
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Analytical and Numerical Developments in Strongly Correlated Systems: Perspectives
from TDDFT and Green's Functions

Karlsson, Daniel

2014

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Karlsson, D. (2014). Analytical and Numerical Developments in Strongly Correlated Systems: Perspectives from
TDDFT and Green's Functions. [Doctoral Thesis (compilation), Mathematical Physics]. Division of Mathematical
Physics, Faculty of Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/8a970726-7767-42a2-b378-d6e648fe83ca


Analytical and Numerical Developments in

Strongly Correlated Systems:

Perspectives from TDDFT and Green’s

Functions

Daniel Karlsson

Division of Mathematical physics

Faculty of Science

Lund University 2014



c© 2014 Daniel Karlsson

Paper I c© 2011 by the European Physical Society

Paper II c© 2011 by the American Physical Society

Paper III c© 2013 by Nature Publishing Group

Paper IV c© 2013 by the American Physical Society

Paper V c© 2014 by the authors. Submitted to Physical Review Letters.

ISBN-978-91-7473-981-7 (print)

ISBN-978-91-7473-982-4 (pdf)

Lund-MPh-14/04

Printed in Sweden by Mediatryck, Lund 2014



Analytical and Numerical Developments in

Strongly Correlated Systems:

Perspectives from TDDFT and Green’s

Functions

Daniel Karlsson

Division of Mathematical physics

Faculty of Science

Lund University, Sweden

Dissertation for the degree of

Doctor of Philosophy

Thesis Advisor:

Ass. Prof. Claudio Verdozzi

Faculty Opponent:

Prof. Robert van Leeuwen

Academic dissertation which, by due permission of the Faculty of Science at Lund

University, will be publicly defended on Wednesday, June 4th, 2014, at 13.15 in

Rydbergssalen, Sölvegatan 14A, Lund, for the degree of Doctor of Philosophy.



Organization 

LUND UNIVERSITY 
Document name 
DOCTORAL DISSERTATION 

Department of Physics 

Division of Mathematical Physics 

Date of issue 

2014-05-05 

Box 118, SE-22100 LUND, SWEDEN 

 

 
 

Author(s) 

Daniel Karlsson 
Sponsoring organization 
 
 

Title and subtitle 

Analytical and Numerical Developments in Strongly Correlated Systems:  
Perspectives from TDDFT and Green's Functions 
 
Abstract 
 

This thesis investigates different methods for treating strongly correlated systems, and discusses their respective 
strengths and weaknesses. Many of the results presented in this thesis come from comparing the different methods and 
approximations to exact results. 
Paper I: We studied the real-time dynamics of a trapped fermion gas, as it expands after removal of a trapping 
potential. 
Paper II: We constructed a new exchange-correlation potential, to be used in three dimensions. The potential is non-
perturbative in the interaction, meaning that we could use it both for weakly interacting (metallic) systems, as well as 
for strongly interacting (Mott insulating) systems. 
Paper III: We studied transport of electrons through small disordered wires contacted to leads. Using TDDFT, we have 
studied how the inclusion of both disorder and large electron-electron interactions affect conduction. At finite bias, we 
saw that the effects where competitive, and that interactions could increase the current through disordered samples. 
Paper IV: We studied fermions in 3D, using our newly developed exchange-correlation potentials, presented in Paper 
II. We studied how a cloud of fermions expands when released from a trapping potential. The simulated systems were 
large enough to be relevant for actual experimental conditions. 
Paper V: We studied transport of electrons through small disordered wires contacted to leads. The setup was similar to 
the one in Paper III, but another method was used - NEGF. Many of the observed trends were similar to those seen in 
our previous investigations. The differences were attributed to non-local effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key words 

Green's function, DFT, TDDFT, Hubbard model, Many-Body Perturbation Theory, Quantum Transport, Disorder 
Classification system and/or index terms (if any) 
 
 
 

Supplementary bibliographical information Language 

English 

 
 
ISSN and key title 

 
ISBN 

978-91-7473-981-7 
Recipient´s notes Number of pages 

 

Price 

 
 Security classification 

 

Distribution by Daniel Karlsson, Division of Mathematical Physics, Lund University, Box 118, SE-22100 LUND 
I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources  
permission to publish and disseminate the abstract of the above-mentioned dissertation. 
 
 
Signature         Date   2014-05-05   



Summary of the papers

Paper I

Dynamical self-stabilization of the Mott insulator: Time evolution of the density and

entanglement entropy of out-of-equilibrium cold fermion gases.

Daniel Karlsson, Claudio Verdozzi, Mariana. M. Odashima, and Klaus Capelle

EPL, 93 23003, (2011)

In this work we have studied theoretically the real-time dynamics of a trapped

fermion gas, as it expands upon the removal of the trapping potential. By choosing

the parameters such that the system is strongly interacting, we were able to study the

dynamics of several different local phases: metallic, Mott insulating and band insulating

phases. We showed that the Mott insulating and band insulating phase have drastically

different behaviours. The band insulator melted in a short time frame, while the Mott

insulator was extremely stable, in comparison. We also introduced an ALDA for the

entanglement entropy, a quantity which contains information about phase transitions,

and showed that in the ALDA we can also see local phase transitions in the time-

dependent entanglement entropy.

My contributions to the paper consisted of writing parts of the TDDFT code,

running all calculations, discussing the results, and participating in writing the paper.

Paper II

Time-Dependent Density-Functional Theory Meets Dynamical Mean-Field Theory: Real-

Time Dynamics for the 3D Hubbard Model

Daniel Karlsson, Antonio Privitera, and Claudio Verdozzi

Physical Review Letters, 106 116401, (2011)

i



We have constructed a new exchange-correlation potential vxc, to be used in three

dimensions. In order to do this we solved the infinite homogeneous Hubbard model in

3D using the approximate method of Dynamical Mean Field Theory. By doing this, we
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In this work we studied fermions in 3D, using our newly developed exchange-
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fermions would expand, as they were released from a parabolic potential. These simu-

lations were made large enough to be relevant to actual experimental conditions in the

cold atom community, proving a point that it is indeed possible to simulate such large
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Mott insulating region is quite stable to external perturbations. We could also see that
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glad att jag har er.

Tack Ulrika. Det hade inte g̊att utan dig.

vi



Populär sammanfattning

Genom århundradena har ingenjörskonsten och naturvetenskapen genomsyrats av en

önskan att först̊a och kontrollera den materia som omger oss. All materia, till exempel

träd, byggnader och mobiltelefoner, best̊ar av olika slags atomer som är arrangerade i

en mängd olika strukturer. Fr̊an människans första försök att tillverka redskap genom

att manipulera flintstenar och metaller, till dagens allestädes närvarande tekniska un-

derverk, har först̊aelsen av materien g̊att hand i hand med möjligheten att kontrollera

densamma.

P̊a senare tid har forskare lärt sig att kontrollera enstaka molekylers position. P̊a s̊a

vis kan man f̊a molekyler att bilda kedjor vars tjocklek är av nanostorlek. Om en s̊adan

kedja placeras mellan tv̊a elektriska kontakter, kan man f̊a en ström att flyta genom

den, precis som genom en vanlig kopparledning. Skillnaden är att när kedjan best̊ar

av enstaka molekyler dyker en del nya och ibland oväntade fenomen upp. Istället för

att resistansen i ledaren kan beräknas om man känner materialet, utformningen och

temperaturen, s̊asom är fallet med vanliga sladdar, beror den nu p̊a fler variabler. I

s̊adana här nanosystem kan resistansen ändra sig spr̊angvis, och plötsligt blir strömmen

mycket större eller mycket mindre än vad man skulle förväntat sig.

Detta till synes märkliga beteende, som inte alls verkar överensstämma med det

man observerar för vanliga sladdar, kommer sig av att vi kommer närmare materiens

grundstenar. Egentligen beter sig allting omkring oss p̊a det vis som beskrivs av den s̊a

kallade kvantmekaniken, men bara när vi studerar mycket speciella system kan vi ob-

servera den direkt. För makroskopiskt stora objekt, s̊asom kopparledningar, summeras

de enskilda atomernas beteende och i genomsnitt beter de sig s̊asom vi är vana vid

fr̊an århundraden av undersökningar. Upptäckten att en annan fysik behövs när man

studerar enskilda atomer kom som en chock för forskarna för cirka hundra år sedan.
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Kanske kan materiens detaljbeskrivning tyckas onödig, men faktiskt gör sig kvant-

mekanikens effekter p̊aminda redan i de transistorer som används i dagens datorer.

Kvantmekaniken behövs t.ex. för att förklara spr̊angen i resistansen hos nanomaterial.

Problemet är att det är mycket sv̊art att beräkna egenskaper hos material utifr̊an dessa

grundläggande principer. Datorsimuleringar är ofta extremt sv̊ara och tidskrävande.

Ofta vet man inte heller exakt hur ens system ser ut, eftersom parametrar s̊asom ren-

het eller atomers exakta position är sv̊ara att bestämma i de nanosystem som man

framställer experimentellt.

Därför krävs ett annorlunda angreppssätt för att lära känna dessa sm̊a men ex-

tremt intressanta objekt. I denna avhandling beskriver jag mina försök att göra kvant-

mekaniska beräkningar genom att förenkla verkligheten till modeller. De modeller jag

använder saknar viss information och ignorerar vissa effekter som finns i riktig materia,

men de kan änd̊a användas för att i detalj studera specifika delar av kvantmekanikens

uttryck. Genom att skilja ut vissa delar av verkligheten kan man lära sig mer om just

dem utan att behöva göra bilden överdrivet komplicerad och s̊a detaljrik att man inte

ser skogen för alla träd.

När man först̊ar de olika delarna kan man sedan lägga samman kunskapen till en

mer komplett beskrivning av materien. Man kan ocks̊a, när man lärt sig tillräckligt om

den viss del, förenkla beskrivningen och därmed ocks̊a göra beräkningar snabbare. Det

finns ocks̊a situationer där vissa effekter är mycket viktigare än andra. Detta gör att

den förenklade modellen i sig kan beskriva allt väsentligt. Dessutom kan man genom

att undersöka en modell kanske sl̊a fast att en effekt inte behövs för en viss situation,

och d̊a kan man bortse fr̊an den, och änd̊a f̊a en fullständig beskrivning.

Som ett exempel fr̊an den klassiska mekaniken, kan man nämna att fysiker ofta

förenklar sin beskrivning av världen genom att anta att det inte finns n̊agot luft-

motst̊and. När de tidiga fysikerna testade vad som hände genom att l̊ata saker falla

i vacuum, förstod de mer om hur gravitation fungerar. Genom att undersöka olika

delar av verkligheten var för sig, blev det lättare att först̊a gravitation, och lättare

att först̊a luftmotst̊and. När man sedan har först̊att fenomenen är det lättare att för

varje situation man vill beskriva se om luftmotst̊andet är försumbart eller m̊aste tas i

beaktan.

P̊a detta sätt hoppas jag att resultaten av min forskning kommer att bidra till

först̊aelsen av världen omkring oss, och samtidigt ge oss möjlighet att kontrollera den
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ännu bättre. Exakt vad mina modeller och beräkningar leder till g̊ar inte att säga idag.

Mycket av dagens teknik skulle man inte ha kunnat föreställa sig för hundra år sedan.

Vanligtvis föreställer man sig att dagens teknik i framtiden kommer ha förfinats till

perfektion. Det är betydligt sv̊arare att tänka sig de helt nya saker som uppst̊ar d̊a

först̊aelsen av omvärlden och möjligheten att kontrollera den tar ett stort kliv fram̊at,

s̊asom till exempel när elektriciteten upptäcktes och togs i människans tjänst. Detta

är charmen med grundforskning - den leder till genombrott man idag inte ens kan

föreställa sig.

ix



x



Acronyms

DFT Density Functional Theory

TDDFT Time-Dependent Density Functional Theory

DMFT Dynamical Mean-Field Theory

LDA Local Density Approximation

ALDA Adiabatic Local Density Approximation

BALDA Bethe-Ansatz Local Density Approximation

KS Kohn-Sham

HF Hartree-Fock

NEGF Non-Equilibrium Green’s function

CPA Coherent Potential Approximation

IPR Inverse Participation Ratio

xi



xii



Contents

1 Introduction 1

2 Theory 5

2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Density Functional Theory (DFT) . . . . . . . . . . . . . . . . . . . . . 8

2.3 Time-Dependent Density Functional Theory (TDDFT) . . . . . . . . . . 11

2.3.1 DFT and TDDFT for lattice systems . . . . . . . . . . . . . . . 12

2.3.2 Dynamical Mean Field Theory (DMFT) meets DFT . . . . . . . 13

2.4 Non-Equilibrium Green’s functions (NEGF) . . . . . . . . . . . . . . . . 16

2.4.1 NEGF in steady state . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Observables in NEGF and TDDFT . . . . . . . . . . . . . . . . . . . . . 26

2.6 Disorder in nanoscopic systems . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Binary disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Box disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Disorder using Green’s functions . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 Average T-matrix Approximation (ATA) . . . . . . . . . . . . . 31

2.7.2 Coherent Potential Approximation (CPA) . . . . . . . . . . . . . 32

2.7.3 CPA out of equilibrium . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.4 Particle conservation for CPA . . . . . . . . . . . . . . . . . . . . 34

2.7.5 Particle conservation for CPA + 2nd Born . . . . . . . . . . . . . 34

3 Numerical methods 37

3.1 Exact Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Obtaining the ground state . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Details for the time evolution . . . . . . . . . . . . . . . . . . . . 39

xiii



CONTENTS

3.2 TDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Solving the time-independent Kohn-Sham equations . . . . . . . 40

3.2.2 Solving the time-dependent Kohn-Sham equations . . . . . . . . 40

3.3 NEGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Artificial smoothening . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Details for mixing . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Results 47

5 Conclusions and Outlook 61

References 65

xiv



1

Introduction

The physics of many-body systems, where several particles interact with an external

environment as well as with each other, is complex and difficult to describe. Due to

their mutual interactions, the motion of one particle is dependent on all the other

particles. Such calculations are impossible to do for large systems, and hence one must

find another way of tackling the many-body problem. A useful strategy has been to

exclude the complicated effects of inter-particle interactions and treat the particles as

independent, moving in a mean field which mimics the interactions. This is enough to

obtain correct characteristics for many systems, and can, for example, often correctly

predict whether a material is a good conductor or not. Moreover, the solution of

such independent-particle systems has been a fruitful starting point for perturbative

calculations, where the effect of the interaction is treated as a perturbation.

However, there are several cases where the complicated features of interaction ef-

fects need to be more carefully considered. Certain materials have shown insulating

behavior although independent-electron calculations predict them to be conductors.

The opposite is also true - some materials have a much higher conductance than pre-

dicted by a non-interacting model. This can be taken as the definition of a strongly

correlated system: A system where the interactions can be treated in a satisfactory way

neither in a single-article picture nor by introducing small perturbations. Because of

this breakdown, different methods need to be used to correctly describe these systems.

A reliable description is important, not only for the vast technological implications that

will follow the understanding of nano-scale systems, but also for the fundamentals of

many-body physics itself.
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1. INTRODUCTION

To be able to focus on the core of the many-body problem, I have been studying

model systems rather than real materials. The simplicity permits the models to be

solved more easily than their realistic counterparts. Of course, the models must be

designed such that they give rise to the same qualitative behavior. At first glance,

it could appear that we simplify too much. We model the long-range inter-particle

interaction by a short-range interaction. We discretize our system, allowing the particles

to exist only on lattice points, ’sites’, which have one energy level only. Finally, the

particles are allowed to tunnel only to the nearest neighboring lattice sites. However, it

turns out that such simple models retain many characteristics of realistic many-body

systems. They contain enough physics to capture the essential properties of strongly

correlated systems.

Moreover, in recent years, researchers have developed techniques to realize systems

with cold atoms in optical lattices. The constraining potentials are created by lasers

and can be designed to simulate the periodic potentials from ions in a crystal. The

atoms play the role of generic fermions (or bosons), and can be used for modeling

electrons. The level of control and flexibility in these systems is unprecedented. Thus,

it is possible to construct experimental systems that look very similar to our model

systems. In the interplay between such experiments and our model calculations, we

can learn not only about the qualitative behavior but also the quantitative features of

many-body systems.

The study of many-body systems is one of the most challenging tasks in physics.

Tackling such problems can not be done using a single approach, and therefore several

methods will be described in this thesis. Many results presented in this thesis will stem

from the comparison between such methods, in some cases including exact calculations.

It is due to the simplicity of the models we are using, that exact calculations are possible

for several cases. This allows us to perform ’numerical experiments’ - benchmarks in

which different methods and approximations are compared to each other or to exact

calculations. This differs from the usual situation in physics, where such benchmarks

come from comparing theoretical predictions with experiments. By restricting ourselves

to numerical experiments, we can explore the methods without dealing directly with

the incompleteness of the model.

The methods used are exact diagonalization, Density Functional Theory (DFT)

and its time-dependent extension (TDDFT), and the Non-Equilibrium Green’s function

2



(NEGF) technique. These methods can be utilized not only for model systems but are

also routinely used for realistic systems. Exact diagonalization can be used to study

few-particle systems in detail. DFT and TDDFT are nowadays two of the most common

methods used to describe material properties, while the NEGF technique is starting to

gain a foothold in parameter-free calculations.

Each of the methods have their own distinct strengths and weaknesses. Exact di-

agonalization gives access to the full wavefunction, but can only be used for very small

systems. DFT and TDDFT are computationally inexpensive, one of the the major

reasons they have gained popularity. However, it is quite difficult to systematically

improve the approximations that one must necessarily introduce in practical imple-

mentations. NEGF has the advantage that such systematic refinements are possible,

but it is an computationally expensive method.

In this thesis, I describe my work with improving upon and developing these meth-

ods, and the results thereof. Chapter 2 contains an overview of the theory of the models

and methods, and Chapter 3 describes some aspects of the numerics that I have used

and developed. Chapter 4 shows selected results from our work, and the last chapter

contains my conclusions and outlook.
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1. INTRODUCTION
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2

Theory

In this chapter, I will introduce the concepts used in the rest of the thesis. I do not make

any attempt at being rigorous, but instead I try to give a general picture, and refer

to more thorough reviews for further details. I first introduce details about the model

studied in this work, and then continue to discuss the main methods for treating the

model, namely Density Functional Theory (DFT), Time-Dependent Density Functional

Theory (TDDFT) and the Non-Equilibrium Green’s Function (NEGF) approach.

2.1 The Model

The models used in this work are several variants of the Hubbard model, introduced

by John Hubbard in the mid 60’s[1], and is nowadays a well-known model in solid state

theory. Being a lattice model, fermions (in case of bosons, the model is called the Bose-

Hubbard model) can only exist on lattice sites. Each site has a single energy level, which

means that each site can have four different configurations: i) Empty ii) occupied by a

single spin-up fermion iii) occupied by a single spin-down fermion iv) doubly occupied

by a spin-up and a spin-down fermion. In the case of double occupation, the system

gets an energy contribution U , and depending on the sign of U it can act as a repulsion

(U > 0) or attraction (U < 0). Thus, the Coulomb interaction between the fermions is

modeled as a contact interaction. The fermions can tunnel from site i to site j, with

amplitude Jij . J is also referred to as the hopping term, or more simply, hopping.

5



2. THEORY

In its simplest form, the Hubbard Hamiltonian is, in second quantization,

Ĥ =
∑
〈ij〉σ

Jijc
†
iσcjσ +

∑
i

Uic
†
i↑ci↑c

†
i↓ci↓ (2.1)

where 〈ij〉 means that the sum is restricted to nearest neighbors, σ = ↑, ↓ denotes

spin, c†i is a fermionic creation operator which creates a fermion at site i and ci is the

corresponding destruction operator. As stated before, Jij and Ui are the tunneling and

interaction terms, respectively. In this form, the Hamiltonian (2.1) can be used for any

dimensionality, and for any type of lattice structure. The lattice structure itself is given

by the amplitudes Jij . A schematic of the model is shown in Figure 2.1.

The spin-resolved density at each site is given by n̂iσ = c†iσciσ, and the total density

is thus given by n̂i = n̂i↑ + n̂i↓; as such, ni = 〈n̂i〉 can vary between 0 (empty) and

2 (doubly occupied). In all our calculations, we restrict the system to contain an

equal number of spin-up and spin-down fermions, and we apply only spin-independent

external fields. Thus, at all times ni = 2ni↑ = 2ni↓. Because of this, sometimes the

term density actually refers to the spin-resolved density.

Figure 2.1: A schematic of the

lattice model in 2D. When two

fermions occupy the same site,

they feel an on-site interaction

U . The tunneling amplitude from

site i to site j is Jij .

In this thesis, we use a slightly more general ver-

sion of the Hamiltonian, in order to study inhomo-

geneities and time-dependent fields:

Ĥ(t) =
∑
〈ij〉σ

Jijc
†
iσcjσ +

∑
i

Uin̂i↑n̂i↓+

+
∑
i

εin̂i +
∑
i

vi(t)n̂i, (2.2)

where we have written the interaction term in terms

of the spin-densities instead. εi are the on-site en-

ergies in the system, which can, for example, repre-

sent trapping potentials as in Paper I, or random-

ized disorder as in Papers III and IV. vi(t) is the

time-dependent external field, which is applied to the

system to bring it out of equilibrium. vi(t) can rep-

resent, for example, the time-dependent switching-

off of the trapping potential, or the applied bias in

transport calculations. Note that both the on-site

energy and the external fields are local in space.
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2.1 The Model

The Hubbard model has been applied to many situations in different areas of

physics. Books(see e.g. [2]) have been written on the topic of the one-dimensional

Hubbard model alone. This is of course because the model, simple as it seems, contains

an incredible amount of physics. It was originally developed by Hubbard to describe,

as the title of the paper states, Electron correlations in narrow energy bands. Since

then it has been used to study many other properties, such as magnetism, the Mott

metal-insulator transition, high-temperature superconductivity[2], and, more recently,

cold atoms in optical lattices, where experiments have confirmed predictions of the

Hubbard model, both for bosons and fermions.[3]

I do not attempt to make a deep excursion into the theory behind these models.

My perspective is a more practical one; aside from the mathematical properties, there

are several reasons for using this model. One is that the model is physically relevant

in many situations, like for cold atoms in optical lattices. Another reason is that it

is a simple enough so that it can be solved numerically, much more easily than more

realistic systems. Thus, in this thesis no numbers are stated in absolute values. We

adopt the units e = ~ = 1, and every quantity is given in units of the hopping or

inverse hopping. Thus, if the energy is stated as E = −2, this means E = −2J .

Likewise, time is measured in units of inverse hoppings, which means that t = 2 is

t = 2~/J . This arbitrariness is rather versatile; it is possible to use the same type of

calculations in electronic systems, and cold atoms systems. In the case of electronic

systems, bandwidths are of the order of eVs, giving a hopping that is also of that order.

The units of time will then be of the order of femtoseconds. In the case of cold atoms,

quantities are often measured in terms of the recoil energy, which sets the energy scale.

By using these numbers, the units of time will be of the order of milliseconds.

The Hubbard model in all its forms and dimensionalities are analytically solvable

only for a few cases. The exact results useful in my studies are the exact solution

for the 1D homogeneous model[4] and the infinite-dimensional homogeneous model[5].

Here, the term homogeneous refers to a system that is infinite in size, and where all

parameters are the same for all sites, Ui = U, Jij = J, εi = 0. I make use of the

exact solution in 1D in order to obtain a Local Density Approximation (LDA), usable

in inhomogeneous systems in 1D. This is further discussed in the Density Functional

Theory (DFT) section2.2. I use the concept of the solution to the infinite-dimensional

model as an approximation to 3D, further described in the DMFT section2.3.2.
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For a more thorough review of model Hamiltonians, also combined with DFT, I

refer to the recent review by Capelle.[6]

2.2 Density Functional Theory (DFT)

One could argue that the idea behind DFT is reduction. The full knowledge of the

wavefunction, obtained by solving the Schrödinger equation, for a moderate number of

particles, is not possible, and in fact, not even practical or useful. In experiments, it

is the reduced quantities which are of interest, such as energies, densities, or various

correlation functions. The wavefunction indeed gives these quantities, but it contains

much more information than one is usually interested in. For instance, it is enough

to know the one-particle density matrix in order to calculate the kinetic energy of

an interacting system. Knowledge of the two-particle density matrix is enough to

determine the interaction energy, and thus, the total energy of the system.[7]

In this sense, DFT provides the answer to the question: how far can we push this

idea of reduction? The answer from DFT is, that we can reduce the problem to just

the density. The density is enough to determine all quantities of the interacting system

in the ground state, and in principle also for all excited states.

The reason why this is possible stems from the one-to-one correspondence between

the external potential and the particle density, proved by the central theorem in DFT,

the Hohenberg-Kohn theorem[8]. The theorem states that the density coming from two

different external potentials will always be different. This uniqueness makes it possible

to, instead of minimizing the energy with respect to the wavefunction, minimize the

energy with respect to the density. This minimization procedure can be done in a very

natural way, introduced by Levy[9]. To illustrate the strategy, we first express the

ground-state energy as the minimum of the expectation value of the Hamiltonian,

Egs = min
ψ
〈ψ|Ĥ|ψ〉 = min

ψ
〈ψ|T̂ + Û + V̂ext|ψ〉, (2.3)

where the external potential is V̂ext =
∑

i vin̂i, T̂ is the kinetic operator and Û is the

partice-particle interaction.

The strategy used by Levy, now called the Levy restricted search, consists of two

consecutive steps to find the ground-state energy. The first step is to pick a density

n, and then minimize the energy with respect to all wavefunctions giving this density.
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2.2 Density Functional Theory (DFT)

This means that in this subset, the wavefunction is a functional of n, denoted by ψ[n].

(A functional F [n] is defined as a rule which takes a function and returns a value.

Another example of this is the total number of particles, N [n] =
∫
drn(r), or, in the

lattice case, N [n] =
∑

i ni. I call also the latter a functionl. In this language, the

energy is a functional of the wavefunction, Egs = Egs[ψ]).

The ground-state energy can thus be written as Egs = min
n

min
ψ→n
〈ψ|Ĥ|ψ〉 = min

n
Ev[n],

where ψ → n means the subset of all wavefunctions ψ that yield the density n. The

energy Ev[n] is a functional of the density, and since the potential energy does not

depend on the explicit shape of the wavefunction, the minimization can be done solely

on the interaction and kinetic energy,

Ev[n] = min
ψ→n
〈ψ|T + U |ψ〉+

∑
vini = F [n] + Vext[n] (2.4)

where we have defined the (universal) functional F [n] = min
ψ→n
〈ψ|T + U |ψ〉.

The second step is to minimize Ev[n] with respect to the density, which will then

yield the ground-state energy, Egs = min
n

Ev[n] = Ev[ngs]. In this step, the minimiza-

tion does not have any explicit dependence on the wavefunction, only on the density,

and at the minimum, we have obtained the ground-state energy and density. Also, since

we are at the minimum, performing the functional derivative of Ev[n] with respect to

the density gives us the external potential, since

0 =
δF

δni
+
δVext
δni

=
δF

δni
+ vi (2.5)

The price of hiding the wavefunction shows up in the unknown functional F . This

quantity encompasses all the complexities of the many-body problem, and knowledge

of F would yield the solution to the original problem. Since obtaining the exact F is as

hard as solving the original many-body problem, the remaining question is then how

to approximate F in a consistent and useful way. A fruitful is to extract quantities

from F which can be obtained more easily, and approximate the rest. The following

separation is convenient:

F [n] = T0[n] + Txc[n] + EH [n] + Uxc[n] = T0[n] + EH [n] + Exc[n], (2.6)

where T0 is the kinetic energy of a non-interacting system, but with the same density

as the original problem, and Txc is the remainder of the kinetic energy. The interaction

part is split in a similar way, where the Hartree energy EH [n] = 1
4

∑
i Uin

2
i has an

9



2. THEORY

explicit dependence on the density, and the remainder of the interaction energy is Uxc.

The remainders are then lumped together in the unknown exchange-correlation energy

Exc. Note that the interacting kinetic energy is defined as, T [n] = 〈ψmin|T̂ |ψmin〉,
where |ψmin〉 is the wavefunction that minimizes 〈T̂ + Û〉 for a specific density n. On

the other hand, T0[n] = min
ψ→n
〈T̂ 〉.

Here, we must remark on a specific feature of onsite interactions, such as those

studied in our models. For continuous systems, the exchange-correlation energy can be

further separated into the exchange energy and the correlation energy. The exchange

energy consists of contributions from fermions of the same spin. However, if we write

the interaction in a spin-dependent form, as in Eq. 2.1, then there is no exchange, so

Exc = Ec. Thus, all our quantities should really be denoted Ec instead of Exc, but we

write Exc in order to follow common practice in lattice (TD)DFT.

The rewriting into Eq. (2.6) has several advantages. Since the Hartree part is

large, as well as the non-interacting kinetic energy, the quantity to be approximated

will be smaller. However, it is not obvious how to obtain T0 as a functional of the

density. This problem was solved by Kohn and Sham[10], where they proved that

that by constructing a fictitious non-interacting system, designed to reproduce the

exact density of the original system, one can obtain T0 exactly via the non-interacting

orbitals of the fictitious system. This is the famous Kohn-Sham system,(
T̂ + v̂KS

)
ϕν = ενϕν , (2.7)

which describes particles that move in an effective local potential. The ϕνs are the

Kohn-Sham orbitals, which make up the wavefunction of the system in a form of a

Slater determinant. εν are the corresponding Kohn-Sham eigenvalues. The density

of the Kohn-Sham system is exactly the same as of the original interacting system,

provided that the effektive potential vKS is chosen to be

vKS(i) = vext(i) + vH(i) + vxc[n](i), (2.8)

containing the external potential, the Hartree potential vH(i) = 1
2Uini, and the exchange-

correlation potential vxc(i) = δExc
δni

. The density is obtained from the orbitals as

ni =
occ∑
ν

|ϕν(i)|2. (2.9)
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Kohn and Sham proved that, if this effective potential exists, it is unique, and will

reproduce the density of the interacting system. Under what conditions this potential

exists is not a trivial question, and is known as the v0 representability problem.

The density obtained from the Kohn-Sham system is exact. The only approximation

consists of finding a useful expression for the exchange-correlation potential. A quite

successful approximation is the Local Density Approximation (LDA), in which the

vxc is taken to the same as for a homogeneous reference system. The approximation

assumes that locally, the density behaves as it would in a uniform system. The form

of the vxc then becomes vLDAxc [n] = vrefxc (n), which is now an ordinary function. In the

majority of DFT calculations, the reference system is taken to be the homogeneous

electron gas (Jellium), where the nuclei have been smeared out, only contributing to

a positively charged background. In model systems, however, the choice of reference

system depends on the specific form of the Hamiltonian. This is discussed in more

detail below.

2.3 Time-Dependent Density Functional Theory (TDDFT)

A natural question to ask is if the same philosophy as that of DFT can be applied

in the time-dependent domain. Is it possible to, if given the time-dependent density,

find the time-dependent potential which gave rise to said density? The answer, for

finite systems where the external perturbation tends to zero at infinity, is yes. This

was proven by the Runge-Gross theorem[11]. Since this is a time-dependent problem,

the initial state has to be specified (not necessarily the ground state). Later, it was

also proven by the van Leeuwen theorem[12] that the time-dependent density obtained

from a given many-body system, can also be obtained in any other many-body system

with a different two-particle interaction. The time-dependent external potential in this

new system can be shown to be unique. As a special case, it is possible to find a many-

body system with non-interacting particles, which will reproduce the exact density from

the interacting system. This is the time-dependent extension to the DFT Kohn-Sham

system.

In the time-dependent case, the non-interacting particles move in an effective po-

tential v̂KS(t). As in the ground-state case, we can consider each orbital separately, in

11
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the Slater determinant which makes up the Kohn-Sham wavefunction. The equations

governing this system, for each orbital ϕν , are(
T̂ + v̂KS(t)

)
ϕν(t) = i

∂ϕν(t)

∂t
, (2.10)

and the time-dependent density is obtained from the orbitals as

ni(t) =

occ∑
ν

|ϕν(i, t)|2. (2.11)

Similarly to DFT, the time-dependent density of this system is exactly the same as

in the original interacting system, provided that the effective potential is chosen to be

vKS(i, t) = vext(i, t) + vH(i, t) + vxc(i, t), (2.12)

where vext(t) is the time-dependent external potential, vH(t) = 1
2Uini(t) is the Hartree

potential, and vxc(i, t) is the time-dependent exchange-correlation potential. The exchange-

correlation potential is an extremely complicated object, which depends non-locally on

the density, both in space and in time. However, in all our time-dependent calcula-

tions, we make use of the Adiabatic Local Density Approximation (ALDA), meaning

that vxc(i, t) ≈ vALDAxc (i, t) = vLDAxc (ni(t)), where the LDA is obtained from a homoge-

neous reference system. This approximation neglects all non-local dependency on the

density, both in space time. The problem of how to introduce memory and non-local

effects into useful expressions for vxc is still an open problem in TDDFT.

2.3.1 DFT and TDDFT for lattice systems

Whilst ground-state DFT for continuous systems was constructed in the ’60s, DFT for

lattice systems is a younger concept. It was introduced in the mid ’80s by Gunnarson

and Schönhammer[13, 14] in order to to study the so-called band-gap problem in DFT.

Later, the same authors and Noack[15] defined the theory more rigorously, where it

was shown that other observables than the density could also be used to construct

DFT-like approaches. As a specific case, the lattice density (also called site occupancy)

could be used as the basic variable in DFT. Thus, Lattice DFT is sometimes called

SOFT (Site Occupancy Functional Theory). Here, an LDA based on the analytically

solvable 1D homogeneous Hubbard model[4] was introduced. This is an important

difference compared to the interacting electron gas - the paradigm reference system in
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ab-initio calculations - where such an analytical solution is not available. The exact

LDA introduced had a derivative discontinuity in the exchange-correlation potential at

half-filling, which they showed was instrumental in obtaining the correct band gap in

their model calculations.

The idea of using different reference systems depending on the system considered

was further emphasized by Lima et al[16], in a paper denoted Density functionals not

based on the electron gas: Local-density approximation for a Luttinger liquid. There,

the authors constructed an analytical interpolation of the energy of the 1D Hubbard

model as a function of filling. This allows to have an LDA in closed form, making

it extremely practical to use in a Kohn-Sham scheme. The LDA from the 1D Hub-

bard model has been denoted BALDA, which stands for Bethe-Ansatz Local Density

Approximation, the name Bethe-Ansatz coming from the technique for solving the 1D

homogeneous Hubbard model[4]. BALDA have been favorably benchmarked against

exact calculations, showing that this LDA can give results at an accuracy of a few

percent for energies, densities and entanglement entropies.[16, 17, 18, 19, 20] Recently,

an interpolation valid for the spin-dependent case was constructed[21].

TDDFT for lattices was introduced by Verdozzi[22], where an ALDA was intro-

duced, based on the previously mentioned interpolation scheme in 1D[16]. The question

whether it is always possible to find a Kohn-Sham system reproducing the exact den-

sity has also been discussed[22, 23]. However, a rigorous proof of the mapping between

densities and potentials on a lattice was not done until 2012[24].

For further reading, there are several reviews on the topic of DFT[25] and TDDFT[26,

27] in the continuum formulation, and also for lattices[6, 28].

2.3.2 Dynamical Mean Field Theory (DMFT) meets DFT

Since we made use of DMFT in our TDDFT calculations, I conclude the TDDFT

section with a short excursion on DMFT.

In Paper II, we wanted to obtain a LDA usable in 3D systems. This means that

we need to be able to solve the homogeneous reference system, the infinite lattice

model in 3D. Due to the lack of analytical solutions in 3D, as opposed to 1D where

it can be solved by the Bethe-Ansatz, we instead wanted to use a non-perturbative

approximation. The reason for this is that in 3D there is a critical transition when the

system goes from a metallic behavior to an insulating one, the so-called Mott-Hubbard
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insulator transition, and such phase transitions are hard to capture using perturbative

methods.

We used DMFT in order to obtain such an LDA. DMFT is a non-perturbative

method usable for both weak and strong interactions. An indirect proof of this is that

DMFT is able to describe the metal-insulator transition in the 3D Hubbard model.

Thanks to the DMFT reference system, the same type of physics is automatically

incorporated into our vxc. Another advantage of the method is that it becomes exact

when the number of nearest neighbors tends to infinity, that is, for infinite-dimensional

systems.[5]

Figure 2.2: A schematic over the Anderson

impurity mapping in DMFT. The heat bath can

dynamically exchange fermions with the impu-

rity. The parameters of the bath are chosen so

that the solutions in the bath is the same as in

the original lattice.

The idea behind the method is to re-

place the original lattice problem with

an effective model system, contain-

ing effective parameters which can be

tweaked in order to describe the orig-

inal system. One of the most popu-

lar systems is the Anderson impurity

model[29]: A single interacting impu-

rity with the same interaction strength

as in the original lattice, is connected

via effective parameters to a reservior,

an electron bath. The bath parame-

ters - the single-particle energies and

the couplings to the bath - are tuned

to mimic the contribution of the origi-

nal lattice. The local (R = 0) Green’s

function and self-energy from the im-

purity model are chosen to be equal to

the local ones from the lattice,

Glattice = Gimpurity (2.13)

Σlattice = Σimpurity. (2.14)
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The general expression, in (k, ω)-space of the lattice Green’s function is

Glattice(k, ω) =
1

ω − ε(k)− Σlattice(k, ω)
. (2.15)

The approximation in DMFT (exact in D = ∞ dimensions) is that one assumes that

the self-energy is k−independent, that is, that the self-energy is local in real space.

However, the ω−dependence is kept. The local Green’s function is then

Glattice(ω) =

∫ ∞
−∞

dk3

(2π)3
Glattice(k, ω)eik0 = (2.16)

=

∫ ∞
−∞

dε
ρ0(ε)

ω − ε− Σlattice(ω)
(2.17)

where we have used the single-particle density of states, ρ0(ε) =
∫

dk3

(2π)3
δ(ε− ε(k)).

The expression for the local impurity Green’s function is

Gimpurity(ω) =
1

ω − ε0 −∆(ω)− Σimpurity(ω)
(2.18)

where ∆ is an embedding self-energy, and is determined by the effective parameters of

the bath,

∆(ω) =
∑
ν

|Jν |2

ω − εν
, (2.19)

where Jν are the hopping parameters from the impurity to the bath, and εν are the

single-particle energies of the bath.

For our calculations, we assumed a finite number of effective parameters, mean-

ing that the impurity and the bath are described as a finite cluster. The finite size

permitted us to solve the cluster using exact diagonalization, changing the effective

parameters until self-consistency was achieved. In the end of the cycle, quantities like

the total energy were extracted. Interestingly, the only input to the DMFT solver is

the non-interacting density of states, meaning that the same routine can handle any

dimensionality or geometry. However, because of the nature of DMFT, results are ex-

pected to be better when increasing the dimensionality[5]. For more details about the

method, see [30, 31].
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2.4 Non-Equilibrium Green’s functions (NEGF)

Green’s function methods have much in common with DFT and TDDFT. Instead of

trying to describe the many-body wavefunction with a macroscopic number of coordi-

nates one works with reduced quantities. In the Green’s function methods the reduced

quantities are few-particle correlation functions, i.e., expectation values or ensemble

averages of field operators. A large number of experiments can be expressed directly in

terms of such few-particle correlations. For instance, any single-particle quantity such

as the density or the current density may be expressed in terms of the one-particle den-

sity matrix, optical absorption can be expressed in terms of charge-density correlations,

and so on.

The field-theoretical methods originate from particle physics, and since the ’50s

they have developed into one of the most important theoretical tools in many-body

physics. The key quantity is the single-particle Green’s function, G(xtσ, x′t′σ′) =

〈T[ψH(xtσ)ψ†H(x′t′σ′)]〉, where ψ†, ψ creates (destroys) a particle, and T is the time-

ordering operator. In the original zero-temperature (T = 0) technique applicable to

ground states, the operators are ordered with respect to real time, which allows for a

perturbation expansion to any order via the original Wick theorem. The Wick theorem

permits to write time-ordered products in terms of the single-particle Green’s function.

Later, Matsubara invented a closely related method for ensemble averages with time

ordering for imaginary times and a Wick-like theorem for ensemble averages rather

than operators. However, neither the original T = 0 nor the Matsubara techniques are

so well suited for non-equilibrium problems in which a system is brought out of equilib-

rium by a time-dependent external field. For an overview of the T = 0 and Matsubara

techniques the reader is referred to Fetter and Walecka[32].

In the path-ordered technique, the previous ordering, real-time or imaginary or-

dering, is replaced by a time-ordering according to a contour. It contains the earlier

techniques as special cases but is directly applicable to non-equilibrium problems and

to systems evolving in time-dependent external fields.

The definition of the contour-ordered, single-particle Green’s function is, where we

use the generalized coordinate 1 = (x, σ, z) to encompass space, spin and contour time,

G(1, 2) = −iT r
[
ρ̂TC(ψH(1)ψ†H(2))

]
. (2.20)
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Figure 2.3: Different branches of the contour. The arrows denotes the time ordering of

the contour, times on the vertical branch are the latest. All observables are equal on the

backward and forward branch, O(t+) = O(t−) = O(t). The forward and backward branch

are shifted from the real axis only for graphical purposes.

The operator ρ̂ = e−βĤ
M
/Z, with ĤM = Ĥ − µN̂ , is the density matrix, which de-

termines the initial state of the system, and the trace is over the Fock space. Z =

Tr[e−βĤ
M

] is the partition function, and TC is the contour time-ordering operator.

As in the Matsubara formalism, the density matrix can be written as a propagation

in imaginary time, e−βĤ
M

= e−i
∫ τf
τi

ĤMdτ , where τf − τi = −iβ. Additionally, in order

to treat systems out of equilibrium, we have to consider time-dependent Hamiltonians,

Ĥ(t) = Ĥ + V̂ (t). Since we now have both real times t and imaginary times τ to

deal with, the contour idea comes into play. The contour permits to order operators

according to contour times, see Figure 2.3. All operators are extended to have a meaning

on the contour. A time variable on the contour is denoted by z, z = t− on the forward

branch, z = t+ on the backward branch, and z = t0− iτ on the imaginary branch. For

example, the field operator is defined to be ψ(x, z) = ψ(x), while

H(z) =

{
H + V (t) if z = t−, t+

HM = H − µN if z = −iτ
(2.21)

By ordering the quantities according to the contour, one can write Eq. (2.20) as
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G(1, 2) = −i
T r
[
TC(e−i

∫
γ H(z′)dz′ψ(1)ψ†(2))

]
Tr
[
e−i

∫
γ H(z′)dz′

] . (2.22)

This expression can be reduced to the ordinary zero-temperature formalism or the

Matsubara formalism, with different choices of the specific form of the contour. For ex-

ample, the Matsubara formalism follows from the contour only considering the vertical

track.

In order to expand the above expression in a perturbation series, we write H(z) =

H0(z)+Hint(z), where H0(z) is a Hamiltonian which is more easily treated, and Hint(z)

is the remainder. This is a general splitting, but in our case H0(z) will contain one-

body operators, including time-dependent external fields. Under the time-ordering, we

can separate the exponential in Eq. (2.22), giving

G(1, 2) = −i
T r
[
TC(e−i

∫
γ H0(z′)dz′e−i

∫
γ Hint(z

′)dz′ψ(1)ψ†(2))
]

Tr
[
e−i

∫
γ H(z′)dz′

] = (2.23)

= −i
∑∞

k=0
(−i)k
k!

∫
·· ·
∫
γ

〈
TC(Hint(z1) · · ·Hint(zk)ψ(1)ψ†(2))

〉
0∑∞

k=0
(−i)k
k!

∫
·· ·
∫
γ 〈TC(Hint(z1) · · ·Hint(zk))〉0

(2.24)

where we have defined 〈Tc(· · · )〉0 = TrTc(e
−i

∫
γ H0(z′)dz′ · · · ). If one could find a way

to easily calculate contour-time ordered products, one would have a very general and

powerful way to obtain the Green’s function.

This can be done by a generalization of Wick’s theorem[33], reducing the calcula-

tions of the perturbation series into terms of non-interacting Green’s functions. Then,

one can systematically write down the terms and represent them as Feynman diagrams.

However, now the Green’s functions are functions of contour times, and all integrations

have to be performed over the contour. In exactly the same way, higher order Green’s

functions can be obtained. For a much more thorough treatment on NEGF, see [33].

Expanding in diagrams, one finds the usual Dyson equation, but now generalized for

the contour-time-ordered Green’s function

G(1, 2) = G0(1, 2) +

∫
γ
d3d4G0(1, 3)Σ(3, 4)G(4, 2) (2.25)

where the self-energy Σ contains all interaction effects. Common approximations to

this quantity are Hartree-Fock, 2nd Born, GW and the T-matrix approximation.
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2.4 Non-Equilibrium Green’s functions (NEGF)

Figure 2.4: All second-order diagrams, which give the 2nd Born approximation. Each

Green’s function line is the interacting one, which means that Σ = Σ[G], that is, the

diagrams are dressed with the full G. Diagram one and two are referred to as the Hartree-

Fock contribution, and the non-local diagrams three and four constitute correlation parts.

Note that, if we treat the interactions as spin-dependent, then the second and fourth

diagram give zero contribution. If the interactions are treated as spin-independent, then

the second diagram, the exchange, will be equal to −1/2 of the first diagram, while the

fourth diagram will be equal to −1/2 of the third diagram. The two ways of treating the

interactions are exact, order by order. However, this is no longer true if only a subset of

diagrams are summed. In our work, the interactions are always treated as spin-dependent.

A common strategy for dealing with contour integrals is to make use of the so-called

Langreth rules, which express the Green’s function in real times. Several different

components of the Green’s function will then exist, depending on the positions of the

times on the contour. The components which we will make use of the most are the

lesser G< and greater G> Green’s functions

G>(t, t′) = G(t+, t
′
−) (2.26)

G<(t, t′) = G(t−, t
′
+), (2.27)

and the retarded GR and advanced GA Green’s functions

GR(t, t′) = θ(t− t′)
(
G>(t, t′)−G<(t, t′)

)
(2.28)

GA(t, t′) = −θ(t′ − t)
(
G>(t, t′)−G<(t, t′)

)
. (2.29)

The many-body approximation we will make use of consists of all terms up to

second order in the interaction, the so-called 2nd Born approximation, see Figure 2.4.

The self-energy can be conveniently separated in two parts, Σ2B = ΣHF + Σc. The

Hartree-Fock part is local in time, and this gives Σ<,>
HF = 0. The retarded part is

ΣR
HF,ij(t, t

′) = δijδ(t− t′)Uini(t) (2.30)
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The correlation part of the 2nd Born self-energy is

Σc,ij(t, t
′) = UiUjGij(t, t

′)Gji(t
′, t)Gij(t, t

′). (2.31)

Note that, differently from Hartree-Fock and Kohn-Sham TDDFT, the quantities are

non-local both in time and in space, making such quantities useful for studying memory

effects. Note also that the self-energy depend on the interacting Green’s function,

Σ = Σ[G]. This self-consistent requirement is crucial for conservation laws (particle

conservation etc.) to be fulfilled, which is very important in transport setups.

2.4.1 NEGF in steady state

Solving the NEGF is no trivial task. Solving the equations of motion on the contour

is computationally very demanding, although it can be done. In this work, we have

taken an alternative approach, which is to solve the equations of motion directly in

the steady state. This is defined to be the long-time limit (provided it exists) of the

equations of motion. All terms related to the initial state are neglected (integrations

over the vertical track of the contour), and we are left with simplified equations. In

steady-state, all quantities depend on the time difference only, G(t, t′) = G(t− t′). This

permits to conveniently express all equations in frequency space. We work with the

retarded GR(ω) and lesser G<(ω) Green’s functions. The Langreth rules give rise to

convolutions on the real axis, which have the general form

C(t, t′) =

∫ ∞
t0

dt̄A(t, t̄)B(t̄, t′). (2.32)

In order to treat this in frequency space, we need the Fourier transform in the long-time

limit. For long times, the above expression becomes

C(t− t′) =

∫ ∞
t0

dt̄A(t− t̄)B(t̄− t′). (2.33)

Changing variables to t− t̄ = τ (not to be confused with iτ on the vertical track of the

contour)

C(t− t′) =

∫ t−t0

−∞
dτA(τ)B(t− τ − t′), (2.34)

we get, in the long time limit t→∞, and renaming t− t′ = t,

C(t) =

∫ ∞
−∞

dτA(τ)B(t− τ). (2.35)
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2.4 Non-Equilibrium Green’s functions (NEGF)

This is a conventional convolution, which means that

C(ω) = A(ω)B(ω). (2.36)

By using the Langreth rules in time space, it is possible to derive a new set of rules

in frequency space. The most useful ones for our purposes are (frequency dependence

omitted)

c(ω) = a(ω)b(ω) (2.37)

c<,> = aRb<,> + a<,>bR (2.38)

cR,A = aR,AbR,A (2.39)

(a−1)R,A = (aR,A)−1 (2.40)

(a−1)<,> = −(aR)−1a<,>(aA)−1 (2.41)

(2.42)

where the two lower equations can be obtained by applying the Langreth rules to

aa−1 = 1.[34] From these equations, we can derive the following very useful rule (also

derived in [35]):

c =
a

1− ab
= (1− ab)−1a (2.43)

cR =
aR

1− aRbR
(2.44)

c< =
1

1− aRbR
a<

1

1− aAbA
+ cRb<cA (2.45)

By going into the long-time limit, the Dyson equation, Eq. (2.25), turns into

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω). (2.46)

By making use of the above Langreth rules in frequency space, we obtain the re-

tarded and lesser Green’s functions,

GR(ω) =
1

ω −H − ΣR(ω)
(Dyson equation) (2.47)

G<(ω) = GR(ω)Σ<(ω)GA (Keldysh equation). (2.48)

All calculations are performed in the site basis, which means that all equations above

imply matrix multiplications.
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In steady-state, the self-energies has the following form in the long-time limit:

ΣR
HF,ij(t) = δijδ(t)Uini (2.49)

Σc,ij(t) = UiUjGij(t)Gji(−t)Gij(t). (2.50)

Following the above rules for converting quantities into frequency space we get, for the

retarded part, ΣR
2B = ΣR

HF + ΣR
c , where

ΣR
HF,ij(ω) = δijUini (2.51)

ΣR
c,ij(ω) = UiUj

∫∫
dω′dω′′

4π2

[
(2.52)

GRij(ω
′)G<ji(ω

′′)G>ij(ω − ω
′ + ω′′)+ (2.53)

+G<ij(ω
′)GAji(ω

′′)G<ij(ω − ω
′ + ω′′)+ (2.54)

+G<ij(ω
′)G<ji(ω

′′)GRij(ω − ω′ + ω′′)
]
, (2.55)

while the lesser/greater self-energy is Σ<,>
2B = Σ<,>

c , where

Σ<,>
c,ij (ω) = UiUj

∫∫
dω′dω′′

4π2
G<,>ij (ω′)G>,<ji (ω′′)G<,>ij (ω − ω′ + ω′′). (2.56)

The relations

(GR)†(ω) = GA(ω) (2.57)

(G<,>)†(ω) = −G<,>(ω) (2.58)

G> −G< = GR −GA = −2πiA (2.59)

can be used to write the self-energies as functions of GR and G< only. A is the non-

equilibrium spectral function.

In principle, we have now all ingredients we need. To obtain the Green’s function for

any system, we solve the Dyson equation with the chosen many-body approximation.

However, since we are interested in transport calculations, we would have to consider

the Green’s function in the central region and in the leads, at the same time. However,

it has been shown[36, 37], that if we have a central region connected to macroscopic

non-interacting reservoirs, such as leads, it is possible to find an effective equation for

the central region, where the effect of lead α can be accounted for by introducing an

additional self-energy, Σα, the so-called embedding self-energy from lead α. The sum
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2.4 Non-Equilibrium Green’s functions (NEGF)

of all reservoirs give the total embedding self-energy, Σemb =
∑

α Σα. The shape of

the embedding self-energy depends only on the unconnected reservoirs, and can thus

be calculated beforehand. This means that the Dyson equation, Eq. (2.25), can be

written in terms of the contacted system alone, and then reads

G(1, 2) = G0(1, 2) +

∫
γ
d3d4G0(1, 3) (ΣMB(3, 4) + Σemb(3, 4))G(4, 2). (2.60)

where now all Green’s functions and self-energies are in the central region only. G0 is

the Green’s function for the uncontacted central region, and the total self-energy is the

sum of the many-body self-energy and the embedding self-energy, Σ = ΣMB + Σemb.

The same technique was used when discussing the Anderson model, see section 2.3.2.

For our purposes, we consider one-dimensional semi-infinite leads, which permits an

analytic expression of the embedding self-energy. It is non-zero only where the leads

connect to the central region and can be expressed as
(
ΣR
α (ω)

)
ij

= δijδiασ
R(ω − bα),

where δiα specifies the site in the central region where lead α is connected, and bα is

the bias applied to lead α. The exact form for the embedding self-energy in 1D is[33],

in units of the hopping parameter J = 1,

σR(x) =
1

2


x−
√
x2 − 4 if x > 2

x− i
√

4− x2 if |x| ≤ 2

x+
√
x2 − 4 if x > 2.

(2.61)

This lead has a finite bandwidth and sharp edges. This is difficult to handle numer-

ically when performing operations such as convolutions, and thus we make use of a

smoothened lead. The explicit shape of the self-energy is taken to be

σR(zα) =
2

zα + sgn(Re(zα))
√
z2
α − 4

, (2.62)

where zα = ω − bα + iη and η is the smoothening of the lead, see Figure 2.5.

The lesser/greater embedding self-energy has the same matrix structure as the

retarded self-energy,
(
Σ<,>
α (ω)

)
ij

= δijδiασ
<,>
α (ω), where[38]

σ<α (ω) = if(ω − µα − bα)Γ(ω − bα) (2.63)

σ>α (ω) = i [f(ω − µα − bα)− 1] Γ(ω − bα). (2.64)

The symbol f denotes the Fermi-Dirac distribution, µα is the chemical potential of lead

α and Γ(ω) = −2 Im
[
σR(ω)

]
is the effective coupling to the lead. We also consider
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Figure 2.5: The embedded self-energy σR for different values of the lead smoothening

parameter η. In the simulations, η = 10−2 was often used. However, a more smooth

self-energy was needed to converge CPA calculations.

leads which are featureless, that is, independent on frequency. This so-called wide-

band limit is defined as σR(ω) = −iη. This will give a frequency-independent coupling,

Γ(ω) = 2η.

At self-consistency, we calculate several quantities of interest, such as the density

ni =

∫
dω

2πi
G<ii (ω), (2.65)

and the current Iα from lead α, obtainable from the Meir-Wingreen formula[39],

Iα =

∫ ∞
−∞

dω

2πi
Tr
[
Γα
(
G< − 2πifαA

)]
, (2.66)

where the trace is taken over the central region.

The Meir-Wingreen formula, Eq. (2.66) is a generalization of the Landauer-Büttiker

formula, which states that for non-interacting systems, the current is given by the

difference of the Fermi distributions in the leads, times the transmission function,

I =

∫
dω

2π
(fL − fR)T (ω), (2.67)

where T (ω) = Tr[ΓLGRΓRGA]. The Meir-Wingreen formula reduces to the Landauer-

Büttiker formula for non-interacting systems. In the case of an interacting system, we
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2.4 Non-Equilibrium Green’s functions (NEGF)

can separate the self-energy into Σ = Σemb+ ΣMB and define generalized ’transmission

functions’ U(ω) and V (ω);

Uαc = Tr[ΓαGRiΣ<
c G

A] (2.68)

Vαc = Tr[ΓαGR(iΣ>
c − iΣ<

c )GA], (2.69)

where iΣ< is a hermitian matrix, resulting in real-valued transmission functions. With

these definitions, the current formula for an interacting system can be written as

I =

∫ ∞
−∞

dω

2π
[(fL − fR)T (ω) + ULc(ω) + fLVLc(ω)] . (2.70)

This is merely a rewriting of the Meir-Wingreen formula, and thus gives the exact

current if the exact self-energy is used. In this form, however, it is clear that the

concept of a Landauer-like transmission function is less defined for the interacting case.

It should be noted that even if U and V would be neglected, Eq. (2.70) still contains

effects of the interaction via GR. This means that the resulting transmission function

will differ from the non-interacting one.

Another quantity which we calculate is the double occupancy, a sensitive measure

for assessing approximations, but also an ingredient in entanglement measures. We

calculate the double occupancy as in [40], but for numerical convenience we split the

self-energy into a Hartree-Fock part and a correlation part. Doing this, we obtain

〈nk↑nk↓〉(t) = n2
k(t)−

i

Uk

∫
γ

(
Σc(tz)G(zt+)

)
kk
dz. (2.71)

In the case of mean-field where Σc = 0, we automatically end up with the correct

non-interacting double occupancy. In the limit of small interactions the correlation

self-energy tends to zero as U2 when U → 0, and thus Eq. (2.71) is still well-defined. A

limiting procedure has to be taken, however, if one studies a interacting cluster where

the fermions are non-interacting on one or more sites. In the long-time limit, we end

up with the following expression in frequency space

dk = 〈nk↑nk↓〉 = n2
k +

1

Uk

∫ ∞
−∞

dω

2πi

(
Σ<
c (ω)GA(ω) + ΣR

c (ω)G<(ω)
)
kk
. (2.72)

Knowing the density and the double occupancy, the single-site entanglement entropy

Ek in equilibrium is defined as[41, 42]

Ek = −2(nk − dk)log2(nk − dk)− dklog2(dk)− (1− 2nk + dk)log2(1− 2nk + dk).
(2.73)

We use this formula generalized to out-of-equilibrium situations.
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2.5 Observables in NEGF and TDDFT

The strategy for obtaining useful quantities in NEGF and TDDFT are quite different.

In NEGF, knowledge of the single-particle Green’s function will yield all time-dependent

single-particle quantities, such as currents and particle densities. In general, the two-

particle Green’s function is needed to calculate two-particle quantities, but in certain

cases one can still find expressions in terms of the single-particle Green’s function. One

example mentioned before is the double occupancy, another is the total energy of a

system.

The strategy in TDDFT is different. The theory promises that all quantities are ob-

tainable from the time-dependent density, but finding useful expressions for observables

is far from trivial. The introduction of the Kohn-Sham system provides an efficient way

of obtaining the density, as well as the non-interacting kinetic energy. Moreover, the

highest occupied Kohn-Sham eigenvalue yields the ionization energy[43]. One has to be

careful in attributing other Kohn-Sham properties any actual meaning. For example,

the Kohn-Sham current does not have to be the same as the real current. However, via

the continuity equation

∂n

∂t
= −∇ · J (2.74)

one can state that the Kohn-Sham longitudinal current - the one that changes the den-

sity - must be equal to the true longitudinal current. The transverse current, however,

is not directly obtainable in TDDFT.

Of course, if one can find an explicit expression of a quantity in terms of the density,

then we are guaranteed that this is an exact relation. Examples include the potential

energy and the Hartree energy, but also more non-trivial ones like the conductance in

single-channel junctions. [44, 45]

In order to obtain other quantities in TDDFT, one can resort to different tricks.

One is to assume an ALDA strategy, which is to say that the quantity in the homo-

geneous reference system is approximately the same as in the inhomogeneous system.

An example of this is the double occupancy 〈ni↑ni↓〉. Since the energy per site in the

homogeneous system is e = T/L+ U〈n↑n↓〉, the double occupancy can be obtained as

∂e

∂U
= 〈n↑n↓〉. (2.75)
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Since e = e(n), the double occupancy is also a function of n. Using an interpolation

for the energy[16] gives an explicit expression for the double occupancy. This can then

be used as an LDA for inhomogeneous systems in the ground state[20] or as an ALDA

in the time-dependent case. The latter was introduced by us[46];

〈ni↑ni↓〉(t) =
∂e(ni(t))

∂U
. (2.76)

As a side remark, the Kohn-Sham double occupancy is simply the non-interacting

quantity 〈ni↑〉〈ni↓〉 = n2
i /4.

2.6 Disorder in nanoscopic systems

Since a considerable part of this thesis deals with disordered systems, I would here like

to discuss fundamental aspects of such systems. I will only discuss so-called diagonal

disorder, meaning that the disorder perturbation is local, and can be written as

H = T̂ +
∑
n

|n〉Vn〈n| = Ĥ0 + V̂ , (2.77)

where Vn is the diagonal disorder. In each disorder configuration, the numbers Vn will be

different, and their behavior will be determined by their probability distributions. This

is defined in the following way: for L sites, we have the total probability distribution

function

P (V1, V2...VL) ≡ P ({Vn}). (2.78)

The probability distribution is normalized, meaning that∫
· · ·
∫
{dVn}P ({Vn}) = 1. (2.79)

The average value with respect to disorder is taken to be

〈G〉 =

∫
· · ·
∫
{dVn}P ({Vn})G({Vn}). (2.80)

In this work, we are interested in the case of uncorrelated disorder. This means that

Vi cannot affect Vj , and thus the probability distribution factorizes. The probability

distribution in this case becomes

P ({Vn}) =
∏
n

p(Vn) = p(V1)p(V2) . . . p(Vn). (2.81)
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The separate probability functions are assumed to be separately normalized. This

means that for the average value becomes

〈G〉 =

∫
· · ·
∫
{dVn}

∏
n

(p(Vn)G({Vn})) , (2.82)

and generally no further simplification can be done.

However, if we consider a quantity tm(Vm) which depends only on Vm,

〈tm〉 =

∫
· · ·
∫
{dVn}

∏
n

p(Vn)tm(Vm) =

∫
dVmp(Vm)tm(Vm), (2.83)

or, equivalently,

〈tm〉 =

∫
dV p(V )tm(V ). (2.84)

Thus, quantities at different sites factorize:

〈tmtn〉 =

∫
dV p(V )tm(V )

∫
dV p(V )tn(V ) = 〈tm〉〈tn〉, (2.85)

but, if they are at the same site,

〈tntn〉 =

∫
dV p(V )t2n(V ) = 〈t2n〉 6= 〈tn〉2. (2.86)

We consider two types of probability distributions in this work, binary disorder

and box disorder. There are of course many more, including speckle disorder, used in

optical lattices. For simplicity, we exclude correlated disorder from our studies.

2.6.1 Binary disorder

Binary disorder is often used to model alloys and doped semiconductors. In binary

disorder, there are two types of atoms. Atoms of type A have an on-site energy VA,

and concentration c. Atoms of type B have an on-site energy VB, and concentration

1− c. The explicit probability distribution is

p(V ) = cδ(V − VA) + (1− c)δ(V − VB), (2.87)

and an average will yield

〈tm〉 = ctm(VA) + (1− c)tm(VB). (2.88)

For fixed concentration of c = NA/L and for finite systems, complete averaging can be

done. The total number of different disorder configurations is
(
L
NA

)
.
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2.7 Disorder using Green’s functions

2.6.2 Box disorder

Box disorder of strength W means that for every site, the energy is drawn from a

random number from the interval [−W/2,W/2]. The probability function is then

p(V ) =

{
1/W if |V | < W/2

0 otherwise.
(2.89)

Differently from the binary disorder, for box disorder there is no possibility of per-

forming a full numerical average. Instead only partial averaging can be done, and

one has to check that quantities are converged with respect to the number of disorder

configurations.

2.7 Disorder using Green’s functions

For each disorder configuration, the Dyson equation, as well as the equation for the

T-matrix (the formula below can be seen as a definition of the T-matrix), will be

G = G0 +G0V̂ G (2.90)

G = G0 +G0T̂G0, (2.91)

where V̂ and T̂ will depend on the specific disorder configuration. Disorder averaging

will give

〈G〉 = G0 +G0〈V̂ G〉 (2.92)

〈G〉 = G0 +G0〈T̂ 〉G0. (2.93)

In general, one cannot easily describe 〈V G〉. The exact way of obtaining the average

would be to do a large set of calculations using different random numbers, and then

take the average. This is one of the approaches followed in this work.

However, such numerical disorder averaging is computationally expensive, and thus,

approximate methods of obtaining disorder averages has been constructed. One very

useful strategy is to find an effective medium, that is, an auxiliary system with effective

parameters, tailored to describe the arithmetical average of the original system. This is

very similar to the DMFT idea (described in section 2.3.2) where the effective medium

was the heat bath. One advantage with the Green’s function approach is that the
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properties of the effective medium is quite naturally expressed by its self-energy, just

as in the case of DMFT.

One approximation for averages, which was one of the first to be used[47], is the

Virtual Crystal Approximation (VCA). This corresponds to making the approximation

〈V G〉 ≈ 〈V 〉〈G〉. VCA simply shifts the energies of the non-disordered system with the

average disorder energy, since G = (G−1
0 − 〈V 〉)−1. This approximation misses many

features of disordered systems, but it shows the idea of introducing an effective medium

in order to deal with disorder.

The properties of the effective medium can be obtained quite naturally in a Green’s

function framework. Consider the average of Eq. (2.90), which will then define the

self-energy Σ for the effective medium,

〈G〉 = G0 +G0〈V̂ G〉 := G0 +G0Σ〈G〉, (2.94)

Equation (2.94) is an exact equation, and thus knowledge of the self-energy Σ will yield

the averaged Green’s function. The equation can be rewritten as

〈G〉 =
1

G−1
0 − Σ

(2.95)

where, in contrast to VCA, Σ is not simply the average of V , but is instead non-local,

complex and energy-dependent. Of course, finding the true Σ is as hard as solving the

original problem.

Let us turn to the problem of approximating this quantity. Since the effective

medium is designed to take disorder into account, one could gain insight from treating

V̂ − Σ̂ as a perturbation. Eqs. (2.90, 2.91) become

G = 〈G〉+ 〈G〉
(
V̂ − Σ̂

)
G (2.96)

G = 〈G〉+ 〈G〉T̂ ′〈G〉. (2.97)

Taking the average of Equation (2.97), we find the exact condition for the T-matrix

from the medium: 〈T ′〉 = 0. This means that there will be, on average, no addi-

tional scattering from the effective medium. From Eq. (2.96) and Eq. (2.97) it is

straightforward to find a matrix equation relating the T-matrix to the self-energy:

T ′ = (1− (V − Σ)〈G〉)−1(V − Σ). (2.98)
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2.7 Disorder using Green’s functions

In the case of only one impurity of energy Vm at site m in an otherwise homogeneous

system, the scattering matrix has the simple form Tm = |m〉tm〈m|, where tm is the

local t-matrix at site m,

tm =
Vm

1− VmG0(m,m)
. (2.99)

In the case of several impurities, the T-matrix is not equal to the sum of local T-

matrices due to interference effects between the scatterers. Instead, one can show that

the explicit form of T ′ is (Economou, Equation (7.69)[48]),

T ′ =
∑
m

Tm +
∑
n6=m

Tn〈G〉Tm +
∑

n6=m 6=l
Tn〈G〉Tm〈G〉Tl +

∑
n6=m 6=l 6=k

Tn〈G〉Tm〈G〉Tl〈G〉Tk + · · · .

(2.100)

Thus, to first order, the scattering matrix is the sum of the individual t-matrices, and

the higher order terms contain multiple scattering events.

2.7.1 Average T-matrix Approximation (ATA)

To find an equation for the effective medium, we have to resort to approximations.

In the ATA, one assumes that the self-energy is local in space, Σij = δijΣi. Thus,

Σ can be seen as a local potential (albeit complex and energy-dependent). Note that

Σi is site-dependent, which differs from the usual treatments where the non-disordered

system is homogeneous.

The total scattering matrix T in the original system will be a very complicated

function of all tms for all sites m of the system. The local scattering matrix for the

effective medium is, similarly,

t′m =
Σm

1− ΣmG0(m,m)
(2.101)

where Σm does not depend on a specific disorder configuration. The ATA consists of

making the approximation 〈tm〉 = t′m. This is enough to determine Σm:

〈tm〉 =
Σm

1− ΣmG0(m,m)
. (2.102)

As an example, in the case of binary disorder, this means that

〈tm〉 = c
VA

1− VAG0(m,m)
+ (1− c) VB

1− VBG0(m,m)
. (2.103)
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Thus, from the condition (2.102), the self-energy is completely determined. It is

complex, since G0 is complex. When we have determined Σ, we obtain the averaged G

from

〈G〉 =
1

ω −H0 − Σ(ω)
. (2.104)

In the ATA, the effect of the disorder is more than a rigid shift as in the VCA; the

spectrum will be broadened because of the finite imaginary part, and the energy shift

will not be rigid since the self-energy is frequency dependent.

2.7.2 Coherent Potential Approximation (CPA)

The CPA also assumes a local self-energy, as in ATA, called the coherent potential.

As opposed to the ATA, however, the CPA does not assume that the averaged local

t-matrices are equal to the ones of the effective medium. Instead, CPA is constructed

to fulfill the exact condition for the T-matrix in some limit, 〈T ′〉 = 0. The form of the

T-matrix is given in Equation (2.98), but it is not easily solved, even for the case of a

local self-energy. Instead, it is assumed that the local t-matrix of the effective medium

is equal to zero, giving

〈tm〉 =

〈
Vm − Σm

1− (Vm − Σm)〈Gm〉

〉
= 0. (2.105)

The frequency dependence is omitted, and we write 〈G(m,m)〉 = 〈Gm〉 for notational

simplicity. Eq. (2.105) is referred to as the CPA condition[49]. While similar in

structure to the ATA, the self-energy now has to be determined self-consistently. A

computational advantage is that all quantities are local in space, meaning that we can

solve the self-consistent loop for each site.

The approximation in CPA will give 〈tm〉 = 0, for all sites m. However, this does

not mean that the exact condition 〈T ′〉 = 0 is fulfilled. Examining the terms in Eq.

(2.100), this means that the three first terms are zero, since for uncorrelated disorder,

〈t1t2〉 = 〈t1〉〈t2〉. The fourth term, however, contains terms like 〈t1t2t1t2〉 = 〈t21〉〈t22〉 6=
0. Thus, CPA treats certain multiple scatterings from the same sites incorrectly.

Since we have used CPA for binary disorder, the specific form of the CPA condition,

Eq. (2.105), is

c
VA − Σm

1− (VA − Σm)〈Gm〉
+ (1− c) VB − Σm

1− (VB − Σm)〈Gm〉
= 0. (2.106)
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2.7 Disorder using Green’s functions

2.7.3 CPA out of equilibrium

To use CPA out of equilibrium in transport calculations, that is, in presence of a bias,

the CPA condition Eq. 2.105 has to be generalized. This can be done using so-called

vertex corrections, done in linear response[50], and out of equilibrium[51]. However,

from a NEGF perspective, it is quite natural to view the non-equilibrium properties as

coming from quantities which are contour ordered. This was done in[34], where they

showed that this approach yielded the non-equilibrium vertex corrections.

We thus consider the contour-ordered CPA condition

〈tm〉 =

〈
Vm − Σm

1− (Vm − Σm)〈Gm〉

〉
= 0. (2.107)

Making use of the Langreth rules, Eq. (2.39,2.40), the retarded part of Eq. (2.107)

gives us back the original CPA condition

〈tRm〉 =

〈
Vm − ΣR

m

1− (Vm − ΣR
m)〈GRm〉

〉
= 0, (2.108)

which means that in equilibrium, where we need only the retarded part, the formalism

is identical. However, out of equilibrium, we need an additional quantity, for example

G<. This yields a lesser self-energy Σ<, which needs to be treated as well.[34]

By applying a Langreth rule, Eq. (2.45), to Eq. (2.107), we obtain

0 = 〈t<m〉 = −
〈

1

1− (Vm − ΣR
m)〈GRm〉

Σ<
m

1

1− (Vm − ΣA
m)〈GAm〉

〉
+
〈
tR〈G<m〉tA

〉
.

(2.109)

Now, since the self-energy is independent on disorder averaging, and all quantities are

local, we can solve this equation for the lesser self-energy:

Σ<
m = 〈G<m〉

〈∣∣∣ Vm−ΣRm
1−(Vm−ΣRm)〈GRm〉

∣∣∣2〉〈
| 1
1−(Vm−ΣRm)〈GRm〉

|2
〉 = 〈G<m〉

〈∣∣tRm∣∣2〉〈∣∣∣ 1
1−(Vm−ΣRm)〈GRm〉

∣∣∣2〉 = 〈G<m〉fm, (2.110)

valid for any type of uncorrelated disorder distribution. Here, fm = f(〈GRm〉,ΣR
m) is a

real, non-negative function. We summarize the two CPA conditions in frequency space:

0 =

〈
Vm − ΣR

m(ω)

1− (Vm − ΣR
m(ω))〈GRm〉(ω)

〉
(2.111)

Σ<
m(ω) = 〈G<m〉(ω)f

(
〈GRm〉,Σm

)
. (2.112)
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Equations (2.111, 2.112) define CPA out of equilibrium. The equations are local, both in

space and in frequency. Moreover, since ΣR does not depend on the lesser components,

an existing ground-state CPA solver can be used, in conjunction with the equation for

the lesser component. Finally, the explicit form of the lesser CPA self-energy can be

used to prove particle conservation in a rather elegant way, see below.

2.7.4 Particle conservation for CPA

In this section, we show that the single-site CPA conserves the particle number in a

transport setup. It can be shown from the Meir-Wingreen formula, Eq. (2.66) that the

difference in the currents from the leads, ∆I, can be written as [52]

∆I =

∫ ∞
−∞

dω

2π
Tr
[
Σ<
c G

> − Σ>
c G

<
]
, (2.113)

where Σc = Σ−Σemb contains the self-energy parts beyond the embedding self-energies.

In the present case, we do not consider interactions beyond mean field, and thus Σ<,>
c =

Σ<,>
CPA. Any conserving approximation will have ∆I = 0 . Particle conservation follows

from the explicit form of the lesser/greater CPA self-energy, Eq. (2.112). The integrand

in Eq. (2.113) can then be expressed as

∑
i

(Σ<
CPA)iiG

>
ii − (Σ>

CPA)iiG
<
ii = (2.114)

=
∑
i

G<iifiG
>
ii −G

>
iifiG

<
ii = 0. (2.115)

This holds for any number of sites, and also for any number of leads. It holds for any

interaction which has a self-energy local in time such as Hartree-Fock or Kohn-Sham

density functional theory, and also any type of uncorrelated disorder.

2.7.5 Particle conservation for CPA + 2nd Born

The simplest way of treating interactions beyond the mean-field level, is to treat the 2nd

Born self-energy and the CPA self-energy as additive. It is not obvious that the result

will be conserving, see Paper V[53]. Here, we prove particle conservation explicitly. We

again make use of Eq. (2.113, where the previous arguments still hold for the CPA

part. Thus, we only need to consider on the 2nd Born part.
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2.7 Disorder using Green’s functions

In 2nd Born, the self-energy is local in time, see Eq. (2.31). Thus it is more

convenient to consider Eq. (2.113) in frequency space,

∆I =

∫ ∞
−∞

dtTr
[
Σ<(t)G>(−t)− Σ>(t)G<(−t)

]
= (2.116)

=
∑
kl

∫ ∞
−∞

dt
[
Σ<
kl(t)G

>
lk(−t)− Σ>

kl(t)G
<
lk(−t)

]
= (2.117)

=
∑
kl

UkUl

∫ ∞
−∞

dt
[
G<kl(t)G

>
lk(−t)G

<
kl(t)G

>
lk(−t)− (2.118)

−G>kl(t)G
<
lk(−t)G

>
kl(t)G

<
lk(−t)

]
. (2.119)

Using the fact that G<,>kl (−t) = −[G<,>lk (t)]∗, we get (all quantities are now at the same

t, so we omit time-dependence),

∆I =
∑
kl

UkUl

∫ ∞
−∞

dtG<kl(G
>
kl)
∗G<kl(G

>
kl)
∗− (2.120)

−G>kl(G
<
kl)
∗G>kl(G

<
kl)
∗] = (2.121)

=
∑
kl

UkUl

∫ ∞
−∞

dt
[
[G<kl]

2[(G>kl)
∗]2 − [G>kl]

2[(G<kl)
∗]2
]

= (2.122)

= 2i
∑
kl

UkUl

∫ ∞
−∞

dt Im
{

[G<kl]
2[(G>kl)

∗]2
}
, (2.123)

and thus ∆I is purely imaginary. However, since all reasonable approximations yield

real currents, the entire expression vanishes, proving that CPA + 2nd Born is particle

conserving.

We should note that current conservation is by no means a trivial fulfillment.

It depends crucially on the nature of the self-consistent calculations. As discussed

before[52, 54], non-self-consistent approximations (e.g. G0W0) are not particle con-

serving, and in such calculations ∆I can become quite large. We studied ∆I in the

first steps in our self-consistent cycle, and found that ∆I could be of the same order as

the current itself. However, at self-consistency, we always found that ∆I = 0 to numer-

ical accuracy. This means that self-consistency in CPA is crucial in the case of quantum

transport, and care must be taken when considering perturbative treatments.
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Numerical methods

To obtain the results in this work, several different codes were used. Some have been

written by me, and some has been written by colleagues and co-workers. Three main

codes were used: i) A code for exactly solving the Schrödinger equation using the

Lanczos algorithm. ii) A DFT and TDDFT code which can compute, for finite or

contacted systems, ground-state quantities such as energies and densities, and perform

time evolutions to obtain quantities such as time-evolved densities. iii) A many-body

code which uses NEGF and calculates ground-state and steady-state properties by

solving self-consistently the equations of motion. I wrote the DFT and TDDFT code

for finite systems, as well as the NEGF code. Here, the most important aspects of the

different codes will be discussed.

3.1 Exact Diagonalization

One of the advantages of using simplified models is that they can often be solved ex-

actly when the size of the system is small. With the commonly used term ’exact’, we

mean here numerically exact, in turn meaning that we can get the full wavefunction to

arbitrary precision. The term ’exact diagonalization’ is then to be read as complete, or

full, diagonalization. Thus, an exact code can give reliable benchmarks, making it pos-

sible to assess the strengths and weaknesses of various approximations. Furthermore,

since the wavefunction is obtained, we can calculate all quantities of interest, be they

single-particle quantities such as the density, or correlation functions such as the double
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3. NUMERICAL METHODS

occupancy 〈n↑n↓〉. This is in contrast to NEGF or TDDFT, where such quantities are

not immediate, as discussed before.

In our lattice models, the Hilbert space is finite, meaning that it is possible to

enumerate all basis states. One way of constructing the basis states is to use the site

basis. Since each lattice site can have four different configurations (empty, occupied

by a spin up/down electron, doubly occupied), the space consists of 4L states. The

full space has to be included if we want to study a system which can interchange

particles with an environment. In our case, we restrict ourselves to isolated systems at

zero temperature, meaning that the state of the system is pure, and we can restrict the

Hilbert space to states which have a fixed number of particles. We furthermore consider

a Hamiltonian which cannot flip spins, thus making it possible to further restrict the

space to fixed numbers of spin-up/spin-down fermions. The space is thus reduced to the

number of ways of placing N↑ spin-up fermions and N↓ spin-down fermions on L sites.

Instead of 4L, we have
(
L
N↑

)(
L
N↓

)
states. If we consider N↑ = N↓ = 2 on L = 8 sites,

the full space is 65536 versus the restricted space of 784, a considerable reduction.

Moreover, in lattice systems, the matrices are exceedingly sparse, which means that

only the non-zero elements in the Hamiltonian has to be taken into account.

The idea behind the exact diagonalization code is quite simple: i) Find the ground

state. ii) Time propagate a chosen initial state (often the ground state) under the

influence of an external time-dependent field. We discuss each step below.

3.1.1 Obtaining the ground state

Arguably, the simplest way of obtaining the ground state would be to write down

the Hamiltonian in the chosen basis, diagonalizing it to find all the eigenvalues and

eigenstates, and then pick out the state with the lowest energy, which will be the ground

state (assuming non-degeneracy). This works well for very small systems, but fails for

larger systems since the numerical effort for full diagonalization grows cubically with

the size of the system. Thus, several methods that can find the ground state without

having to find all the eigenvalues and eigenstates exist. The method we have used is

the Lanczos method[55], where the original problem is recast into a tri-diagonal one,

which is discussed in more detail below.
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3.1 Exact Diagonalization

3.1.2 Details for the time evolution

As in the case of finding the ground state, a straightforward way of doing time evolution

would be to, at each time step, approximate the Hamiltonian to be constant at that

time interval, and then write

|ψ(t+ ∆t)〉 = e−iH(t)∆t|ψ(t)〉. (3.1)

The problem is then how to obtain the exponential of a matrix. The most obvious

way is perhaps to Taylor expand the exponential, but this will result in a non-unitary

method. A straightforward way to obtain a unitary time evolution is to diagonalize

the Hamiltionian at each time step, H(t) = Z(t)D(t)Z†(t). Here Z(t) and D(t) are the

eigenvectors and eigenvalues of the Hamiltonian at time t. This gives the propagated

wavefunction as

|ψ(t+ ∆t)〉 = e−iZ(t)D(t)Z†(t)∆t|ψ(t)〉 = (3.2)

= Z(t)e−iD(t)∆tZ†(t)|ψ(t)〉 (3.3)

which is possible to calculate, since the effect of taking the exponential of a diagonal

matrix gives the diagonal matrix containing the exponentials of the matrix elements.

However, the costly diagonalization has to be done at each time step. Instead, the itera-

tive Lanczos method was used, which is a method that avoids calculating all eigenvalues

and eigenstates. New basis states are constructed by applying the Hamiltonian a num-

ber of times to a seed state φ0, giving the set {φ0, Hφ0, H
2φ0, · · · , Hnφ0}, the so-called

Krylov space.[55] These vectors are then orthogonalized. The Hamiltonian in this new

basis, turns out to be tri-diagonal. This is useful, since such matrices can be more

efficiently diagonalized. Moreover, because the basis vector n comes from applying H

n times to a seed state, it looks very similar to a Taylor expansion, and states with a

high n is not as important for short times.[56] Thus, time evolution in this method is

always a trade-off between the timestep and the size of the Krylov space. Eq. (3.3)

is then used in the subspace. As a final remark, we time-evolve our states using the

Hamiltonian at time t+ ∆t/2 instead of t, thus gaining an order of accuracy.

In this way, we have time evolved systems which have up to a few million basis

states.

39



3. NUMERICAL METHODS

3.2 TDDFT

This code consists of two parts. First is the part which solves the time-independent

Kohn-Sham equations self-consistently, and calculates the ground-state density, ground-

state energy and the Kohn-Sham wavefunction (a Slater determinant). The second part

performs time evolution, starting from an initial state. We always use the ground state

as initial state, but this is by no means necessary.

3.2.1 Solving the time-independent Kohn-Sham equations

We want to solve the time-independent single-particle Kohn-Sham equations, Equation

(2.7), in the LDA approximation. The Kohn-Sham equations are(
T̂ + v̂KS

)
ϕν = ενϕν (3.4)

where the Kohn-Sham potential is

vKS(i) = vext(i) +
1

2
Uini + vLDAxc (ni). (3.5)

The exchange-correlation potential vxc is taken from the corresponding homogeneous

reference system. The kinetic energy T is defined from the lattice. As before, the

density n is obtained from the occupied orbitals. Thus, these equations have to be

solved self-consistently. This was done according to the schematic in Figure 3.1.

3.2.2 Solving the time-dependent Kohn-Sham equations

After the self-consistent loop has been performed, we time evolved the system according

to the time-dependent Kohn-Sham equations (2.10). Performing the time evolution can

be done in the same way as discussed for the case of exact diagonalization, with one ex-

ception. We cannot perform the trick of considering H(t+∆T/2) for the time evolution

instead of H(t), since H(t+ ∆t/2) depend on the density at time t+ ∆t/2. Instead, we

performed a simple so-called predictor-corrector scheme: Given H(t), perform the time

evolution from t to t+∆t. Then calculate the effective potential, which gives H(t+∆t).

Then obtain an approximate Hamiltonian according to H(t + ∆t/2) ≈ H(t)+H(t+∆t)
2 .

Do the time evolution again from t to t + ∆t with H(t + ∆t/2). This scheme can be

repeated as many times as needed, but we found that one iteration is enough for our

purposes.
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Initial guess for density

Calculate KS 
potential

Calculate 𝑛𝑖

No

Yes

Calculate density, 
energy etc.

Calculate 𝜑𝑇 + 𝑣𝐾𝑆 𝜑𝜈 = 𝜖𝜈𝜑𝜈

𝑣𝐾𝑆 𝑖 = 𝑈𝑖𝑛𝑖 + 𝑣𝑒𝑥𝑡 𝑖 + 𝑣𝑥𝑐(𝑛𝑖)

𝑛𝑖 = 

𝜈

𝜑𝜈(𝑖)
2

Converged?

Mix 𝑛𝑖

Figure 3.1: Self-consistent iteration scheme of the DFT code. The loop starts with an

initial density n0, taken e.g. to be constant, or equal to the non-interacting value. The

Kohn-Sham potential is constructed, and then the system is diagonalized. The density

is obtained from the orbitals, and it is checked whether the new density is equal to the

previous one to some accuracy. If not, we restart the loop. For stability, we mix the input

density with linear mixing, such that ninput = αnnew + (1− α)nprevious.

For contacted systems using TDDFT, a slightly different algorithm was used. We

refer to [57] for details regarding time evolution of open systems.

3.3 NEGF

As stated in the theory section we neglect initial correlations and aim directly at the

steady-state. In this case, we only need to choose two independent Green functions.

Our choice is GR(ω) and G<(ω). Other choices are of course possible, such as the

combination GA, G>. One advantage with our choice is that the density is directly

obtained from G<. Additionally, in the special case of equilibrium, we can make use of

a fluctuation-dissipation theorem[33] to find the lesser Green’s function as G< = ifA,

that is, directly from the retarded Green’s function.

Since we are in equilibrium or in steady state, G< and GR depend on t − t′ only,

and thus we work in ω-space. However, the many-body approximations we use are

local in time, but not in frequency where convolutions has do be made. For efficiency,

we make use of the Fast Fourier Transform (FFT), specifically, the FFTW-package[58].
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𝑅 + Σ𝑒𝑚𝑏

𝑅 + Σ𝑐
𝑅
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𝜔 + 𝑖𝜂 − 𝐻0 − Σ𝑅

𝐺< = 𝐺𝑅Σ<𝐺𝐴

Figure 3.2: Self-consistent iteration scheme of the Green’ function code. As the initial

guess, we choose the non-interacting Green’s function. After this, the Hartree-Fock Green’s

function is calculated in a separate self-consistent cycle. The resulting Green’s function is

used as input to the many-body self-consistent cycle. As a test for convergence, we check

against the Green’s functions themselves.

In a straightforward application of the package, we use an equidistant frequency grid.

The grid size dω and the maximum/minimum frequency were varied until the result

did not depend on the grid itself. The details of the grid depend strongly, of course, on

the actual system.

The most computationally intensive parts in the code are: i) Inversion of GR(ω),

Equation (2.47), which has do be done once per frequency point. ii) FFT for calculating

the many-body self-energies. We have cut down the computational effort by utilizing

various symmetries, for example Σ< = −(Σ<)†. The self-consistent scheme is shown in

Figure 3.2.

We have used the code to simulate several different scenarios. In order to treat

interactions, we have implemented several different approximations: Hartree-Fock and

LDA, as well as 2nd Born. Regarding disorder, we have implemented binary disorder,

box disorder, and CPA. The incorporation of the latter is done on the level of adding

the self-energies, Σc = ΣMB + ΣCPA.
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3.3.1 Artificial smoothening

Non-interacting, as well as mean-field, calculations can sometimes give rise to ener-

gies outside of the band of the leads. Since the self-energy is then purely real, the

resulting energies give rise to sharp poles. For numerical convenience, these poles are

smoothened, by adding a small imaginary part ΣR
smooth(ω) = −iη in the calculation of

GR. This will broaden the poles into Lorentzians of width 2η. Out of equilibrium, this

will also change the lesser Green’s function according to

G< = GR
(
Σ<
emb + Σ<

smooth + Σ<
MB

)
GA (3.6)

where
(
Σ<
smooth

)
ij

= 2ηif(ω − µ)δij . Thus, the correction to G< is of the order of η,

and will tend to 0 for frequencies where no poles are present. The smoothening can

be seen as additional artificial leads in the wide-band limit, where each site is coupled

with Γ = 2η to a separate lead.

Out of equilibrium, currents can leak into the artificial leads, giving the formula for

current conservation for a two-probe setup

IL + IR +
∑
α

Iα = 0, (3.7)

where Iα is the leakage current into lead α. This leakage current can be calculated from

the Meir-Wingreen formula, Eq. (2.66), which can be simplified due to the frequency-

independent coupling,

Iα = 2η

∫ ∞
−∞

dω

2πi

(
G<αα(ω)− 2πifα(ω)Aαα(ω)

)
= (3.8)

= 2ηnα − 2η

∫ ∞
−∞

fα(ω)A(ω), (3.9)

where nα is the density at site α. Summing over all the leakage currents, and assuming

that each lead has the same chemical potential µ, we get∑
α

Iα = 2ηN − 2η

∫ ∞
−∞

f(ω − µ)Tr((A(ω)), (3.10)

where N is the total number of particles in the central region. The smoothening was

chosen so that the leakage current was smaller than the real current. One possibility,

which we have not implemented yet, os to adjust the chemical potential in each artificial

lead at each step in the self-consistency cycle in order to ensure that Iα = 0.
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3.3.2 Details for mixing

Solving self-consistent problems is not easy. We have solved them using iterative meth-

ods, which does not always need to converge. In order to improve upon the stability,

we have frequently been using a linear mixing scheme,

Xk+1
in = αXk

out + (1− α)Xk
in (3.11)

Xk
in means the input to the self-consistency cycle at the kth iteration, and Xk

out =

Xk
out[X

k
in] is the output at iteration k. In the case of DFT, we mix the density, so X = n.

In the case of NEGF, we mix the Green’s functions, so X = GR, G<. Taking the mixing

parameter α = 1 removes the mixing, which tends to be unstable in many cases. Small

values of α generally means that convergence will be more stable, but slower. Small

values such as α = 0.01 have been used to converge difficult cases, for instance in the

self-consistency cycle in DFT when vxc(n) has a (smoothed) discontinuity. For such

cases, we have sometimes changed the mixing parameter during the self-consistency

cycle, where we start with a large value, and then gradually decrease it.

Using this simple scheme, it is possible to converge very many of our simulations.

However, for the NEGF, we have felt that it was needed to speed up convergence.

Several different schemes were tried, and the one which worked the best for us was

the Pulay mixing scheme[59], with further refinements from Thygesen and Rubio[52] in

order to mix NEGF. In this scheme, one adds history dependence in order to further

guess the direction in the self-consistency cycle, by the construction

Gk+1
in =

k∑
n=k−M+1

cnG
n
in, (3.12)

whereM is the number of ’memory terms’. The parameters are chosen so as to minimize

the error P , defined to be the residual, P [G] = Gout − Gin = Gout[Gin] − Gin. P = 0

means we are at self-consistency. By assuming that the error is linear in G, one obtains

P [Gk+1
in ] =

k∑
n=k−M+1

cnP [Gnin]. (3.13)
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3.3 NEGF

We then minimize the norm of P [Gk+1
in ] with respect to the coefficients cn. The mini-

mization yields a matrix equation Pc = d involving the Pulay residue matrix P [59],
P11 P21 · · · PM1 −1
P12 P22 · · · PM2 −1

...
...

...
. . .

...
P1M P2M · · · PMM −1
−1 −1 · · · −1 0




c1

c2
...
cM
λ

 =


0
0
...
0
−1

 (3.14)

where Pkl = 〈Gkout − Gkin|Glout − Glin〉. The last column and row enforces the normal-

ization condition
∑

n cn = 1.

The chosen norm is, as in [52],

〈GkGl〉 =
∑
i

∫
Im
[
Gkii(ω)

]
Im
[
Glii(ω)

]
dω. (3.15)

In practice, we solve the matrix equation for GR only, and then use the same coefficients

for the lesser Green function. Also, in the end, we do a linear mixing, giving the final

formula

Gk+1
in =

k∑
n=k−M+1

cn [αGnout + (1− α)Gnin] . (3.16)

Although not implemented in our codes, the same procedure can be used in DFT,

by choosing an appropriate norm. Indeed, this is a standard procedure in the DFT

community.
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4

Results

In this section, I summarize the results from the papers, and try to put them in a

somewhat larger perspective.

In paper I[46], we study the time evolution of a cloud of fermions in 1D, initially

trapped in a parabolic potential. The system is a ring consisting of L = 100 lattice sites.

This models the situation in cold atoms in optical lattices, where a similar trapping

can be used. This system is strongly interacting, having profound effects on the density

profile, see Figure 4.1. The parabola tends to keep the fermions in the center, while

the interactions tend to push the fermions apart. The result is a competition between

these energies, and for intermediate values of the parabola and interaction strengths

one obtains a density profile which has several different ’local phases’. We characterize

the different parts by their density. The sites which are full, n = 2, are part of a local

band insulator, while the sites which are half-filled, n = 1, are part of a local Mott

insulator. Both these parts give rise to characteristic plateaus in the density profile.

Away from integer densities, the system has a metallic behavior.

The time evolution of the fermion cloud was studied using lattice TDDFT, which

was still a quite new topic at that time. The framework was set up a few years

earlier[22], and we used the adiabatic Bethe-Ansatz LDA (BALDA), taken from the

1D homogeneous system. In order to to expedite our calculations, we employed an

easy-to-use interpolation formula[16]. These types of systems have been studied exten-

sively in ground-state calculations, and motivated by this, we wanted to study aspects

related to the time evolution of such systems. One of the interesting aspects is the

behavior of the single-site entanglement entropy in time. Ground-state calculations
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have shown that extrema in the entanglement entropy are indicative of quantum phase

transitions[42, 60]. The ground-state entanglement entropy for our system with a trap-

ping potential is shown in Figure 4.1.

Figure 4.1: Figure from Paper I.[46] Density (left) and entanglement entropy (right)

profiles for a chain with L = 100 sites and periodic boundary conditions, N = 60 fermions

with on-site interaction U = 8, trapped by a static parabolic potential, vext = 1
2kx

2, where

the curvature k = 0.05. The colored symbols represent sites in the band insulating (B),

Luttinger liquid (L1, L2), Mott insulating (M) and near-vacuum (V) regions. In panels b)

and c) of Figure 4.2 below, the same colors refer to the same sites.

Using TDDFT, we can evolve for long enough times to be able to achieve the close-

to-adiabatic regime. The effect of slowly releasing the trapping potential in time is

shown in Figure 4.2. Consistently with previous ground state calculations, we saw

that the different parts of the fermion cloud had completely different behavior. The

band insulator part melted immediately after the trapping potential was starting to

be removed, while the Mott insulator part was stable for a long time. This points

to an important difference between the two types of insulators. The same type of

behavior was seen for faster removal of the trap, when we are further away from the

adiabatic regime. We also saw that the time-dependent entanglement entropy could

show information about the local phases of the system.

Having seen the power of TDDFT techniques, being able to simulate quite large

strongly interacting systems for long times, we were interested in extending the method

to three-dimensional lattices, the subject of Paper II.[61] However, in order to obtain

an LDA for inhomogeneous systems, we need to be able to calculate the energy in a

homogeneous 3D Hubbard model. As discussed before, no such solution is available

48



Figure 4.2: Figure from Paper I[46]. Panel a): time-and-space–resolved density profile for

adiabatic switching-off of the trapping potential. At time τ = 0 the density profile is that

of Figure 4.1, while for later times the curvature of the trap is slowly reduced, allowing the

density profile to expand. Panel b): cross-sections of panel a), showing the time evolution

of the density at the representative sites indicated in Figure 4.1. The thin horizontal line

indicates the uniform density distribution n0(= 0.6) for the untrapped system. Panel c):

time evolution of the entanglement entropy at the same sites.

in 3D. This system transitions from a metallic phase to an insulating phase if the

interaction strength is above a certain critical value[62], which is hard to capture using

perturbative methods. Therefore, an approximation, which is non-perturbative in the

the interaction, was needed.

The method we employed was DMFT (see section 2.3.2), a non-perturbative method

shown to be exact in infinite dimensions. Our assumption was that this method could

describe well the metal-insulator transition in 3D. Using a DMFT solver, we obtained

the exchange-correlation energy Exc by calculating the total energy as a function of

density n, and then subtracting the non-interacting kinetic energy and Hartree part,

Exc(n) = Egs(n)− T0(n)− EH(n). (4.1)

The exchange-correlation potential was obtained by taking the derivative, vxc(n) =
dExc
dn . We show the results in Figure 4.3. As can be seen, the metal-insulator transition is

correctly described, and our vxc will automatically contain this information. Every time

the interaction strength is large enough to produce a gap in the DOS, a corresponding

discontinuity appears in the exchange-correlation potential.

Having obtained vDMFT
xc for the homogeneous system, we obtain an LDA by ap-

proximating vxc[n](i) ≈ vDMFT
xc (ni), or, for an ALDA, vxc[n](i, t) ≈ vDMFT

xc (ni(t)).

First, we aimed at benchmarking our new vxc, and thus we considered a small enough
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Figure 4.3: Results adopted from Paper II.[61] Density of states at half-filling for inter-

action strength U below (left) and above (right) the critical value, which will make the

system an insulator. For U = 8, the spectra is continous, and the system is a metal. For

U = 24, a gap has opened, and the system is a (Mott) insulator. In the insets, we show

the corresponding vxc as a function of filling. Since DMFT captures the metal-insulator

transition, this behavior is automatically captured by our vxc, and manifests as a discon-

tinuity at half-filling density. The density of states is not perfectly smooth because of the

finite number of degrees of freedom in the DMFT impurity solver, see 2.3.2.

system to be solved with exact diagonalization. The system considered was a (5×5×5)

cluster in 3D, with interaction Ui = δicU only in the center of the cluster. This simplic-

ity was crucial to treat the system, since the high degree of symmetry permitted us to

consider a much smaller effective cluster, thus making the exact diagonalization calcu-

lations possible. To keep the symmetry also in time, we applied local time-dependent

perturbations only the the central site. Note that even if there is interaction only in

the center, the exact exchange-correlation potential will generally be non-zero every-

where, since the potential depends non-locally on the density. However, in all ALDA

calculations, vxc will be zero at all sites except the central one.

Various perturbing potentials, with different strengths and speeds, were tested

against exact calculations. The results are shown in Figure 4.4. Generally, our ALDA

could handle both strong and weak interactions. Different perturbations were handled

quite well, with the expected behavior that perturbations that were both strong and

fast worsened the ALDA results. In one case, however, (strongly interacting, close

to half-filling), discrepancies from the exact solutions were found, even in the ground

state. To gain insight, we calculated the exact vxc for the ground state (obtainable from

knowing the exact density), and saw that non-local effects became very important in

this case. Thus, the discrepancy was not due to our ALDA, but the concept of ALDA

itself, since non-local contributions needed to be added to the vxc.
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Figure 4.4: Figure from Paper II.[61] Exact, TDDFT, and Hartree density for U = 8

(a)–(c) and U = 24 (d)–(f) at the central site of a 5× 5× 5 cluster with interaction in the

center only. In (c) and (f) the cluster has Ne = 70 electrons, and ε0 = −2.66 and ε0 = −4,

respectively, to attain an initial (and the same) density close to half-filling. Otherwise

Ne = 40 and ε0 = 0. The time-dependent perturbation w0(τ) acts always only at the

impurity site, and its shape is shown below (d)–(f). TDDFT-DMFT refers to our ALDA

obtained via DMFT. TDDFT-BALDA refers to an ALDA taken from the 1D homogeneous

Hubbard model, and is only shown for reference.

The ALDA-DMFT results where generally favorable for a small inhomogeneous

cluster. One can assume, based on the nature of the LDA approximation, that studying

larger systems will increase the accuracy. Thus, in order to investigate large systems

using lattice TDDFT, in Paper IV[63] we decided to study a large inhomogeneous

system in 3D, simulating a system relevant in the study of cold atoms in optical lattices.

This was to make connections to Paper I, were similar effects were studied in 1D,

and also to study the behavior of a large, strongly interacting system. We were also

motivated by recent experiments in cold atoms[64]. The setup here was very similar

to the 1D calculations in Paper I; we consider a large simple cubic lattice, where a

cloud of fermions are initially trapped in a parabolic potential, with vext = 1
2k(x2 +

y2 + z2). Again there will be a competition between the interaction energy and the
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trapping potential, resulting in a density profile which has plateaus of half-filling density

- the previously encountered Mott plateaus - resulting in a characteristic ’wedding-cake’

structure. We then studied the time evolution of such a system when the trapping

potential is removed. Snapshots of the density profile in time are shown in Figure 4.5,

which displays results for weak U = 8 and for strong U = 24 interactions. One can

see that the fast switching off of the trapping potential will tend to make the fermion

cloud to expand in a symmetrical way, consistent with the underlying cubic lattice.

The slower switching-off will tend to keep the spherical shape of the cloud. The density

profiles for U = 8 is smooth at all times, because the system is metallic, as discussed

discussion before. For higher interactions, U = 24, the density develops a Mott plateau

at half-filling. During the expansion, the band insulator part diminishes immediately,

while the Mott plateau is rigid. This is the same behavior as we previously observed

in 1D.

A more detailed analysis is shown in Figure 4.6. We found that a useful quantity to

study is Rmax which is outer cloud radius as measured from the center of the system.

We found that when the trap was suddenly released, the edge of the cloud expanded

ballisticaly, consistent with previous experiments.[64] The average speed of the cloud,

measured with Rrms, showed a slower expansion, since this quantity also takes into

account the slower core. We could also see that the edge of the Mott plateau never

increased in size, as the band insulator melted. This can be seen in Figure 4.6 e),

where Rmax for the Mott region never increased. In previous calculations in 1D[46],

we saw an expansion of the width of the Mott plateau, indicating that this phenomena

could be an effect of dimensionality. Since the Mott region did not expand, the particle

current through the Mott region must be large and constant. Although the current

densities would be interesting to study, they can not be obtained rigorously within

TDDFT, since the Kohn-Sham current densities themselves have no direct meaning,

only the divergence of them, see section 2.5. Even so, we believe that the Kohn-Sham

current densities will contain useful information, as long as one is careful about the

interpretation of them. The currents are shown in Figure 4.6 f), and one can see that

there are indeed quite large currents inside the Mott region, which however keep the

density fixed in the Mott plateau.

We also performed simulations comparing a clean lattice to a disordered one; we

used the same ground state, and compared how the evolution of the cloud would differ.
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The disorder configuration was chosen to be binary disorder, where there are two types

of energy levels, randomly spread over the system. In principle, to describe the effects

of disorder, we would need to take a large number of these configurations and perform

the average over them. However, since this would require a huge effort numerically, we

instead picked only one configuration, which was the ’most likely’, a so-called quasi-

random structure. This structure will generate results close to the averaged ones.[65]

The disorder was chosen to be non-zero only beyond the initial cloud radius. We could

see that the disorder trapped part of the cloud, since particles could get trapped in

lower energies, as well as being reflected off higher energies. Even when the trapping

potential was switched off, the particles were trapped mainly in the center of the sys-

tem. However, there was also another feature visible; the disorder could help the Mott

plateau to melt, by opening up additional energetic pathways. Thus, a disordered

system could actually melt fast than a homogeneous one. This is an example of the

intriguing behavior of the competition between disorder and interactions.
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Figure 4.5: Figure from Paper IV.[63] Cloud expansion into a homogeneous lattice. (a),

(b), (c): Density profiles in the x − y plane for z = 0, for different times and setups.

The color bar represents the density scale. For the sudden case, the trapping potential is

switched off almost immediately. For the slow case, the trap is switched off at t = 80.
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Figure 4.6: Subset of figure from Paper IV.[63] Quantitative analysis of the homogeneous

expansion for different times and setups. (d): Rmax (solid lines) and Rrms (dashed-dotted

lines). For U = 8, sudden expansion, fits are shown (dashed lines). (e): Rmax for U = 24

as a function of rescaled time t/τ . Densities for different trap protocols (τ = 70, 80, 90)

have distinct symbols; different density domains have distinct colors. (f): Bond currents

and densities in the z = 0 plane for U = 24, t = 30. Blue (red) arrows correspond to large

(intermediate) currents, whilst small currents are not shown.

Figure 4.7: Subset of figure from Paper IV.[63] Mott wedding-cake expansion in clean

and disordered systems. (a): Comparison between the density profiles in the z = 0 plane

for the clean, homogeneous case (W = 0) (same as in Figure 4.5 c) and the disordered one

(W = 4).
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Another highly interesting type of system in which the competition between disorder

and interaction plays an important role, is quantum transport geometries. It has been

seen that disordered systems, which show an insulating behavior if one assumes a non-

interacting picture, are actually conducting. If disorder effects are much stronger than

interaction effects, one generally ends up with an insulator of Anderson-type. If the

interaction is much stronger than the disorder, one ends up with an insulator of Mott-

type. We wanted to see how a system would behave when the disorder and interaction

are confined to a finite region, and in a regime away from the limits of only disorder

and only interaction. Accordingly, we studied systems consisting of a lead-device-lead

geometry, fully one-dimensional, where disorder and interaction effects were present

only in the device region. Our device region was a linear chain, while the leads were

taken to be infinite in size. We wanted to study the time evolution for such a system,

and for this, we made use of TDDFT for contacted systems. This allowed us to study

strong values of biases, and transient behavior. However, for low values of U , the

interpolation formula widely used in BALDA[16] is not accurate anymore, and thus we

resorted to obtain our vxc from the exact solution of the 1D Hubbard model. For more

details, see Kartsev[66, 67].

Figure 4.8: Figure from Paper III.[57] Difference between non-equilibrium and ground-

state (initial) densities, in a chain with L = 15, n = 1, and box disorder W , when a bias

bS(t) is applied in one of the two leads, and b0 = 1.5. The maximum evolution time is

Tmax = 30, in units of the inverse hopping parameter in the chain. Arithmetical disorder

averaging is performed over 50 configurations.

A relevant question to ask, is how the disorder and interaction will affect the density

of such a system. This is shown in Figure 4.8. As one could expect, the density in a

non-interacting, homogeneous system (a) is quite smooth, the only irregularity coming
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from the finite bias. The addition of strong disorder tend to make the density highly

inhomogeneous(b). This is mitigated by the inclusion of interaction effects, which

makes the density profile much smoother(c). This can be understood in a mean-field

picture, where the effective potential from the electrons tend to smoothen the energy

landscape from the disorder. This behavior - a more smooth density as the interaction

increases - is quite general, and can be more easily studied using quantities such as the

variance of the density, or a closely related quantity, the density Inverse Participation

Ratio (IPR), which was also studied in the paper. The usual definition of the IPR was

slightly modified in order to study a lead-device- lead geometry. The idea of all IPR

measures is to quantify the degree of localization in a system. Our IPR measures the

density spread in the device region, meaning that if the density is homogeneous, the

density IPR is minimal. It is defined according to

dIPR =

∑
i n

2
i

(
∑

i ni)
2 , (4.2)

where the sum is restricted to the device region. We found that the density IPR

always decreased as a function of interaction, meaning that the density becomes more

homogeneous, consistent with Figure 4.8. Thus, we saw that the density IPR and the

current showed the same trends.

We also studied the current, as a function of time, for various fillings of the leads

and bias strengths, shown in Figure 4.9. We found that increasing disorder would gen-

erally decrease the current. Increasing the interaction strength in presence of disorder,

however, increases the current through the system. This interesting behavior was seen

for all parameters studied.

The lead-device-lead system was studied using TDDFT in the ALDA, which means

that our vxc depends locally on the density in the device region only. Moreover, our

vxc is zero in the leads. However, it has been seen[68] that the ALDA can overestimate

currents in transport calculations. Thus, we wanted to study the same type of system

using another approach. We used the NEGF technique, since it allows for inclusion

of non-local effects in a systematic way. The geometry of the studied system was

very similar, but not exactly the same because of technical reasons. Unfortunately,

this means that we can not compare the TDDFT results with those from the NEGF

quantitatively. Instead, we will focus on the qualitative differences and similarities.
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Figure 4.9: Figure from Paper III.[57] Time-dependent average currents as function of

time for a chain with L = 15 sites, and different interactions strengths (U = 0, 2, 4). The

currents shown are computed at the leftmost bond in the chain. The bias bS and the band

filling n for panels in the same row are specified on the right, while in each panel, the current

is displayed for three disorder strengths (W = 0, 1, 3). The configuration averages were

obtained from 50 instances of box disorder. For W > 0, the inherent standard deviations

in the long-time limit are shown as vertical bars.

We studied systems up to L = 20, and we study directly the steady-state behavior

without time evolutions. We found that many of the results were similar to the ones

obtained via TDDFT in Paper III, but there was an important difference. The similar-

ities were that the density became more smooth as the interaction was increased, and

currents could increase in a disordered system, when interactions were included. How-

ever, we found that this was not always the case. Instead, we found a non-monotinic

behavior in the current. Starting from a disordered system, the interaction first in-

creases the current, but after reaching a maximum at U ≈ W , the current goes down

again. This is shown in Figure 4.10. The same behavior could be seen for differential
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conductances σ = dI
dbL

. For more results, including finite-size scalings of conductances

and entanglement entropy, we refer the reader to Paper V[53].
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Figure 4.10: Figure from Paper V[53]. Current for bias bL = 0.5 as a function of

interaction and disorder. All calculations are done using box disorder, and we show the

averaged currents. Keeping the value of interaction fixed, the current is decreased if disorder

is increased. However, fixing the disorder strength, we see a non-monotonous behavior in

the current, where the maximum of the current seems to be around U ≈W .[53]
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5

Conclusions and Outlook

The aim of this thesis has been to study strongly correlated systems by using and

improving existing methods and by developing new ones.

It is often difficult to know a priori whether a certain approach is suitable to a spe-

cific problem. Accordingly, a large part of my work has been to assess approximations,

most often by studying very simple systems where comparisons with the exact solution

is possible. We have found that such benchmarking is highly valuable in order to see

the strengths and weaknesses of different approaches. In some cases it has been difficult

to find suitable benchmark systems. In these cases, we have found that insight can be

gained from comparing different approximations.

One of the main outcomes from our work is the construction of a class of approxi-

mate exchange-correlation potentials usable for lattice systems in three dimensions.[61]

They are based on the solution of a homogeneous reference system, obtained using

DMFT. Descriptions of inhomogeneous systems using DFT or TDDFT can be approx-

imated by using these new potentials. In ground-state calculations, the potentials can

be used as an LDA, while in the time-dependent case they can be used as an ALDA.

The potentials are applicable both for weakly and for strongly interacting systems.

Benchmarks against exact calculations have shown that the approximate potentials

give results that compare well in many cases, even when a moderately strong and mod-

erately fast time-dependent external field is applied to the system. We have found cases

where our ALDA gives unsatisfactory results. However, we have proved, via construc-

tion of the exact exchange-correlation potential, that it is not our way of obtaining

the ALDA via DMFT that fails. Instead, we have attributed the shortcomings to the
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breakdown of the ALDA itself. Thus, it seems that our ALDA is an efficient, non-

perturbative approximation, which could be useful for studying the time evolution of

large three-dimensional inhomogeneous systems.

Using this new ALDA, we have shown[63] that it is possible to study the time evolu-

tion of thousands of strongly interacting particles. We have performed simulations that

involved hundreds of thousands of lattice sites - large enough to be relevant for experi-

mental conditions. This allowed us to study the difference between band insulators and

Mott insulators. We found that Mott plateaus are very stable against changes in the

external potential, whereas band insulating regions are not. The same time-dependent

behavior has been found in one dimension.[46]

Even though the exchange-correlation potentials obtained via DMFT has been

shown to perform well in many cases, it is not trivial to construct them. The po-

tentials has to be obtained for the entire density range. Moreover, the potential has

to be tailored to each specific situation. Thus, in order to compare lattice TDDFT

to experiments, we would need to obtain new exchange-correlation potentials for each

set of experimental parameters. Thus, we would like to develop a more expedient way

of constructing the potentials. Inspiration could come from the one-dimensional case.

There, interpolation formulas that obey known exact results in certain limits have been

constructed.[16] In three dimensions, the number of exact results are fewer. Moreover,

in contrast to from the one-dimensional case, the Mott-Hubbard insulator transition in

three dimensions occurs at a finite value of U , making it more difficult to find a gen-

eral interpolation formula which is accurate both for weakly and strongly interacting

systems.

Another aspect of this work concerns the behavior of systems where strongly in-

teracting particles reside in a disordered landscape. It has been known for quite some

time that disordered systems in general have a very poor conductivity[69]. In the ther-

modynamical limit, a three-dimensional system becomes insulating at a finite value of

the disorder strength, while for smaller dimensions any disorder is enough to induce an

insulating behavior. An inhibited conductivity is also observed for strongly interacting

systems. For strong enough interactions, the system transforms into a Mott insulator.

However, when strong interaction and disorder effects are considered simultaneously,

the two effects compete against each other, changing the behavior of the system. For
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systems away from the thermodynamical limit, where finite size effects complicates

the picture, less work has been done. We have studied the competition between dis-

order and interaction in short chains contacted to leads, using TDDFT[57] and using

NEGF[53].

Our studies concluded that disorder enhances localization in short chains, decreas-

ing the current through the junction as compared to a non-disordered chain. However,

adding strong interactions to the chain can make it more conducting, since interpar-

ticle interactions tend to delocalize particles. This is consistent with experimental

results, performed on 2D Silicon-MOSFET samples.[70, 71, 72, 73, 74] Using TDDFT,

we found that an increase of the interaction strength always tended to increase the

current through the system. We saw the same type of increase in many cases also using

NEGF. However, when the interaction was increased further, we saw a decrease in the

current.

The trend seen using NEGF is consistent with previous studies.[75] Since this trend

is not seen in our TDDFT calculations, we must attribute this to our only approxi-

mation, the ALDA. It is still an open question under which conditions it is enough

to consider an exchange-correlation potential in the interacting device region only. In

some cases, [76, 77], it has been shown that the real exchange-correlation potential ex-

tends far into the leads. It has also been shown[68] that using ALDA for such systems

can produce reliable densities, but tend to overestimate currents. This would suggest

that non-local effects are important for a reliable description. Such effects are auto-

matically included in the NEGF formalism. However, the non-perturbative nature of

TDDFT makes it an extremely computationally inexpensive method that has proven

to produce reliable results in many scenarios. Because of the complementary strengths

and weaknesses of the different methods, further developments in parallel of the two

approaches could help in unravelling the physics of strongly correlated systems.
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