reference attribute grammar controlled graph
rewriting: motivation and overview”. In: Proceedings of the 2015
ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2015. ACM, 2015, pp. 89–100.

[Cal+15] Cristiano Calcagno et al. “Moving Fast with Software Verification”.
In: NFM. Vol. 9058. Lecture Notes in Computer Science. Springer,
2015, pp. 3–11.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. “A Metrics Suite for
Object Oriented Design”. In: IEEE Trans. Software Eng. 20.6 (1994),
pp. 476–493.

[CV11] Alcino Cunha and Joost Visser. “Transformation of structure-shy
programs with application to XPath queries and strategic functions”.
In: Sci. Comput. Program. 76.6 (2011), pp. 516–539.

[CVE] Common Vulnerabilities and Exposures. Nov. 2018. url:
http://cve.mitre.org/about/.

[DK18] Jan C. Dageförde and Herbert Kuchen. “A constraint-logic
object-oriented language”. In: Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, SAC 2018, Pau, France, April
09-13, 2018. ACM, 2018, pp. 1185–1194.

[DC90] G. D. P. Dueck and Gordon V. Cormack. “Modular Attribute
Grammars”. In: Comput. J. 33.2 (1990), pp. 164–172.

[DMG07] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous
integration: improving software quality and reducing risk. Pearson
Education, 2007.

[JDT] Eclipse Java development tools (JDT). Dec. 2018. url:
https://projects.eclipse.org/projects/eclipse.jdt.

[EH04] Torbjörn Ekman and Görel Hedin. “Rewritable Reference Attributed
Grammars”. In: ECOOP 2004 - Object-Oriented Programming, 18th
European Conference, Oslo, Norway, June 14-18, 2004, Proceedings.
Vol. 3086. Lecture Notes in Computer Science. Springer, 2004,
pp. 144–169.

[EH07a] Torbjörn Ekman and Görel Hedin. “Pluggable checking and
inferencing of nonnull types for Java”. In: Journal of Object
Technology 6.9 (2007), pp. 455–475.

[EH07b] Torbjörn Ekman and Görel Hedin. “The jastadd extensible java
compiler”. In: Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada. ACM, 2007, pp. 1–18.

[EH07c] Torbjörn Ekman and Görel Hedin. “The JastAdd system - modular
extensible compiler construction”. In: Sci. Comput. Program. 69.1-3
(2007), pp. 14–26.

http://cve.mitre.org/about/
https://projects.eclipse.org/projects/eclipse.jdt

6 Conclusions 69

[Erd+11] Sebastian Erdweg et al. “SugarJ: library-based syntactic language
extensibility”. In: Proceedings of the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011, Portland,
OR, USA, October 22 - 27, 2011. ACM, 2011, pp. 391–406.

[ExJorg] ExtendJ Website. Feb. 2018. url: https://extendj.org.

[Far86] Rodney Farrow. “Automatic generation of fixed-point-finding
evaluators for circular, but well-defined, attribute grammars”. In:
Proceedings of the 1986 SIGPLAN Symposium on Compiler
Construction. Palo Alto, CA, USA: ACM, 1986, pp. 85–98.

[FMY92] Rodney Farrow, Thomas J. Marlowe, and Daniel M. Yellin.
“Composable Attribute Grammars: Support for Modularity in
Translator Design and Implementation”. In: POPL. ACM Press, 1992,
pp. 223–234.

[FS89] Rodney Farrow and Alec G. Stanculescu. “A VHDL Compiler Based
on Attribute Grammar Methodology”. In: Proceedings of the ACM
SIGPLAN’89 Conference on Programming Language Design and
Implementation (PLDI), Portland, Oregon, USA, June 21-23, 1989.
ACM, 1989, pp. 120–130.

[FCH15] Niklas Fors, Gustav Cedersjö, and Görel Hedin. “JavaRAG: a Java
library for reference attribute grammars”. In: MODULARITY. ACM,
2015, pp. 55–67.

[FH16] Niklas Fors and Görel Hedin. “Bloqqi: modular feature-based block
diagram programming”. In: 2016 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2016, Amsterdam, The Netherlands, November
2-4, 2016. ACM, 2016, pp. 57–73.

[GBE07a] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically
rigorous java performance evaluation”. In: Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA
2007, October 21-25, 2007, Montreal, Quebec, Canada. ACM, 2007,
pp. 57–76.

[HO93] William H. Harrison and Harold Ossher. “Subject-Oriented
Programming (A Critique of Pure Objects)”. In: Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), Eighth Annual Conference, Washington, DC, USA,
September 26 - October 1, 1993, Proceedings. ACM, 1993,
pp. 411–428.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica
(Slovenia) 24.3 (2000), pp. 301–317.

https://extendj.org

70 Introduction

[Hed11] Görel Hedin. “An Introductory Tutorial on JastAdd Attribute
Grammars”. In: Generative and Transformational Techniques in
Software Engineering III: International Summer School, GTTSE
2009. Revised Papers. Vol. 6491. Lecture Notes in Computer Science.
Springer, 2011, pp. 166–200.

[HM03a] Görel Hedin and Eva Magnusson. “JastAdd–an aspect-oriented
compiler construction system”. In: Sci. Comput. Program. 47.1
(2003), pp. 37–58.

[Hee+89] Jan Heering et al. “The syntax definition formalism SDF - reference
manual”. In: SIGPLAN Notices 24.11 (1989), pp. 43–75.

[Hog14] Erik Hogeman. “Extending JastAddJ to Java 8”. Master Thesis.
Report LU-CS-EX:2014-14. Sweden: Dept. of Computer Science,
Lund University, 2014.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their
relation to automata. Addison-Wesley series in computer science and
information processing. Addison-Wesley, 1969.

[JavaP] JavaParser - For processing Java code. Dec. 2018. url:
https://javaparser.org/.

[JLS7] James Gosling et al. The Java™ Language Specification, Java SE 7
Edition. Oracle America, Inc., Feb. 2013.

[JLS8] Tim Lindholm et al. The Java™ Language Specification, Java SE 8
Edition. Oracle America, Inc., Feb. 2015.

[Jon90] Larry G. Jones. “Efficient Evaluation of Circular Attribute
Grammars”. In: ACM Trans. Program. Lang. Syst. 12.3 (1990),
pp. 429–462.

[Jou84] Martin Jourdan. “An Optimal-time Recursive Evaluator for Attribute
Grammars”. In: International Symposium on Programming, 6th
Colloquium, Toulouse, France, April 17-19, 1984, Proceedings.
Ed. by Manfred Paul and Bernard Robinet. Vol. 167. Lecture Notes in
Computer Science. Springer, 1984, pp. 167–178.

[KA18] Tetsuo Kamina and Tomoyuki Aotani. “Harmonizing Signals and
Events with a Lightweight Extension to Java”. In: Programming
Journal 2.3 (2018), p. 5.

[Kam+17] Ted Kaminski et al. “Reliable and automatic composition of language
extensions to C: the ableC extensible language framework”. In:
Proceedings of the ACM on Programming Languages 1.OOPSLA
(2017), 98:1–98:29.

[KHZ82] Uwe Kastens, Brigitte Hutt, and Erich Zimmermann. GAG: A
Practical Compiler Generator. Vol. 141. Lecture Notes in Computer
Science. Springer, 1982.

[KW94] Uwe Kastens and William M. Waite. “Modularity and Reusability in
Attribute Grammars”. In: Acta Inf. 31.7 (1994), pp. 601–627.

https://javaparser.org/

6 Conclusions 71

[KV10] Lennart C.L. Kats and Eelco Visser. “The spoofax language
workbench”. In: Proceedings of the ACM international conference on
Object oriented programming systems languages and applications -
OOPSLA ’10. ACM Press, 2010.

[Knu68b] Donald E. Knuth. “Semantics of Context-Free Languages”. In:
Mathematical Systems Theory 2.2 (1968), pp. 127–145.

[KV15] Shriram Krishnamurthi and Jan Vitek. “The Real Software Crisis:
Repeatability As a Core Value”. In: Commun. ACM 58.3 (Feb. 2015),
pp. 34–36.

[Lan74] Bernard Lang. “Deterministic techniques for efficient
non-deterministic parsers”. In: Automata, Languages and
Programming. Springer, 1974, pp. 255–269.

[Lie96] Karl J. Lieberherr. Adaptive object-oriented software: The demeter
method with propagation patterns. Boston: PWS Publishing
Company, 1996.

[MEH07] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. “Extending
Attribute Grammars with Collection Attributes–Evaluation and
Applications”. In: Seventh IEEE International Workshop on Source
Code Analysis and Manipulation (Source Code Analysis and
Manipulation 2007), September 30 - October 1, 2007, Paris, France.
IEEE Computer Society, 2007, pp. 69–80.

[MH07] Eva Magnusson and Görel Hedin. “Circular reference attributed
grammars - their evaluation and applications”. In: Sci. Comput.
Program. 68.1 (2007), pp. 21–37.

[MW11] Yogesh Mali and Eric Van Wyk. “Building Extensible Specifications
and Implementations of Promela with AbleP”. In: Model Checking
Software - 18th International SPIN Workshop, Snowbird, UT, USA,
July 14-15, 2011. Proceedings. Vol. 6823. Lecture Notes in Computer
Science. Springer, 2011, pp. 108–125.

[Mar02] Robert C Martin. Agile software development: principles, patterns,
and practices. Prentice Hall, 2002.

[MS18] Anders Møller and Michael I Schwartzbach. Static program analysis.
http://users-cs.au.dk/amoeller/spa/. 2018.

[NR15] Krishna Narasimhan and Christoph Reichenbach. “Copy and Paste
Redeemed”. In: 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, Lincoln, NE, USA,
November 9-13, 2015. IEEE Computer Society, 2015, pp. 630–640.

[Nau05] David A. Naumann. “Observational Purity and Encapsulation”. In:
Fundamental Approaches to Software Engineering, 8th International
Conference, FASE 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings. Vol. 3442. Lecture
Notes in Computer Science. Springer, 2005, pp. 190–204.

http://users-cs.au.dk/amoeller/spa/

72 Introduction

[NCM03a] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
“Polyglot: An Extensible Compiler Framework for Java”. In:
Compiler Construction, 12th International Conference, CC 2003,
Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings. Vol. 2622. Lecture Notes in Computer Science.
Springer, 2003, pp. 138–152.

[Par72] David Lorge Parnas. “On the Criteria To Be Used in Decomposing
Systems into Modules”. In: Commun. ACM 15.12 (1972),
pp. 1053–1058.

[Paw+16] Renaud Pawlak et al. “SPOON: A library for implementing analyses
and transformations of Java source code”. In: Software: Practice and
Experience 46.9 (2016), pp. 1155–1179.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press,
2002.

[RCK09] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. “Comparison
and Evaluation of Code Clone Detection Techniques and Tools: A
Qualitative Approach”. In: Sci. Comput. Program. 74.7 (May 2009),
pp. 470–495.

[Ryu16] Sukyoung Ryu. “ThisType for Object-Oriented Languages: From
Theory to Practice”. In: ACM Trans. Program. Lang. Syst. 38.3
(2016), 8:1–8:66.

[Sad+18] Caitlin Sadowski et al. “Lessons from Building Static Analysis Tools
at Google”. In: Commun. ACM 61.4 (Mar. 2018), pp. 58–66.

[SS99] Joao Saraiva and Doaitse Swierstra. “Generic attribute grammars”.
In: 2nd Workshop on Attribute Grammars and their Applications.
Amsterdam, The Netherlands: INRIA Rocquencourt, 1999,
pp. 185–204.

[Ses17] Peter Sestoft. Programming Language Concepts, Second Edition.
Undergraduate Topics in Computer Science. Springer, 2017.

[Slo09] Anthony M. Sloane. “Lightweight Language Processing in Kiama”.
In: GTTSE. Vol. 6491. Lecture Notes in Computer Science. Springer,
2009, pp. 408–425.

[SH10] Emma Söderberg and Görel Hedin. “Automated Selective Caching for
Reference Attribute Grammars”. In: Software Language Engineering
- Third International Conference, SLE 2010. Vol. 6563. Lecture Notes
in Computer Science. Springer, 2010, pp. 2–21.

[SH15] Emma Söderberg and Görel Hedin. “Declarative rewriting through
circular nonterminal attributes”. In: Computer Languages, Systems &
Structures 44 (2015), pp. 3–23.

[Söd+13] Emma Söderberg et al. “Extensible intraprocedural flow analysis at
the abstract syntax tree level”. In: Science of Computer Programming
78.10 (2013), pp. 1809–1827.

6 Conclusions 73

[Ste06] Friedrich Steimann. “The paradoxical success of aspect-oriented
programming”. In: OOPSLA. ACM, 2006, pp. 481–497.

[SHU16] Friedrich Steimann, Jörg Hagemann, and Bastian Ulke. “Computing
repair alternatives for malformed programs using constraint attribute
grammars”. In: OOPSLA. ACM, 2016, pp. 711–730.

[Tem+10] Ewan Tempero et al. “Qualitas Corpus: A Curated Collection of Java
Code for Empirical Studies”. In: 2010 Asia Pacific Software
Engineering Conference (APSEC2010). Dec. 2010, pp. 336–345.

[BSD] The Modified BSD License. Regents of the University of California,
1999.

[TÅJ12] Alfred Theorin, Karl-Erik Årzén, and Charlotta Johnsson. “Rewriting
JGrafchart with Rewritable Reference Attribute Grammars”. In:
Industrial Track of Software Language Engineering (2012).

[Tur37] Alan M Turing. “On computable numbers, with an application to the
Entscheidungsproblem”. In: Proceedings of the London mathematical
society 2.1 (1937), pp. 230–265.

[Uhl+82] Jürgen Uhl et al. An Attribute Grammar for the Semantic Analysis of
Ada. Vol. 139. Lecture Notes in Computer Science. Springer, 1982.

[Vis01] Eelco Visser. “Stratego: A Language for Program Transformation
Based on Rewriting Strategies”. In: Rewriting Techniques and
Applications, 12th International Conference, RTA 2001, Utrecht, The
Netherlands, May 22-24, 2001, Proceedings. Vol. 2051. Lecture
Notes in Computer Science. Springer, 2001, pp. 357–362.

[VSK89a] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper.
“Higher-Order Attribute Grammars”. In: PLDI ’89. Portland, Oregon,
USA: ACM, 1989, pp. 131–145.

[Wad98] Philip Wadler. The Expression Problem. Posted on the Java
Genericity mailing list. 1998.

[Wyk+02] Eric Van Wyk et al. “Forwarding in Attribute Grammars for Modular
Language Design”. In: CC. Vol. 2304. Lecture Notes in Computer
Science. Springer, 2002, pp. 128–142.

[Wyk+07] Eric Van Wyk et al. “Attribute Grammar-Based Language Extensions
for Java”. In: ECOOP 2007 - Object-Oriented Programming, 21st
European Conference, Berlin, Germany, July 30 - August 3, 2007,
Proceedings. Vol. 4609. Lecture Notes in Computer Science.
Springer, 2007, pp. 575–599.

[Wyk+10a] Eric Van Wyk et al. “Silver: An extensible attribute grammar system”.
In: Sci. Comput. Program. 75.1-2 (2010), pp. 39–54.

[XPath] “W3C XML Path Language”. In: Encyclopedia of Social Network
Analysis and Mining. Springer, 2014, p. 2337.

74 Introduction

[ZC16] YungYu Zhuang and Shigeru Chiba. “Expanding Event Systems to
Support Signals by Enabling the Automation of Handler Bindings”.
In: Journal of Information Processing 24.4 (2016), pp. 620–634.

[Zob14] Justin Zobel. Writing for computer science. 3rd ed. Springer, 2014.

Included Papers

P
a

p
e
r

I

Extending the JastAdd

Extensible Java Compiler

to Java 7

Abstract

JastAddJ is an extensible Java compiler, implemented using reference attribute gram-
mars. It has been shown previously how the language constructs of Java 5, like
generics, could be modularly added to the original JastAddJ compiler that supported
Java 1.4.

In this paper we discuss our experiences from extending JastAddJ to support
Java 7. In particular, we discuss how the Try-With-Resources statement and the
Diamond operator could be implemented, and how efficient the resulting Java 7
compiler is regarding code size, compilation time, and memory usage.

1 Introduction

The Java language has gone through several updates, including versions 1.4, 5,
6, 7, and currently 8, each adding new constructs or standard class libraries to the
language. Each new language version requires compiler support. While a state-of-the
art compiler, like OpenJDK, implements such updates by modifying the source code
of the previous version of the compiler, it has been shown how reference attribute
grammars [Hed00] (RAGs) can be used to build extensible compilers, where new
language constructs can be added modularly, without changing the previous source

Jesper Öqvist and Görel Hedin. “Extending the JastAdd Extensible Java Compiler to Java 7”. In
Proceedings of the 10th International Conference on Principles and Practicies of Programming on the
Java Platform: Virtual Machines, Languages, and Tools (PPPJ’13), ACM, pp. 147–152. Stuttgart,
Germany, 2013.

78 Paper I: Extending the JastAdd Extensible Java Compiler to Java 7

modules. In particular, JastAddJ is an extensible compiler for Java, implemented
using JastAdd, a metacompilation system that supports RAGs [HM03b]. JastAddJ
originally supported Java 1.4, but was extended modularly to support all Java 5
features – enums, the enhanced for-statement, autoboxing, varargs, static imports,
generics with wildcards, and annotations [EH07b].

The ability to modularly add language constructs has many advantages. For
example, several versions of a language can be supported simultaneously without
duplicate code, and researchers can reuse a compiler with relative ease, to construct
new language extensions or tools. There are many examples of research languages
that have been implemented on top of JastAddJ, e.g., abc (the AspectBench Compiler)
[AET08b], JCop (a context-oriented programming extension to Java) [App+10], and
Fuji (an extensible compiler for feature-oriented programming in Java) [Ape+12].

In this paper, we describe how we have modularly extended JastAddJ to support
Java 7. We focus on the implementation of the two constructs we found the most
challenging to implement, Try With Resources (TWR), and the Diamond operator.
We were particularly aided by the use of higher-order attributes [VSK89b], i.e.,
computed abstract syntax tree values.

We evaluate the resulting compiler by investigating code size, compilation time,
and memory usage, both as compared to the Java 6 version of JastAddJ and to the
Java 7 version of OpenJDK.

The remainder of this paper is organized as follows. Section 2 gives background
information on the JastAddJ compiler. Sections 3 and 4 describe how the TWR and
Diamond constructs were implemented. Section 5 evaluates the implementation and
section 6 discusses related work. The paper is concluded in section 7.

2 The JastAddJ Compiler

The JastAddJ compiler, [EH07b] is a Java compiler developed to demonstrate exten-
sible compiler development using reference attribute grammars (RAGs) [Hed00].

2.1 Overall architecture

The compiler was initially developed for Java 1.4, and later extended to Java 5, 6,
and 7. An extension to Java 8 is ongoing work. The development has recently been
moved to bitbucket, at https://bitbucket.org/jastadd/jastaddj, and there is
one source directory for each Java version: java4, java5, java6, and java7. Each
such directory contains subdirectories containing the specifications for scanner,
parser, grammar (for the abstract syntax tree), frontend (static-semantic analysis),
and backend (byte code generation). The scanners are implemented in JFlex [JFl13],
the parsers in Beaver [Bea13], and the grammars, frontends, and backends are imple-
mented in the JastAdd metacompilation tool, using RAGs [HM03b]. Figure 1 shows
the number of source lines of code (excluding whitespace and comments) in these
directories.

We can note that the major part of the total code is in the frontend (65%), and the
next largest part is the backend (27%). The Java 6 addition is very small: most of the

Paper I: Extending the JastAdd Extensible Java Compiler to Java 7 79

java4 java5 java6 java7 total %

scanner 308 17 109 437 2
parser 763 537 102 1402 5
grammar 167 57 21 245 1
frontend 9409 6178 27 1725 17573 65
backend 5505 1321 443 7250 27

total 16150 8110 27 2400 26687 100

Figure 1: Lines of code for JastAddJ modules. Excludes whitespace and comments.

new features in Java 6 concerned libraries, and the only change to the language was
a change in the semantics of the Override annotation.

To generate the Java 7 compiler, the scanner modules are combined and then
processed by JFlex, the parser modules are combined and then processed by Beaver,
and the grammar, frontend, and backend modules are passed to JastAdd. The resulting
generated Java source files are compiled together with around 1800 lines of driver
code, written in Java. The driver code includes a Unicode scanner, Beaver runtime
classes, and entry points for the Java compiler, static semantic checker, pretty printer
and corresponding Ant tasks. The driver code is reused for all versions of the
compiler.

2.2 Reference attribute grammars

It is the use of reference attribute grammars (RAGs) that makes it possible to modular-
ize the different Java support levels in JastAddJ. A RAG specifies abstract syntax trees
(ASTs), decorated with attributes that are defined using equations. The specification
is declarative in the sense that in any correctly attributed AST all attributes will have
values such that all equations are satisfied. The specification order of attributes and
equations is thus irrelevant. The specification is also executable: an evaluator that
computes the correct attribution can be automatically generated from the RAG. RAGs
differ from Knuth’s original attribute grammars [Knu68a] in that attributes may have
reference values, i.e., they may refer to other nodes in the AST, and they may be
parameterized, i.e., they may take arguments. Reference attributes are useful for
representing graph structures on top of the AST, e.g., for linking a use of a variable to
its declaration node. In JastAdd, there are also additional attribution mechanisms, in
particular, higher-order attributes [VSK89b], also known as non-terminal attributes
(NTAs). An NTA is an attribute whose value is an AST subtree, and which can itself
have attributes. NTAs are useful for computing AST structures during compilation,
for example for macro expansions or similar problems. In JastAdd, NTAs can be
parameterized, just like ordinary attributes.

Like in Knuth’s attribute grammars, an attribute can be either synthesized or
inherited. For synthesized attributes, the defining equation must be located in the
same node as the attribute. In contrast, if an attribute is declared as inherited, the
responsibility to define the attribute is delegated to the context, i.e., to the parent
of the node. In JastAdd, this responsibility is automatically delegated transitively
through the parent chain until a node is found with an equation defining the attribute.

80 Paper I: Extending the JastAdd Extensible Java Compiler to Java 7

Feature scanner parser grammar frontend backend Total
Try-With-Resources 54 4 181 150 389
Strings in Switch 41 229 270
Diamond 6 2 327 335
Improved Numeric Literals 111 20 11 932 1074
Multi-catch 22 4 190 60 276
More Precise Rethrow 174 4 178
Safe Varargs 86 86
Miscellaneous 69 69
Total 111 102 21 2000 443 2677

Figure 2: Lines of code needed for the different Java 7 features (excluding whitespace
and comments).

The attributed AST is the main data structure used in the JastAddJ compiler. For
example, instead of using traditional symbol tables, declarations in a program are
simply represented by the corresponding AST nodes through reference attributes that
can locate the declaration from a use site. If the AST constructed by the parser is not
sufficient for representing some information conveniently, additional structure can
be added through NTAs. The advantage of this approach is that all information can
easily be extended or overridden by other modules, through the RAG mechanisms.

To add a new language construct, one or more new RAG modules are added
with new node types, attributes and equations. Through aspect-oriented inter-type
declarations [Kic+97], attributes and equations in the new modules can apply to the
new types as well as to types in the existing modules. A RAG specification is in many
ways similar to an object-oriented framework: the AST node types are actually an
object-oriented (Java) class hierarchy. The attributes can be called as methods, and
equations defining attribute values can be overridden in subclasses, similar to Java
methods.

We have implemented the Java 7 features as a JastAddJ extension. Figure 2 shows
which parts of JastAddJ were extended by each new Java 7 feature, and how many
lines of code were needed.

The Improved Numeric Literals feature required relatively many lines of code due
to a refactoring made to the parsing of numeric literals that replaced old non-attribute
grammar code.

3 Try With Resources

The try-with-resources (TWR) statement was added to the Java language to reduce the
code clutter from closing a resource, particularly resources that can throw exceptions
when closed.

Paper I: Extending the JastAdd Extensible Java Compiler to Java 7 81

Before Java 7 the following code would be required to ensure that a resource was
closed properly:

Resource resource = null;

try {

resource = new Resource (); // may throw

// use resource here

} finally {

if (resource != null) {

try {

resource.close (); // may throw

} catch (IOException e) {

}

}

}

The TWR statement is similar to a regular try statement – it can have catch
clauses and a finally clause – but with an extra resource declaration part where one
or more resources are declared and initialized. Using TWR we can rewrite the above
example to the following:

try (Resource resource = new Resource ()) {

// use resource here

}

When control passes out of a TWR statement all resources opened in the resource
declaration part will be auto-closed. This occurs even if the TWR completes abruptly
(e.g., due to an exception).

3.1 TWR static semantics

The JastAddJ framework for Java 1.4 contains a class modeling the regular try

statement (TryStmt), containing a main code block, a list of catch clauses, and
an optional finally clause. Figure 3 outlines how the framework was extended
in the Java 7 frontend to support static semantics for TWR. A new node class
TryWithResources was introduced that extends TryStmt with a list of resource
declarations, modeled as a new subclass of the existing class VariableDeclaration.
Most of the behavior in TryStmt is reused, but a few declarations are added in the
extension, in order to adapt the behavior for TWR. For example, name analysis and
analysis of reachability, exception handling, and definite assignedness is adapted.

The name analysis is adapted to make the resource declarations visible in the
main block of the TWR. This is accomplished through the addition of an equation
in TryWithResources that redefines the inherited attribute lookupVariable of the
block. This attribute is used to look up declarations for variable uses inside the block.
In a similar way, the reachability analysis (of TWR catch clauses) and exception
handling checking (of resource initialization and closing exceptions) are handled by
adding new equations that define or redefine inherited attributes of children of the
TWR.

82 Paper I: Extending the JastAdd Extensible Java Compiler to Java 7

TryWithResources

 eq getBlock().lookupVariable(String): Decl = ...

 eq getCatchClause(*).reachableCatchClause(TypeDecl): boolean = ...

 eq getResource(*).handlesException(TypeDecl): boolean = ...

 eq isDAafter(Variable): boolean = ...

 eq getResource(*).isDAbefore(Variable): boolean = ...

 eq getBlock().isDAbefore(Variable): boolean = ...

TryStmt

TWR frontend extension

Block

Finally

CatchClause

0..1

Block
1

*

VariableDeclaration

ResourceDeclaration

 typeCheck(): void...

*

JastAddJ

framework

Figure 3: TryWithResources and ResourceDeclaration are two new node types
added to support TWR. The static semantics of TWR is adapted through equations
and other declarations.

The definite assignedness analysis in JastAddJ uses a synthesized attribute
s.isDAbefore(v) and an inherited attribute s.isDAafter(v) to define if a vari-
able v is definitely assigned before/after a statement s. The TWR extension includes
equations that (re-)define isDAafter for the TWR statement, and isDAbefore for
the children, in order to take the resource declarations into account.

There are new kinds of possible compile-time errors for TWR statements. An
example is declaring a resource of a type that does not implement AutoCloseable
(a new interface that declares the close method used to close a resource). JastAddJ
collects compile-time error messages through calling the method typeCheck on all
nodes. This method is implemented for ResourceDeclaration in order to check for
these errors.

3.2 TWR code generation

While the TryWithResources node type conveniently describes the static semantics
of the TWR statement, implementing code generation was trickier. The TWR state-

Paper I: Extending the JastAdd Extensible Java Compiler to Java 7 83

TryWithResources

TryStmt

 createBCode(...): void ...

TWR frontend extension

Block
1

ResourceDeclaration
1

JastAddJ framework

BasicTWR

 createBCode(...): void ...

TWR backend extension

syn nta getTransformed():Stmt = ...

createBCode(...): void {

 getTransformed().createBCode(...);

}

Figure 4: To implement code generation for TWR, a BasicTWR node type is
introduced, whose code generation handles autoclosure. The code generation method
for the TWR statement delegates to the NTA getTransformed, which will be either
a TryStmt or a BasicTWR statement. The double-arrowed relation indicates features
added to an existing class using inter-type declarations.

ment does many things implicitly that need explicit code generation support. The
Java bytecode does not have built-in support for auto-closing resources, so all the
steps needed for managing resources correctly need to be generated into bytecode.

The approach we used in JastAddJ builds on the fact that any TWR statement can
be transformed into a regular try statement with a series of basic TWR statements
nested inside it, as described in the Java Language Specification [JLS7, p. 408].
A basic TWR statement has no catch clauses or finally clause–it has only resource
declarations and a block. By transforming a TWR statement this way, the bytecode
generation for the try statement can be reused, and the generation of the autoclosing
support can be implemented in a simple way for the basic TWR nodes.

We implemented this approach by introducing the transformed version of the
TWR statement as a non-terminal attribute (NTA), i.e., an attribute whose value is a
new AST subtree. The original TWR is used for static-semantic analysis, allowing
any compile-time errors to be more closely related to the original source code. The
code generation for a TWR is delegated to the transformed version of the statement,
i.e., to the NTA. Figure 4 outlines the extensions done in the Java 7 backend. Note
that the NTA and the code generation method are added to the TryWithResources

node type using inter-type declarations. Inter-type declarations allow features of
classes to be added in separate modules [Kic+97].

84 Paper I: Extending the JastAdd Extensible Java Compiler to Java 7

The transformed version of a TWR may contain a new (simpler) TWR which in
turn has an NTA containing its transformed version, so the transformation is carried
out in several steps. Furthermore, we defined the BasicTWR to include only a single
resource declaration, so if the original TWR contains several resource declarations,
this will result in a transformed AST with several nested BasicTWR nodes. Figure 5
shows an example. A TWR (1) with catch clauses and/or a finally block is transformed
to a regular try statement (2), including a new simpler TWR statement (3) with only
resource declarations and a block. This simpler TWR statement is transformed into a
BasicTWR (4) with one resource declaration, and any remaining resource declarations
are included in a yet simpler TWR statement (5). This expansion terminates when
the last resource declaration is handled by a BasicTWR (6).

4 The Diamond Operator

In Java 7 the diamond operator was added to reduce some of the redundantly verbose
nature of Java generics.

The diamond operator, <>, allows omission of type arguments for generic class
instance creations in some contexts (assignments, variable/field initializers, method-
/constructor arguments). For example, instead of writing

List<Integer > myList = new LinkedList <Integer >();

Java 7 allows us to write the following shorter and more readable code:

List<Integer > myList = new LinkedList <>();

The compiler needs to infer omitted type parameters, i.e., Integer in this case. To
accomplish this, we added a new node type, DiamondAccess, to represent diamond
expressions such as LinkedList<> above. It is defined as a subtype of the existing
type Access, allowing it to occur in a class instance expression, see Figure 6.

The parent ClassInstanceExprwill query its Access child for its type attribute.
The DiamondAccess node provides an equation that computes the type attribute by
performing type inference: first a set of candidate constructors is computed, and then
the most applicable constructor and type argument set is found.

It turns out that this problem can be transformed into a similar problem of inferring
method type arguments for generic method invocations, a problem that was solved
already for Java 5. We could implement the diamond inference quite easily, reusing
the existing inference solution by creating a stand-in method declaration for each
candidate constructor.

Figures 6 and 7 illustrate the extension. To represent candidate constructors, a
new type, StandInMethodDecl was added, inheriting from the GenericMethodDecl
type used by the existing type inference algorithm.

A candidate method set is created using all accessible constructors for the class
to be instantiated. Let C be the generic class to be instantiated, with T1...n as its type
parameters. For each accessible constructor Ki of C we create a stand-in method Mi

with the same parameter list asKi and return typeC < T1, T2, · · · , Tn >. The stand-
in methods {M1...m} are passed to the existing inference algorithm which computes

Paper I: Extending the JastAdd Extensible Java Compiler to Java 7 85

TWR

Resources

Catch

Clauses

Finally

Block

transformed

Block

Try

TWR

Basic

TWR

Block

TWR

Basic

TWR

(1)

(2)

(3)

(4)

(5)

(6)

try (R r1 = ...; R r2 = ...) {

 // Try Block

}

catch (...) { ... }

catch (...) { ... }

catch (...) { ... }

finally { ... }

/*2*/ try {

/*4*/ try (R r1 = ...) {

/*6*/ try (R r2 = ...) {

/*6*/ // Try Block

/*6*/ }

/*4*/ }

/*2*/ }

/*2*/ catch (...) { ... }

/*2*/ catch (...) { ... }

/*2*/ catch (...) { ... }

/*2*/ finally { ... }

r1

r1

r1

r2

r2

r2

r2

Figure 5: Example of stepwise transformation of a TWR statement using NTAs. An
NTA transformed contains the new AST for each step. Lines without arrowheads
indicate child-parent relationships, where the red dashed lines indicate NTA children.
Dotted black arrows indicate AST nodes that are copied into an NTA. Grey shaded
areas indicate transformed nodes to which code generation is delegated.

86 Paper I: Extending the JastAdd Extensible Java Compiler to Java 7

DiamondAccess

 eq type(): Type = ...

ClassInstanceExpr

Diamond extension

Access

 syn type(): Type

Expr
1

StandInMethodDecl

1

JastAddJ

framework

*

TypeAccess

Arg GenericClassDecl

syn nta getStandInMethodList() = ---

GenericMethodDecl

Figure 6: To support the diamond operator, the JastAddJ frontend is extended with
two new node types, DiamondAccess and StandInMethodDecl, and an NTA in the
existing type GenericClassDecl.

the most applicable method Mj and inferred type arguments. This gives us the most
applicable constructor (Ki) and the full type argument list for the instance creation.
The candidate method set is represented by a new NTA getStandInMethodList

added to the type GenericClassDecl.

5 Evaluation

In 2007, JastAddJ was compared to several other Java compilers, including Sun’s
javac compiler [EH07b]. JastAddJ was then found to be less than three times slower
than javac, and with an implementation size of 66% of javac (counted in source lines
of code). The execution speed of the generated code was roughly the same for most
programs.

Since 2007, both JastAddJ and javac have evolved, so it is interesting to do a new
comparison, and to include the new Java 7 implementations. We have compared the
OpenJDK Java 6 and Java 7 versions of JastAddJ and javac on a number of different
open source benchmark programs. We compare source code size, compilation speed,
memory consumption. We also tested the execution speed of the generated bytecode,
and found that it was almost the same for JastAddJ and javac, with the JastAddJ-
generated code being around 2% slower on the average.

The particular versions tested were builds 7.1.1-49 for JastAddJ (jastaddj-6,
jastaddj-7), OpenJDK 6 b24 for javac-6, and OpenJDK 7 b146 for javac-7.

All tests were carried out on a quad core Intel Core i7-3820 CPU clocked at
3.60GHz with 64 GiB of memory, running Linux Mint with Linux kernel version
3.5.0-17-generic. All measurements were taken using the 64-bit Server editions of the
IcedTea6 1.12.5 (javac-6, jastaddj-6) and IcedTea 2.3.9 (javac-7, jastaddj-7) runtime

Paper I: Extending the JastAdd Extensible Java Compiler to Java 7 87

type

ClassInstanceExpr

DiamondAccess

GenericClassDecl

ConstructorDecls

TypeAccess

Parameters

StandInMethodList

type

Figure 7: The Diamond type analysis reuses the Java 5 method type inference
by computing stand-in methods using an NTA (the red dashed line). Solid arrows
represent the type attributes. Dotted black arrows indicate construction of stand-in
method declarations from constructor declarations.

environments. IcedTea is a compatible Java implementation based directly on the
freely available OpenJDK source code.

5.1 Implementation size

As an estimate of implementation effort, we have measured the total source code
sizes of JastAddJ and javac, excluding comments and whitespace, using the tool
SLOC-Count [Whe13]. Figure 8 shows the results. We see that JastAddJ is just
slightly more than half the size of javac: 55% for Java 6, and 52% for Java 7.

Compiler kSLOC (% of javac)
javac OpenJDK 6 b24 47.4 (100%)

JastAddJ 7.1.1-49 Java 6 26.0 (55%)
javac OpenJDK 7 b146 55.1 (100%)

JastAddJ 7.1.1-49 Java 7 28.7 (52%)

Figure 8: The source code size of the compilers, in thousands of source lines of
code, and in percentage of javac.

5.2 Compilation speed

We have measured the mean time to compile a number of different benchmark
programs using Java 6 and 7 versions of javac and JastAddJ. We measured both the
compile time when the compilers are invoked in a fresh Java VM (see section 5.2),
as well as the steady-state compile time (section 5.2).

88 Paper I: Extending the JastAdd Extensible Java Compiler to Java 7

All time measurements were run with 2 GiB heap space, with JIT-compilation
enabled to allow each compiler to run at its optimal performance. The 2 GiB heap
space is well above the minimum required heap space for each benchmark program
(see figure 11).

The benchmark programs we have used and their corresponding SLOC counts
are listed in the table in figure 9.

Name Version kSLOC Description
junit 4.5 5.2 Java unit testing framework
jsilver 1.0.1-SS 30.1 HTML template system
clojure 1.3.0-RC0 35.8 Clojure compiler
lucene 3.0.1 45.3 Text search engine
javac jdk7-b146 55.1 OpenJDK 7 javac
jython 2.2alpha1 76.4 A Python environment in Java
jastaddj R20111208 87.3 JastAddJ (generated Java code)

Figure 9: Benchmark programs

Fresh JVM compilation time

For each benchmark-compiler pair the benchmark program was compiled 25 times
– each time in a new JVM instance. The total time to run each invocation of the
compiler was measured (including JVM startup time). The arithmetic mean of the
measured compile time is presented in figure 10 (labeled without the ss- prefix).
Since JVM startup time was measured as part of the total compile time we can expect
a smaller relative difference in execution time for the smaller benchmark programs
(e.g. junit).

Steady-state compile time

We measured steady-state compile time using the method described in [GBE07b]. A
brief summary of the benchmarking procedure:

• For each benchmark-compiler pair we run 10 new JVM invocations.

• For each JVM invocation the benchmark program is compiled until the last 15
measured execution times have a coefficient of variance no greater than 0.05.

• The mean of the last 15 compile times for the JVM invocation is calculated
and stored.

The mean steady-state execution time of the 10 JVM invocations for each
benchmark-compiler pair is plotted in figure 10 (labeled with the ss- prefix).

Using a Student’s T distribution we calculated the 90% confidence intervals for
each benchmark and found that they lie within 3% of the mean execution time (both
for steady-state and fresh JVM).

Much of the time increase from Java 6 to Java 7 compilation is probably due to
the extra parsing time required to parse the larger Java 7 class library.

Paper I: Extending the JastAdd Extensible Java Compiler to Java 7 89

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90

junit

jsilver

clojure

lucene

javac

jython

jastaddj

ti
m

e
 (

s
)

kSLOC

jastaddj-7
jastaddj-6

javac-7
javac-6

ss-jastaddj-7
ss-jastaddj-6

ss-javac-7
ss-javac-6

Figure 10: Compilation time. Includes times measured for fresh JVM invocations
(top four curves) and steady-state execution (bottom four curves). Benchmarks are
ordered from left to right by increasing SLOC count.

90 Paper I: Extending the JastAdd Extensible Java Compiler to Java 7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

jd
ep

en
d

ju
ni
t

js
ilv

er
an

tlr

cl
oj
ur

e

lu
ce

ne

ja
va

c

jy
th

on

ja
st
ad

dj

m
in

im
u

m
 h

e
a

p
 s

iz
e

 (
M

iB
)

program

jastaddj-6
jastaddj-7

javac-6
javac-7

Figure 11: Minimum heap space. Benchmarks ordered from left to right by
increasing SLOC count.

5.3 Memory consumption

We also compared the minimum required JVM heap space to run each benchmark-
compiler combination. We found the minimum heap space by doing a binary search
from an initial 2048 MiB heap size to the lowest heap size at which it was still
possible to compile the benchmark program. The minimum measured heap sizes are
illustrated in figure 11.

6 Related Work

OpenJDK is the reference implementation of the Java language, and is implemented
in Java. It is based on a traditional compiler pipeline with a series of phases that
are called one after the other. It is not specifically designed for language extension,
and different language versions like Java 6 and Java 7 are kept in different parallel
repositories [Ope13]. Language extensions of OpenJDK need to copy and modify
source files. For example, OpenJML is an implementation of JML (Java Modeling

Paper I: Extending the JastAdd Extensible Java Compiler to Java 7 91

Language), and is built as a language extension to OpenJDK by modifying 41 of its
683 source files [Cok11].

Polyglot [NCM03b] and AbleJ [Van+07] are Java compiler frontends, built specif-
ically to be extensible. Being frontends, they do scanning, parsing, and static semantic
checking, but they do not generate bytecode.

Polyglot is implemented as a Java framework, and performs the frontend analysis
as a series of passes, most of which are implemented using a variant of the Visitor
design pattern. The original version supported Java 1.4, and recently, in 2012, support
for Java 5 was released, implemented as a modular extension of the Java 1.4 version
[Pol13]. So far, there is no support for Java 7 released.

AbleJ is implemented using the attribute grammar system Silver [Wyk+10b], and
supports most of Java 1.4. Modular extensions have been defined for supporting parts
of Java 5 and SQL queries from within Java code [Van+07].

The Java 7 extensions of JastAddJ were implemented by Jesper Öqvist as a
master’s thesis project, and a more detailed account of the implementation is available
in the report [Öqv12].

7 Conclusion

We have extended the JastAddJ Java 6 compiler to support Java 7. The extension
could be done modularly and concisely: the resulting source code for the compiler is
only 55 % of that of OpenJDK javac for Java 6, and 52% for Java 7. Thus, JastAddJ
has grown less than javac since the Java 6 version.

We discussed some details of our implementation and how we could extend
the Java 6 implementation by adding new node types, equations and attributes. In
particular, the use of nonterminal attributes allowed us to reuse code generation and
type inferencing from Java 6 to implement the Try-With-Resources statement and the
Diamond operator.

We have measured the performance of our compiler to show that it is practical,
despite being a research compiler that is generated from a specification. When run
on a fresh JVM, our compiler runs within a factor of 1.6 compared to javac. When
run in steady state (like it would be run in an IDE), it runs within a factor of 3.3 of
javac for our benchmarks. Our compiler uses substantially more memory than javac:
3.2 to 5.5 times as much memory as javac for our benchmarks. However, with the
memory capacity on today’s computers, large programs can still be compiled without
problems.

Acknowledgements

This work was in part financed by the Swedish Research Council under grant 621-
2012-4727.

92 Paper I: Extending the JastAdd Extensible Java Compiler to Java 7

References

[Ape+12] Sven Apel et al. “Access control in feature-oriented programming”.
In: Science of Computer Programming 77.3 (2012), pp. 174–187.

[App+10] Malte Appeltauer et al. “Event-specific software composition in
context-oriented programming”. In: Software Composition. Springer.
2010, pp. 50–65.

[AET08b] Pavel Avgustinov, Torbjörn Ekman, and Julian Tibble. “Modularity
first: a case for mixing AOP and attribute grammars”. In: Proceedings
of the 7th international conference on Aspect-oriented software
development. ACM. 2008, pp. 25–35.

[Bea13] Beaver. Homepage. http://beaver.sourceforge.net/. May 2013.

[Cok11] David R Cok. “OpenJML: JML for Java 7 by extending OpenJDK”.
In: NASA Formal Methods. Vol. 6617. LNCS. Springer, 2011,
pp. 472–479.

[EH07b] Torbjörn Ekman and Görel Hedin. “The jastadd extensible java
compiler”. In: Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada. ACM, 2007, pp. 1–18.

[GBE07b] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically
rigorous java performance evaluation”. In: ACM SIGPLAN Notices
42.10 (2007), pp. 57–76.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica
(Slovenia) 24.3 (2000), pp. 301–317.

[HM03b] Görel Hedin and Eva Magnusson. “JastAdd–an aspect-oriented
compiler construction system”. In: Science of Computer
Programming 47.1 (2003), pp. 37–58.

[JFl13] JFlex. Homepage. http://jflex.de/. May 2013.

[JLS7] James Gosling et al. The Java™ Language Specification, Java SE 7
Edition. Oracle America, Inc., Feb. 2013.

[Kic+97] G. Kiczales et al. “Aspect-oriented programming”. In: ECOOP 1997
- Object-Oriented Programming (1997), pp. 220–242.

[Knu68a] D.E. Knuth. “Semantics of context-free languages”. In: Theory of
Computing Systems 2.2 (1968), pp. 127–145.

[NCM03b] Nathaniel Nystrom, Michael R Clarkson, and Andrew C Myers.
“Polyglot: An extensible compiler framework for Java”. In: Compiler
Construction. Springer. 2003, pp. 138–152.

[Ope13] OpenJDK. JDK 6 Project.
http://openjdk.java.net/projects/jdk6/. May 2013.

http://beaver.sourceforge.net/
http://jflex.de/
http://openjdk.java.net/projects/jdk6/

Paper I: Extending the JastAdd Extensible Java Compiler to Java 7 93

[Öqv12] Jesper Öqvist. “Implementation of Java 7 Features in an Extensible
Compiler”. Master Thesis. Report LU-CS-EX:2012-13. Sweden:
Dept. of Computer Science, Lund University, 2012.

[Pol13] Polyglot. A compiler front end framework for building Java language
extensions. http://www.cs.cornell.edu/Projects/polyglot/.
May 2013.

[Van+07] Eric Van Wyk et al. “Attribute grammar-based language extensions
for Java”. In: ECOOP 2007–Object-Oriented Programming. Springer,
2007, pp. 575–599.

[VSK89b] H.H. Vogt, S.D. Swierstra, and M.F. Kuiper. “Higher order attribute
grammars”. In: Proceedings of the ACM SIGPLAN 1989 Conference
on Programming language design and implementation. ACM. 1989,
pp. 131–145.

[Whe13] David A. Wheeler. SLOCCount.
http://www.dwheeler.com/sloccount/. 2013.

[Wyk+10b] Eric Van Wyk et al. “Silver: An extensible attribute grammar system”.
In: Science of Computer Programming 75.1-2 (2010), pp. 39–54.

http://www.cs.cornell.edu/Projects/polyglot/
http://www.dwheeler.com/sloccount/

P
a

p
e
r

II

Multitudes of Objects

First Implementation and Case Study for Java

Abstract

In object-oriented programs, the relationship of an object to many objects is usually
implemented using indirection through a collection. This is in contrast to a relation-
ship to one object, which is usually implemented directly. However, using collections
for relationships to many objects does not only mean that accessing the related objects
always requires accessing the collection first, it also presents a lurking maintenance
problem that manifests itself when a relationship needs to be changed from to-one to
to-many or vice versa. Continuing our prior work on fixing this problem, we show
how we have extended the Java 7 programming language with multiplicities, that is,
with expressions that evaluate to a number of objects not wrapped in a container, and
report on the experience we have gathered using these multiplicities in a case study.

ein Vieles, welches kein Eines ist
(a multitude which is not a one)

— inspired by Georg Cantor’s conception of a set as “jedes Viele, welches sich als
Eines denken läßt”, i.e., any multitude which can be thought of as a one

1 Introduction

Just like English grammar distinguishes singular and plural, object-oriented pro-
gramming languages distinguish one object and many objects. However, unlike with
English utterances, for which the syntactic difference between the singular and the
plural of a noun phrase is usually small, the difference between program fragments

Friedrich Steimann, Jesper Öqvist, and Görel Hedin. “Multitudes of Objects: First Implementation and
Case Study for Java”. In Journal of Object Technology, Vol. 13, no. 5 (November 2014), pp. 1:1–33.

96 Paper II: Multitudes of Objects

Customer Account
account

0..1

to-one relationship

modelling Customer Account
account

0..*

to-many relationship

Customer

account

Account
0..1programming Customer

accounts

Collection

Account

0..1
0..*

Figure 1: Relationships to one and to many objects in object-oriented modelling
and programming languages: differences

dealing with one object and dealing with many objects is often substantial. For
instance, while the English utterances “I go to work” and “we go to work” differ
only in the pronoun used, in an object-oriented program, the difference would be that
between i .goto(work) and for (each : we) each.goto(work), which is cumbersome
not only by comparison. The problem, here, is that in object-oriented programming,
the multitude denoted by we is reified as a one (usually a collection object), and
this one has different properties (responds to a different protocol) than the objects it
comprises. In particular, the object denoted by we cannot go to work.

Similar to the English language, relational and object-oriented modelling lan-
guages make only a small distinction between singular and plural or, more specifi-
cally, between one object being associated with one other, or any number of other
objects [8; 9; 10; 28; 36]. In these languages, multiplicity, also known as cardinality,
constrains the number of times an object, or entity, may occur in a relationship or
association. Hence, a change from singular to plural (or vice versa) requires little
more than a corresponding change in multiplicity, as the top half of Figure 1 suggests.
By contrast, in object-oriented programming languages multiplicities are commonly
coded in the declared type of a variable (which is the type of the related object if it
is only one, or the type of a sequence, stream, or collection object if there are more).
Here, a change of multiplicity may require a major redesign of the program, as the
bottom half of Figure 1 suggests (several more untoward consequences of such a
change will be presented below).

In previous work [37], we advocated the introduction of multiplicities as anno-
tations of expressions indicating whether an expression is singular or plural, i.e.,
whether it is expected to evaluate to at most one object, or to any number of ob-
jects (not reified). This is to grant the programmer a more uniform treatment of
relationships to one object and relationships to many objects in object-oriented pro-
grams. In this paper, we present an implementation of our ideas as an extension of
the Java programming language using the JastAddJ extensible Java compiler [13],
and report on a case study we have conducted.

The remainder of this paper is organized as follows. To motivate our work,
we present in Section 2 the peculiarities we observe when implementing multi-
tudes of objects using collections. In Section 3, we briefly describe how enhancing

Paper II: Multitudes of Objects 97

object-oriented programming with multiplicities can generally alleviate the associ-
ated problems, with Section 4 specializing our proposal for Java. Section 5 describes
our implementation of multiplicities as an extension of the JastAddJ compiler for Java
7. In Section 6, we present qualitative and quantitative findings from a case study
extending JUnit with multiplicities. Notes on related and future work conclude.

2 Using Collections for Representing Multitudes of

Objects

Undoubtedly, collections are among the most useful abstractions in object-oriented
programming: they not only liberate the programmer from manually implementing
multitudes of objects as (static) arrays or dynamic data structures (such as linked
lists or trees), they also offer a uniform protocol for bulk processing of these object
using internal iterators (foreach, select, collect , etc.). And yet, the use of collections
for representing many (rather than one) objects comes with a number of peculiarities
which make dealing with multitudes of objects very different from dealing with single
objects.

2.1 Multiplicity Determines Type

In a program in which every customer can have only a single account, we may see
code like

Account account;

account = new Account ();

account.check ();

If however a customer can have several accounts, adjustment of just the declaration
to reflect this leads to an ill-typed program (faulty expressions underlined):

Set<Account > accounts;

accounts = new Account();
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

accounts.check();
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Both errors result from the fact that accounts (with a plural “s” appended to express
that there can be more than one) now has type Set<Account>, reflecting the changed
multiplicity. However, intuitively, what is expressed by the ill-typed program is rather
clear: initialize accounts to hold just one account, and then check all accounts (which
happens to be only one here). To translate this to standard Java, we would have to
write

Set<Account > accounts = new HashSet <>();

accounts.add(new Account ());

for (Account account : accounts) account.check ();

which means quite a change to the original program.

98 Paper II: Multitudes of Objects

2.2 Multiplicity Determines Meaning of null

When a variable represents an optional relationship to one object, the value null

usually means that there is no relationship (but may also mean failure to initialize):

if (account != null) print(account);

else print("no account");

For a relationship to many accounts, relating to no account is usually represented
using an empty collection:

if (accounts != null)

if (! accounts.isEmpty ())

for (Account account : accounts) account.print ();

else print("no account");

else throw new Error("accounts not initialized");

Here, the value null means failure to initialize. Note that having null as an element
of a collection makes no sense if the collection is to represent a relationship.

2.3 Multiplicity Determines Subtyping Conditions

If SavingsAccount is a subtype of Account, writing

SavingsAccount saving = new SavingsAccount ();

Account account = saving;

is type-correct. However, when we change to many accounts, the analogue

Set<SavingsAccount > savings = new HashSet <>();

Set<Account > accounts = savings;

is ill-typed. Instead, we would have to write something like

Set<? extends Account > accounts = savings;

[24] which does however preclude write access to the set through the variable
accounts, greatly limiting its use (especially when considering that the singular
account can be used freely).

2.4 Multiplicity Determines Encapsulation Strategy

It is considered good practice in object-oriented programming that the fields of an
object are encapsulated and, if necessary, made accessible for clients using setter and
getter methods. For collection-valued fields, however, this is different [16]: they are to
be updated using add ...(. . .) and remove...(. . .) methods offered by the encapsulating
object (where the ellipses are replaced by the field’s name), and if the collection as
a whole is to be retrieved, the getter should return a copy or an immutable wrapper
[16]. This is so because the collection is considered a representation object which
clients should not be able to manipulate directly and of which they should possess no
aliases [25]. This brings us directly to the next point.

Paper II: Multitudes of Objects 99

2.5 Multiplicity Determines Availability of Relationship Aliasing

While assigning an object to a variable with reference semantics always means cre-
ating an alias for the object, the semantics differ when the variables are uniformly
viewed as implementing relationships to objects, as the following example demon-
strates:

Account backup = account;

account = null;

if (mistaken) account = backup;

Here, backup is an alias for the to-one relationship implemented by account. This is
different for

Collection <Account > backups = accounts;

accounts.clear ();

if (mistaken) accounts = backups;

where backups is an alias for the collection denoted, and not for the to-many relation-
ship that is logically established, by accounts. Surely, the problem can be solved by
keeping a copy of the collection as backup, but copying is not needed for the to-one
case.

2.6 Multiplicity Determines Call Semantics

Continuing the previous example, it may seem awkward that the method

void clear(Collection <Account > accounts) {

accounts.clear ();

}

performs as intended (i.e., sets the relationship represented by an actual parameter to
“no accounts”), while the analogous method for the to-one case

void clear(Account account) {

account = null;

}

has no effect on actual parameters. While this may look like a newbie’s mistake to the
seasoned programmer, it is still indicative of a conceptual chasm, which culminates
in the fact that in Java, it is impossible to implement

void swap(Object o1 , Object o2)

with the suggested semantics, while implementing

void sort(ArrayList <Object > os)

is not a problem. Note that escaping to call-by-reference for swap(. . ., . . .) does not
bridge the chasm — not having to do so for collections is just another peculiarity of
using them for representing multitudes of objects.

100 Paper II: Multitudes of Objects

2.7 Multiplicity Determines Meaning of the final Modifier

When a variable is declared as final , it means that its value cannot be changed after
its initialization. For a variable representing a relationship to a single object this
means that the owner of the variable is stuck with the related object for its whole
lifetime. For a variable representing a relationship to many objects implemented
using a collection, final means that the holder of the relationship is stuck with the
collection — its elements, and thus the conceptually related objects, may change
freely:

final Account forLife = new Account ();

forLife = null; // compile error

final Set<Account > allForLife = Arrays.asSet(forLife);

allForLife.clear (); // no problem

3 Programming with Multiplicities

The core idea of object-oriented programming with multiplicities as put forward
in [37] is that expressions may evaluate directly to any number, or a multitude, of
objects. This is in contrast to standard object-oriented programming, in which every
expression evaluates to either one object or to null and in which multitudes of objects
are reified using special container objects (collections, sequences, iterators, etc.).
Note that, since multitudes are not reified in our approach, they are always flat, i.e.,
there is no multitude of multitudes (though it is possible to create a multitude of
collections).

Terminological Note We use “multitude of objects” to denote many objects; the
term is to be distinguished from “collection of objects” or “set of objects”, which
each denote an entity in its own right. Note that for this reason it makes no sense to
speak of “the elements” or “the members of a multitude”, or even of “the objects of
a multitude” (since the objects of the multitude are the multitude) — if we want to
refer to one of many, we say just that, or “one object among a multitude”.

3.1 Dynamic and Static Multiplicity

With expressions evaluating to any number of objects, the dynamic multiplicity of an
expression is defined as the number of objects it evaluates to. In the general case, the
dynamic multiplicity of an expression can only be determined at runtime. Therefore,
we complement dynamic multiplicity with static multiplicity, which can be declared
and inferred at compile-time. In the following, the term multiplicity refers to static
multiplicity unless stated otherwise.

While dynamic multiplicities are cardinals, we distinguish mainly two (symbolic)
static multiplicities, which we call option and any. Option stands for no or one ob-
ject, while any stands for any number of objects. Other static multiplicities are also

Paper II: Multitudes of Objects 101

conceivable (in particular, multiplicity one, for precisely one, will be useful; see
below); however, since our focus here is on eliminating as much as possible the
differences between relating to zero or one and to any number of objects, option and
any suffice.

3.2 Separation of Multiplicity and Type

As long as multitudes of objects are reified, the multiplicity of an expression (i.e.,
whether it evaluates to one or many objects) is coded in its type: for multiplicity any,
this type is a collection type (commonly parameterized with the member type, i.e.,
the type of the elements of the collection), whereas for multiplicity option, the type is
the type of the optional object (see Section 2.1). Object-oriented programming with
multiplicities as put forward in [37] separates multiplicity from type in the declaration
of variables and methods: for instance, it allows one to write

any Account accounts;

instead of

Collection <Account > accounts;

for declaring that accounts can hold any number of Account objects (note that it
cannot hold a collection!), whereas

option Account account;

which differs only in the multiplicity, is roughly equivalent to

Account account;

meaning that account can hold either no or one account (see Section 3.4 for the
important difference). Note that using multiplicities, both account and accounts have
the same type Account; they differ only in their declared multiplicities.

3.3 Assignment Compatibility

While the types of account and accounts are the same and, therefore, do not oppose
their mutual assignment compatibility, their multiplicities differ — since option is
subsumed by any, account can be assigned to accounts, and

any Account accounts = new Account ();

is a legal assignment (cf. Section 2.1). An assignment from any to option is illegal,
however; here, a multiplicity downcast (from any to option) as in

account = (option) accounts;

is required, but may fail at runtime (namely when accounts holds more than one
object).

For variables with multiplicity any, assignment is complemented with adding to
(+=) and subtracting from (−=) a multitude of objects, where the right-hand side of
the update operations can have multiplicity any or option.

102 Paper II: Multitudes of Objects

null remains assignment compatible with every reference type; also, it is assign-
ment compatible with both multiplicity option and any (and means “related to no
object” in both cases; cf. Section 2.2).

3.4 Member Access

That account and accounts have the same type means that they respond to the same
protocol, i.e., that the same set of methods can be invoked and the same set of fields
can be accessed on them. For instance, if class Account defines a method check(),
both account.check() and accounts.check() are well-typed; the latter simply means
that check() is separately invoked on all objects accounts holds. If Account declares
an option field bank, accounts.bank returns a multitude of bank objects, namely the
banks each account among the multitude of accounts held by accounts is related to.
Note that if accounts holds no object, or no account referred to by accounts has a
bank associated with it, accounts.bank will evaluate to no object. Since option is
subsumed by any, account.bank will also evaluate to no object if account does not
hold an account; note in particular that no null pointer exceptions can arise from
dereferencing expressions whose multiplicity is option or any.1

3.5 Aliasing

In object-oriented programming with multiplicities, multitudes of objects are not
reified, so multitudes cannot be aliased. This retires the problems noted in Sec-
tions 2.3–2.6. In particular,

any SavingsAccount savings;

any Account accounts = savings;

does not cause a covariance problem, since the assignment does not create an alias for
a container, but instead assigns accounts the same multitude of objects that savings

refers to (by copying pointers just like in the option case). It follows that

accounts += new Account ();

does not also add an account to savings (cf. Section 2.3). Likewise, returning
accounts as in

any Account getAccounts () { return accounts; }

does not expose representation to clients (there is no representation object represent-
ing the multitude held by accounts) and, in particular,

any Account temp = getAccounts ();

temp += new Account ();

does not update the field accounts returned by the getter (Section 2.4). Similarly,
after the assignment

1For the relationship of the multiplicity option with the type Option of some functional programming
languages (including Scala), see the related work in Section 7

Paper II: Multitudes of Objects 103

any Account backups = accounts;

(Section 2.5), clearing accounts (by assigning it null ; cf. Section 3.3) does not also
clear backups, which is therefore still available for restoration. Also, passing a
variable into the method clear(. . .) of Section 2.6, now defined as

void clear(any Account accounts) {

accounts = null;

}

does not affect the number of objects that this variable holds, thereby unifying the
behaviour for one and many objects. Lastly, the fact that multitudes of objects are not
reified unifies the meaning of the final modifier (Section 2.7), which now pertains to
variables holding single object and multitudes of objects alike.

3.6 When to and When Not to Use Multiplicities

Our motivation of introducing multiplicities to object-oriented programming is to
allow the programmer

• the implementation of relationships (or, more precisely, directed associations
[28]) to many objects in a more direct way, and further

• the implementation of relationships to one and to many objects in as much the
same way as possible.

This raises the question of what is a relationship, or when multiplicities are to be
used.

Experience teaches that programmers will use a construct wherever they deem its
use advantageous, so we attempt no dogmatism here. We still make one exception,
though: value types, like int , float , boolean (including their wrapper types), or
String (whose instances are usually immutable) cannot be the target of a relationship
(note that they cannot act as entity types in the entity-relationship model [8]) and
hence cannot be used in combination with option or any multiplicity annotations.
While there are conceptual justifications for this (e.g., people do not relate to their
age, an integer value), the main technical reason is that this saves us from defining
special semantics for operations on value types (such as +) for operands with option
or any multiplicity (which both include “no object” as a possible value), and also
from introducing a ternary logic for handling the case that a boolean expression
used in a conditional evaluates to no object. For instance, for a variable declared as
option boolean error, it is unclear what if (error) ... means if error has dynamic
multiplicity 0. For the same reason, we must exclude that value-typed members
are accessed via receiver expressions with option or any multiplicity, since this can
likewise result in dynamic multiplicity 0 (namely when the receiver evaluates to “no
object”).

104 Paper II: Multitudes of Objects

4 Multiplicities for Java

While the idea of object-oriented programming with multiplicities as presented in
the previous section is language-independent, its adoption in any concrete language
invariably requires an individualized integration with existing language constructs.
In the following, we present our extension of Java 7 with multiplicities, whose design
was driven by our objective to allow a smooth transition between Java programming
without and Java programming with multiplicities. Figure 2 has the extended syntax;
Figure 4 shows some sample code using it.

Modifier ::= ...

| MultiplicityAnnotation;

MultiplicityAnnotation ::=

"@any" "(" ReferenceType ")"

| "@any"

| "@option"

| "@bare";

Primary ::=

| "[[" UnaryExpressionNotPlusMinus "]]"

| "|[" UnaryExpressionNotPlusMinus "]|";

CastExpression ::= ...

| MultiplicityCastExpr;

MultiplicityCastExpr ::=

"(" MultiplicityAnnotation ")" UnaryExpression

| "(" MultiplicityAnnotation TypeName ")"

UnaryExpression;

Figure 2: Extension of concrete syntax.

4.1 Multiplicity Annotations

For compatibility with existing Java code, we implemented four static multiplicities:

• none, the multiplicity of null (representing no object);

• bare, the default multiplicity (and, in particular, the multiplicity of all standard,
or legacy, declarations);

• option, the multiplicity of entities and expressions representing relationships
to no or to one object; and

• any, the multiplicity of entities and expressions representing relationships to
any number of objects.

Paper II: Multitudes of Objects 105

Multiplicities determine assignment compatibility according to the order

none < bare < option < any

i.e., every multiplicity is assignment compatible with itself and all greater ones.

Hidden Collections To give the programmer control over the nature of multitudes,
and also for interfacing with legacy Java code that uses collections (see below), any
multiplicities may be parameterized with a collection type C whose definition has a
single type parameter (e.g., List<E>). This type will be used to instantiate a hidden
collection holding the multitude of objects. To acknowledge the widespread use of
abstract collection types in Java programs, C may be an abstract class or an interface.

Syntactic Integration The multiplicity none does not occur in program texts; the
other multiplicities appear as annotations @bare, @option, and @any, respectively
(see Figure 2). Since bare is the default multiplicity, it occurs only in multiplicity
downcasts from option or any to bare (see below).

original (without using multiplicities) using multiplicities
class Subject implements Observable {

Set<Observer> obs = new HashSet<>();

public void addObserver(Observer o) {

if (o == null)

throw new NullPointerException();

obs.add(o);

}

public void deleteObserver(Observer o) {

obs.remove(o);

}

public void notifyObservers(Object arg) {

for (Observer o : obs)

o.update(this , arg);

}

public void deleteObservers () {

obs.clear();

}

public int countObservers () {

return obs.size();

}

}

class Subject implements Observable {

@any(HashSet) Observer obs;

public void addObserver(@option Observer o) {

obs += o;

}

public void deleteObserver(@option Observer o) {

obs -= o;

}

public void notifyObservers(Object arg) {

obs.update(this , arg);

}

public void deleteObservers () {

obs = null;

}

public int countObservers () {

return |[obs]|;

}

}

Figure 3: Example of implementing class Subject of the Observer Pattern, with and without
using multiplicities (differences highlighted)

106 Paper II: Multitudes of Objects

4.2 Declarations

The multiplicity annotations @option and @any may appear (in the position of
modifiers; cf. Figure 2) in all declarations of reference-typed entities, except where
the type is a wrapper type (such as Boolean) or String (see Section 3.6 for the
reasons). If an entity is annotated with @any(C) and C is a concrete collection class,
the compiler uses C as the class of the hidden collection that holds the multitude of
objects the annotated entity denotes; if C is abstract or not provided, the compiler
automatically picks a suitable concrete class (note that the single type parameter of
C is instantiated with the type of the declaration). Thus, multitudes of objects are
implemented using collections; however, this implementation is strictly under the
hood and, in particular, these collections cannot be accessed from the program as
objects (they cannot be aliased). Entities annotated with @option are not implemented
using collections; however, the compiler gives their value null a special meaning (see
below).

Final Declarations A declaration final @option T v means that, after its initializa-
tion, the value of v cannot change (i.e., v always refers to the same object). That v is
not assigned new values after initialization is ensured (by the compiler) as usual. A
declaration final @any T v likewise means that v cannot be updated after its initial-
ization (i.e., it always refers to the same objects), where updating includes assignment
(=), adding objects (+=), and removing objects (−=); this is ensured by the very same
means. Hence, no immutable collections are required to express the immutability of
a multitude.

4.3 Interfacing with Collections: Wrapping and Unwrapping

To interface multiplicity any with code that uses (bare) collections for representing
multitudes of objects, we must be able to wrap a multitude in a collection object,
and to unwrap it from a collection object. We use double square brackets (“ [[. . .]]”)
for both purposes (see Figure 2). If the argument expression has static multiplicity
any(C), the result is a (fresh) collection of type C holding the objects the expression
evaluates to; if it has multiplicity option, the result is a new instance of class ArrayList

which either holds the object the expression evaluates to, or is empty if it evaluates
to null . We call this wrapping. If the argument expression has static multiplicity
bare and is a collection, the result is the multitude of objects that the collection holds
(which is internally represented using a fresh collection of the same type). We call
this unwrapping. Unwrapping is particularly useful for initializing final variables
with multiplicity any:

final @any Account accounts =

[[Arrays.asList(new Account(), new Account ())]];

The expression [[null]] is not allowed.

Paper II: Multitudes of Objects 107

4.4 Number of Objects

The dynamic multiplicity, or the number of objects an expression evaluates to, is
computed using “ | [. . .]|” (see Figure 2). In case the argument expression has mul-
tiplicity any, it returns the size of the underlying collection; if the expression has
multiplicity option, it returns 0 if it evaluates to null , and 1 else.

4.5 Casts

As for types, multiplicity upcasts (e.g., from option to any) are always safe and
therefore may remain implicit. Multiplicity downcasts from any to option or bare,
however, may fail, namely when the any expression being cast evaluates to more than
one object. Therefore, the compiler inserts a runtime multiplicity check for all such
casts which, upon failure, throws a multiplicity cast exception. Casts from option to
bare are also always safe; since unlike for option receivers, accessing members on
bare receivers can lead to null pointer exceptions, we will require explicit downcasts
from option to bare (see below for examples of where this is needed).

4.6 Expressions

With new syntax given meaning as above, we now turn to the impact multiplicities
have on standard Java expressions.

Update Assignment (=) makes the variable on the left-hand side refer to the objects
the right-hand side refers to. Given the arbitrariness of the definition of “identity
of multitudes of objects” for multiplicity any (see below), we defined assignment
pragmatically: the hidden collection holding the multitude of the left-hand side is
first emptied (cleared), and then all objects of the hidden collection representing the
right-hand side are copied into it using its addAll(. . .) method. If the right-hand side
has multiplicity option, its object (if any) is added to the collection using add(. . .). If
the left-hand side has multiplicity option, the object that the right-hand side evaluates
to is assigned to it.

Adding (+=) is only allowed for left-hand sides with any multiplicity and adds
the object(s) of the right-hand side (if any) to it, again using add(. . .) or addAll(. . .).
Removing (−=) works accordingly, using the corresponding remove methods. Note
that the programmer can override the meaning of += and −= by supplying her own
collection implementations to the any annotations in the declarations.

Member Access Accessing a member m on a receiver r with multiplicity any
unfolds to accessing m on every object among the multitude r evaluates to, in the
order provided by the iterator of the hidden collection holding the multitude. If m is
a field or a non-void method, r .m evaluates to a multitude of objects, independently
of whether m has multiplicity option or any (recall that multiplicities are always flat).
As argued in Section 3.6, m must not be bare; if it is, the receiver must be cast to
bare first (cf. Section 4.5 and 6.2).

108 Paper II: Multitudes of Objects

Since option is subsumed by any, accessing m on r having multiplicity option
behaves exactly as if r had static multiplicity any and dynamic multiplicity 0 or
1. In particular, if r is null , evaluating r .m does not raise a null pointer exception
— it simply evaluates to null (for “no object”). However, deviating from receiver
multiplicity any, r .m has multiplicity option for option members (see Table 1).

❛
❛
❛
❛

r m bare option any

bare bare option any
option N/A option any
any N/A any any

Table 1: Multiplicity of member access
expressions r.m

If m is a method, parameter passing
works according to the rules of assign-
ment (see under “Update” above). In
particular, the formal parameters do not
receive aliases to the hidden collections
holding the objects of formal parame-
ters having multiplicity any. Similarly,
m does not return aliases to the hidden
collection representing the returned ex-
pression. Note that, with respect to multiplicity, overriding methods must be con-
travariant in the formal parameter multiplicities (i.e., option can be overridden with
any etc.) and covariant in the return multiplicities (i.e., any can be overridden with op-
tion etc.). Figure 4 has an example of a covariantly overridden method (getLeaves()).

Test for Identity Strictly speaking, a test for identity (“==”) does not make sense
for multitudes of objects: if multitudes are not reified, how can they be identical? On
the other hand, if the dynamic multiplicities of the left-hand side and the right-hand
side of such a test are 0 or 1, there seems little choice in defining the meaning of == :
it is true if and only if either both evaluate to the same object, or both evaluate to null .
For greater numbers of objects, it would seem reasonable to require that both sides
have the same dynamic multiplicities; yet, this means that even immediately after

original (without using multiplicities) using multiplicities
abstract class Composite {

abstract List<Leaf> getLeaves ();

}

class Component extends Composite {

List<Composite> children = new ArrayList<>();

List<Leaf> getLeaves () {

List<Leaf leaves = new ArrayList<>();

for (Composite child : children)

leaves.addAll(child.getLeaves());

return leaves;

}

}

class Leaf extends Composite {

List<Leaf> getLeaves () {

return Arrays.asList(this);

}

}

abstract class Composite {

abstract @any Leaf getLeaves ();

}

class Component extends Composite {

@any Composite children;

@any Leaf getLeaves () {

return children.getLeaves();

}

}

class Leaf extends Composite {

@option Leaf getLeaves () {

return this;

}

}

Figure 4: Example of implementing a composite structure with and without using
multiplicities (differences highlighted)

Paper II: Multitudes of Objects 109

an assignment of an expression having multiplicity @any(List) to a variable having
multiplicity @any(Set), identity may not be given (due to the dropping of duplicate
objects). In practice, what it means for two multitudes to be identical (or only equal) is
at least as variable as what it means for two collections to be equal, so that eventually,
the programmer must be given control over this question (by letting her implement
her own tests). Therefore, we made an arbitrary choice for == and implemented it as
each object from each multitude occurring exactly the same number of times in both
multitudes. Note that for a test of equality using the equals(. . .) methods provided
for collections, the multitudes must be wrapped first (see Section 4.3).

Iteration over Multitudes While member access on a multitude results in an im-
plicit (hidden) iteration over its objects (see “Member Access” above), there are
iterations that require explicit access to the individual objects of the multitude, for
instance to apply a filter, because there are case analyses to be made, or because the
objects are to be used as arguments to operations or method calls (see Section 6.1
for examples). In these cases, wrapping a multitude in a collection (see Section 4.3)
allows us to iterate over its objects as usual, i.e., using for , while, and do. For the spe-
cial (and presumably most frequent) case of using the enhanced for loop, multitudes
can be used in place of an iterable object without prior wrapping in a collection.
E.g., we can write

for (Account account : accounts) ...

if accounts is declared as @any Account accounts. Note that, if the type of accounts

was a subtype of Iterable , the for-loop would still iterate over the multitude, and
not the elements of the iterable(s). This is also true if the (declared) multiplicity of
accounts is @option (in which case the for-loop behaves more like an if -statement).

While the Java 8 Stream API adds another abstraction over collections which
makes them more convenient to use by removing the need for external iteration in
many cases, a stream is just another container — and hence another reification — of
a multitude of objects. However, using the wrapping mechanism (see above and Sec-
tion 4.3), the full repertoire of stream operations can be invoked on multitudes; in case
of the above accounts example, one simply needs to write [[accounts]].stream(). . . .

5 Implementation

We implemented multiplicities for Java as described above as an extension to JastAddJ
[13], an extensible Java compiler implemented using reference attribute grammars
[12; 20], and which currently supports Java 7 [30]. The extension comprises 44
source lines of JastAdd code for the syntax, 672 lines for the static semantics, and
1,180 lines for code generation. The multiplicity compiler can be downloaded from
https://bitbucket.org/joqvist/multiplicities.

Abstract Syntax Abstract syntax is added to support multiplicity modifiers and
expressions for wrapping/unwrapping, cardinality, and multiplicity casts, as shown
in Figure 5. Each rule corresponds to a class representing an abstract syntax tree

https://bitbucket.org/joqvist/multiplicities

110 Paper II: Multitudes of Objects

(AST) node, extending and reusing existing classes in the JastAddJ compiler, like
Modifier, Access, and Expr. Much of the static semantics behaviour, like name
analysis, is reused as is from JastAddJ, but type analysis is refined in the extension,
supplying new attribute grammar equations that define appropriate attribute values
to handle multiplicities.

abstract MultiplicityModifier extends Modifier;

AnyModifier extends MultiplicityModifier ::=

ContainerType:Access;

AnyDefaultModifier extends MultiplicityModifier;

OptionModifier extends MultiplicityModifier;

BareModifier extends MultiplicityModifier;

MultiplicityWrap extends Expr ::= Expr;

MultiplicityCardinality extends Expr ::= Expr;

MultiplicityCast extends Expr ::=

Modifier:MultiplicityModifier

[TypeAccess:Access]

Expr;

Figure 5: Abstract syntax of extension with multiplicities

Type Analysis In JastAddJ, each type is represented by a unique AST node. Type
checking, as used in assignment, parameter passing, etc., relies on the binary property
of assignment compatibility which is implemented by comparing two type nodes,
using double dispatch to encode the type lattice in an extensible way [13]. To handle
types with multiplicities (other than bare), we construct synthetic multiplicity nodes
that decorate ordinary type nodes. This allows us to compare different multiplicities
with each other and with bare (non-decorated) types, again using the double dispatch
pattern.

The synthetic nodes are constructed using the attribute grammar mechanism
of non-terminal attributes (NTAs) [40], i.e., attributes whose values are new AST
children. In JastAddJ, all attributes are computed automatically by the attribute
grammar evaluator, and on demand, constructing only the synthetic decorating nodes
that are needed for a particular program.

As an example, consider the following code fragment:

@any Account accounts;

...

accounts += new Account ();

Figure 6 shows parts of the corresponding attributed AST. While the new expression
is bound to the (bare) Account type, the declaration and access of accounts are bound
to the AnyMult node that decorates the Account type.

Member Access Multiplicities affect the analysis of member accesses (qualified
expressions). In regular Java code, the type of any qualified expression is the type of

Paper II: Multitudes of Objects 111

VarDecl

"accounts"

Modifier
TypeAccess

"Account"

AssignPlus

VarAccess

"accounts"

New

"Account"

TypeDecl

"Account"

AnyMult

node

NTA node

type attribute

Figure 6: AST with reference attributes (see text)

the object on the right-hand side of the rightmost dot. The qualifiers are only used
for looking up the declaration of the rightmost part. However, with multiplicities it
is not sufficient to only look at the multiplicity of the rightmost part – the qualifying
expression multiplicities may affect the multiplicity of the whole expression. For ex-
ample, as discussed in Section 3.4, if the Account class has a field @option Bank bank,
the expression accounts.bank will have the multiplicity any, although bank has the
multiplicity option. This is handled by extending the type analysis with attributes
to find the multiplicity of the left-hand part of a dot expression. The multiplicity of
the entire dot expression is computed using both the multiplicity of the left and right
parts, following Table 1.

Code Generation The code generation constitutes the bulk of the multiplicities
implementation, translating from the higher-level operations on multitudes to corre-
sponding lower-level for-loops, and handling all the different combinations of mul-
tiplicities in assignments and expressions. The implementation largely follows the
translation scheme to a multiplicity-free program proposed in [37]; it is not repeated
here for space reasons (Section 4 provided an outline, however).

Copying Hidden Collections In the bytecode, multiplicity any is represented by a
collection object (the hidden collection), and care must be taken to not create aliases
of these objects when multiplicity values are copied. For this reason, we create a
copy of the collection object

• when passing an any as an argument to a method or constructor,

• when returning an any from a method,

• at an explicit (@any) cast, and

• when the multiplicity wrap expression either wraps or unwraps an any.

112 Paper II: Multitudes of Objects

The assignment to an any does not need to create a copy of the hidden collection of
the right-hand side — instead, the objects of this collection are added to the cleared
hidden collection of the left-hand side.

Copying of collections can in many cases be avoided through static analysis and/or
lazy copying: In certain cases, we can deduce statically that the original collection
cannot be used anymore, for instance when returning the value of a local variable.
In these cases, copying is not needed. Another optimization strategy is to represent
a multitude by a wrapper object that contains an internal collection. Copying can
then be implemented lazily by doing a shallow copy of the wrapper object, delaying
the copying of the internal object until it is modified. By letting the wrapper keep
a reference count, copying of the internal collection can be avoided for wrappers
whose internal collection is not shared by other wrappers. We implemented such
lazy collections as a library that we then benchmarked against the regular, non-lazy
collections in our case study (see Section 6.3 for the performance discussion).

6 Case Study

To assess the impact of using multiplicities in a representative case study, we looked
for a subject program

1. that uses a wide array of accepted object-oriented coding idioms so that multi-
plicities can be evaluated in a spectrum of constructions typically encountered
in object-oriented programming,

2. that is tightly covered by test cases so that accidental changes of functional
behaviour induced by the use of multiplicities would quickly be discovered,
and

3. that can be run using file-based input that is openly available for reproduction
of our performance observations (replication).

Given these criteria, we selected the widely known regression testing framework
JUnit 4.0

1. since it is renowned for its consistent use of design patterns and, generally, for
its exemplary object-oriented style,

2. since its own test suite is comprehensive, and

3. since open-source programs are available whose test suites execute it, giving
us the standardized program runs we wanted.

Note in particular that every JUnit test suite tests not only the program under test,
but also JUnit itself against the suite’s oracle: all and only the tests of a program that
pass using the original version of JUnit should also pass using our modified version
using multiplicities. We selected JUnit 4.0 rather than one of its successors since it
is manageable in size and since it contains fewer features that are not used by the
majority of available JUnit test suites.

Paper II: Multitudes of Objects 113

To manually obtain a version of JUnit that utilizes multiplicities in a way that is
both reproducible and that we deem to be representative of how multiplicities will
be used in practice, we changed the multiplicity of every field having a collection
type whose element type (type parameter) is not a value type to @any (and removed
the collection type from the type declaration), and every other field not having a
value type to @option. We then changed the multiplicity of every other variable and
method return as required by the assignment compatibility and overriding rules of
multiplicities (see Section 4.6), unless where use of APIs (method invocation and
subclassing) required bare parameters (in which case a cast to bare was introduced).
The results of this procedure are summarized in Table 2.

any option bare total value-typed†

fields 11 44 121 176 29
returns 9 34 249 292 108
formals 3 83 642 728 403
locals 7 34 482 523 380
casts to 2§ 21$ 92 115
total 32 216 1586 1834 920† included in bare§ implicit upcasts

$ all downcasts from any

Table 2: Multiplicities in declarations and casts

6.1 How Introduction of @any Changes Program Source

There were 11 collection-typed fields whose type parameter (element type) was not
a value type (cf. Section 3.6), and which we changed to multiplicity any. Of these, 5
were originally declared final ; in 4 of these cases, the final modifier had to be dropped
since the multitudes were actually modified after initialization (cf. Section 2.7).
Introducing the multiplicity @any (and changing the types; cf. Section 3.2) for
these 11 fields required the subsequent change of 3 formal parameters (one of which
involved the removal of a wildcard; cf. Section 2.3), of 9 method returns, and of 7 local
variables (giving us a total of 30 introduced @any annotations; see Table 2). Of the
remaining 27 uses of collections, 9 were required by APIs, 5 held instances of value
types, 3 were required by concurrent modification (iter/remove; see Section 6.1), and
the rest was used by local variables that never got a field assigned to it (they could
also have been changed to multiplicity any).

Together with the introduction of @any annotations, we replaced 12 invocations
of add(. . .) and 1 of addAll(. . .) with +=, and 2 invocations of remove(. . .) with−=; at
the same time, 10 invocations of size () where replace with | [. . .]| and 5 invocations of
isEmpty() were replaced with a test for null (cf. Section 3.2). There were 27 indexed
accesses to list elements (using get(. . .)) in the original program where the list was

114 Paper II: Multitudes of Objects

replaced by an any multitude; all but 5 of these could be removed using multiplicity
downcasting (see Section 6.1); the remaining 5 required wrapping (see Section 6.1).

Loop Elimination

One of the supposed benefits of introducing any multiplicity is the elimination of
loops (see Sections 2.1 and 3.4). And indeed, 5 for-loops over the elements of
collections could be replaced by plain member access on a corresponding multitude
of objects. For instance, we replaced the loop

for (Runner each : fRunners)

each.run(notifier);

(from CompositeRunner.run(RunNotifier)) with

fRunners.run(notifier);

In addition, even where the iteration variable is not used as the left-most receiver in
the loop expression (as above), it may still be possible to eliminate the loop. For
instance,

for (Runner runner : fRunners)

spec.addChild(runner.getDescription ());

(from CompositeRunner.getDescription()) was rewritten to

spec.addChild(fRunners.getDescription ());

after the multiplicity of the formal parameter description in

public void addChild(Description description) {

fChildren += description;

}

had been changed to @any (note how this does not affect the implementation of
addChild(. . .)).2 However, because bare members may not be accessed on option or
any receivers (Section 4.6), this required the declaration of @option as the returned
multiplicity of getDescription(. . .) which, since option is not assignment compatible
with bare (Section 4.1), required the subsequent introduction of 32 more @option

annotations throughout the program. Yet, given that @any and @option annotations
are designed to be used together, this does not appear to be counterproductive.

With a little redesign of programs, loop elimination can be pushed even
further. For instance, we found (in method createTest(. . .) from class
JUnit4TestAdapterCache) the loop

for (Description child : description.getChildren ())

suite.addTest(asTest(child));

2In fact, increasing parameter multiplicity of add ...(@option) methods like the above allowed us to
drop two addAll ...(@any) methods from the JUnit 4.0 source (they are now subsumed by the add ...(@any)

methods).

Paper II: Multitudes of Objects 115

Here, the loop variable child is the argument of another method so that introducing
multiplicity @any for the parameter of addTest(. . .) as above is not sufficient —
asTest(. . .) would need to be changed to accept and return any multiplicity as well,
which would require a major reworking of its implementation. However, as it turned
out, asTest(. . .) can straightforwardly be moved to class Description (the class of its
formal parameter, using the refactoring Move Method [16]), so that the loop can be
replaced by

suite.addTest(description.getChildren (). asTest(this));

which is not only more succinct, but also more fluent3 than the original phrasing. In
fact, this minor refactoring even allowed us to remove a loop that was designed to fill
a collection: we turned

List<Test> returnThis = new ArrayList <Test>();

for (Description child : description.getChildren ())

returnThis.add(child.asTest(this));

return returnThis;

(from JUnit4TestAdapterCache.asTestList(. . .)) into

return new ArrayList <Test>(

[[description.getChildren (). asTest(this)]]

);

in which the any multitude returned by asTest(. . .) is wrapped in a collection (note
that API calls explicitly expect the collection here; hence the name of the method,
“asTestList”!).

Of the 11 loops on the elements from a multitude that could not be removed,
2 contained accesses of value-typed members (methods for counting the number
of leaves in a composite structure; see Figure 4 for how this can be simplified
using collections), 3 used explicit iterators for removing elements from the originally
underlying collection (cf. Section 6.1), and 6 had complex loop bodies that would
have required major refactorings to cast them to member access on any expressions.

Wrapping and Unwrapping Multitudes

We required a total of 15 wrappings or unwrappings:

• In 5 cases, wrapping a multitude in a list was necessary because indexed access
to individual objects was required and the dynamic multiplicity was not known
to be 0 or 1 (in which case a downcast to option would have been sufficient;
cf. Section 4.5).

• In 3 cases, wrapping a multitude into and subsequently unwrapping it from a
local list-typed variable was necessary because of iter .remove() loops.

• The remaining 4 wrappings and unwrappings were due to API calls.

3“fluent” in the sense of a “fluent API”:
see http://www.martinfowler.com/bliki/FluentInterface.html

http://www.martinfowler.com/bliki/FluentInterface.html

116 Paper II: Multitudes of Objects

Multiplicity Casting

In Java without multiplicities, a multiplicity upcast (from option to any) requires the
wrapping of a single object in a collection. For instance, the method whose header
is declared as

List<Throwable > getCauses(Throwable cause)

(from class ErrorReportingRequest) returns the expression Arrays.asList (cause) as a
special case. In case cause was null, it would need to return an empty list, involving
yet another clumsy construction (see Section 6.1). Using multiplicities, the same
method is declared as

@any(List) Throwable getCauses(@option Throwable cause)

for which cause is a type-correct and multiplicity-correct return expression (the
multiplicity upcast is implicit here).

Multiplicity downcasts (from any to option) are somewhat more involved. In
standard Java, this would require the test of the size of a collection and, in case it is
1, the extraction of the sole element of the collection (the cast would result in null if
size is 0, or else raise an exception). Indeed, we found 24 of constructions such as

Failure failure= result.getFailures (). get (0);

assertEquals(expected , failure.getDescription ());

in JUnit, which silently assumes that there is at least one failure and ignores possible
failures beyond the first (actually, it leaves unstated whether there may be additional
failures). Using multiplicities, we can rewrite the first line to

@option Failure failure= (@option) result.getFailures ();

which makes the cast explicit and states that there should be at most one failure
(which proved to be the correct assumption in 17 out of the 24 occurrences of this
pattern).

Enforce Proper Encapsulation of Multitudes

As noted in Section 2.4, fields holding collections should be encapsulated and not be
passed to clients via getters. Nevertheless, we find in JUnit’s class Description the
method

public ArrayList <Description > getChildren () {

return fChildren;

}

allowing clients to bypass the public method addChild(. . .) supplied by the same class
for directly manipulating the children of Description objects. After replacing the
declaration of the field fChildren in Description with

@any(ArrayList) Description fChildren;

Paper II: Multitudes of Objects 117

and adjusting the above declaration of getChildren() accordingly, an invocation of
getChildren (). add(. . .) will have no effect on fChildren, since getChildren() no longer
returns an alias of it (Section 3.5). As it turns out, however, the sole occurrence of
a manipulation of fChildren in JUnit via getChildren() is in the body of addChild(. . .)
itself:

public void addChild(Description description) {

getChildren (). add(description);

}

Here, the idea of Self Encapsulate Field [16] clearly conflicts with how collec-
tions should be encapsulated (see Section 2.4). Using multiplicities, the body of
addChild(. . .) is rewritten to

fChildren += description;

while that of getChildren() can remain as is, without granting true clients access to
fChildren.

While the use of multiplicities enforces proper encapsulation as shown above, it
can also help avoid explicit cloning, as found in class TestResult:

synchronized List<TestListener > cloneListeners () {

List<TestListener > result= new ArrayList <>();

result.addAll(fListeners);

return result;

}

Here, using multiplicity any it suffices to return fListeners in the body of the
method (which needs to remain synchronized — all multiplicity operations are non-
synchronized by default).

Uniform Use of null

The fact that relating to no object in a to-many relationship is commonly represented
by an empty collection (cf. Section 2.2) has led to the introduction of special collec-
tion classes (e.g., Collections.EmptyList, Collections.EmptySet, both from java. util)
whose sole instances represent an empty collection. For instance, the method declared
as

List<Throwable > validateAllMethods(Class <?> clazz)

(from class ParameterizedTestMethodTest) returns Collections.emptyList() as a spe-
cial case (an upcast from multiplicity none to any). Replacing the declaration of the
method with

@any(List) Throwable validateAllMethods(Class <?> clazz)

allows the method to return null instead, which has the same meaning as null for
@option, i.e., is subsequently interpreted as no object (and, unless it is cast to @bare,
cannot cause a null pointer exception). Note that the fact that, unlike Collections

.emptyList(), the returned multitude is mutable maintains behavioural subtyping [22]:
while

118 Paper II: Multitudes of Objects

@any(List) Throwable result = null;

result += new Throwable("it's OK!");

is indeed OK, the seeming equivalent

List<Throwable > result = Collections.emptyList ();

result.add(new Throwable("not OK!!"));

causes an “unsupported operation” exception.

Uniform Call Semantics

The fact that method calls are by value effectively (i.e., a method cannot mod-
ify the multitude that it gets passed; cf. Section 3.5) means that methods such as
void Collections. sort (List<T>) (which would need to be rewritten to void Collections

. sort (@any(List) T)) no longer work, simply since sorting has no effect on the mul-
titude that is passed into the method. To fix this, we wrote our own sort method that
returns a sorted multitude which can be assigned back to the variable holding the
original multitude. Specifically, we changed 2 invocations of the kind

Collections.sort(fRunners , . . .)

(here from class CompositeRunner) to

fRunners = Multiplicities.sort(fRunners , . . .)

where Multiplicities is a helper class analogous to Collections. Note how this
makes clear why fRunners cannot be declared final , since the multitude is in fact
changed (even though the collection secretly holding it has remained the same object;
cf. Section 2.7).

6.2 How Introduction of @option Changes Program Source

Changing the remaining fields that did not have value types to multiplicity option,
and subsequently also formal parameters, method returns, and local variables as
required by the rules of Section 4.1, gave us a total of 44 fields, 34 returns, 83 formal
parameters, and 34 locals, all with multiplicity option (see Table 2).

Elimination of Tests for Not Null

Just like the use of any can eliminate loops, the use of option can eliminate tests for
not null (Section 4.6). As it turns out, however, JUnit does not make much use of the
value null representing “no object”: in fact, in the whole of JUnit there is no test for
not null on a field that could be declared with @option, and only a single test for null
(which is however only used for lazy initialization of the field). However, there are
some tests for not null on local variables, one of which,

Runner childRunner= Request.aClass(each). getRunner ();

if (childRunner != null)

runner.add(childRunner);

Paper II: Multitudes of Objects 119

(from method ClassesRequest.getRunner()), we could rewrite to

runner.add(Request.aClass(each). getRunner ());

This was possible since method add(. . .) accepts any multiplicity and getRunner()

returns option multiplicity, and since null uniformly means “no object” for option
and any multiplicities (see Sections 3.2 and 4.6).

Multiplicity Casting

While explicit and implicit multiplicity casts to option and any avoid clumsy coding
idioms (Section 6.1), the current well-formedness rules of multiplicities may also
require explicit downcasts to bare (cf. Section 4.5), which can be a nuisance. Specif-
ically, the fact that value-typed members (which must be bare) may not be accessed
on receiver expressions with multiplicity option (Sections 3.6 and 4.6) can require
annoying casts. For instance, in

public int countTestCases () {

return ((@bare) fRunner). testCount ();

}

(from class JUnit4TestAdapter) the cast (@bare) is required since fRunner has multi-
plicity option (meaning that it may evaluate to no object) and testCount() returns an
integer. Even though the cast (@bare) can be read as a warning that a null pointer
exception may occur here (which can never occur when dereferencing option or any
receivers; see Section 3.4), given that we needed to insert 62 such casts in JUnit
(cf. Table 2; the remaining 30 casts to bare were needed for interfacing the JDK and
assertions), not all programmers will regard this aspect of our language design as
ideal. An elegant solution to this problem seems to be the introduction of one as
an additional multiplicity annotation (for relating to precisely 1 object) and to allow
access of bare members on one receivers with resulting multiplicity bare. However,
since this would require our notion of multiplicities to be integrated with existing
not-null annotations and checks, we have left this to future work (Section 8.1).

6.3 Performance Observations

To check the correctness of our multiplicity compiler, we ran JUnit’s own test suite
on our multiplicity-enhanced version of JUnit (named “JUnit-M”), and also on the
test suites of three additional multiplicity-free benchmark programs listed in Table 3.
All tests gave the same results, suggesting that the modified and the original version
of JUnit are functionally equivalent. There were 25 test cases that failed in both
versions (for AC Lang), because they require a newer runtime version of JUnit. We
decided to keep these tests since they exercise failing behaviour in JUnit. All other
tests that could be compiled with JUnit 4.0 (cf. Table 3) passed.

To check how multiplicities affected the execution time of JUnit-M, we compared
running the following different compiled versions of JUnit:

• ju4jc: original JUnit 4.0 compiled using javac from OpenJDK 7, i.e., the
reference compiler for Java.

120 Paper II: Multitudes of Objects

• ju4jj: original JUnit 4.0 compiled using JastAddJ for Java 7.

• ju4m: JUnit-M 4.0 compiled with our multiplicity-enhanced compiler

• ju4l: JUnit-M 4.0 compiled with a variant of our multiplicity-enhanced com-
piler that uses lazy copying of collections, as described at the end of Section 5.

We used these four different versions of compiled JUnit to run the test suites in
Table 3, all of which were compiled using javac.

Subject program and Version Number of Test Cases
Apache Commons Codec 1.3 191
Apache Commons Lang 3.0 1923†§

Jaxen 1.1.6 716$

JUnit 4.0 255† excluding 10 that we had to remove because they could not be
compiled with JUnit 4.0§ 25 of these tests fail both with and without multiplicities because
they should normally be run with JUnit 4.7 (see text)
$ excluding 2 that were removed because they contain an infinite loop
(see text)

Table 3: Subject programs used in the evaluation.

Steady-state performance We measured execution time in steady state, i.e., after
running for a while so that the optimizing JIT compiler has warmed up, and reached a
stable state. This is a relevant test scenario for long running applications. However, to
use this method on the JUnit test suite, we had to remove two test cases that include an
infinite loop that can be stopped only by a call to System.exit() (thereby terminating
the host JVM).

To measure on steady state, we used the multi-iteration determinism method for
benchmarking from Blackburn et al. [5], which includes the following steps:

1. The benchmark is iterated N − 1 times in the same JVM to achieve steady-
state for the JIT.

2. JIT optimization is then turned off to not further affect the measurements.

3. One more iteration of the benchmark is made, but is not measured.

4. Finally, K iterations are made, measuring the execution time of each.

During different runs (consisting of N +K iterations of the benchmark), the JIT may
stabilize on different states, due to the non-determinism of the JIT optimization. For
this reason, we make R runs for each benchmark, and compute the arithmetic mean
of the means of the K iterations in each run, and the 95% confidence interval, as

Paper II: Multitudes of Objects 121

ju4jc ju4jj ju4m ju4l ju4m/ju4jj loss
AC Codec
mean 172 169 178 204 0.0530
conf. int. ±16.5 ±15.2 ±15.5 ±2.7
AC Lang
mean 6747 6748 6750 6758 0.0003
conf. int. ±2.6 ±2.6 ±2.2 ±2.3
Jaxen
mean 249 248 249 258 0.0033
conf. int. ±3.1 ±1.0 ±1.3 ±1.3
JUnit
mean 845 848 853 867 0.0053
conf. int. ±2.2 ±2.3 ±2.6 ±3.1

Table 4: Execution times (in msecs).

suggested by Georges et al [17]. For our measurements we chose R = 15, N = 30,
and K = 20. Table 4 shows the results of our steady-state experiments.

In comparing ju4jj and ju4m, we anticipated there to be a performance loss due
to copied collections and extra null checks. We can see that there is a tendency to a
slight performance loss when using multiplicities for all four benchmarks. However,
the confidence intervals overlap, and the difference between the means is only 5%
for AC Codec, and less than 1% for the other benchmarks. We therefore regard the
performance loss as negligible. We can also note that the performance of the javac
compiler and the JastAddJ compiler (ju4jc and ju4jj) are almost the same, indicating
that the results should transfer to javac, should one wish to implement multiplicities
there.

Using Lazy Copying Table 4 also shows the results from running ju4l, i.e., JUnit-
M compiled with a variant of our multiplicity-enhanced compiler that implements
lazy copying of collections, as discussed at the end of Section 5. Unfortunately,
the results show that the use of lazy copying degrades the performance, rather than
improving it. We measured the number of copied collections (Table 5) and their
sizes, and found that around half of the collections had size 0 and that less than 1%
had a size larger than 10. Apparently, because the collections are so small, the cost
of copying the hidden collection is lower than the cost of delegating all method calls
through an intermediate lazy collection. Further investigation is needed to see if the
implementation of the lazy copying can be improved, and if it can be useful for other
benchmarks.

6.4 Discussion

As the examples of Figure 4 and Figure 4 suggest, savings in terms of the number
of tokens used in a program fragment can be considerable. Also, Section 6.1 pre-

122 Paper II: Multitudes of Objects

AC Codec AC Lang Jaxen JUnit
collection copies 1007 20326 8038 8105
avoided using lazy 778 16516 6554 6884
checking not null 1045 8417 3112 3310

Table 5: Instruction overhead

sented several interesting examples of loop elimination enabled by member access
on multitudes of objects. In a complete program, however, savings are diluted, and
the total number of tokens can even increase because of the additional annotations
required in declarations. In fact, in our case study the multiplicity-enhanced version
has 151 more tokens than its original. However, this increase is explained by the
additional annotations used in declarations, whereas the number of tokens in the
other statements (instructions) are reduced. The possible reduction of tokens in the
instructions is currently diminished by the casts to bare that we had to introduce for
interfacing with API code and accessing bare members (Section 6.2). We expect
these numbers to improve with the introduction of one as an additional multiplicity,
and of course with the migration of APIs.

7 Related Work

Smalltalk not only comes with a powerful collections library, with its indexed instance
variables it also offers a way of directly associating one object with a multitude
of other objects, without reifying this association [19]. However, since indexed
integer variables are unnamed (they are similar to the so-called indexers of the
.NET languages [23]), there can be only one set of indexed instance variables per
object, limiting their use for implementing relationships (of which an object may have
many). And yet, indexed instance variables share with our any fields that two objects
cannot share the same set of indexed instance variables (i.e., there is no aliasing of
multitudes).

The object constraint language (OCL) [6; 27], which is used to express condi-
tions of well-formedness of UML models, allows the dereferencing (“navigation”) of
attributes and associations with arbitrary multiplicities using the dot notation. How-
ever, OCL still reifies multitudes of objects using collections; the difference between
one and many objects (singular and plural) is mitigated only slightly by allowing
collection operations to be applied to single objects also. This is different for Alloy
[21], a textual modelling language which maps object-orientation to relational logic
and in which the notion of multiplicity is also prominent. Unlike OCL, Alloy does
not distinguish between scalars and sets, and treats scalars as singletons. This largely
removes the differences between one and many objects from Alloy expressions (which
we strive for also); however, like OCL, Alloy is not a programming language.

The programming languages JavaFX™ [38] and Cω [2] offer sequences, or
streams, as array-like type constructors for variables with multiplicities greater than
1. Like arrays, sequences are reified multitudes of objects; however, unlike arrays,

Paper II: Multitudes of Objects 123

they are immutable and have value semantics. Sequences cannot be nested — any
attempt to do so results in a flat sequence. null in the context of a sequence means
the empty sequence and a scalar value means a singleton sequence, so that both can
be assigned to a sequence-typed variable. In Cω, a stream can occur as the receiver
of a member access; this access is then mapped over the elements of the stream,
yielding a stream of the member type (so that chained member accesses on streams
are possible). While this generalized member access has the same semantics as
corresponding expressions in OCL and Alloy, the suitability of streams (which have
been subsumed by iterators in C# 3.0 [4]) for implementing relationships to many
objects is limited by their immutability.

The semantics of our static multiplicity option is somewhat similar to using the
Option class in Scala [29]: a receiver of type Option can be None, in which case
applying a function (using map or flatMap) produces None. Similarly, a function can
be applied to a collection (again using map or flatMap), resulting in a collection of
the same type, containing the return values. The main difference to object-oriented
programming with multiplicities as put forward here is that we use no container
types, but instead separate type from multiplicity, avoiding the awkward dominance
of the container type over the content type [37] imposed by wrappers such as Option

and collections. Another difference is that in object-oriented programming with
multiplicities as we implemented it, the use of flatMap to apply functions to option
and any multiplicities is implicit.

Ungar and Adams have recently presented a parallel programming language Ly
that offers so-called ensembles as an alternative to collections [39]. Ensembles
accommodate member objects that, when the ensemble is sent a message, all respond
in parallel. However, unlike our multitudes of objects, an ensemble in Ly is a first-
class object, and a singleton ensemble is different from the object that it contains.
Since Ly is untyped, runtime checks are required to avoid that an ensemble contains
itself (which may lead to infinite recursion when a message received by an ensemble is
forwarded to itself). Also, empty ensembles are currently not integrated seamlessly,
and demand further dynamic checks. It seems that the multiplicities described in this
paper would solve at least some of the problems incurred by ensembles (but notably
not those related to parallelism).

While implementing relationships to many objects using collections (or similar
reifications of multitudes) is by far the most commonly used pattern [26], automatic
mappings from object-oriented models to programs may introduce other, more so-
phisticated patterns [18]. Both are however challenged by integrating relationships
in object-oriented programming as a native concept.

As far back as 25 years ago, Rumbaugh argued for the lifting of the field-and-
collection based relationship encodings of object-oriented programs to the level of
a first class language construct [34]. For this purpose he introduced relations as
instances of a special class Relation that has fields holding a relation declaration (i.e.,
the types of the participants, role names, cardinalities, etc.), as well as a field holding
the extension of the relation (i.e., its tuples). Unlike in many other approaches
that followed, an instance of Relation represents a relation, not a tuple; standard
operations Rumbaugh defined on these instances included the adding and removal of
tuples, indexed access to tuples of the relation, and scanning of the relation (iterating

124 Paper II: Multitudes of Objects

over its tuples). Later, Rumbaugh also added propagation attributes to relations
which allowed the controlled recursive propagation of certain method invocations
through object graphs [35]; however, this is not to be confused with our lifting of
method invocations from single objects to multitudes of objects. While Rumbaugh’s
proposals amount to embedding a native implementation of (parts of) a relational
database system in object-oriented programs, our approach of implementing to-many
references is lightweight. Also, our relationships (represented by multitudes of
objects) are not first-class.

Østerbye picked up Rumbaugh’s proposals and presented a Smalltalk-based as-
sociation compiler that can choose between internal and external implementations of
relationships [32]. An internal implementation keeps the information which other ob-
jects an object is related to local to the object, whereas an external implementation uses
first class relationship objects for this purpose. Independent of the implementation
choice, Østerbye, like Rumbaugh before him, offers role-based and association-based
access to relationships. However, in his role-based access protocol, he distinguishes
between to-one and to-many relationships, continuing the discontinuity we want to
rid programming of. This discontinuity is preserved in Østerbye’s subsequent work
[31], in which he leaves the untyped realm of Smalltalk to present a library-based
approach for C#. In his library, association classes are complemented by role classes
providing for internal implementation of relationships. However, given the funda-
mental meaning relationships have in most problem domains, we argue for a native,
rather than a library-based, integration of relationships.

Bierman and Wren’s RelJ is based on a formalized notion of relationships as first
class types whose instances, called relationship instances, are tuples [3]. These tuples,
which — like objects — can have state and behaviour, are created and returned by
adding a pair of objects to a relationship. Navigation of a relationship always results
in a set having value semantics, making the result of navigation covariant with the
target type of the navigation [3]. However, sets cannot be the source of navigation, so
that navigation cannot be chained as in our approach. Bierman and Wren also suggest
how multiplicities can be restricted statically, using one (for [0, 1], analogous to our
option) and many (for [0, ∗], analogous to our any) annotations; the invariant imposed
by one is then enforced by changing the semantics of adding to a relationship with
that of replacing an instance of a relationship (destructive update, or assignment). By
contrast, we have restricted the additive update (+=) to any multiplicities, and require
a downcast from any to option for an assignment to option, protecting us from a silent
change of behaviour when a multiplicity is changed from any to option.

The relationship aspects of Pearce and Noble use the intertype declarations of
AspectJ to shift the bookkeeping necessary for maintaining relationships between
objects from the objects to relationships [33]. The relationships are coded as aspects
which can carry additional, relationship-specific behaviour. Class definitions remain
ignorant of the relationships for which they supply the participants, which is consid-
ered an increase in the separation of concerns. This separation goes too far, however,
when an object needs access to others it is related to — in that case, it has to query
the relationship it was to be kept unaware of.

In the language Rumer, references to objects are completely expelled from so-
called entity types (conventional classes), and objects are related exclusively through

Paper II: Multitudes of Objects 125

relationship types [1]. It follows that, analogous to the relationship aspects of Pearce
and Noble [33], only relationships know which entities are related (referred to as
stratification in [1]). Entity and relationship types have associated extent types which
are instantiated and populated explicitly by the programmer. Relationships can be
nested, and relationship extents can be owned by relationships, so that they cannot
escape the owning relationship. While owned relationship extents bear some resem-
blance to our multiplicities (which likewise cannot be aliased), the whole approach
seems rather heavy weight — in particular, with all knowledge about relationships
fully encapsulated in relationships (so that objects are ignorant of whether and how
they are related), much of an application’s logic (including that captured in most
methods) has to be moved to relationships, with objects being degraded mostly to
passive data containers with identity. This means a fundamental paradigm shift for
object-oriented programming, and migrating an existing application to the concepts
embodied in Rumer will amount to a major redesign effort.

8 Future Work

8.1 Integrating NonNull

As noted in Section 6.2, introduction of multiplicity one would help avoid an un-
pleasant restriction concerning the access of bare members via option receivers. The
multiplicity one is equivalent to annotating a type use as being NonNull like in, for
example, the Checker framework [11]. Additionally, (@one) can be used as a cast
on an expression. Fähndrich and Leino showed how NonNull can be implemented to
handle initialization correctly, introducing the notion of raw types [15]. This solution
has been implemented for a previous version of JastAddJ [14]. A natural next step for
us is thus to extend our implementation of multiplicities with this solution, supporting
multiplicity one. We expect this to allow us to replace the multiplicity of most bare
variables with one, and hence to reduce the number of casts substantially, as one
expressions can safely be used as arguments to library methods requiring bares, and
bare members (value types!) can safely be accessed on one receivers. Additionally,
by adding type annotations, as introduced in Java 8, @NonNull annotations can be
represented by one multiplicities, and be typechecked by the compiler.

8.2 Qualified Access

As noted in Section 4.1, a collection C used in an @any(C) annotation must
have a single type parameter representing the type of the elements of the collec-
tion. This requirement excludes maps from a key type to a value type (such as
HashMap<K, V>). Not excluded, but not especially supported are indexed collections
(like ArrayList<E>), which are special maps (with positive integers as keys): read
access of the ith object to which an expression e with multiplicity any(List) evaluates
currently requires the clumsy workaround [[e]] .get(i); write access is even clumsier
(not shown here). For qualified access of the objects among a multitude, lists and
maps can be generalized to associative arrays, effectively implementing the quali-

126 Paper II: Multitudes of Objects

fied associations of UML [28]. However, we have not yet investigated the language
extensions this would require.

8.3 Case Studies on Modelling and Grammar Frameworks

Our current case study focuses on making use of multiplicities for ordinary Java code.
Another interesting focus for case studies would be to focus on modelling frameworks
such as EMF, where an API is generated from a metamodel expressing relations with
cardinalities. It would be interesting to investigate how multiplicities could be used to
simplify both the API and its usage. Furthermore, an interesting avenue of research
would be to investigate to what extent metamodels can be automatically computed
from code using multiplicities, reducing the gap between models and code.

In a similar manner, it would be interesting to investigate how multiplicities can
simplify abstract syntax tree APIs, as generated by many compiler tools from EBNF-
like formalisms. Here, there is a natural match between the typical child, optional
and list constructs and the one, option and any multiplicities.

8.4 Refactoring to Multiplicities

In our experiment described in Section 6 we refactored JUnit manually from ordinary
Java code to code using multiplicities. An interesting opportunity for further research
is to design automated refactorings for this purpose. Based on the current case study
we can see that most of these refactoring cases are fairly simple (they are related to
a Change Declared Type refactoring), but also that there are a number of challenges
that need to be addressed to find a general refactoring approach.

9 Conclusion

Letting expressions evaluate to any number of objects (rather than just one), and
handling multitudes of objects that are not reified as one object, means a departure
from object-oriented programming as we know it. In this paper, we have picked
up a proposal for implementing object-oriented programming with multiplicities
presented at last year’s Onward! conference [37], and turned it into a fully functional
compiler of Java 7 that can handle multitudes of objects as proposed. We tested this
compiler by changing the source code of JUnit 4.0 so that it utilizes multiplicities,
and by using the binaries produced by the compiler in place of the original binaries
for running a number of different open source test suites on their programs under
test. Functionally, both binaries are equivalent; furthermore, observed performance
measures suggest that using multiplicities in JUnit 4.0 imposes only minor penalties.
At the same time, a detailed analysis of the changes performed on the JUnit sources
suggests that programs can indeed be simplified using multiplicities, avoiding many
of the peculiarities imposed by using collections as containers of multitudes.

Paper II: Multitudes of Objects 127

Acknowledgments

This work was in part financed by the Swedish Research Council under grant 621-
2012-4727.

References

[1] Stephanie Balzer and Thomas R. Gross. “Verifying Multi-object
Invariants with Relationships”. In: ECOOP 2011 - Object-Oriented
Programming - 25th European Conference, Lancaster, UK, July
25-29, 2011 Proceedings. Ed. by Mira Mezini. Springer, 2011,
pp. 358–382.

[2] Gavin M. Bierman, Erik Meijer, and Wolfram Schulte. “The Essence
of Data Access in Cω”. In: ECOOP 2005 - Object-Oriented
Programming, 19th European Conference, Glasgow, UK, July 25-29,
2005, Proceedings. Ed. by Andrew P. Black. Springer, 2005,
pp. 287–311.

[3] Gavin M. Bierman and Alisdair Wren. “First-Class Relationships in
an Object-Oriented Language”. In: ECOOP 2005 - Object-Oriented
Programming, 19th European Conference, Glasgow, UK, July 25-29,
2005, Proceedings. Ed. by Andrew P. Black. Springer, 2005,
pp. 262–286.

[4] Gavin M. Bierman, Erik Meijer, and Mads Torgersen. “Lost in
translation: formalizing proposed extensions to C#”. In: Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA
2007, October 21-25, 2007, Montreal, Quebec, Canada. Ed. by
Richard P. Gabriel et al. ACM, 2007, pp. 479–498.

[5] Stephen M. Blackburn et al. “Wake up and smell the coffee:
evaluation methodology for the 21st century”. In: Commun. ACM
51.8 (2008), pp. 83–89.

[6] Jordi Cabot and Martin Gogolla. “Object Constraint Language
(OCL): A Definitive Guide”. In: Formal Methods for Model-Driven
Engineering - 12th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, SFM
2012, Bertinoro, Italy, June 18-23, 2012. Advanced Lectures. Ed. by
Marco Bernardo, Vittorio Cortellessa, and Alfonso Pierantonio.
Springer, 2012, pp. 58–90.

[8] Peter P. Chen. “The Entity-Relationship Model - Toward a Unified
View of Data”. In: ACM Trans. Database Syst. 1.1 (1976), pp. 9–36.

[9] E. F. Codd. “A Relational Model of Data for Large Shared Data
Banks”. In: Commun. ACM 13.6 (1970), pp. 377–387.

128 Paper II: Multitudes of Objects

[10] Steve Cook and John Daniels. Designing Object Systems:
Object-oriented Modelling with Syntropy. Prentice Hall, 1994.

[11] Werner Dietl et al. “Building and using pluggable type-checkers”. In:
Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28,
2011. Ed. by Richard N. Taylor, Harald Gall, and Nenad Medvidovic.
ACM, 2011, pp. 681–690.

[12] Torbjörn Ekman and Görel Hedin. “The JastAdd system - modular
extensible compiler construction”. In: Sci. Comput. Program. 69.1-3
(2007), pp. 14–26.

[13] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java
compiler”. In: Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada. Ed. by Richard P. Gabriel et al. ACM, 2007,
pp. 1–18.

[14] Torbjörn Ekman and Görel Hedin. “Pluggable checking and
inferencing of nonnull types for Java”. In: Journal of Object
Technology 6.9 (2007), pp. 455–475.

[15] Manuel Fähndrich and K. Rustan M. Leino. “Declaring and checking
non-null types in an object-oriented language”. In: Proceedings of the
2003 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA 2003, October
26-30, 2003, Anaheim, CA, USA. Ed. by Ron Crocker and
Guy L. Steele Jr. ACM, 2003, pp. 302–312.

[16] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[17] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically
rigorous java performance evaluation”. In: Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA
2007, October 21-25, 2007, Montreal, Quebec, Canada. Ed. by
Richard P. Gabriel et al. ACM, 2007, pp. 57–76.

[18] Dominik Gessenharter. “Implementing UML Associations in Java: A
Slim Code Pattern for a Complex Modeling Concept”. In:
Proceedings of the Workshop on Relationships and Associations in
Object-Oriented Languages. RAOOL ’09. Genova, Italy: ACM, 2009,
pp. 17–24.

[19] Adele Goldberg and David Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley, 1983.

[20] Görel Hedin. “Reference Attributed Grammars”. In: Informatica
(Slovenia) 24.3 (2000).

Paper II: Multitudes of Objects 129

[21] Daniel Jackson. Software Abstractions - Logic, Language, and
Analysis. MIT Press, 2011.

[22] Barbara Liskov and Jeannette M. Wing. “A Behavioral Notion of
Subtyping”. In: ACM Trans. Program. Lang. Syst. 16.6 (1994),
pp. 1811–1841.

[23] Microsoft Corporation. C# Language Specification v1.2.
http://download.microsoft.com.

[24] Maurice Naftalin and Philip Wadler. Java generics and collections.
O’Reilly, 2006.

[25] James Noble, Jan Vitek, and John Potter. “Flexible Alias Protection”.
In: ECOOP’98 - Object-Oriented Programming, 12th European
Conference, Brussels, Belgium, July 20-24, 1998, Proceedings.
Ed. by Eric Jul. Springer, 1998, pp. 158–185.

[26] James Noble. “Basic relationship patterns”. In: Pattern Languages of
Program Design 4. Addison-Wesley, 2000, pp. 73–89.

[27] Object Management Group. Object Constraint Language Version 2.2.
http://www.omg.org/spec/OCL/2.2.

[28] Object Management Group. UML Superstructure V2.2.
http://www.omg.org/spec/UML/2.2/Superstructure.

[29] Martin Odersky. The Scala Language Specification. 2009.

[30] Jesper Öqvist and Görel Hedin. “Extending the JastAdd extensible
Java compiler to Java 7”. In: Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, Stuttgart,
Germany, September 11-13, 2013. Ed. by Martin Plümicke and
Walter Binder. ACM, 2013, pp. 147–152.

[31] Kasper Østerbye. “Design of a Class Library for Association
Relationships”. In: Proceedings of the 2007 Symposium on
Library-Centric Software Design. LCSD ’07. Montreal, Canada:
ACM, 2007, pp. 67–75.

[32] Kasper Østerbye. “Associations as a Language Construct”. In:
TOOLS Europe 1999: 29th International Conference on Technology
of Object-Oriented Languages and Systems, 7-10 June 1999, Nancy,
France. IEEE Computer Society, 1999, pp. 224–235.

[33] David J. Pearce and James Noble. “Relationship aspects”. In:
Proceedings of the 5th International Conference on Aspect-Oriented
Software Development, AOSD 2006, Bonn, Germany, March 20-24,
2006. Ed. by Robert E. Filman. ACM, 2006, pp. 75–86.

http://download.microsoft.com
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/UML/2.2/Superstructure

130 Paper II: Multitudes of Objects

[34] James E. Rumbaugh. “Relations as Semantic Constructs in an
Object-Oriented Language”. In: Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87),
Orlando, Florida, USA, October 4-8, 1987, Proceedings. Ed. by
Norman K. Meyrowitz. ACM, 1987, pp. 466–481.

[35] James E. Rumbaugh. “Controlling Propagation of Operations Using
Attributes on Relations”. In: Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’88),
San Diego, California, USA, September 25-30, 1988, Proceedings.
Ed. by Norman K. Meyrowitz. ACM, 1988, pp. 285–296.

[36] James E. Rumbaugh et al. Object-Oriented Modeling and Design.
Prentice-Hall, 1990.

[37] Friedrich Steimann. “Content over container: object-oriented
programming with multiplicities”. In: ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of
SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013. Ed. by
Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld.
ACM, 2013, pp. 173–186.

[38] K. Topley. JavaFX Developer’s Guide. Developer’s Library. Pearson
Education, 2010.

[39] David Ungar and Sam S. Adams. “Harnessing emergence for
manycore programming: early experience integrating ensembles,
adverbs, and object-based inheritance”. In: Companion to the 25th
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
SPLASH/OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada,
USA. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard.
ACM, 2010, pp. 19–26.

[40] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper.
“Higher-Order Attribute Grammars”. In: Proceedings of the ACM
SIGPLAN’89 Conference on Programming Language Design and
Implementation (PLDI), Portland, Oregon, USA, June 21-23, 1989.
Ed. by Richard L. Wexelblat. ACM, 1989, pp. 131–145.

P
a

p
e
r

II
I

Extraction-Based Regression

Test Selection

Abstract

Frequent regression testing is a core activity in agile software development, but large
test suites can lead to long test running times, hampering agility. By safe RTS
(Regression Test Selection) techniques, a subset of the tests can be identified that
cover all tests that can change result since the last run. To pay off in practice, the RTS
overhead must be low. Most existing RTS techniques are based on dynamic coverage
analysis, making the overhead related to the tests run. We present Extraction-Based
RTS, a new safe RTS technique which uses a fast static analysis with very low
overhead, related to the size of the modification rather than to the tests run. The
method is suitable for program-driven testing, commonly used in agile development,
where each test is a piece of code that uses parts of the system under test. We have
implemented the method for Java, and benchmarked it on a number of open source
projects, showing that it pays off substantially in practice.

1 Introduction

Frequent automated regression testing is an essential part of agile software devel-
opment, whether it is done on a continuous integration server, or by the developers
as part of the development cycle [Bec99]. As a project grows, the time for running
regression tests increases, which can hinder agile developement by increasing the
development iteration time.

Jesper Öqvist, Görel Hedin, and Boris Magnusson. “Extraction-Based Regression Test Selection” In
Proceedings of the 13th International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools (PPPJ’16), ACM, pp. 5:1–5:10. Lugano,
Switzerland, 2016.

132 Paper III: Extraction-Based Regression Test Selection

During agile development, it is common to make use of automated program-
driven testing, where each test case is implemented as code, typically using xUnit,
i.e., a testing framework based on Beck’s sUnit framework for Smalltalk [Bec94].
While the name xUnit alludes to unit testing at the class level, an xUnit test case can
call any code, and can thus be used for testing at any granularity, including subsystem
testing, integration testing, and complete system testing. Another commonly used
approach to automated testing is to use input-driven testing, where a program is run
with different sets of input data, and where each data set corresponds to a test case.

An agile developer typically writes the program-driven tests along with produc-
tion code, and runs the complete test suite frequently. In the most extreme case, using
the Test-Driven Development methodology, the developer runs the test suite after cre-
ating each new test, after completing each piece of new or changed functionality, and
after each refactoring [Bec03]. It is thus of great importance to keep the test running
time short, in order to reduce the work interruption of running tests. In addition, the
tests are usually run regularly on a build server, where test runs consume valuable
time and power.

To reduce testing time, Regression Test Selection (RTS) methods can be used,
selecting a subset of the test suite to re-run after a program modification. A multitude
of RTS methods have been published, see, for example, the following surveys [RH96;
Bis+11; YH12]. An RTS method is said to be safe if it will run all tests that
have changed result after a program modification, under certain conditions [RH96].
Running a safe RTS method is thus equivalent to running the complete test suite. An
RTS algorithm is more precise the fewer tests it runs in addition to the safe subset.

To pay off, the overhead of running the RTS algorithm must be lower than the
time it would take to run the tests not selected [LW91]. To achieve this, the right
balance between precision and time spent on analysis should be found: a very precise
analysis could be so slow that it does not make up for the time saved by the reduced
testing time, thus defeating its purpose. To be useful in practice, it is not necessary
that RTS pays off for each run, but it should pay off on the average. Additionally, to
use RTS in agile development, it is desirable that the overhead is low enough to not
be noticed for runs when the RTS does not pay off, for example when all tests are
selected.

In this paper, we present Extraction-Based RTS, a new safe RTS method for
program-driven testing. Our method is static, coarse-grained, and incremental, com-
puting a dependency graph over code files, including both production files and test
files. The dependency graph represents an extraction of each test program, i.e., a
subset of all program files, sufficient for running the test program. The dependency
graph is incrementally updated after changes to the project. This makes the RTS
overhead related to the size of the modification rather than to the project size or to
the number of tests run. Most previous work is instead based on dynamic coverage
analysis, giving an overhead related to the time for running the selected tests.

Extraction-Based RTS is related to methods for computing program extractions,
i.e., methods for reducing the code footprint for applications [AU94; Tip+02]. How-
ever, since one of our main goals is to have a low RTS overhead, we prioritize quick
extraction computation over minimizing extraction size, so we have chosen to use a
coarse-grained extraction algorithm.

Paper III: Extraction-Based Regression Test Selection 133

To evaluate our new method, we have implemented a tool, AutoRTS1, that sup-
ports extraction-based RTS for Java projects with JUnit tests, and measured its per-
formance on several Open Source projects.

Our main contributions are the following:

• A new safe regression test selection method for program-driven testing,
Extraction-Based RTS (Section 2)

• An incremental reverse dependency algorithm that makes the RTS overhead
scalable to large projects (Section 3).

• A concrete instantiation of the algorithm for Java (Section 4).

• An open source tool, AutoRTS, that implements Extraction-based RTS for Java
and JUnit (Section 5).

• Evaluation of the method on open source Java projects, showing that the method
pays off substantially in practice, and that the overhead is very low (Section 6).

Section 7 compares to related work, and Section 8 provides a concluding discus-
sion.

2 Extraction-Based Test Selection

We model a project (the system under test) as a set of code files, F , of which a subset
T ⊆ F are test files. The remaining files P = F \T are called production files. Each
test file t ∈ T serves as a main program that needs a subset of F for its execution,
termed its minimal extraction, emin(t).

We assume that everything outside of F that could affect the program behavior is
stable, e.g., library code, data files, runtime system, operating system, etc. Reading
data from the environment, like the current system time, can affect the control flow
of a test, and while we allow this type of nondeterministic behavior we assume,
for simplicity of presentation, that the test is not flaky [Luo+14], i.e., we assume
that it is written so that it produces the same result regardless of the path taken.
In the terminology of Rothermel and Harrold, the test is deterministically fault
revealing [RH96]. Under these circumstances, a test t will produce the same result
for every run, given that no files in its minimal extraction, emin(t), are modified.
Consequently, if only code files outside of the minimal extraction are modified, we
do not need to rerun the test. Our method trivially generalizes to handle flaky tests
too: there is no reason to rerun a flaky test if we know that its minimal extraction is
unchanged.

Code files could be either in source code form, or in a processed form, like
bytecode or binary object code. We will primarily consider the case of source code,
but see 4.1 for a discussion of bytecode and binary code.

1AutoRTS is available under an Open Source license at https://bitbucket.org/joqvist/autorts

https://bitbucket.org/joqvist/autorts

134 Paper III: Extraction-Based Regression Test Selection

interface J class E
class D

D() { new B(); }

class A <: E,J

void m(B b) {}

class B <: E

B() {C.s();}

class C

static void s(){}

C() { new D();}

class T1

void test1() {

new A();

}

class G <: A

void m(B b) {}

class T2

void test2() {

new B();

}

implements
extends

static

extends newnew

extends
new

new

Figure 1: An example project with files (boxes) and dependency edges (arrows with
labels indicating reason for the edge). Note that there is no edge from A to B although
A mentions B in its code: the file B is only needed for programs that create B objects,
and thus have another dependency on B.

Computing the minimal extraction is, in general, undecidable.2 Instead, we
compute the extraction e(t), a conservative approximation of the minimal extraction.
I.e., emin(t) ⊆ e(t) ⊆ F . Before giving the algorithm for computing extractions, we
provide some examples.

2.1 Examples

The extraction is computed by maintaining dependency edges between files, rep-
resenting which other files a given file needs for its execution. As we will see, a
file A that mentions an entity in another file B, does not necessarily give rise to a
dependency, which may at first seem counter-intuitive.

Figure 1 shows an example Java project with two test files, T1, T2, and seven
production files, J, E, D, A, B, C, G. The notation X <: Y, Z means that X is a subtype
of Y and Z. The dependency edges are labelled to illustrate the different reasons for
introducing them (extends, implements, static, and new).

Consider the test case T1. Its extraction, i.e., the files needed to execute it, is its
transitive closure with respect to the dependency graph:

e(T1) = {T1, A, E, J}

2To know if a code line is executed requires knowing if the line is reachable, equivalent to the halting
problem.

Paper III: Extraction-Based Regression Test Selection 135

The type A is needed in the extraction since T1 creates a new instance of it. The
types E and J are needed since they are supertypes of A, and are thus needed to
initialize the new A object.

Note that although A refers to the type B, there is no edge from A to B. If A.m(b)
is called with some B-object b, there must be a path from the main program to B,
otherwise, it would not have been possible to create the B object. For T1 there is no
such path, and B is not needed for the execution of T1.

Similarly, we can note that A’s subclass G is not part of T1’s extraction. Although
G overrides A’s method m, that overriding method could only be invoked if there is an
instance of G on the heap, in which case there must be a path from the main program
to G.

Now, consider test case T2 with the following extraction:

e(T2) = {T2, B, E, C, D}

This example illustrates that static methods also need to be taken into account,
and that there can be loops in the dependency graph.

T2 also illustrates a case of imprecision, i.e., where the extraction of a test will
be greater than the minimal extraction: In running T2, the statement new D() will
never be executed, and class D is not part of T2’s minimal extraction. Through a
slower method-level analysis we would have been able to exclude D, but due to the
fast coarse file-level analysis, we get this imprecision. A modification of D will thus
result in our method selecting T2, although its execution result will be the same.

Libraries

Recall that in our model, libraries are considered to be part of a stable environment
that is not changed. Yet, there can be execution paths from the project code to a
library, and back again via callbacks. How does this affect analysis and extractions?
With our method, it is not necessary to analyze libraries, even if there are callbacks to
the project code. The reason is that a library does (by definition) not know anything
statically about the project code, and it can therefore only do callbacks to objects that
the project code passes to it, and that the project code therefore already is dependent
on.

This is illustrated in Figure 2 where test case T3 creates objects of subclasses to
library classes, and calls the library method m1 which in turn calls another library
method m2 that is overridden in the project code (i.e., a callback). The callback to m2

can go to Q’s m2 method, which T3 is already dependent on. However, there can be
no callback to R’s m2 method, since the T3 program does not create any R objects.

If anything that is part of the stable environment actually is modified, for example,
if a library is updated to a new version, all tests are considered to be affected, and
have to be rerun. It would be possible to improve this by including libraries, e.g.,
jar-files, as nodes in the dependency graph. By keeping track of which project files
depend on a particular library, only test programs dependent on those files would
need to be rerun when that library is updated. The library itself would still not need
to be analyzed.

136 Paper III: Extraction-Based Regression Test Selection

class L1

void m1(L2 x) {

x.m2()

}

class L2

void m2() {

...

}

class P <: L1 class Q <: L2

void m2() {

...

}

class R <: L2

void m2() {

...

}

class T3

P p = new P();

Q q = new Q();

p.m1(q);

new new

Library

Project files

Figure 2: The library does not need to be analyzed even if there are callbacks: it
can only do callbacks to entities that the test program is already dependent on. Grey
arrows indicate inheritance.

Paper III: Extraction-Based Regression Test Selection 137

If a library has only made internal changes betweeen two specific versions, with
no externally visible effect on the project code, then switching between either of those
versions of the library can be ignored with respect to test selection.

2.2 Extractions

To compute extractions, we construct a file dependency graph G = ⟨F ,D⟩ where
the code files F are the vertices, and the edges D are file dependencies of the form
(f → g). The extraction of a test t is then simply the file t and all files transitively
reachable from t, i.e., the transitive closure of t:

e(t) = {t} ∪
∪

(t→f)∈D

e(f)

A dependency (f → g) means that the execution of code in f directly depends
on static code elements in g. Examples of this includes the access of static variables,
calls to static methods, and calls to object initializers. As discussed in the examples,
the mere mentioning of a type does not induce a dependency. For example, if f
contains a method call r.m(), where r is a receiver of a type declared in g, this will
not induce a dependency (f → g). The reason is that at the time the call is made,
the object r can only exist if there is another (transitive) dependency from the main
program to g (due to the code that created the object). In the context of a dynamically
loading language, like Java, a dependency (f → g) means that execution of code in
f may cause code in g to be dynamically loaded. We will discuss this in detail in
Section 4.

This way of treating dependencies is fundamentally different from many other
methods for analyzing test dependencies, and relies on the fact that we trace de-
pendencies from main programs (test cases), and use the dependencies to compute
extractions, i.e., a subset of the total set of files that is guaranteed to include the
files needed to run the program. Other code analyzing RTS methods, e.g., DejaVOO
[OSH04], work in a different way (see Section 7), and insert dependencies for all
types used.

As mentioned previously, the analysis needs only to take the code files F in the
project into account, and not the library code. This is because library code is (by
definition) compile-time independent of the project, i.e., the library does not directly
use static code elements in F . Note that this does not hinder the library to call code
in F indirectly, e.g., through callbacks on function pointers, or by calling virtual
methods declared in the library but implemented in classes in F , since such calls do
not induce dependencies.

138 Paper III: Extraction-Based Regression Test Selection

Algorithm 1 Build the complete dependency graph for a file set F
procedure BuildGraph(F)

D ← ∅ ▷ Edge set D
for all f ∈ F do

G← GetDeps(f)
add {(f → g) | g ∈ G} to D

end for

return ⟨F ,D⟩ ▷ The dependency graph
end procedure

Our analysis works for introspective reflection, where only the state of the heap
is inspected, since such code does not access static code elements. However, to
handle general reflection, which may cause new code to be dynamically loaded at
runtime, our method needs to be complemented, for example with manually added
dependencies.

We have chosen to build the dependency graph at the file level, to make the
graph small and the analysis fast. Naturally, this gives imprecision as compared to
finer-grained analysis on the class level, or on the method level. Since many files
contain only a single class, we do not believe that class-based analysis would make a
big difference in practice. Doing analysis at the method level would lead to a much
more complex, and time-consuming, analysis that might not pay off, although future
investigations in this direction would be interesting.

2.3 Building the dependency graph

Building the dependency graph at the file level allows each file to be analyzed locally.
Assume we have a function GetDeps(f) that analyzes a file f and returns the set of
other files it uses static code elements from (i.e., a local analysis of f). Building the
graph from scratch for a project is then done by adding the local dependencies for
each file to the graph, as shown in algorithm BuildGraph.

2.4 Selecting tests

To find the dependent tests after modifications to files, it is actually not the extraction
sets that are interesting, but the reverse information, that we call reached tests. The
reached tests r(f) of a file f is the set of test cases that have f in their extraction. I.e.,

r(f) = {t ∈ T |f ∈ e(t)}

For example, consider the project in Figure 1. Here, the reached tests for A is
r(A) = {T1}, and for E it is r(E) = {T1, T2}.

After modifications to a subset M ⊆ F of the code files, the selected tests S ⊆ T
is then simply the union of all the reached tests sets for all the modified files:

S =
∪

f∈M

r(f)

Paper III: Extraction-Based Regression Test Selection 139

Algorithm 2 Compute the set of tests to select, given the dependency graph ⟨F ,D⟩,
the set of modified files M ∈ F , added files A /∈ F , deleted files X ∈ F , and test
files T ∈ (F ∪A).

procedure SelectTests(⟨F ,D⟩ ,M,A,X, T)
S ← ∅ ▷ Selected tests S
unmark all files in F
for all m ∈M do

SelectReached(m)
end for

add A ∩ T to S ▷ Select new tests
return S ▷ Return the selected tests

where

procedure SelectReached(g)
if g is not marked then

mark g
if g ∈ T then

add g to S ▷ Select reached test
end if

for all f such that (f → g) ∈ D do

SelectReached(f)
end for

end if

end procedure

end procedure

This set of selected tests can be found by marking the modified files, recursively
traversing the dependencies backwards from each marked file, marking all files found
on the way, stopping the traversal at already marked files, and collecting the resulting
marked test files, as shown in the algorithm SelectTests.

140 Paper III: Extraction-Based Regression Test Selection

Algorithm 3 Update the dependency graph ⟨F ,D⟩, given a set of modified files M ,
added files A, and deleted files X .

procedure UpdateGraph(⟨F ,D⟩ ,M,A,X)
add A to F
for all f ∈ (M ∪X) do ▷ Remove outdated edges

remove all edges (f → ...) from D
end for

remove X from F
for all f ∈ (M ∪A) do ▷ Add new edges

G← GetDeps(f)
add {(f → g) | g ∈ G} to D

end for

return ⟨F ,D⟩ ▷ The updated dependency graph
end procedure

3 Updating the dependency graph

After modifications and rerunning of the selected tests, the dependency graph needs to
be updated. Instead of recomputing it from scratch, it can be updated incrementally by
removing the outgoing dependencies from each modified file, reanalyzing those files,
and adding the dependencies corresponding to the new content of the files. For added
files the corresponding node needs to be added together with outgoing dependencies.
For deleted files the corresponding node is removed from the dependency graph. The
algorithm UpdateGraph describes how to update the graph.

If the analysis is done at the source level, additional files might need to be
analyzed, because due to name shadowing, a modification may change the meaning
of names in other files. We discuss this for Java in Section 4.1.

Note that extraction-based RTS is not dependent on having to build and run all
the tests in order to do the first test selection. A user can thus check out a project, run
the batch analysis to get the first dependency graph for the code, do modifications,
then run the incremental analysis to select and run affected tests. Running the batch
analysis is typically faster than running all tests. Other test selection methods that
rely on running instrumented tests cannot avoid the initial run. Avoiding the initial
test run can be an important advantage, allowing developers to quickly start to work
after checking out a project. Furthermore, avoiding instrumented tests speeds up
testing altogether.

4 Dependencies for Java

As a concrete example of extraction-based RTS, we will consider the Java language.
Please refer back to Figure 1 for illustration of the different cases.

When running a Java program, the main program is loaded and executed, and
additional code modules are loaded on demand, depending on the executed code.
The constructs that lead to code loading are extends, implements, static, and new:

Paper III: Extraction-Based Regression Test Selection 141

• Extends. If a class A extends another class E, running the code for instantiating
A will cause the loading of E. The code of E is needed both for initializing the
new A object with any fields declared in E, for initializing any static fields in
E, and for allowing methods in E to be called on A objects. We therefore add a
dependency from the file containing A to the file containing E.

• Implements. If a class A implements an interface J, running the code for
instantiating A will cause the loading of J. The code for J is needed both for
initialization of static fields in J, and, since Java 8, to allow calls to default
methods in J. We therefore add a dependency from the file containing A to the
file containing J.

• Static. If there is code accessing a static field or calling a static method of
a class or interface T, running that code will cause loading of T, to be able to
access the field, or call the method. We therefore add a dependency from the
file containing that code to the file containing T.

• New. If there is code that instantiates a class C, using the new construct, this
will cause loading of C. The code for C is needed for instantiating the new C

object, and for allowing access to its methods or fields. We therefore add a
dependency from the file containing the new construct to the file containing C.

Based on these observations, the function GetDep(f) (used in BuildGraph and
UpdateGraph) is implemented simply by traversing the file, and computing the
accessed files in the extends, implements, static, and new constructs.

A key observation is that the mere reference of a type in the code, for example
in a method signature, does not cause that type to be loaded. For example, consider
the example in Figure 1 again, where class A contains a method m which takes an
argument of type B. Neither loading of the bytecode of A, nor calling its method m

will trigger any loading of B. The code for B is not needed until methods on B are
called, and at that point in time, the code for B must already have been loaded in order
to create the B object. Thus, we do not need to include any dependency from A to B:
any program that will call m with a B object argument, will have another dependency
on B.

4.1 Source versus bytecode analysis

Extraction-Based test selection is a general technique that can be applied by analyzing
source code as well as compiled formats of the code, e.g., bytecode or binary code.
If the analysis is done on source code rather than on bytecode, adding or deleting a
type may cause type accesses in other types in the same package to change meaning.
Consider the example in Figure 3. Here, class A in package p has a wildcard import to
a package q, and accesses a class B. In version 1, this access is bound to q.B. However,
in version 2, a new class B is added to the package p. This class will shadow q.B,
causing the B access to be bound to p.B, and thereby change the meaning of the code
in A. The test T that depends on A will thus need to be rerun if p.B is added.

Such changes of the semantics, due to adding or removing types, can only occur
within a package in Java. This is because Java does not allow accessing a type via a

142 Paper III: Extraction-Based Regression Test Selection

package q;

class B

package q;

class B

package p;

import q.*;

import r.*;

class A

A() {

new B();

}

package p;

import q.*;

import r.*;

class A

A() {

new B();

}

package p;

class B

...

class T

void test() {

new p.A();

}

class T

void test() {

new p.A();

}

file q.B file q.B

file p.A file p.A

file T file T

new file p.B

Version 1 Version 2

Figure 3: In version 1, A’s access new(B) is bound to q.B. In version 2, the file
p.B has been added. This causes the access new(B) to change meaning because of
shadowing, binding it to p.B.

wildcard import if there is another wildcard import that would also match the access.
Thus, in version 1, adding a class B to package r would cause a compile-time error
for class A. For this reason, if a type is added or deleted from a package, it is sufficient
to recompute the dependencies for all the files in that package.

An analysis at the bytecode level does not have this issue, since the bytecode only
contains fully qualified type names, and no wildcard imports.

In our tool, AutoRTS, we have chosen to implement the method at the source
level. While the implementation is slightly more involved due to handling shadowing,
it has the advantage that it is not necessary to compile the complete project in order
to do the test selection.

For a language like C, the technique could be used on the binary object code. The
dependency analysis could then be done on the symbols referenced between different
object files, i.e., in principle corresponding to the work a static linker like ld does.

Paper III: Extraction-Based Regression Test Selection 143

TestRunner

(5)

TestSelector

(4)

DependencyGraph

(4)

CodeAnalyzer

(3,6)

ChangeTracker

(2)

source files

directories
graph

in JSON

AutoRTS

run selected

tests

Figure 4: The AutoRTS tool. Solid arrows indicate information flow.

To find out which source files are modified after a change, the file system can
be scanned for files with new timestamps, which is very fast. A tool working at
the bytecode or binary level could also use timestamps provided that an incremental
compiler is used that does not update the files unnecessarily. For a batch compiler
that updates all files, a file differencing technique would need to be used, for example
computing a sufficiently long hash code and comparing to the hash code for the
previously analyzed file. Our method could be made more precise by using semantic
differencing between files to only detect modifications that had a semantic effect.
This would increase the modification checking time, but the extra precision might
make it worthwhile. The Java bytecode format itself is resilient to some non-semantic
changes such as indentation and comments. Implementation using bytecode analysis
would be interesting future work.

5 Tool implementation

We have implemented a standalone tool, AutoRTS, that supports extraction-based test
selection for Java and JUnit, using analysis on the source code. Instead of running
the complete test suite using JUnit, the user runs AutoRTS which selects a safe subset

144 Paper III: Extraction-Based Regression Test Selection

of the tests and runs them using JUnit. Figure 4 shows the different parts of the tool,
and how they interact with the file system.

1. The dependency graph is stored in a JSON file between runs of AutoRTS.

2. The change tracker scans the source directories to identify modified, added
and deleted source files since the last test run, by comparing file time stamps
to those stored in the dependency graph.

3. The code analyzer parses changed or added files, collecting outgoing depen-
dencies, and identifying if the file contains JUnit tests.

4. The test selector selects tests to run, based on the changed files and the depen-
dency graph.

5. The test runner runs the selected tests.

6. The code analyzer analyzes the changed files to update the dependency graph
to be ready for the next run of AutoRTS.

The code analyzer is implemented as an extension to the extensible Java compiler
ExtendJ [EH07b; ÖH13]3. The parsing, abstract syntax tree construction, and type
lookup is reused from ExtendJ, and extended with dependency analysis, as explained
in Section 4.

6 Evaluation

To evaluate the effectiveness of Extraction-Based RTS we have conducted an em-
pirical study attempting to simulate Java application development, by replaying the
commit histories of five Open Source Java projects and using AutoRTS to perform
test selection.

In the following sections we describe the research questions addressed in the
study, objects of study, variables, threats to validity, experiment process, and results
and analysis.

6.1 Research Questions

To help us investigate how efficient Extraction-Based RTS is for Java applications,
we posed the following research questions for our empirical study:

• How does using our RTS technique compare to running all tests for a Java
application?

• How large is the overhead for using AutoRTS on real-world Java projects?

3ExtendJ was previously named JastAddJ.

Paper III: Extraction-Based Regression Test Selection 145

6.2 Objects of Study

For our experiment we selected five Java applications ranging in size from 20-
254K lines of code. The applications we selected are: Apache Commons Lang
3.0 (ACLang), Closure Compiler, Functor, Jaxen, and JUnit.4 Each of the selected
projects has a public repository with a long history of commits that we could replay
to simulate development. Table 1 shows some metrics for the projects.

The projects we selected are well-known in the Open Source community, and
in particular JUnit could be expected to use a rigorous unit testing methodology for
development. We found that testing regimes vary between projects and can even
change significantly during the commit history of a single project.

Project SLOC |P | |T | Revision
ACLang 65K 280 122 e1ad4b1
Closure 254K 706 271 8edc042
Functor 21K 226 170 3da1a4b
Jaxen 20K 300 77 1405
JUnit 26K 394 152 47707e8

Table 1: Sizes for the last version measured on each benchmarked project. SLOC is
the number of source lines of code, excluding whitespace and comments for all files
(both production and test code), measured using the tool cloc. |P | is the number of
production files. |T | is the number of test files. Revision is the Git commit hash or
Svn Revision number for the last version measured.

6.3 Variables

The test selection technique measured is an independent variable of the em-
pirical study. We measured two different test selection techniques: Select-All,
and Extraction-Based RTS. Select-All runs all tests without any analysis, while
Extraction-Based RTS is performed using AutoRTS which first analyzes the source
code and then selects a subset of tests to execute.

The total running time for each test selection technique is a dependent variable.

6.4 Threats to Validity

External threats to validity include our choice of Java projects to study and the
commits measured. We tried to avoid bias and selected well-known and easily
available projects with JUnit tests and at least 500 commits in the commit history.
We did not change the selection or measured commits based on how Extraction-Based
RTS performed on the selected projects.

4 git://git.apache.org/commons-lang.git
https://github.com/google/closure-compiler
https://github.com/apache/commons-functor
https://svn.codehaus.org/jaxen/trunk/jaxen/
https://github.com/junit-team/junit

146 Paper III: Extraction-Based Regression Test Selection

The size and number of projects measured limits the general applicability of our
results. Given that Java coding styles and program architecture can vary greatly
between projects, our results should be regarded only as informative examples. To
draw more general conclusions, a larger study would be needed.

Internal threats to validity include possible bugs in our implementation. To
mitigate this risk, we wrote tests for our tool during implementation of the analysis,
we also checked that our tool detected all available tests for a subset of the commits
we measured. Furthermore, the extensible compiler ExtendJ, that AutoRTS builds
on, has its own large test set helping to ensure the Java source analysis works well.

6.5 Experiment Process

We simulated development on each of the selected Java projects by using the commit
log to replay commits in chronological order. For each project a series of commits
were checked out in order, and for each commit we measured the total testing time
using Select-All and AutoRTS. When using AutoRTS the analysis was based on
the changes introduced in the current commit. We recorded statistics about the test
selection, such as the time spent running selected tests, how long it took to analyze
dependencies and update the dependency graph for each commit, and how long time
it took to run all available tests.

Commits that failed to compile or did not change any source files were skipped
during the experiment process. Compilation failures were caused by, e.g., missing
libraries, dependencies on old Java versions, and changes to source folder locations.
Each of the benchmark projects has changed build system, source folder locations,
and library dependencies multiple times over the course of their development. We
could not account for every such change, but we tried to fix build errors where
possible. The number of skipped commits, due to errors or lack of source changes,
is listed per project in Table 2.

Total Compile
Project commits errors No changes Measured
ACLang 1524 44 364 1116
Closure 1500 131 307 1062
Functor 819 116 155 548
Jaxen 1009 92 196 721
JUnit 1314 28 336 950

Table 2: Classification of commits used. Commits with compile errors and commits
where no source files were changed were excluded from the measurements.

Paper III: Extraction-Based Regression Test Selection 147

6.6 Benchmark Environment

All measurements were taken on a 4-core 3.6GHz Intel i7-3820 CPU, with 64 GiB
RAM, running Linux Mint 17.0.

To compile the benchmark projects the following Java versions were used:

• Java SE2 1.4 (Sun Java 1.4.2_19-b04)

• Java 7 (Oracle Java 1.7.0_45-b18)

• Java 8 (Oracle Java 1.8.0_71-b15)

6.7 Results and Analysis

Figure 5 shows mean execution times for groups of 20 consecutive commits for each
Java project. In each figure, the dots show the mean Select-All running time, and
the stacked bars illustrate the AutoRTS running time, where the upper green bar
represents test running time, and the lower grey bar represents the analysis time. The
analysis time includes time spent to identify modified, added, and deleted files, and
it includes time spent selecting which tests to run (algorithm SelectTests), and the
time used to update the dependency graph for the project (algorithm UpdateGraph).

The test running time using AutoRTS is lower than running all tests with Select-
All, on average, for ACLang and JUnit. For Functor and Jaxen the mean AutoRTS
running time drops below the Select-All running time in the later parts of their
commit histories. Closure is the only project where the Select-All running time
remains slightly lower than AutoRTS (8% lower for the last 40 commits) during the
entire measured commit history.

For all projects except Closure, if testing time continues to be similar to the latest
commits, using AutoRTS would save time for continued development. If testing
and analysis times continue to follow a similar trend the gap would widen for future
commits. To summarize the results for the most recent commits from each project,
Table 3 shows the AutoRTS analysis and test running time as a percentage of Select-
All time for the last 40 measured commits in each project. For the last 40 commits,
average total testing time is reduced by by 37-87% for all projects except Closure,
and increased by 8% for Closure. We thus conclude that Extraction-Based RTS pays
off for ACLang, Functor, Jaxen, and JUnit.

Project Analysis (%) Run Tests (%) Total (%)
ACLang 3 40 43
Closure 24 84 108
Functor 5 8 13
Jaxen 16 47 63
JUnit 6 44 50

Table 3: Average analysis, test running, and analysis plus test running time (Total)
using AutoRTS, as percentage of Select-All running time, for the last 40 commits.

148 Paper III: Extraction-Based Regression Test Selection

Figure 5: Testing time, means for bins of 20 commits. Test selection pays off when
the red dot is above the stacked bars.

Paper III: Extraction-Based Regression Test Selection 149

Project Differences

As can be seen by test and analysis running times each project behaves differently.
These differences are due to a number of factors. Below are our hypothesis of some
of the important differences between the projects.

Jaxen and Closure use system-level tests where most tests exercise large parts of
the whole system. Jaxen is an XPath library where most tests send inputs to the core
XPath parser, and Closure is a JavaScript compiler where many tests use JavaScript
code as input and the test validates the compiler output against an expected output.
For many commits in Jaxen, and even more so in Closure, most of the tests needed to
be run – even after commits that only changed one source file. This is due to the tests
using a central parsing part of the system under test which has a large set of transitive
dependencies.

JUnit and ACLang in general have tests that depend on fewer parts of the system
under test, thus small changes are less likely to trigger many tests to be run. In these
projects commits that changed a single file triggered a smaller percentage of the total
test set.

ACLang has a notable difference from JUnit in that a few small commits triggered
nearly all tests to run. Upon inspecting a subset of such commits we saw that they
were changing central utility classes that were used as helpers to do various simple
string and collection manipulation in very many places throughout the code.

All projects except Closure show some large changes for test running times
during the commit history of the project. In some cases this is caused by single
large refactorings as can be seen in JUnit, or gradual changes where more tests are
introduced as seen in Jaxen and JUnit. ACLang and Functor show some large spikes
where many tests were added during a few commits. The trend for ACLang, Functor,
and Jaxen, seems to be an increasing test set over time.

Analysis Overhead

The overhead incurred by checking file modifications, re-analyzing dependencies,
and selecting tests, did not vary much based on project sizes. In fact, the analysis
time per line of code was lower for the projects with larger code sizes. This is not
surprising since the cost is dominated by the analysis of the modified files, i.e., the
size of the commit, and not by the total size of the project. Table 4 shows average
analysis time, in milliseconds, per thousand lines of code for each project.

The AutoRTS analysis is incremental in that only modified files (including all
files in the packages if files are added or deleted) are analyzed. The analysis time
thus depends mostly on the size of the change rather than the size of the project. The
method should therefore scale to large projects, which our measurements confirm.

Although our method is very coarse-grained, and thus imprecise, it pays off
substantially. Naturally, it will pay off more for projects that use clearly separated
tests and that test different code paths in the program.

150 Paper III: Extraction-Based Regression Test Selection

Project kSLOC time (s) ms/kSLOC Mod/ci
ACLang 65 0.491 7 3.7
Closure 254 0.983 4 6.6
Functor 21 0.357 16 10.9
Jaxen 20 0.339 17 3.0
JUnit 26 0.406 15 12.5

Table 4: kSLOC = thousand lines of source code. Time (s) = average analysis time
in seconds. ms/kSLOC = analysis time in milliseconds per thousand lines of code.
Mod/ci = mean of the number of file modifications per measured commit with at least
one modification.

7 Related Work

Regression Test Selection (RTS) is a well researched area, and there are several
surveys of different methods [RH96; Bis+11; YH12]. To our knowledge, Extraction-
Based RTS is the first safe RTS method that only relies on static analysis of source
code, and not dynamic analysis using instrumentation of code. Early RTS methods
include TestTube [CRV94] and DejaVu [RH97], both for C. TestTube relies on running
instrumented tests to associate each test with a set of coarse program units, such as
function definitions and global variables. DejaVu uses a more fine-grained method,
and computes a statement level control-flow graph from the system under test, and
relies on running instrumented tests to associate each test case with a set of edges in the
control-flow graph. Variants of these methods were later developed for Java [OSH04;
SR07].

Early studies [RH97; BRR01] divided development into a preliminary phase
where data could be gathered about the initial version of the program and its tests,
and a critical phase where modified programs were regression tested. Typically, the
cost for the preliminary phase has been ignored in empirical investigations [RH97;
BRR01; OSH04; SR07]. However, in agile development, there are no such phases,
and in our view, the time for running instrumented tests should be considered part of
the overhead. It might well be the case that the time for running instrumented tests
outweighs what is gained by the test selection.

Despite the large amount of research on safe RTS, there are few practical tools
available [Gli+14]. One recent practical tool is Ekstazi [GEM15] that performs
RTS for Java. Like the previously mentioned methods, Ekstazi performs dynamic
analysis by instrumenting the code. The analysis is performed at the file level, by
dynamically instrumenting the bytecode, and monitoring the execution to identify
accessed class files as well as files explicitly accessed from the user program. In
contrast to much earlier work, their empirical studies does include the overhead for
running the instrumented tests, and they report average time savings on many projects.

Discussion

In comparing Extraction-Based RTS to instrumentation-based methods, we identify
the following main advantages:

Paper III: Extraction-Based Regression Test Selection 151

• Extraction-Based RTS is safe also for non-deterministic programs. In contrast,
instrumentation-based methods are safe only provided that the system under
test is deterministic.

• The overhead for Extraction-Based RTS is very small, making it negligible in
practice. This is partly because the analysis is coarse-grained and incremental,
and partly because it is proportional to the size of the modification, which
is usually small. This is important for the worst-case scenario, when all
or most tests are selected, such as when a central module is modified. In our
experience, these scenarios are fairly common. In contrast, an instrumentation-
based method will have an overhead proportional to the number of tests run,
which can be substantial. For example, Ekstazi reports a couple of data points
where an individual run increases from roughly 15 seconds for Select-All to
roughly 27 seconds for their test selection [GEM15].

• With Extraction-Based RTS, a project can be checked out and test selection can
start without having to first run all tests. This can be important when running
all tests takes a long time.

There are also potential disadvantages of Extraction-Based RTS. First, because
the method supports program-driven rather than input-driven testing, it works only
when the tests are structured as separate programs (e.g., like JUnit tests), and not
when the tests are structured as separate input data files. Future work could address
the problem of automatically converting input-driven tests to program-driven tests.
Second, because the analysis is static and coarse-grained, sacrificing precision but not
safety for speed, it is more conservative than dynamic and finer-grained instrumen-
tation-based methods, and will therefore select more tests. We think that depending
on the structure of the code in a project, it can either be more advantageous to use
Extraction-Based RTS, or more advantageous to use instrumentation-based RTS.
More research is needed to investigate this in detail.

Extraction-Based RTS is a safe method, with the goal of conceptually running
all tests, but saving time by not having to run tests whose outcome is guaranteed
to be unchanged. Even if a safe RTS algorithm pays off, it might not reduce the
testing time sufficiently. Safe RTS can then be combined with unsafe RTS methods
to further reduce the time used, using heuristics to select the tests deemed most
important. These methods can also be combined with test prioritization which uses
heuristics to run tests in some order of importance, to find failing tests faster, or to run
until a fixed testing time budget has been used up. For examples of such heuristics,
see, for instance, the recent survey by Yoo and Harman [YH12], and the recent
work by Elbaum, Rothermel, and Penix [ERP14]. While many such techniques are
instrumentation-based, there are also static methods that are reported to give similar
performance [Mei+12].

8 Conclusion

We have presented Extraction-Based RTS, a new safe regression test selection method,
suited for program-driven testing, i.e., where tests are formulated as code, using a

152 Paper III: Extraction-Based Regression Test Selection

framework like JUnit. In contrast to other safe RTS methods, it is based on static
analysis rather than dynamic instrumentation-based analysis. This, in combination
with a coarse-grained incremental analysis, gives a low overhead, which is dominated
by the size of the change rather than by the number of tests selected. The overhead
consists of the time for scanning changed files, selecting tests to run, and updating
the dependency graph. A low overhead is important in the rather common situation
when all tests are selected, like when changing a key class, since the penalty for using
the method then is low. For our subject programs, ranging from 20-254 kLOC, the
overhead was typically less than half a second, corresponding to a small fraction of
the time for running all tests, and thus negligible from a practical point of view.

On the average, the method pays off well, though it did not not pay off for one out
of five benchmarked programs, in which case the extra testing time was around 8%
higher. For subject programs where our method payed off, the average running time,
including overhead, ranged between 13-63% of the time for running all tests. We
could also see that the average payoff changes during the development of a program.
For a couple of the subjects, the method did not pay off initially, but did so when the
project started to grow. Since we measured individual commits, which often consist
of multiple individual changes, the payoff would be even larger during development
if tests are run for smaller intermediate changes.

In comparison to dynamic methods that are based on code instrumentation, our
method is safe also for non-deterministic programs that do not necessarily take the
same path in each run.

It is important to note that Extraction-Based RTS works for program-driven tests
rather than for input-driven tests. An interesting avenue for further research would
be to develop methods for generating program-driven tests from input-driven tests,
thereby making the method applicable also in these cases. It would also be interesting
to combine the method with unsafe RTS methods to be able to skip tests also in that
setting.

Acknowledgments

We thank the anonymous reviewers. This work was partly financed by the Swedish
Research Council under grant 621-2012-4727.

References

[AU94] Ole Agesen and David Ungar. “Sifting Out the Gold: Delivering
Compact Applications from an Exploratory Object-oriented
Programming Environment”. In: OOPSLA’94, Proceedings of the
Ninth Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications, Portland, Oregon, USA, October
23-27, 1994. ACM, 1994, pp. 355–370.

[Bec94] Kent Beck. “Simple Smalltalk testing: with patterns”. In: The
Smalltalk Report 4.2 (1994), pp. 16–18.

Paper III: Extraction-Based Regression Test Selection 153

[Bec99] Kent Beck. “Embracing change with extreme programming”. In:
Computer 32.10 (1999), pp. 70–77.

[Bec03] Kent Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[BRR01] John Bible, Gregg Rothermel, and David S Rosenblum. “A
comparative study of coarse-and fine-grained safe regression
test-selection techniques”. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 10.2 (2001), pp. 149–183.

[Bis+11] Swarnendu Biswas et al. “Regression test selection techniques: A
survey”. In: Informatica: An International Journal of Computing and
Informatics 35.3 (2011), pp. 289–321.

[CRV94] Yih-Farn Chen, David S Rosenblum, and Kiem-Phong Vo. “TestTube:
A system for selective regression testing”. In: Proceedings of the 16th
international conference on Software engineering. IEEE Computer
Society Press. 1994, pp. 211–220.

[EH07b] Torbjörn Ekman and Görel Hedin. “The jastadd extensible java
compiler”. In: Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada. ACM, 2007, pp. 1–18.

[ERP14] Sebastian Elbaum, Gregg Rothermel, and John Penix. “Techniques for
improving regression testing in continuous integration development
environments”. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering.
ACM. 2014, pp. 235–245.

[GEM15] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. “Practical
regression test selection with dynamic file dependencies”. In:
Proceedings of the 2015 International Symposium on Software
Testing and Analysis. ACM. 2015, pp. 211–222.

[Gli+14] Milos Gligoric et al. “An empirical evaluation and comparison of
manual and automated test selection”. In: Proceedings of the 29th
ACM/IEEE international conference on Automated software
engineering. ACM. 2014, pp. 361–372.

[LW91] Hareton KN Leung and Lee White. “A cost model to compare
regression test strategies”. In: Proceedings. Conference on Software
Maintenance 1991. IEEE. 1991, pp. 201–208.

[Luo+14] Qingzhou Luo et al. “An empirical analysis of flaky tests”. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM. 2014, pp. 643–653.

[Mei+12] Hong Mei et al. “A static approach to prioritizing junit test cases”. In:
Software Engineering, IEEE Transactions on 38.6 (2012),
pp. 1258–1275.

154 Paper III: Extraction-Based Regression Test Selection

[ÖH13] Jesper Öqvist and Görel Hedin. “Extending the JastAdd extensible
Java compiler to Java 7”. In: Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools. ACM. 2013,
pp. 147–152.

[OSH04] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. “Scaling
regression testing to large software systems”. In: ACM SIGSOFT
Software Engineering Notes 29.6 (2004), pp. 241–251.

[RH96] Gregg Rothermel and Mary Jean Harrold. “Analyzing regression test
selection techniques”. In: Software Engineering, IEEE Transactions
on 22.8 (1996), pp. 529–551.

[RH97] Gregg Rothermel and Mary Jean Harrold. “A safe, efficient regression
test selection technique”. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 6.2 (1997), pp. 173–210.

[SR07] Mats Skoglund and Per Runeson. “Improving class firewall regression
test selection by removing the class firewall”. In: International
journal of software engineering and knowledge engineering 17.03
(2007), pp. 359–378.

[Tip+02] Frank Tip et al. “Practical extraction techniques for Java”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS)
24.6 (2002), pp. 625–666.

[YH12] Shin Yoo and Mark Harman. “Regression testing minimization,
selection and prioritization: a survey”. In: Software Testing,
Verification and Reliability 22.2 (2012), pp. 67–120.

P
a

p
e
r

IV

Concurrent Circular

Reference Attribute Grammars

Abstract

Reference Attribute Grammars (RAGs) is a declarative executable formalism used
for constructing compilers. Previous work has extended RAGs with circular (fixed-
point) attributes, higher-order attributes, and collection attributes. In this paper
we present wait-free concurrent attribute evaluation algorithms for Circular RAGs.
These algorithms enable interactive queries to be performed with low latency while
heavier computations are running.

We design and evaluate a lock-free implementation of our algorithms in Java, for
the JastAdd metacompiler. Our implementation can be used without further changes
to existing JastAdd-specified compilers, provided they fulfill well-formedness con-
ditions like observationally pure semantic functions. Our evaluation on a JastAdd-
specified compiler for the Java programming language shows that our approach is
useful for reducing latency, and can give a slight overall speedup.

1 Introduction

Reference Attribute Grammars (RAGs) [Hed00] have proven useful for generat-
ing extensible compilers for languages like Java [Wyk+07; EH07b] and Modelica
[Åke+10]. They are supported in several attribute grammar systems, for exam-
ple JastAdd [Hed00], Silver [Wyk+08], Kiama [SKV10], JavaRAG [FCH15], and
RACR[Bür15].

Extended version of
Jesper Öqvist and Görel Hedin. “Concurrent Circular Reference Attribute Grammars”. In Proceedings of
the 10th ACM SIGPLAN International Conference on Software Language Engineering (SLE 2017), pp.
151–162. Vancouver, BC, Canada, 2017.

156 Paper IV: Concurrent Circular Reference Attribute Grammars

A RAG is a declarative formalism defining attributes in an Abstract Syntax Tree
(AST), through directed equations attached to the rules of an abstract grammar. In
a generated compiler, an attribute evaluator computes attribute instance values in an
AST in order to compile the program.

Typically, attributes are evaluated sequentially, in a single thread. Concurrent
evaluation could provide several advantages, like lower evaluation latency. In in-
teractive systems, for example IDEs, it is typically desired to keep the response
time below 0.1 seconds, to ensure that users perceive the tool as reacting instanta-
neously [Nie93]. By using concurrency, an interactive task can be performed within
this time limit even while longer-running analysis tasks run in the background. An-
other advantage of concurrent evaluation is to run threads in parallel, to speed up
compilation.

RAG systems typically support many kinds of attributes, and providing concurrent
evaluation algorithms for them is non-trivial. In particular, circular attributes [Far86;
Jon90; MH03], i.e., attributes evaluated using fixed-point iteration, are tricky to
handle. If a RAG contains circular attributes, it is not possible to use locks on
individual attributes, since two threads entering the same dependency cycle leads
to deadlock. Circular attributes are useful in handling many complex problems in
compilers. Examples include definite assignment (a dataflow problem), and type
inference.

In this paper, we present concurrent evaluation algorithms for RAGs including
circular attributes. We have implemented the algorithms in the JastAdd metacompiler,
supporting all the different attribute kinds in JastAdd. To avoid deadlock problems,
all our algorithms are lock-free. In fact, the algorithms are also wait-free, but the
current implementation is only lock-free as it uses a map implementation that is lock-
free but not wait-free. For a correctly specified JastAdd project, our implementation
can be used without further modification.

Our focus has been to support low latency in interactive applications, but we
also report on initial speedup results using parallelization. We have validated the
implementation on a full-fledged Java compiler built using JastAdd. To evaluate
latency, we have run the concurrent evaluation in an interactive tool for inspecting
Java programs, running the interactive thread in parallel with a long-running task
computing compile-time errors.

Our contributions are:

• Sound and wait-free concurrent algorithms for Circular RAGs, in Sections 4
and 5.

• Correctness proofs for the attribute evalution algorithms.

• Generalization of Circular RAGs to allow combinations of circular and non-
circular attributes on the same cycle (Section 6).

• Validation of the algorithms in an interactive tool for exploring properties of
Java programs (Section 7).

• Empirical evaluation of latency of interactive tasks, comparing our concurrent
implementation to a sequential implementation (Section 7).

Paper IV: Concurrent Circular Reference Attribute Grammars 157

Soundness and wait-freedom proofs for the algorithms are available in a separate
technical report. Section 2 briefly introduces Circular RAGs. Section 8 discusses
related work, and Section 9 concludes the paper and outlines future work.

2 Circular Reference Attribute Grammars

In a RAG [Hed00], an abstract grammar is viewed as a set of node classes representing
the nonterminals of the grammar. Attributes are specified for the nodes by attribution
rules. An Abstract Syntax Tree (AST) defined by the grammar will have attribute
instances attached to its nodes. We refer to attribute instances as simply attributes,
unless otherwise noted.

An attribute is defined by a semantic function of an AST node. For example, an
attribute x with semantic function f can be written as x = f(n), where n is an AST
node. The attribute x belongs to either n or one of its children. If x is an attribute of
n, we say that x is synthesized, and if it is an attribute of one of n’s children, we say
that x is inherited.1

Unlike the original definition of attribute grammars by Knuth [Knu68b], RAGs
allow attributes to be references to nodes in the AST. This means that a semantic
function can access remote attributes and nodes via reference attributes in the node
it is computed on.

The typical way to evaluate a Knuth AG is to statically analyze attribute depen-
dencies, and use a static schedule to evaluate all attributes in dependency order, for
example using Ordered AGs [Kas80]. For RAGs, this does not work, since attribute
dependencies are not statically known due to the use of reference attributes. Instead,
RAGs use recursive dynamic attribute evaluation.

Extensions to RAGs supported in the JastAdd system include circular attributes,
higher-order attributes, collection attributes and rewrites. Circular attributes may
depend upon themselves, and are evaluated using a fixed-point iteration algorithm
[Far86]. For RAGs, the fixed-point algorithm is recursive [MH03]. Higher-order
attributes are attributes whose value is an AST subtree [VSK89a]. In RAGs, it
is important that they create a fresh subtree on each computation. However, only
one result reference should become visible to the rest of the program. Collection
attributes allow compound values to be defined by a combination of contributions in
an AST [Boy05; MEH07]. Rewrites allow AST nodes to be conditionally rewritten,
and have been shown to be equivalent to circular higher-order attributes [SH15].

Attributes in a RAG can be memoized to make subsequent accesses fast [Jou84;
Hed00]. For memoization to work, the semantic function must be an observationally
pure function, i.e., without visible side-effects. Because JastAdd attributes are de-
clared with regular Java code, it is up to the JastAdd user to write only attributes that
follow well-formedness conditions like having a pure semantic function. For concur-
rent evaluation, we will in particular need the following well-formedness conditions:

1It can be noted that the attribute grammar concept of inherited is independent of the object-oriented
concept with the same name.

158 Paper IV: Concurrent Circular Reference Attribute Grammars

WF1: Pure semantic functions Semantic functions must be observationally pure
[Nau05], meaning that they always compute the same value, do not modify the
AST, or rely on any external mutable data.

WF2: Terminating semantic functions Each semantic function terminates, given
that access to other attributes terminates.

WF3: Circular attributes are computable To guarantee a computable least fixed
point, we require the semantic function of circular attributes to be monotonic
and yield values in a lattice of finite height. This is the condition used by Jones
[Jon90].

3 Correctness

There are two important correctness conditions that are required for a concurrent
circular RAG evaluator: soundness and lock-freedom. The algorithms we present
will have to be sound, meaning that they compute the correct attribute value, and lock-
free so that they do not cause deadlocks when used in circular attribute evaluation.
To prove lock-freedom we will instead prove the stronger progress guarantee of wait-
freedom. To prove wait-freedom we use the fact that an algorithm is wait-free if it
terminates in a finite number of steps [Her88].

Soundness for higher-order attributes works a little differently. A higher-order
attribute creates a new AST node object each time it is computed, but only one such
result must be attached to the AST and become visible to the rest of the program. A
higher-order attribute thus requires memoization to be sound.

4 Non-Circular Attribute Implementation

An attribute evaluator consists of a mechanism for computing the attribute value, and
optional memoization of the attribute value. A generic attribute evaluator is shown
in Algorithm 4. The Eval procedure takes as parameter an attribute instance to be
evaluated. Attribute computation and memoization have been abstracted out of Eval

as procedures with the following purpose:

Compute Compute the value of an attribute.

Memoized Test if an attribute has been memoized.

Store Memoize a value for an attribute.

Load Retrieve a previously memoized value of an attribute.

The Eval procedure can be trivially translated to Java as a method of an AST
node class that the attribute it evaluates was declared on [Hed00]. By proving that
the called procedures fulfill certain requirements we can show that the resulting Eval

implementation is sound and wait-free.
The memoization procedures used in Algorithm 4 must fulfill the following

soundness requirement for Eval to be sound for concurrent evaluation:

Paper IV: Concurrent Circular Reference Attribute Grammars 159

Algorithm 4 Template attribute evaluation algorithm for memoized non-circular
attributes.

procedure Eval(x) ▷ Evaluate attribute x.
if Memoized(x) then ▷ Test if already memoized.

return Load(x) ▷ Return memoized value.
else

u← Compute(x) ▷ Compute attribute value.
return Store(x, u) ▷ Memoize and return result.

end if

end procedure

Memoization Requirement In one thread, if Memoized(x) returns true before
Load(x), then Load(x) returns a value v stored by some execution, in any
thread, of Store(x, v).

Store Requirement Executing Store(x, _) returns some value v stored by some
execution, in any thread, of Store(x, v).

The following theorem states that if these requirements hold, Eval will compute
the right value for any attribute.

Theorem 1 (Eval Sound). If Memoized, Store and Load fulfill the Memoization
Requirement and Store Requirement, then, for some attributex, Eval(x) (Algorithm 4)
computes the value of x.

Proof. Consider a thread that executes Eval(x). The if-statement in Eval has two
branches:

• If Memoized(x) returned true, then by the Memoization Requirement the
returned value, v, was stored by some call Store(x, v). Because all calls to
Store(x, _) store a computed value of x, and because x is well-formed (WF1),
the returned value is the value of x.

• Otherwise, Memoized(x) returned false. The returned value is the result of
Store(x, u). According to the Store Requirement, the result v was stored by
some call Store(x, v). Because all calls to Store(x, _) store a computed value
of x, the returned value is the value of x.

For a non-higher-order attribute the semantic function always computes an iden-
tical value. However, for a higher-order attribute this is not the case, as the attribute
returns a freshly created AST node object. It is important that only one result of a
higher-order attribute becomes visible to the rest of the program. For higher-order
attributes we add the following soundness requirement:

Higher-Order Memoization Requirement For a higher-order attribute instance x,
each call to Store(x, _) returns a single entity object. If Memoized(x) returns
true, Load(x) returns the same entity object as Store(x, _).

160 Paper IV: Concurrent Circular Reference Attribute Grammars

The last requirement for Eval to be correct is that it is wait-free. We will require
that Compute, Memoized, Store, and Value are wait-free, to ensure that Eval is
wait-free (when evaluating non-circular attributes).

Theorem 2 (Eval Wait-Free). Consider a non-circular attribute instance x. If
Compute, Memoized, Store and Load are wait-free, then Eval(x) (Algorithm 4) is
wait-free.

Proof. Eval itself uses no iteration and no self-recursion (because x is not circular).
Thus, Eval is wait-free because all called procedures are wait-free by assumption.

In the following sections we discuss implementations of Compute, Memoized,
Store, and Value. The procedures are implemented by Java methods and fields
declared on the AST node class that the corresponding attribute is declared on. The
attribute instance is not explicitly passed to the methods, as it is not a concrete
Java object. Instead, the implicit this parameter of the Java methods separates the
evaluation of different attribute instances.

4.1 Synthesized and Inherited Attributes

For synthesized attributes, the Compute procedure is a direct translation of the
semantic function into an executable form, where other attribute uses are replaced
by calls to Eval. Because JastAdd attributes are specified with Java code, the
translation of the Compute procedure is just a Java method containing the code of
the semantic function. Because well-formed attributes terminate (well-formedness
condition WF2), the resulting Compute procedure is wait-free.

For inherited attributes, the Compute procedure that computes an inherited at-
tribute on a node n must find the semantic function for the inherited attribute. This is
done by accessing the parent of n, and determining which semantic function should
be computed for the child node n. Locating the semantic function is thread-safe
because the AST is immutable after construction. Locating the semantic function
is not recursive or iterative, so it is wait-free. Computing the semantic function is
wait-free for the same reason as for synthesized attributes.

Concurrent memoization for synthesized and inherited attributes can be imple-
mented using a simple cache field and volatile flag in Java, as shown in Listing 1.
Well-formed synthesized and inherited attributes always compute the same value, so
concurrent calls to store() are safe because they store the same value.

Theorem 3. The methods in Listing 1 fulfill the Memoization Requirement.

Proof. The Memoization Requirement entails that if memoized() returns true before
load(), then load() returns a value v stored by some execution of store(v).

The cached flag starts out as false. Hence, memoized() returns true only
after some write has set cached to true. The cached flag is declared as volatile.
According to the Java Memory Model, a previous write to value must therefore be
visible to the thread that observed cached having value true, so a following call to
load() will return this value or some other value of x stored by store(_).

Paper IV: Concurrent Circular Reference Attribute Grammars 161

Listing 1: Memoization in Java for simple attributes.

T value;

volatile boolean cached = false;

boolean memoized () {

return cached;

}

T store(T v) {

value = v;

cached = true;

return v;

}

T load() {

return value;

}

Theorem 4. The methods in Listing 1 fulfill the Store Requirement.

Proof. The Store Requirement entails that store(u) returns a value v stored by
some execution of store(v). The requirement is fulfilled because store(u) always
returns u.

Theorem 5. The methods in Listing 1 are wait-free.

Proof. All of the operations used are wait-free according to the Java specification.
There exists no iteration or recursion, hence the methods are wait-free.

4.2 Parameterized Attributes

Synthesized and inherited attributes can be optionally parameterized. In either case,
the only difference in the implementation is that additional parameters are passed
through the Eval procedure to the Compute procedure. Adding parameters does not
affect the wait-freedom of Compute, and parameterized Compute is wait-free for the
same reason as synthesized Compute.

Parameterized attributes are memoized by mapping parameter values to result
values. Our implementation of concurrent memoization for parameterized attributes
relies on a thread-safe map to memoize attribute results. For unary attributes, the
single parameter value is used as map key, and for 2+ arity attributes a list of the
parameter values is used as map key.

For the memoization procedures to be wait-free, we need a wait-free map, for
example a Java version of the wait-free hash map by Lange et al. [LWZ16]. In our
implementation, seen in Listing 2, we use the ConcurrentMap interface from Java’s
standard library, and a helper method to create an object implementing the interface.

162 Paper IV: Concurrent Circular Reference Attribute Grammars

Listing 2: Memoization in Java for
parameterized attributes.
ConcurrentMap map = buildMap ();

boolean memoized(Object params) {

return map.containsKey(params);

}

T store(Object params , T v) {

map.putIfAbsent(params , v);

return map.get(params);

}

T load(Object params) {

return (T) map.get(params);

}

Listing 3: Memoization in Java
for non-parameterized higher-order at-
tributes.
Ref value = new AtomicRef(nil);

boolean memoized () {

return value.get() != nil;

}

T store(T v) {

value.compareAndSet(nil, v);

return value.get();

}

T load() {

return (T) value.get();

}

The memoization map can be initialized either when the AST is created, or on first
attribute access. The ConcurrentMap interface does not require implementations
to be wait-free, however a wait-free map could straightforwardly implement the
interface. We chose to use the Java standard library’s ConcurrentHashMap, which is
only lock-free. This makes our full implementation of Concurrent RAGs in JastAdd
lock-free, instead of wait-free.

The ConcurrentMap interface extends Java’s standard Map interface, with an
additional putIfAbsent method to atomically insert a key-value pair in the map if
the key was not already associated with a value. We assume that all ConcurrentMap
methods are linearizable.

For parameterized attributes, the memoization implementation in Listing 2 is
used.

Theorem 6. The methods in Listing 2 fulfill the Memoization Requirement.

Proof. The Memoization Requirement entails that if memoized(p) returns true

before load(p), then load(p) returns a value v stored by some execution of
store(p,v).

The map is initially empty, with no key associated to a value. A call to
map.containsKey(p) then only returns true if some call to putIfAbsent(p,_)

inserted a value for the given key previously. Keys are never disassociated in the
map, so map.get(p) is guaranteed to return an inserted value v, which was inserted
by store(p,v).

Theorem 7. The methods in Listing 2 fulfill the Store Requirement.

Proof. The Store Requirement entails that store(p,u) returns a value v stored by
some execution of store(p,v).

Keys are never disassociated in the map, and because store(p,_) either inserts a
value for the key p, or does not because the key was already associated, and because

Paper IV: Concurrent Circular Reference Attribute Grammars 163

the call to map.get(p) occurs after that in program order, map.get(p) returns an
inserted value v, which was inserted by store(p,v).

Theorem 8. The methods in Listing 2 are wait-free if the ConcurrentMap implemen-
tation is wait-free.

Proof. There exists no iteration or recursion, so if the methods implemented by the
ConcurrentMap object are wait-free (containsKey, putIfAbsent, and get), then
the methods in Listing 2 are wait-free.

4.3 Higher-Order Attributes

A higher-order attribute can be either synthesized or inherited, and optionally param-
eterized. In either case, the only difference in computing the attribute is that, at the
end of the Compute procedure, the result value is attached to the parent AST node
by setting the parent reference of the result node. Setting the parent pointer at the
end of Compute does not affect the wait-freedom of Compute.

For non-parameterized higher-order attributes we can not reuse the synthesized
attribute memoization implemented in Listing 1 because it is possible that two threads
race to write a value with store(), making it possible for two separate entity objects
to be shared with the rest of the program. This is a consensus problem: concurrent
threads calling store() must agree on a single value. A standard solution for n-
thread consensus is to use Compare-And-Set (CAS) [Her06]. CAS is a wait-free,
linearizable, operation that atomically tests the value of a variable and updates it to
a new value if it had an expected value. Java provides library classes implementing
CAS, for example AtomicReferencewhich provides CAS via the compareAndSet()
method - the first argument is the expected value, and the second is the new value.

We use AtomicReference to implement memoization for higher-order attributes,
as shown in Listing 3. We use nil to represent an illegal attribute value (not equal
to null). This value is used to indicate that the attribute has not yet been computed
and thus replaces the cached flag from the synthesized memoization algorithm. The
expression value.get() reads the value of the atomic variable.

For higher-order attributes, Algorithm 4 is used under the Higher-Order Memo-
ization Requirement.

Theorem 9. Consider a higher-order attribute instance x. If Memoized, Store and
Load fulfill the Higher-Order Memoization Requirement, then Eval(x) (Algorithm 4)
returns a single entity object.

Proof. Consider a thread that executes Eval(x). The if-statement in Eval has two
branches that return either the result of Store(x, _) or Load(x). The result of
Load(x) is returned if Memoized(x) returned true, so according to the Higher-
Order Memoization Requirement, Load returns a single entity object. Additionally,
the Higher-Order Memoization Requirement specifies that Load(x) returns the same
entity as Store(x, _), so only one entity object can be returned from Eval(x).

For higher-order attribute memoization, we must show the that the implementation
fulfills the Higher-Order Memoization Requirement. For non-parameterized higher-
order attributes, the implementation in Listing 3 is used.

164 Paper IV: Concurrent Circular Reference Attribute Grammars

Theorem 10. The methods in Listing 3 fulfill the Higher-Order Memoization Re-
quirement.

Proof. The value field is only updated by the CAS in store(), with the expected
value nil. Only one CAS is able to succeed, because the attribute value is never equal
to nil. Because store() returns the single successful CAS value, it always returns
the same value for a single attribute instance.

Note that memoized() returns true only if a previous CAS has succeeded, and
then load() must return the stored value of the single successful CAS.

Theorem 11. The methods in Listing 3 are wait-free.

Proof. All methods of AtomicReference are wait-free. No other method calls are
used, and no iteration or recursion is used, so the methods in Listing 3 are wait-
free.

For parameterized higher-order attributes, the parameterized memoization im-
plementation in Listing 2 is used. The following theorem states that it fulfills the
Higher-Order Memoization Requirement.

Theorem 12. The methods in Listing 2 fulfill the Higher-Order Memoization Re-
quirement.

Proof. The associated value for some key p is only updated by putIfAbsent(p,_)

in store(p,_). Because keys are never disassociated, only one putIfAbsent(p,_)
is able to succeed. Because store(p,_) returns the single successful
putIfAbsent(p,_) value, it always returns the same value, or entity object, for
a single attribute instance.

Note that memoized(p) returns true only if a previous putIfAbsent(p,v) call
has succeeded, and then load(p) must return the value v stored by the single suc-
cessful putIfAbsent(p,v) call.

4.4 Collection Attributes

Collection attributes collect values from nodes in a subtree of the AST, where Each
node can be marked as a contributor to the collection with a semantic function to
compute the contributed value. Each semantic function for a node may also be given
a boolean expression to restrict it to contribute its value to the collection only if some
condition holds.

Collection attribute computation is divided into two phases [MEH07]:

Survey phase A subtree of the AST is traversed, starting from some predetermined
collection root. All nodes that are potential contributors to the collection
attribute are added to a worklist for the next phase.

Collection phase For each node in the worklist from the previous phase, the contri-
bution condition is checked to determine if the node actually should contribute
a value. If the node is contributing to the collection then its semantic function
is computed and its value is added to the result collection.

Paper IV: Concurrent Circular Reference Attribute Grammars 165

A simple method of computing collection attributes is to perform a depth-first
traversal for the survey phase, and then use a loop to iterate over the resulting list of
contributors in the collection phase.

Collection attributes are only computed using the base AST, excluding higher-
order attributes. Computing a non-parallelized collection attribute is wait-free be-
cause each contribution is computed by a semantic function that must terminate in a
finite number of steps, and there are a finite number of contributions because the base
AST has a bounded height and each AST node object has a finite number of children.

A simple non-parallelized collection attribute evaluator is safe for concurrent
evaluation if it does not memoize its result. If memoization is needed the same
memoization scheme used for concurrent synthesized attributes is sound for collection
attributes.

4.5 Rewrites

JastAdd provides automatic AST rewriting controlled by attributes. This is a pow-
erful tool for transforming the AST, but it is problematic because the AST should
not be modified after construction. Söderberg and Hedin [SH15] show how rewrites
can be defined in terms of circular higher-order attributes, and this avoids any mod-
ification to the base AST. As long as the base AST is immutable, and the rewrite
is implemented using attributes that are concurrent, the resulting rewrite is safe for
concurrent evaluation.

5 Circular Attribute Implementation

In fixed-point evaluation, a function f can be computed by repeated application,
starting with some bottom value ⊥. The fixed-point is reached when the result x
satisfies x = f(x). There may be several values that satisfy this equation. However,
if we start from the bottom value we will always reach the same, least, fixed point.

A circular attribute can be seen as a fixed-point function f . However, there may be
multiple mutually dependent attributes. Therefore, f does not necessarily correspond
to a single semantic function, rather it represents multiple simultaneously applied
semantic functions. Furthermore, it is possible to apply the individual semantic
functions one at a time, in any order, and reach the same simultaneous least fixed-
point. This is true because each attribute takes values from a lattice, so a combination
of attribute approximations, for example a vector of approximations, is also a value in
a lattice. Since each semantic function is monotonic, according to well-formedness
condition WF3 in Section 2, updating one approximation is a monotonic operation
on the combined approximation vector.

We will now illustrate how a circular attribute can be evaluated in practice. Let x
be some circular attribute (instance), with D(x) being the set of attribute (instances)
that x transitively depends on. For now, we assume that all attributes in D(x)
are circular and mutually transitively dependent. We discuss how to loosen these
requirements later, in Section 6.

166 Paper IV: Concurrent Circular Reference Attribute Grammars

LetS be a vector of attribute approximations for the attributesD(x). TheS vector
forms the state of a fixed-point computation of the attributes D(x). A successor state
S′ is found by updating one approximation S′

y = fy(S) where y is an attribute in
D(x). If the new approximation of y is not equal to the previous approximation, i.e.,
S′
y ̸= Sy , then since fy is monotonic, S′ is greater than S.

Consider a starting state S⊥, where each approximation is equal to the bottom
value of the corresponding attribute. By repeatedly updating approximations of
attributes in D(x) as above, in any order, starting in state S⊥, the approximations
will eventually reach a simultaneous fixed point in which all approximations are equal
to the fixed-point value of the corresponding attribute.

A state Sfp is a simultaneous fixed point of the attributes in D(x) if, for all
y ∈ D(x), Sfp

y = fy(S
fp).

5.1 Concurrent Circular Attribute Algorithm

Our algorithm for concurrent evaluation of circular attributes is shown in Algo-
rithm 5. The basic structure of the algorithm is similar to the sequential algorithm
of Magnusson and Hedin [MH03]. The main idea for supporting concurrency is to
let each thread keep track of thread-local approximations for any ongoing fixed-point
loop, and to synchronize with the global approximations only at specific points during
the loop. The main CEval procedure uses three Case subroutines similarly to the
formulation of the sequential algorithm of Söderberg and Hedin [SH15].

To compute a circular attribute x, our algorithm uses successive approximation
of all attributes that x transitively depends on, until no approximation changes value.
This works through recursive calls to the three Case procedures. Each thread starts
in Case1, which starts a new fixed-point loop. During the loop, Case2 is used to
update the approximation of any attribute on the dependency cycle. Whenever an
attribute is recursively revisited during a particular iteration in the loop, Case3 is
used to return the previous approximation.

In concurrent execution, separate threads can individually compute new approx-
imations of attributes. The computations of each thread is shared with other threads
via global approximation variables.

To illustrate, assume there are two threads T1 and T2 computing mutually depen-
dent attributes x and y respectively. The control flow then looks like this:

T1: CEval(x) Case1x Case2x Case2y Case3x

T2: CEval(y) Case1y Case2y Case2x Case3y

5.2 The CEval Procedure

The CEval procedure takes two arguments: an attribute to be evaluated, x, and
an iteration index, i. The iteration index identifies uniquely which iteration of the
fixed-point loop an attribute value was computed during, and is used to determine if
Case2 or Case3 should be called in a recursive computation.

Paper IV: Concurrent Circular Reference Attribute Grammars 167

CEval(x, i) is called with i = 0, when there is no ongoing fixed-point com-
putation, and CEval will then return the fixed-point value of x. If i ̸= 0, then
CEval returns an approximation of x. Importantly, i ̸= 0 only when CEval is called
recursively from Case1, i.e., during an ongoing fixed-point computation.

CEval(x, i) computes a new approximation of x via Case2, by calling
Compute(x, i). The Compute procedure is an executable translation of the semantic
function of an attribute, where each access to some other attribute y is translated as
a call to CEval(y, i). Consequently, calling Compute(x, i), leads to recursive calls
to CEval(y, i) for each attribute y that x directly depends on.

The execution of CEval starts by testing if x has already been memoized, in
which case the memoized value is returned. Otherwise, if the global approximation
was not initialized (equal to nil), the global approximation is updated to the bottom
value of x. Next, the execution continues to either Case 1, 2, or 3:

• if i = 0, Case1(x) is called to start a new fixed-point computation, otherwise,

• if a thread-local approximation of x has not been recorded during the cur-
rent iteration i, Case2(x, i) is called to compute a new approximation of x,
otherwise,

• Case3(x) is called to reuse the previous thread-local approximation of x.

5.3 Thread-Local State

Each thread stores thread-local state (TLS), that is not visible to other threads, in the
tls field. The purpose of each member of the tls field is described below:

tls.change A flag indicating if, in the current thread, any local attribute approximation
has changed value during the current iteration of the fixed-point loop in Case1.

tls.value A map from attributes to local attribute approximations. Unassociated keys
are mapped to the value nil.

tls.iter A map from attributes to iteration indices (described below). Unassociated
keys are mapped to an unused non-zero iteration index.

In each thread, the iterations of the fixed-point loop in Case1 are assigned unique
indices. The iteration index is used to determine if an attribute approximation has
already been computed by the current thread during the current Case1 iteration.

Each time a thread records a new approximation for an attribute x, it updates
tls.iter(x) to the current iteration index. Thus, tls.iter(x) is equal to the current
iteration index if an approximation for attribute x has already been computed during
the current iteration of Case1.

Updating the iteration index at the start of the Case1 loop ensures that each
attribute that can change approximation is computed during the Case1 iteration.
This is required so that the tls.change flag reflects if any local approximation could
be updated to a new value.

168 Paper IV: Concurrent Circular Reference Attribute Grammars

Algorithm 5 Concurrent evaluation algorithm for circular attributes.
▷ Shared global value of attribute x:
gvx : Value × Boolean ← (nil, false)

▷ Thread-local state:
tls.change : Boolean
tls.value : (Instance→ Value)
tls.iter : (Instance→ Integer)

procedure CEval(x, i)
(value, done)← read(gvx)
if done then

return value

else if value = nil then

▷ Initialize gvx by Compare-And-Set:
CAS (gvx, (nil, false), (⊥x, false))

end if

if i = 0 then

return Case1(x)
else if tls.iter(x) ̸= i then

return Case2(x, i)
else

return Case3()
end if

end procedure

▷ Get current thread-local approximation of x.
procedure Case3(x)

return tls.value(x)
end procedure

Paper IV: Concurrent Circular Reference Attribute Grammars 169

▷ Run a fixed-point computation of attribute x.
procedure Case1(x)

repeat

i← uniqueId()
tls.change ← false

Case2(x, i)
until ¬tls.change
▷ Memoize x by marking gvx as done:
(result , _)← read(gvx)
CAS (gvx, (result , false), (result , true))
return result

end procedure

▷ Compute a new approximation of attribute x.
procedure Case2(x, i)

(prev , _)← read(gvx)
last← tls.value(x)
if prev ̸= last then tls.change ← true end if

tls.value(x)← prev

tls.iter(x)← i
next ← Compute(x, i)
if prev ̸= next then

tls.change ← true

CAS (gvx, (prev , false), (next , false))
tls.value(x)← next

tls.iter(x)← i
end if

return next

end procedure

170 Paper IV: Concurrent Circular Reference Attribute Grammars

Note also that the iteration index is always updated to a unique value, to ensure
that iteration indices are unique across all Case1 loop invocations, not only across
iterations of a single Case1 invocation.

5.4 Shared State

All threads share a global approximation for each attribute x, stored in the atomic
variable gvx. The atomic variable is updated using Compare-And-Set (CAS) and
read using read(gvx). The CAS and read operations are wait-free and atomic.

The value of gvx is a tuple of an attribute value, and a done flag indicating if the
value is the fixed-point result for the attribute, i.e. if the attribute is memoized. If
the flag is false, the value is either uninitialized (nil), or an approximation of the
attribute x.

The notation used for updating gvx is CAS (gvx, p, n), where p is the expected
previous value and n is the value to update to. When CAS is linearized, if the value
of gvx is indeed p then it is atomically updated to n. In Java, the gvx field can
be implemented by AtomicReference as in the higher-order attribute memoization
from Section 4.3.

Each thread evaluating a circular attributex can detect if the global approximation,
gvx, has changed since the thread last read it by comparing to its own thread-local
approximation of x.

Case1

In Case1, a new fixed-point computation for an attributex is started. The computation
is performed by a loop, and an iteration index i is used to identify each iteration of
the loop.

Each iteration of the loop starts by updating i to a new unique, non-zero value,
and clearing the tls.change flag. Next, Case2(x, i) is called to compute a new
approximation of x. The loop is exited at the end of an iteration i if tls.change
remains unset. The tls.change flag remains unset only if, during an iteration of the
Case1 loop, no attribute approximation was updated to a new value via Case2(x, i).

After the loop is exited, the stored global value of x is equal to the fixed point
value of x, so the current thread attempts to memoize the attribute by updating the
done flag in the global value of x.

Case2

When Case2(x, i) is called, it computes a new approximation of the attribute x,
during an ongoing iteration i of the fixed-point loop in Case1.

First, the shared global value of x is read and compared to this thread’s local
approximation. If they are not equal, we have two cases:

• this thread had no local approximation stored for x, or,

• another thread has updated the global approximation to a new value.

Paper IV: Concurrent Circular Reference Attribute Grammars 171

In either case, the tls.change flag is set to indicate that there was an approximation
update during the current iteration i.

Before computing a new approximation, the current thread’s local approximation
of x is updated to the current global value, and the iteration index for the local
approximation is set to i. This causes recursive CEval(x, i) calls in the current
thread to enter Case3 rather than Case2, thereby avoiding unbounded recursion.

A new local approximation of x is computed by Compute(x). If the new value is
different from the previous global approximation then the tls.change flag is set. Next,
the global approximation is updated using compare-and-set (CAS).

The value returned by Case2 is equal to the current thread’s local approximation
for x. This is not ensured by the dataflow in Case2 alone, but it is a consequence of
the fact that Compute(x, i) does not update the current thread’s local approximation
for x, as recursive calls to CEval(x, i) enter Case3.

Case3

Case3 returns the previous local approximation computed by the current thread for
the attribute x. When called after Case2(x, i) during the same iteration i, Case3(x)
returns the same value as Case2(x, i) did.

5.5 Correctness

We will here show informal outlines for proofs of soundness and wait-freedom of
CEval. The full proofs are in Appendix A.

Soundness CEval is sound if, for a well-formed circular attribute x, CEval(x, 0)
computes the fixed-point value of x. Well-formedness is defined in Section 2.
Specifically, the semantic function of x must be monotonic (WF3).

Proof sketch. Consider a single-threaded execution of CEval. It will always
enter Case1 initially, then perform iterations until the tls.change flag remains unset.
For this to work, Case2 should be called for each attribute that x depends on, that
can change value, in each iteration of Case1. It can be shown that in each iteration
of Case1, either all attributes that x transitively depends on have reached their fixed-
point value, or Case2 is executed for all attributes that x transitively depends on.

It is important that a single thread only advances the global state of an attribute
to a monotonically increasing value. This is both ensured by the well-formedness of
the attributes being evaluated, since their semantic functions are monotonic, and in
concurrent execution the fact that the global approximation is read before computing
a new approximation, and used as the expected value before updating to a new
approximation.

Wait-freedom It is mostly straight-forward to prove that CEval is wait-free. The
tricky part is to show that the loop in Case1 performs a finite number of iterations,
and that each one performs a finite amount of work. This relies on the fact that
the attributes are well-formed and thus have terminating semantic functions (WF2),
and a finite greatest possible value (WF3) which is eventually reached by successive
approximation in Case1.

172 Paper IV: Concurrent Circular Reference Attribute Grammars

5.6 Parameterized Circular Attributes

Like most other types of attributes, circular attributes can be parameterized. Al-
gorithm 5 can be used to evaluate parameterized circular attributes, with a few
modifications. A new parameter p is added to the CEval procedure. The parameter
p is a tuple of the attribute parameter values, and it is is passed to Case1, Case2,
Case3, and Compute.

The global value of a non-parameterized circular attribute is stored in an atomic
variable with a CAS operation and atomic read. To store global values for a parame-
terized circular attribute we instead use a concurrent map object that maps attributes
to atomic variables. The global value map is indexed by p, i.e. gvx(p) gives the
atomic variable for the global value of x with parameters p.

A parameterized circular attribute x is initialized by using putIfAbsent() to
insert a new atomic variable containing the bottom value of x in the global value
map. The other uses of gvx from the non-parameterized algorithm are replaced by
map lookups gvx(p). Because we use putIfAbsent(), we ensure that an attribute is
only initialized once. The rest of the uses of gvx will all act as before just on different
atomic variables for different parameter combinations.

The local approximation map and iteration index map, tls.value and tls.iter, need
to be indexed by both attribute and parameter values. We implement this by using
tuple objects containing the attribute and parameter value tuple as map key.

6 Mixed Circular Evaluation

We have used some simplifying assumptions about the structure of circular attributes.
In this section we review these assumptions, and we show why some of them are not
necessary for correctness, and how others can be relaxed by simple additions to our
algorithms.

By relaxing assumption 1 below, we allow more general combinations of circular
and non-circular attributes than were previously allowed in Circular RAGs according
to Magnusson and Hedin [MH03]. This loosened requirement is useful in practice
since it is common that attributes are on a cycle only for a small fraction of typical
ASTs. Requiring these attributes to be declared as circular would start expensive
fixed-point computations also for those ASTs where there is actually no cycle.

To concisely discuss these assumptions we will first need two auxiliary definitions:

Circularly evaluated attribute An attribute instance x is circularly evaluated if it
has a bottom value, and CEval(x, i) is used to compute its value.

Effectively circular attribute An attribute instance is effectively circular if it de-
pends transitively on itself. Otherwise it is said to be effectively non-circular.

An attribute declaration can have both effectively circular and effectively non-
circular instances.2

The assumptions we have used so far, are:

2Magnusson and Hedin [MH03] refer to circularly evaluated attributes as potentially circular and to
effectively circular attributes as actually circular.

Paper IV: Concurrent Circular Reference Attribute Grammars 173

x y g h

u w

z

Figure 1: An attribute dependency graph. Each circle is an attribute instance.
Attributes with underlined names are circularly evaluated (with bottom value). At-
tributes inside the dashed rectangles are strongly connected and effectively circular.
The attributes u and w are effectively non-circular.

1. a circularly evaluated attribute instance depends only on circularly evaluated
attribute instances,

2. all circularly evaluated attribute instances are effectively circular,

3. all effectively circular attribute instances are circularly evaluated,

4. if an effectively circular attribute instance x transitively depends on an attribute
instance y, then y transitively depends on x.

Assumption (1) can be relaxed. Figure 1 shows two attribute instances breaking
this assumption: z and u both have dependents that are circularly evaluated, namely g
and y. Evaluating u with Algorithm 4 works as it should, because u is not effectively
circular and always computes the same value. For z, however, Algorithm 4 does not
work correctly, because z can compute different values based on an approximation of
x. Algorithm 1 memoizes attributes on the first computation, but during a fixed-point
computation, circularly evaluated attributes return approximations, which are not safe
to memoize. An attribute depending (transitively) on a circularly evaluated attribute
should thus not memoize its result during a fixed-point computation.

Assumption (1) can be relaxed by using Algorithm 6 for non-circular attributes,
replacing Algorithm 4. Algorithm 6 works by making the Store call conditional, so
that Eval only memoizes an attribute if a fixed-point computation is not currently
ongoing. We need to add a new field to the thread-local state: tls.i, to track the Case1

iteration index. At the start of each iteration of the Case1 loop, tls.i is updated to the
current iteration index, and at the end of Case1, tls.i is set to 0. A memoized attribute
must check that tls.i = 0 before memoizing a result. The updated algorithm works
even for higher-order attributes, because the result node is not memoized by any other
attribute that depends on the higher-order attribute before the circular evaluation has
reached the fixed point, thereby different AST nodes do not become visible to the rest
of the program.

This updated algorithm is the one that we implemented in JastAdd.
Assumption (2) is not necessary for correctness. In Figure 1, w is circularly

evaluated, but it is not effectively circular. In general, if some attribute a is not
effectively circular, but circularly evaluated with CEval(a, 0), then there are two

174 Paper IV: Concurrent Circular Reference Attribute Grammars

Algorithm 6 Evaluation algorithm for memoized non-circular attributes with circular
dependees.

procedure Eval(x)
if Memoized(x) then

return Load(x)
else

u← Compute(x)
▷ Test if called in circular evaluation.
if tls.i ̸= 0 then

▷ In circular evaluation: not safe to memoize.
return u

else

▷ Memoize the computed value as usual.
return Store(x, u)

end if

end if

end procedure

cases: a transitively depends on some circularly evaluated attribute instance, or it
does not.

If a depends on some circularly evaluated attribute instance, then as long as that
attribute changes approximation, the Case1 loop for a will not terminate, thereby the
circular attribute reaches its fixed-point.

If a does not depend on a circular attribute, then in the first Case1 iteration,
there is no local approximation of a so the change flag is set in Case2. Since a is
not circular it does not compute a new approximation in the second Case1 iteration,
so the fixed-point loop completes after the second iteration, and the value of a is
memoized.

Assumption (3) is not necessary for correctness of Algorithm 5. It is sufficient
that at least one distinguished attribute in each dependency cycle is circularly evalu-
ated. The bottom values of other attributes are then computed in terms of the bottom
values of the distinguished circular attributes.

Assumption (4) is not necessary for correctness. It implies that the dependency
graph of each circular attribute is strongly connected. If it is not strongly connected,
our algorithm works without modification. However, the algorithm could poten-
tially be modified to improve performance by separately evaluating the connected
components in topological order and memoizing each component separately, similar
to the method used by Magnusson and Hedin [MH03]. Future work could inves-
tigate extending the concurrent circular evaluation algorithm to improve evaluation
performance for separate component evaluation.

7 Empirical Evaluation

The research questions we want to answer in the evaluation are:

Paper IV: Concurrent Circular Reference Attribute Grammars 175

RQ1 Does our implementation of the concurrent algorithms work on existing well-
formed JastAdd projects?

RQ2 Can the implementation be used for interactive tools with both interactive and
long-running tasks?

RQ3 Does our concurrent implementation give sufficiently low latency for interac-
tive tasks?

Section 7.1 addresses the applicability of the approach (RQ1 and RQ2). Latency
(RQ3) is addressed in section 7.2. Threats to validity are discussed in section 7.3.

7.1 Concurrent ExtendJ and Interactive Applications

We applied our concurrent implementation on ExtendJ, a full-featured Java compiler
[EH07b]. The ExtendJ specification is complex, with 3473 attributes, and it uses all
attribute kinds discussed in this paper, including attribute-controlled rewrites, using
the circular higher-order attribute mapping supported by JastAdd [SH15].

Initially, running ExtendJ concurrently did not work because its specification was
not completely well-formed, with some semantic functions being non-pure (WF1).
Most of these problems happened to be masked in sequential evaluation, but resulted
in errors when running concurrently. In one case there was also an error when
running sequentially caused by purity issues.

Substantial work was required to find and fix attribute purity problems, but the
result benefits the sequential compiler by removing cases where it could compute
incorrect results when attributes were evaluated in a certain order.

After fixing the identified well-formedness problems, we successfully ran both
the sequential and the concurrent implementations on all regression tests for ExtendJ
using the same JastAdd specification. Based on this, we can answer RQ1 affirmatively.

To address RQ2 we implemented an extension of an interactive AST debugging
tool named DrAST [LTH16]. DrAST has a Graphical User Interface in which the user
can explore a JastAdd AST for a program and interactively inspect/compute attribute
values of nodes in the AST. In our extension to DrAST, we integrated ExtendJ and
added a few features. We added a source editor for the program, and changes to
the program are reflected in the AST view. A screenshot of our version of the tool
is showin in Figure 3 in Appendix B We also added a computation of ExtendJ’s
problems() attribute containing compile-time error and warning messages so that
these messages are displayed by DrAST. The user can interactively inspect/compute
attribute values while the long-running problems() attribute is computed. Any
interactive tasks are run concurrently with error-checking tasks using our concurrent
attribute evaluator. The tool thus works similarly to a typical Integrated Development
Environment, and we can thereby answer RQ2 affirmatively.

7.2 Latency and Performance Evaluation

The independent variable in studying latency is the attribute evaluator implementa-
tion. We measure two different attribute evaluators: the sequential implementation

176 Paper IV: Concurrent Circular Reference Attribute Grammars

Figure 2: Latency results from Benchmark 1 and 2. Red ×:s show the latency
for interactive tasks when using the concurrent implementation. Each × shows
the average time for computing a variable declaration (left) or a method type (right)
attribute, when running concurrently with the long-running problems attribute. Blue
◦:s show the time it took to complete the long-running task of computing the problems
attribute when using the sequential algorithms with locking. This is the minimum
latency for interactive tasks that would occur when the interactive task is started right
after starting the long-running task.

from JastAdd, and our concurrent implementation presented in this paper (Algo-
rithms 5 and 6). Attribute evaluation time is the measured dependent variable.
Confounding variables are the compiler (ExtendJ) on which we measure, and the
attributes measured.

Setup

We designed benchmarks to measure attribute evaluation latency and overall overhead
and speedup of concurrent attribute evaluation. For evaluation latency we measure
two relatively short-running attributes that are evaluated concurrently with a long-
running attribute. For overhead and speedup we measure the evaluation time of the
long-running attribute when evaluated sequentially and in parallel.

We use four benchmark configurations, as shown in Table 1. Each benchmark
runs some combination of three tasks executed in separate concurrent threads. The
three tasks are listed below.

Task P Evaluates the long-running attribute problems() on all CompilationUnit
nodes.

Task VD Evaluates the short-running attribute decl() (variable declaration) on 500
stochastically selected VarAccess nodes.

Paper IV: Concurrent Circular Reference Attribute Grammars 177

Benchmark
Thread

1 2 3 4
1 Task P Task VD – –
2 Task P Task MT – –
3 Task P – – –
4 Task P Task P Task P Task P

Table 1: Benchmark configurations: each benchmark runs up to four threads, with
each thread running one of three tasks (P, VD, or MT). The table shows the thread-task
mapping for each benchmark.

Task MT Evaluates the short-running attribute type() (method type) on 500
stochastically selected MethodDecl nodes from classes and interfaces.

The first two benchmarks are used to measure attribute evaluation latency in
an interactive setting. They run many short-running attributes in concurrently with
a long-running attribute, in two separate threads. Benchmark 3 is used to mea-
sure sequential performance by running a long-running attribute in a single thread.
Benchmark 4 is used to measure parallelization performance by running long-running
attributes in parallel in four threads.

All benchmarks are run both with the sequential and concurrent implementation.
In the concurrent mode, task threads are allowed to evaluate attributes concurrently,
but in the sequential mode, we use a lock to ensure that only one thread at a time is
evaluating any attribute.

Each benchmark configuration is executed 15 times in a single Java process. The
results of the first three iterations are discarded to reduce the impact of warm-up
effects in the Java environment.

Before Benchmark 1 and 2 are executed we first search the AST of the subject
program to find all VarAccess or MethodAccess nodes, then the list of nodes is
shuffled and the first 500 nodes are used in the benchmark.

Subject programs we used for the benchmarks are taken from the Qualitas Corpus,
Version 20130901 [Tem+10]. We measured the first 10, in alphabetical order, of the
subject programs in the Qualitas Corpus that were written for Java 5 or higher.

The benchmark suite was run on an Intel Core i7-3820 CPU at 3.60GHz, running
64-bit Linux Mint, with Java version 1.8.0_112 (Oracle JDK). A relatively large Java
heap size of 32Gb was used, more than 10× the minimum requirement to compile
each subject program in sequential mode, in order to limit runtime garbage collection.

Results

RQ3 asks whether our concurrent implementation gives sufficiently low latency for
interactive tasks. Benchmark 1 and 2 address this question by measuring the time
it took to evaluate 500 instances of two kinds of attributes: a variable declaration
attribute (Benchmark 1) and a method type attribute (Benchmark 2). In both bench-
marks, the attributes are evaluated while concurrently computing compile-time errors
and warnings for the whole subject program via a long-running attribute.

178 Paper IV: Concurrent Circular Reference Attribute Grammars

Our results show that when running the concurrent implementation, for any of
the 10 programs, the highest average latency for finding a variable declaration is 0.5
ms, and the worst average latency for computing a method type is 5 ms. This is far
below the acceptable threshold of 100 ms, so this answers RQ3 affirmatively.

If the sequential implementation with locks is used instead, the lower bound for
the latency of an interactive task that starts right after the start of a long-running task
will be the time it takes to complete the long-running task. This could in principle be
a very long time. In our experiments, we used the computation of the problems()

attribute as a typical representative of a long-running task. Our experiments show
that the average time for this computation is between 500 ms and 11 seconds for the
10 different programs. The latency in the sequential case is thus clearly too high for
interactive tasks. Figure 2 shows the average latency of the short-running attributes
in Benchmark 1 and 2 compared to the long-running attribute.

Although it is not one of our research questions, we were interested to investigate
the overhead and speedup of concurrent evaluation. We make some observations here
based on the results of Benchmark 3 and 4. However, more performance evaluation
is needed to draw definitive conclusions.

For overhead, we use the time for evaluating a long-running attribute in a single
thread by using both the concurrent and sequential implementation. The overhead is
computed as the concurrent time divided by the sequential time. Speedup of paral-
lelization is estimated by taking the time to find all compile-time errors in a program
using four parallel threads, divided by the time of doing the same computation in a
single thread, using the concurrent implementation. Average overhead and speedup
is shown in Table 2. If the speedup estimate is greater than the overhead, then finding
the compile-time errors in four parallel threads using the concurrent implementation
was on average faster than performing the same computation using the sequential
implementation. This was the case for each subject program.

Program NCLOC Overhead Speedup

ant-1.8.4 105,007 1.10 1.95
antlr-4.0 21,919 1.16 2.04
aoi-2.8.1 111,725 1.22 2.07
argouml-0.34 192,410 1.33 2.24
aspectj-1.6.9 412,394 1.17 2.43
azureus-4.8.1.2 484,739 1.22 2.32
castor-1.3.1 115,543 1.18 2.03
cayenne-3.0.1 127,529 1.16 1.98
checkstyle-5.1 23,316 1.07 2.27
cobertura-1.9.4.1 51,860 1.19 1.52

Table 2: Overhead of one thread running the concurrent algorithms, compared to
running the sequential algorithms. Speedup on a 4-core processor when running four
concurrent threads in parallel, as compared to running only one thread, all running
the concurrent algorithms. NCLOC is the number of non-comment lines of code of
the subject programs.

Paper IV: Concurrent Circular Reference Attribute Grammars 179

7.3 Threats to Validity

The general applicability of our results is limited by the fact that we have measured
only three attributes in a single JastAdd-specified compiler, ExtendJ. However, in our
opinion, ExtendJ is representative of a typical JastAdd compiler. Also, ExtendJ is
one of the largest JastAdd projects freely available, and it uses all different attribute
kinds discussed in this paper.

One alternative we looked at is the JModelica compiler for the Modelica language.
The specification of this compiler is even larger than that of ExtendJ. However,
JModelica currently uses several difficult to remove side-effects in the specification
that would need to be fixed in order to run it concurrently.

Our results of course depend on the subject programs that were used. We selected
these programs in a systematic manner from a well-known corpus in order to avoid
bias.

8 Related Work

There are many algorithms for concurrent and parallel evaluation of Knuth attribute
grammars, see the surveys by Jourdan [Jou91] and Paakki [Paa95]. However, that
work is based on tree-walking evaluators which are not applicable to RAGs. First,
tree-walking evaluators take only local dependencies into account, and can therefore
not deal with the non-local dependencies arising from the use of reference attributes.
Second, the tree-walking algorithms evaluate all attributes in an AST, whereas in
RAGs, the only attributes that are evaluated are those needed for the computation of
some goal attribute. Third, the tree-walking algorithms do not work for circularly
dependent attributes. We have not found any previous attempts to parallelize the
demand-driven evaluation algorithms used in RAGs, neither for circular nor for non-
circular attributes.

In dynamic programming, results to subproblems are memoized, typically in a
hash table, so that they only need to be computed once. In top-down dynamic pro-
gramming, subproblems are computed and memoized recursively, similar to demand-
driven evaluation of RAGs. Stivala et al. [Sti+10] have developed lock-free parallel
algorithms for top-down dynamic programming. The basic idea is to let several
threads solve the complete problem in parallel, and let them store and share the mem-
oized subproblems through a global lock-free hash table. Randomization is used to
encourage different threads to work on different subproblems. This approach is not
sufficient for concurrent evaluation of RAGs, with their different kinds of attributes
and fixed point computations. However, the idea of using randomization is interesting
to investigate in future work for RAGs in order to gain better speed-up when running
threads in parallel.

Ditter et al. [DCL12] develop a method for evaluating fixed-points in parallel, with
the goal of speeding up software verification using boolean equation systems. They
observe that in a fixed point iteration, the order of evaluating the different equations
does not matter, and the equations can therefore be evaluated in parallel. We also
make use of this observation in order to let several threads cooperatively evaluate a

180 Paper IV: Concurrent Circular Reference Attribute Grammars

circular attribute. Our demand-driven fixed point algorithm is, however, substantially
different from the traditional fixed-point algorithm used by Ditter. In the traditional
algorithm, it is assumed that both the equations and the variables to be solved are
known a-priori, and it is therefore straight-forward to view this as a homogeneous
data-parallel problem. For RAGs, neither the equations nor the variables are known
a-priori, but are discovered during the recursive evaluation algorithm, and the fixed-
point problem is heterogeneous, involving attributes associated with many different
node types and which are defined by many different equations.

Similarly, traditional graph algorithms do not work for RAGs, as the attributes
(graph nodes) are not represented by concrete objects with explicit dependencies.

9 Conclusions

The goal of this work was to develop safe concurrent algorithms for Circular Reference
Attribute Grammars, in order to reduce latency in interactive tools.

We have designed new algorithms for circular attributes that make it practical
to parallelize existing RAGs, and we generalized the algorithms for non-circular at-
tributes to work more generally with circular attribute dependencies. Our algorithms
support synthesized, inherited, parameterized, higher-order, collection, and circular
attributes. Attribute-controlled rewrites are supported by representing rewrites as
circular higher-order attributes [SH15].

Through empirical evaluation we showed that our algorithms can be used to
reduce attribute evaluation latency. The implementation works well with existing
tools, like an interactive language-based tools for exploring ASTs.

We implemented our algorithms in the JastAdd metacompiler and the imple-
mentation can be used directly for any well-formed JastAdd project. Using our
implementation, it is straight-forward to parallelize a JastAdd project. Performance
evaluation showed that concurrent attribute evaluation is on average slower than se-
quential evaluation, but the speedup when using four parallel threads outweighed that
overhead.

Interesting future work includes exploring how the overhead of the concurrent
implementation can be reduced, and how more performance can be gained by paral-
lelization.

We have identified some possibilities of reducing concurrency overhead, and
through more measurements, we expect to find additional ones. One possibility is to
tune which attributes are memoized. The memoization configuration we used for our
measurements is tuned for the sequential case, but the trade-offs will be different in
the concurrent case: the cost of memoization is higher in the concurrent algorithms,
and therefore it may pay off to avoid memoizing certain attributes when running
concurrently. The data structures used in the concurrent implementation might also
be improved.

Collection attributes present an opportunity to introduce parallelism, for example
by dividing the work in the tree traversal between threads. Techniques like random-
ization and work stealing could be used to improve work distribution between threads.
Refactoring attributes to be more long/short-running would also affect parallel per-

Paper IV: Concurrent Circular Reference Attribute Grammars 181

formance: short-running attributes reduce the risk of duplicate work when running
in parallel, while long-running attributes reduce the relative concurrent memoization
overhead.

References

[Åke+10] Johan Åkesson et al. “Modeling and optimization with Optimica and
JModelica.org - Languages and tools for solving large-scale dynamic
optimization problems”. In: Computers & Chemical Engineering
34.11 (2010), pp. 1737–1749.

[Boy05] John Tang Boyland. “Remote attribute grammars”. In: J. ACM 52.4
(2005), pp. 627–687.

[Bür15] Christoff Bürger. “Reference attribute grammar controlled graph
rewriting: motivation and overview”. In: Proceedings of the 2015
ACM SIGPLAN International Conference on Software Language
Engineering. SLE 2015. ACM, 2015, pp. 89–100.

[DCL12] Alexander Ditter, Milan Ceska, and Gerald Lüttgen. “On Parallel
Software Verification Using Boolean Equation Systems”. In: Model
Checking Software - 19th International Workshop, SPIN 2012,
Oxford, UK, July 23-24, 2012. Proceedings. Ed. by
Alastair F. Donaldson and David Parker. Vol. 7385. Lecture Notes in
Computer Science. Springer, 2012, pp. 80–97.

[EH07b] Torbjörn Ekman and Görel Hedin. “The jastadd extensible java
compiler”. In: Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal,
Quebec, Canada. ACM, 2007, pp. 1–18.

[Far86] Rodney Farrow. “Automatic generation of fixed-point-finding
evaluators for circular, but well-defined, attribute grammars”. In:
Proceedings of the 1986 SIGPLAN Symposium on Compiler
Construction. Palo Alto, CA, USA: ACM, 1986, pp. 85–98.

[FCH15] Niklas Fors, Gustav Cedersjö, and Görel Hedin. “JavaRAG: a Java
library for reference attribute grammars”. In: MODULARITY. ACM,
2015, pp. 55–67.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica
(Slovenia) 24.3 (2000), pp. 301–317.

[Her88] Maurice Herlihy. “Impossibility and Universality Results for
Wait-Free Synchronization”. In: Proceedings of the Seventh Annual
ACM Symposium on Principles of Distributed Computing, Toronto,
Ontario, Canada, August 15-17, 1988. Ed. by Danny Dolev. ACM,
1988, pp. 276–290.

182 Paper IV: Concurrent Circular Reference Attribute Grammars

[Her06] Maurice Herlihy. “The art of multiprocessor programming”. In:
Proceedings of the Twenty-Fifth Annual ACM Symposium on
Principles of Distributed Computing, PODC 2006, Denver, CO, USA,
July 23-26, 2006. Ed. by Eric Ruppert and Dahlia Malkhi. ACM,
2006, pp. 1–2.

[Jon90] Larry G. Jones. “Efficient Evaluation of Circular Attribute
Grammars”. In: ACM Trans. Program. Lang. Syst. 12.3 (1990),
pp. 429–462.

[Jou84] Martin Jourdan. “An Optimal-time Recursive Evaluator for Attribute
Grammars”. In: International Symposium on Programming, 6th
Colloquium, Toulouse, France, April 17-19, 1984, Proceedings.
Ed. by Manfred Paul and Bernard Robinet. Vol. 167. Lecture Notes in
Computer Science. Springer, 1984, pp. 167–178.

[Jou91] Martin Jourdan. “A Survey of Parallel Attribute Evaluation Methods”.
In: Attribute Grammars, Applications and Systems, International
Summer School SAGA, Prague, Czechoslovakia, June 4-13, 1991,
Proceedings. Ed. by Henk Alblas and Borivoj Melichar. Vol. 545.
Lecture Notes in Computer Science. Springer, 1991, pp. 234–255.

[Kas80] Uwe Kastens. “Ordered Attributed Grammars”. In: Acta Inf. 13
(1980), pp. 229–256.

[Knu68b] Donald E. Knuth. “Semantics of Context-Free Languages”. In:
Mathematical Systems Theory 2.2 (1968), pp. 127–145.

[LWZ16] Patrick Lange, René Weller, and Gabriel Zachmann. “Wait-free hash
maps in the entity-component-system pattern for realtime interactive
systems”. In: 9th IEEE Workshop on Software Engineering and
Architectures for Realtime Interactive Systems, SEARIS 2016,
Greenville, SC, USA, March 20, 2016. IEEE Computer Society, 2016,
pp. 1–8.

[LTH16] Joel Lindholm, Johan Thorsberg, and Görel Hedin. “DrAST: An
Inspection Tool for Attributed Syntax Trees (Tool Demo)”. In:
Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering. SLE 2016. Amsterdam,
Netherlands: ACM, 2016, pp. 176–180.

[MEH07] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. “Extending
Attribute Grammars with Collection Attributes–Evaluation and
Applications”. In: Seventh IEEE International Workshop on Source
Code Analysis and Manipulation (Source Code Analysis and
Manipulation 2007), September 30 - October 1, 2007, Paris, France.
IEEE Computer Society, 2007, pp. 69–80.

[MH03] Eva Magnusson and Görel Hedin. “Circular Reference Attributed
Grammars - Their Evaluation and Applications”. In: Electr. Notes
Theor. Comput. Sci. 82.3 (2003), pp. 532–554.

Paper IV: Concurrent Circular Reference Attribute Grammars 183

[Nau05] David A. Naumann. “Observational Purity and Encapsulation”. In:
Fundamental Approaches to Software Engineering, 8th International
Conference, FASE 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings. Vol. 3442. Lecture
Notes in Computer Science. Springer, 2005, pp. 190–204.

[Nie93] Jakob Nielsen. Usability engineering. Academic Press, 1993.

[Paa95] Jukka Paakki. “Attribute Grammar Paradigms - A High-Level
Methodology in Language Implementation”. In: ACM Comput. Surv.
27.2 (1995), pp. 196–255.

[SKV10] Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. “A Pure
Object-Oriented Embedding of Attribute Grammars”. In: Electr.
Notes Theor. Comput. Sci. 253.7 (2010), pp. 205–219.

[SH15] Emma Söderberg and Görel Hedin. “Declarative rewriting through
circular nonterminal attributes”. In: Computer Languages, Systems &
Structures 44 (2015), pp. 3–23.

[Sti+10] Alex D. Stivala et al. “Lock-free parallel dynamic programming”. In:
J. Parallel Distrib. Comput. 70.8 (2010), pp. 839–848.

[Tem+10] Ewan Tempero et al. “Qualitas Corpus: A Curated Collection of Java
Code for Empirical Studies”. In: 2010 Asia Pacific Software
Engineering Conference (APSEC2010). Dec. 2010, pp. 336–345.

[VSK89a] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper.
“Higher-Order Attribute Grammars”. In: PLDI ’89. Portland, Oregon,
USA: ACM, 1989, pp. 131–145.

[Wyk+07] Eric Van Wyk et al. “Attribute Grammar-Based Language Extensions
for Java”. In: ECOOP 2007 - Object-Oriented Programming, 21st
European Conference, Berlin, Germany, July 30 - August 3, 2007,
Proceedings. Vol. 4609. Lecture Notes in Computer Science.
Springer, 2007, pp. 575–599.

[Wyk+08] Eric Van Wyk et al. “Silver: an Extensible Attribute Grammar
System”. In: Electr. Notes Theor. Comput. Sci. 203.2 (2008),
pp. 103–116.

Appendices

A Circular Attribute Correctness Proofs

This section gives the proofs of soundness and termination for CEval, i.e., the
concurrent algorithm for circular attributes (Algorithm 5). We start by giving several
technical lemmas with proofs. The main theorems and proofs appear at the end of
this section.

184 Paper IV: Concurrent Circular Reference Attribute Grammars

The lemmas below state properties about iterations of Case1 as executed in
one single thread. There may be concurrently executing threads, running their own
Case1 iterations, but threads never share Case1 executions. The only interaction
between threads happens through reading and writing global shared attribute value
approximations (gvx, gvz , etc.). Iteration indices can, without loss of generality, be
thought of as being globally unique between all threads.

We will often talk about properties such as the done flag being set before some
point in execution. This means that given some linearization of several threads
executing the algorithm concurrently, the linearization point of a write to gvx, setting
done to true, was linearized as happening before the given point in the current thread
being discussed.

Also note that the lemmas only deal with attribute instances, though we sometimes
refer to them as just attributes.

First, we will need a few definitions.

Definition 1 (Attribute Set). A is the set of attribute instances in some attributed
AST.

Definition 2 (Direct Dependencies). For an attribute x ∈ A, d(x) is the set of
attributes that x directly depends on.

Definition 3 (Transitive Dependencies). For an attribute x ∈ A, D(x) is the set of
attributes that x transitively depends on, including x.

We assume here thatD(x) is strongly connected, in other words, for all y ∈ D(x),
D(y) = D(x).

The following observation restates a consequence of how semantic functions are
translated into Compute procedures:

Observation 1. For an attribute x ∈ A and an iteration i of the loop in Case1(x),
executing Case2(x, i) leads to executing CEval(y, i) for all y ∈ d(x).

We will need to reason about what happens during an iteration i of the loop in
Case1. The following definitions introduce boolean functions to succinctly reason
about this.

Definition 4 (Execution of Case2). Let x ∈ A be an attribute, and i an iteration of
the loop in Case1(x). Then, case2 (x, i) is true iff Case2(x, i) was executed during
iteration i.

Definition 5 (Fixed-Point Value). Let x ∈ A be an attribute and i an iteration of the
loop in Case1(x). Then, fix (x, i) is true iff, before the end of iteration i, the global
approximation for x is equal to the fixed-point value of x.

Definition 6 (Memoized Value). Let x ∈ A be an attribute and i an iteration of the
loop in Case1(x). Then, done(x, i) is true iff the done flag in the tuple gvx is true

before the end of iteration i.
In other words, done(x, i) implies that x was memoized before or during itera-

tion i.

Paper IV: Concurrent Circular Reference Attribute Grammars 185

Note that fix (x, i) is not equivalent to done(x, i), though if the algorithm is
correct, done(x, i) should imply fix (x, i). We prove this in Lemma 3.

Lemma 1 (Case2 on Direct Dependency). Let x ∈ A be an attribute, and i an
iteration of the loop in Case1(x), and let y ∈ d(x) be a direct dependency of x. If
Case2(x, i) is executed during iteration i, and y is not marked as done before the end
of the iteration, then Case2(y, i) is executed at some point during the iteration.

Proof. According to Observation 1, CEval(y, i) is executed as a direct consequence
of executing Case2(x, i).

When CEval(y, i) is executed, there are three cases:

• y is already marked as done, contradicting the premise of the lemma, or,

• no previous approximation has been stored for y during iteration i, so then
Case2(y, i) is executed, or,

• a local approximation of y has been previously stored during iteration i. Note
that local approximations are only stored in Case2, so then Case2(y, i) was
executed at some point during i.

We now define another helper function to reason about paths in the dependency
graph of an attribute:

Definition 7 (Dependency Paths). Let x ∈ A be an attribute, with a transitive
dependency on y ∈ D(x). The function paths(x, y) gives all acyclic paths from x to
y following the attribute dependency graph.

In other words, for each p = (a1, a2, · · · , an) in paths(x, y), the following holds:

• x = a1,

• y = an,

• and ai+1 ∈ d(ai), where 1 ≤ i < n.

186 Paper IV: Concurrent Circular Reference Attribute Grammars

Lemma 2 (Case2 on All if None Done). Let x ∈ A be an attribute, transitively
depending on y ∈ D(x), and let i be an iteration of the loop in Case1(x). For each
path p ∈ paths(x, y), from x to y, where none of the attributes in p are marked as
done by the end of i, Case2(z, i) is executed for each attribute z in p during i.

Proof. By induction on prefixes of p. The one-length prefix of p is equal to x, and
since i is an iteration of Case1(x), Case2(x, i) is directly executed in the loop body.

Assuming that the lemma holds for an n-length prefix of p, we must show that it
holds for a prefix of length n + 1. Let an be the nth element of p, then it follows
from the induction hypothesis that ¬done(an), and by the definition of paths(x, y)
it follows that an+1 ∈ d(an). By the induction hypothesis it also follows that
case2 (an, i), and together with the conclusion that ¬done(an), Lemma 1 gives the
goal: case2 (an+1, i).

By induction the lemma holds for any length prefix of p ≥ 0, so the lemma holds
for p.

Lemma 3 (Done =⇒ Fix). Let x ∈ A be an attribute, and i an iteration of the
loop in Case1(x). If x is marked as done before the end of i, then for each transitive
dependency y ∈ D(x), the global approximation of y is equal to the fixed-point value
of y before the end of i.

Proof. Note that the done flag for an attribute can only be set to true by the CAS after
the Case1 loop. CAS is a linearizable operation, so the effect of several (concurrent)
CAS calls is identical to the effect of some sequential ordering of the CAS operations.
Consequently, among the CAS calls that mark attributes in D(x) as done, there exists
a first one.

Consider the first attribute y ∈ D(x) that is marked as done by the CAS at the
end of Case1. The loop always takes at least one iteration, so let k denote the last
iteration before y was marked as done .

From Lemma 2 and the assumption that y is the first attribute in D(y) which
is set to computed, it follows that Case2 was executed for all z ∈ D(y). The loop
condition implies that none of the attributes in D(y) changed approximation, thus a
simultaneous fixed-point has been reached and fix (z, k) is true for all z ∈ D(y).

Because D(x) is strongly connected, and y ∈ D(x), then D(x) = D(y). Substi-
tuting D(y) for D(x) we get the conclusion: for all z ∈ D(x) it holds that fix (z, k)
is true.

Lemma 4 (All Fix Or Case2). Let x ∈ A be an attribute, and i an iteration of the
loop in Case1(x). Then one of the following properties hold:

• all attributes in D(x) have reached their fixed-point value before the end of
iteration i, or,

• Case2 is executed for all attributes in D(x) during iteration i.

Paper IV: Concurrent Circular Reference Attribute Grammars 187

Proof. There are two cases:

• some attribute z ∈ D(x) was marked as done before the end of iteration i, or,

• none of the attributes in D(x) were marked as done before the end of iteration
i.

In the first case, there exists some z ∈ D(x) such that done(z, i) is true, and by
Lemma 3 we have the fact that all attributes w ∈ D(z) have reached their fixed-point
values before the end of iteration i. Additionally, D(x) is strongly connected, and
z ∈ D(x) means that D(x) = D(z). Substituting D(z) for D(x) gives us the goal:
for all w ∈ D(x), fix(w, i) is true.

In the second case, there does not exist an attribute z ∈ D(x) such that done(z, i)
is true. Consequently, for each path p ∈ paths(x, y) it most hold that done(z, i) is
false for each element z of p. By Lemma 2 it follows that Case2(y, i) is executed
during iteration i for all y ∈ D(x).

Lemma 5 (Case1 Sound). Let x ∈ A be an attribute, with a transitive dependency on
some attribute y ∈ D(x), and let i be the last iteration of an execution of Case1(x).
Then, the global approximation of y is equal to y’s fixed-point value before the end
of iteration i, i.e. fix (y, i) is true.

Proof. By Lemma 4 there are two cases:

• all attributes in D(x) have reached their fixed-point values before the end of
iteration i, or,

• Case2 is executed for all attributes in D(x) during iteration i.

In the first case, we get the conclusion directly from the premise y ∈ D(x).
In the second case, Case2(z, i) is executed during iteration i for all z ∈ D(x).

Since i was the last iteration, and the loop is only exited if tls.change = false,
it must be that all attributes z ∈ D(x) were computed to the same value as their
previous approximations. According to our definition of simultaneous fixed-point,
all attributes inD(x)must then have reached their fixed-point value. Again, according
to the premise, y ∈ D(x) leads to the conclusion that y has reached its fixed-point
value.

Lemma 6 (Case2 is Monotonic). Let x ∈ A be an attribute and i an iteration
of the loop in Case1(x). Then, executing Case2(x, i) does not update the global
approximation for x to a new value that is lower in the value lattice of x.

Proof. First note that the global approximations of attributes are updated only by
using CAS. The CAS operation is linearizable, so the calls take effect as if executed
in some sequential order. Consequently, there exists a first global approximation
update among any set of global approximation updates for any set of attributes.

Proof by contradiction. Assume that there exists an attribute z ∈ A which is the
first attribute whose approximation gvz is updated to a lower value in the value lattice
of z by Case2(z, k) during some iteration k.

188 Paper IV: Concurrent Circular Reference Attribute Grammars

At the start of Case2(z, k), the value v0 was read from gvz . Note that the
approximation v0 was computed by applying the semantic function of z to some state
S0. Later in Case2, computing z gives a value v1 applying the semantic function to a
state S1. Because the semantic function is monotone, according to well-formedness
condition WF3, the value v1 can only be lower than v0 in the attributes value lattice
if S1 is lower than S0 in the state lattice. However, since S1 is read after S0, there
must exist some other attribute y whose approximation has been updated to a lower
value, but this contradicts the assumption that z was the first attribute to update
approximation to a lower value.

Now we can finally present the main correctness theorems and proofs using the
above lemmas. There are two things we must prove: that CEval always terminates,
and that it returns the correct value.

Theorem 13 (Termination). For a well-formed circular attribute x, CEval(x, 0)
terminates.

Proof. We must show that all individual operations terminate, and that only a finite
number of those operations are performed.

We can distinguish the following kinds of operations in the algorithm:

• writes and reads to tls.change,

• queries and updates of tls.value and tls.iter,

• updating a global approximation with CAS,

• reading a global approximation,

• unpacking a tuple

All of the above listed operations are assumed to terminate. Some of them
terminate due to Java semantics, and the remaining can be ensured to terminate
using appropriate library implementations. The tls.value and tls.iter maps can use
non-concurrent implementations since they are thread-local.

It remains to show that a finite number of these kinds of operations are used. For
this, it suffices to show that CEval, Case1, Case2, and Case3 are executed a finite
number of times. Except the initial call to CEval(x, 0), all calls to CEval, Case2,
and Case3 are executed via Case1. Additionally, Case2 causes recursion. So, we
must show that Case1 executes a finite number of iterations and Case2 never leads
to unbounded recursion.

First, we show that Case1 always has a finite number of iterations. For each
iteration i of Case1, by Lemma 4, there are two cases:

• all attributes in D(x) have reached their fixed-point values before the end of
iteration i, or,

• Case2 is executed for all attributes in D(x) during iteration i.

Paper IV: Concurrent Circular Reference Attribute Grammars 189

If the first case holds for some iteration i, then i is either the last or penultimate
iteration. There can not be more than one additional iteration after i because the next
iteration will not be able to update any attribute approximation to a new value, causing
tls.change to remain false after the assignment at the start of the next iteration, and
then leading to the loop exiting after that iteration.

Now, assume that there is an unbounded number of iterations. This implies that
the second case must hold for all iterations: Case2 is executed for all attributes in
D(x) in each iteration k. However, executing Case2 for all attributes means that
tls.change is set to true only if at least one attribute changed approximation. Since
attribute values are in a lattice, there are only a finite number of possible value
updates until no value can be further updated. Additionally, Lemma 6 shows that all
approximation updates are monotonic. Thus, after a finite number of iterations it will
not be possible to update any approximation and tls.change remains false and the
loop ends.

Finally, we show that Case2 never leads to unbounded recursion. Note that
Case2 is only called during some iteration k of Case1. If there exists an unbounded
recursion for some attribute z, then by definition executing Case2(z, k) leads to a
call to Case2(z, k). However, the condition of the if-statement for calling Case2

in CEval tests if z has already been computed during the iteration k, by reading
tls.iter(z) and comparing against k. In the first execution of Case2(z, k), tls.iter(z)
is assigned k before the Compute call, which is the only control flow path that could
lead to recursion. Thus, Case2 can not lead to unbounded recursion for any z and
k.

Theorem 14 (Fixpoint Sound). For a well-formed circular attribute x, CEval(x, 0)
computes the least fixed-point value of x.

Proof. Lemma 5 shows that Case1(x) only terminates after the global approxima-
tions of all y ∈ D(x) have reached their fixed-point values. The approximations of
all attributes in D(x) then form a simultaneous fixed point. Because x ∈ D(x), this
means that x has reached a fixed-point value. To show that the value of x is the least
fixed-point value, we must show that the initial approximations of all attributes in
D(x) were their respective bottom values. This is ensured by the first if-statement
at the start of CEval. Because the approximation of each attribute is initially set to
(nil, false), any thread executing CEval will attempt to initialize gvx to (⊥x, false)
if it sees the initial state. This happens before using the global approximation, be-
cause all uses of the global approximation are in Case2 which only happens after the
first if-statement of CEval.

It remains to show that multiple threads can concurrently execute the algorithm
without affecting the correctness of each other’s results. For this we only need to look
at the points in the algorithm where threads communicate - that is, via read(gvx)
and CAS (gvx, · · ·).

The CAS used to initialize the global value of x to the bottom value, ⊥x, only
has an effect for a single invocation of the CAS, and it ensures that all threads read
the bottom value of x as the first approximation of x.

In Case1, the global value is accessed when the fixed-point computation is
finished and a thread tries to mark the global approximation as the final result. The

190 Paper IV: Concurrent Circular Reference Attribute Grammars

CAS fails if another thread has marked the same result as final. Since the returned
value is read from the global approximation two separate threads will return the same
result regardless of which thread performed the successful CAS.

In Case2, the global approximation is read and used as the local approximation
in case it was different from the local approximation. A fundamental property of
Case2 is that it should only be able to update the global approximation to a higher
value, which is proven in Lemma 6.

Paper IV: Concurrent Circular Reference Attribute Grammars 191

B DrAST Screenshot

Figure 3: Screenshot of DrAST extended with ExtendJ. The center part of the
window contains a graph of the AST of one source file in freecol-0.10.7. The left
part of the window contains a list of all attributes in the currently selected node. The
canCompleteNormally() attribute has been selected and manually computed by the
user. The right side of the window contains a list of all files in freecol-0.10.7, and
below that is a source file view of the currently selected file. The bottom center
part of the window shows status messages from DrAST. Note the message about
compile-time error checking at the end. No compile-time errors or warnings were
present in freecol-0.10.7.

Popular Science Summary

in Swedish

Utveckling av statisk analys

Statisk programanalys, eller kort och gott statisk analys, är av stor betydelse inom
mjukvaruutveckling. Statisk analys är en samlingsterm för olika automatiserade ana-
lyser av datorprogram. Framför allt behövs statisk analys för att kompilera program
till exekverbar maskinkod, så att de kan köras på en dator (eller mobiltelefon, till
exempel). Statisk analys används också för att hitta och förhindra fel i program, samt
för att optimera prestandan hos program. Med statisk analys kan man bland annat
hitta säkerhetshål och förhindra att känslig data läcker ut ur ett program. Dessutom
används statisk analys i programmeringsverktyg, alltså de verktyg en programmerare
använder för att konstruera sina program. Till exempel kan statisk analys användas
för att föreslå ändringar i koden (kodkomplettering och korrigering av enkla fel), eller
för att låta programmeraren snabbt hoppa mellan definitioner och användningar av
namn i koden.

programmering

källk
od

kompilering

& analys

e
x
e
k
v
e
rb

a
rt

p
ro

g
ra

m

testning

testre
sulta

t

Utvecklingscykel

för programvara

Figur: Den vanliga utvecklingsprocessen för datorprogram. Under programmering
och kompilering används statisk analys av programmeraren och kompilatorn.

196 Paper IV: Concurrent Circular Reference Attribute Grammars

Statisk analys är en form av mjukvara som ofta är komplicerad och tidskrävande
att utveckla. Dessutom finns det ofta ett behov av att kunna bygga vidare på en
befintlig statisk analys med nya egenskaper, till exempel om programmeringsspråket
som analyseras uppdateras. Således är det önskvärt att utveckla statisk analys med
en flexibel mjukvaruarkitektur, det vill säga på ett sätt som gör det möjligt att bygga
på analysen utan allt för stor ansträngning.

Givet att det finns några grundläggande analyser som är utvecklade med flexibel
arkitektur så kan vi utveckla många nya viktiga analyser som använder de grundläg-
gande analyserna som byggstenar. Detta sparar mycket tid och pengar.

Deklarativ programmering

För att uppnå en flexibel mjukvaruarkitektur kan vi använda oss av deklarativ pro-
grammering. Det innebär att programmeraren beskriver vad som skall beräknas,
snarare än att exakt beskriva stegen som datorn tar för att beräkna det som behövs.
Den främsta fördelen med deklarativ programmering, när det gäller att bygga flexibla
program, är att det blir enkelt att dela upp ett deklarativt program i moduler. Pro-
grammoduler kan utvecklas separat och sedan kombineras på olika sätt, vilket sparar
tid för programmerarna i det långa loppet. En deklarativ statisk analys kan ganska
enkelt användas som en modul inuti en större, mer komplicerad, analys.

En statisk analys kan delas upp i små deklarativa delar som kallas attribut.
Attributen kan enkelt kombineras till moduler som sedan används för att utveckla nya
analyser.

Ett sätt att tänka på modulerna i en statisk analys är som pusselbitar. En pusselbit
(modul) kan läggas till i ett pussel (en statisk analys) så länge den har rätt form
(programgränssnitt):

Ett viktigt forskningsresultat i den här avhandlingen är en ny algoritm för att
kunna beräkna flera attribut samtidigt. Detta kan förkorta beräkningstiden: i ett
experiment visade mina mätningar att kompileringstiden kunde kortas med hälften.
En annan fördel är att svarstiden kan minskas i interaktiva programmeringsverktyg:
med samtidiga beräkningar måste man inte vänta på att föregående beräkningar är
klara innan man börjar på den nästa. Mina experimentella resultat visar att svarstiden
kan minskas från sekunder till under en millisekund.

Paper IV: Concurrent Circular Reference Attribute Grammars 197

För att kunna utföra beräkningar samtidigt har de flesta datorer idag flera kärnor,
där varje kärna exekverar varsin beräkningstråd jämnlöpande med andra kärnor i
datorn. Med min nya algoritm kan den sammanlagda beräkningstiden för attribut
minskas genom att dela upp beräkningsarbetet på flera (beräknings)trådar. När en
tråd beräknat ett attribut sparas värdet och kan direkt användas av en efterföljande
tråd som då slipper göra om beräkningsarbetet. Uppdelning av arbetet för fem attribut
med två jämnlöpande trådar illustreras i figuren nedan.

T1

T2

Figur: Illustration av två trådar, T1 och T2, som samtidigt beräknar fem attribut
(randiga cirklar). Beräkningsflödet för T1 visas med röda pilar, och för T2 med
vågiga blåa pilar. Beräkningen är i det här fallet iterativ, och går runt i en cirkel tills
det rätta värdet har beräknats. Med min algoritm kan varje tråd utföra sin beräkning
i varje attribut utan att behöva vänta på den andra tråden. Dessutom hjälper trådarna
varandra genom att en tråd använder resultatet från den andra tråden om den andra
hann före.

Kompilatorer

Statiska analyser är centrala i kompilatorer, det vill säga program som översätter
programmerarens kod till maskinkod som en dator kan köra. I mitt arbete har
jag arbetat främst med en kompilator som heter ExtendJ, som kompilerar program
skrivna i programmeringsspråket Java. ExtendJ är fullt deklarativt programmerad
och använder attribut, vilket gör det förhållandevis enkelt att använda ExtendJ för att
bygga nya statiska analyser för Java.

För min avhandling har jag dels utvecklat nya analyser som bygger på ExtendJ,
dels förbättrat ExtendJ självt.

Bland de statiska analyser som jag utvecklat i ExtendJ finns en analys som kan
användas för att minska testningstiden för Java-program. Idén är att endast köra om
de test som kan påverkas av den senaste ändringen i programmet som testas. Med
denna teknik lyckades jag halvera den totala tiden för testning av flera olika program.

En av förbättringarna jag gjort i ExtendJ var att uppdatera kompilatorn till att
stödja en ny version av Java. Sammanlagt har förbättringarna som jag gjort i ExtendJ
gjort det enklare för forskargrupper runt hela världen att bygga nya statiska analyser
och språktillägg till Java.

	Introduction
	Introduction
	Introduction
	Background
	Using RAGs for Extensible Analyses
	The ExtendJ Java Compiler
	Contributions
	Conclusions
	References

	Included Papers
	Extending the JastAdd Extensible Java Compiler to Java 7
	Introduction
	The JastAddJ Compiler
	Try With Resources
	The Diamond Operator
	Evaluation
	Related Work
	Conclusion
	References

	Multitudes of Objects: First Implementation and Case Study for Java
	Introduction
	Using Collections for Representing Multitudes of Objects
	Programming with Multiplicities
	Multiplicities for Java
	Implementation
	Case Study
	Related Work
	Future Work
	Conclusion
	References

	Extraction-Based Regression Test Selection
	Introduction
	Extraction-Based Test Selection
	Updating the dependency graph
	Dependencies for Java
	Tool implementation
	Evaluation
	Related Work
	Conclusion
	References

	Concurrent Circular Reference Attribute Grammars
	Introduction
	Circular Reference Attribute Grammars
	Correctness
	Non-Circular Attribute Implementation
	Circular Attribute Implementation
	Mixed Circular Evaluation
	Empirical Evaluation
	Related Work
	Conclusions
	References
	Appendices
	Circular Attribute Correctness Proofs
	DrAST Screenshot

	Popular Science Summary in Swedish

