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”There is great pleasure in recognizing old things from a new point of view.”
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Abstract

Attosecond science refers to physical processes that occur on the natural timescale
of electron motion in atomic and molecular systems. Attosecond time resolution can
be obtained experimentally through a process called high-order harmonic generation
where sharp attosecond pulses are formed in the time domain.

Attosecond pulse trains contain many attosecond pulses with a constant pulse-
to-pulse separation. The attosecond pulse trains provide a unique combination of
temporal and spectral properties, since they correspond to coherent odd harmonics
in the spectral domain. It is possible to use these temporal properties to ionize an
atom at specific times, but it is also possible to use the spectral properties and tune a
harmonic at a specific atomic resonance. In either case, the emitted photoelectrons can
be probed with a coherent infrared field, and attosecond temporal information can be
obtained. The work presented in this thesis shows that attosecond pulse trains can be
used to study the phase variation of various two-photon ionization processes and, thus,
the temporal properties of emitted photoelectrons. The delay in photoemission, the
so-called Wigner delay, is discussed from a theoretical stand-point, and it is explained
how it relates to the experimental method.

The generation of attosecond pulses can be controlled using two-color laser fields for
the high-order harmonic process. Experimental and theoretical results are presented,
where the two-color field consists of a fundamental laser field, with an intensity of
∼ 1014 W/cm2, and a second harmonic field with a relative intensity of ∼ 10%. The
delay between the two fields can be used to smoothly alter the spectral content, the
divergence and the temporal properties of the attosecond pulses. Alternatively, when
the second harmonic field is weak, ∼ 0.1% relative intensity, it can be used to probe
the one-color high-order harmonic generation process by considering the phase offset
of the weak even-order harmonics. The established RABITT method is compared
experimentally to the two-color probing technique and inconsistencies are reported
close to the cutoff. Theoretical work presented in this thesis, shows that the in-
consistencies can be explained using a quantum mechanical model for the two-color
high-order harmonic generation. Finally, the transition from many attosecond pulses
to few attosecond pulses using a second harmonic field in combination with a few-cycle
fundamental laser field is reported.
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Populärvetenskaplig
sammanfattning

När ljus belyser ett material kan elektroner frigöras via en process som kallas den
fotoelektriska effekten. Experiment utförda under slutet av 1800-talet visade att det
inte är styrkan p̊a ljuset som avgör om elektroner kan frigöras, det är istället ljusets
färg. Rött ljus har en l̊ag frekvens och bl̊att ljus har en hög frekvens, men hur kan
denna frekvens spela en s̊a avgörande roll för frigörandet av elektronerna? Einstein
förklarade den fotoelektriska effekten 1905 genom att kvantisera ljuset: Han antog att
ljuset bestod av sm̊a partiklar, fotoner, som alla har en exakt energi. En fotons energi
antogs vara proportionell mot ljusets frekvens. Elektronerna i materialet kan endast
absorbera en foton och de kan endast friges om denna foton har tillräckligt med energi
för att övervinna bindingsenergin i materialet. Den bindningsenergi som krävs för att
frigöra en elektron varierar kraftigt mellan olika material. I denna avhandling frigörs
elektroner fr̊an gaser som kräver ultraviolett str̊alning, en frekvens s̊a hög att den
inte kan ses av v̊ara ögon. Einsteins arbete blev startskottet för den moderna fysiken
och för kvantmekaniken. Experimenten som först p̊avisade den fotoelektriska effek-
ten är idag mer än hundra år gamla och sedan dess har en enorm teknisk utveckling
skett. Lasern uppfanns p̊a 1960-talet och den gjorde experiment möjliga där ljusets
styrka kunde ökas dramatiskt. Dessa nya experiment visade att en elektron i ett
material kan absorbera tv̊a eller fler fotoner om styrkan p̊a ljuset är tillräckligt hög.
Lasern, med sin höga intensitet, gjorde det möjligt att studerna icke-linjär optik. Till
exempel kan en intensiv röd laserstr̊ale förvandlas till en bl̊a. I denna fundamentala
process sammanfogas tv̊a röda fotoner till en bl̊a foton. Allt eftersom laserns intensitet
ökat har nya fysikaliska effekter kunnat undersökas och förklaras. Under 1990-talet
upptäcktes att en hel rad av nya färger, s̊a kallade “övertoner”, kan genereras om
laserns hela effekt fokuseras p̊a en gas av atomer. Det banbrytande med övertonerna,
var att alla ing̊aende färger vara ungefär lika starka. Tidigare experiment hade visat
att färgerna med hög frekvens alltid var mycket svagare än de färger med l̊ag frekvens.
Övertonernas fotonenergi visade sig vara upp till hundra g̊anger s̊a stor som den ur-
sprungliga fotonenergin fr̊an lasern. En elektron har allts̊a först absorberat hundra
laserfotoner och sedan emitterat en väldigt energirik foton. Övertonsgenerering av
detta slag har använts i alla experiment i denna avhandling. Vi har kontrollerat
produktionen av övertoner genom att använda tv̊a intenstiva laserfält, ett rött och
ett bl̊att. En av de m̊anga intressanta tillämpningarna av övertonerna är att skapa
världens kortaste ljusblixtar. Ljusblixtarna kallas för attosekundspulser, eftersom de
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Abstract

varar i ungefär hundra attosekunder. En attosekund förh̊aller sig till en sekund, s̊a
som en sekund förh̊aller sig till tv̊a g̊anger hela universums ålder (en attosekund är
10−18 sekunder). Blixtarna är s̊a korta att all atomär rörelse är fryst i jämförelse. I
denna avhandling har vi använt attosekundspulser för att undersöka tidsaspekter hos
den fotoelektriska effekten: Hur l̊ang tid tar det för en elektron att lämna sin atom?
G̊ar det att mäta denna extremt korta tid med hjälp av attosekundspulser? Kan
vi kontrollera elektronens bana p̊a dess väg bort fr̊an atomen? Attosekundspulserna
öppnar upp dörrarna för tidsupplösta mätningar av kemiska reaktioner och för kon-
troll av dess kvantmekaniska processer. Att studera den fotoelektriska effekten, det är
bara början.
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Chapter 1

Introduction

1.1 Prologue

When I first entered the Attolab in the basement at the Lund Laser Center, it was
as if I had stepped into another world. Huge metal tables were covered with intricate
optical devices on which invisible laser beams were bouncing at the speed of light.

“Are we ready to shoot?” There was a steady, rhythmic thunder from the cryo-
coolers for the regenerative amplifiers.

“Is the probe beam activated?’ It was difficult to see because the room was lit
only by the stray light from monitors, and we were all wearing dark laser goggles.

“The gas pressure must be kept steady at three times ten to the minus three
microbars.” I tried to turn the knob for the gas pressure, but it did not respond. Fog
was forming on the inside of my goggles.

“The flow of cooling water must be increased.” Another scientist flew out of his
chair and started adjusting the level of cooling water.

“That’s it, we have nice harmonics in the magnetic bottle!” We began to record
the attosecond pulse train and the corresponding RABITT scan started to form on
the monitor, pixel by pixel.

Running an attosecond experiment is almost like standing on the command deck of
an intergalactic spaceship, I thought.

Work on generating attosecond light pulses was already in progress when I started as
a PhD student in the summer of 2007. The shortest pulses ever produced had already
been generated and measured in the laboratory where I was starting work. The group
was moving towards the control and application of the attosecond pulses. During
my PhD studies I have become familiar with the experimental methods required to
generate attosecond pulses, but I have mostly worked as a theorist, interpreting the
experimental results. In Section 1.2, the fundamental concepts of attophysics are
reviewed, and in Section. 1.3, I motivate and provide an outline of the work presented
in this thesis.
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1.2 Overview of attophysics

1.2 Overview of attophysics

This section provides a short historical overview of attophysics. Key components of the
work presented in this thesis, such as high-order harmonic generation and attosecond
pulse trains, are introduced.

1.2.1 High-order harmonic generation

The work on attosecond light pulses stems from a process discovered in the late 1980s
called high-order harmonic generation (HHG) [1, 2]. It was found that a broad comb of
equally strong harmonics in the extreme ultraviolet regime (XUV) could be produced
by focusing an intense ultrashort infrared (IR) laser pulse into a gas of noble atoms,
see Figure 1.1. The typical laser intensity used for HHG is ∼ 1014 W/cm2 with a
wavelength ∼ 800 nm. Harmonic conversion efficiencies as high as one in a million and
photon energies in the soft x-ray regime have been obtained [3–8].
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Figure 1.1. High-order harmonics generated in argon gas and detected using an electron
spectrometer. The range of harmonics with comparable intensity (from 13 to 27 in this case)
is called the harmonic plateau. After harmonic 29, there is an exponential decrease in the
harmonic yield, which is known as the harmonic cutoff. The data were collected for Paper V.
The intensity of the harmonics in the plateau depends on the macroscopic phase matching
conditions.

The cut-off law

Neither the broad comb of high-order harmonics nor their high conversion efficiency
can be explained using traditional nonlinear optics, where the laser field is treated as
a perturbation [9]. In the perturbative formalism, an increase in harmonic order is al-
ways accompanied by a reduction in conversion efficiency; while in HHG, the harmonic
plateau contains several harmonic orders of comparable intensity. An empirical cut-off
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law for the maximal photon energy in the HHG plateau was found to be [10, 11]

~Ωco ≈ Ip + 3Up, (1.1)

where Ip is the ionization potential of the atom, and

Up =
e2E2

0

4mω2
=

e2λ2I

8π2ε0c3m
, (1.2)

is the ponderomotive (wiggle) energy of the electron in the laser field [12]. Using
Eqs. 1.1 and 1.2 in the limit Up � Ip, the cut-off increases quadratically for longer laser
wavelengths, ~Ωco ∝ λ2, and linearly with the laser intensity, ~Ωco ∝ I. This scaling
has been used to increase the harmonic photon energies into the keV regime using
laser fields with longer wavelengths (mid-IR wavelengths) [13–16]. The generation of
high-order harmonics was initially explained in three quasiclassical steps, known as
the three-step model. The three steps are illustrated in Figure 1.2. A more detailed
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F=
m
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Figure 1.2. The three-step model for HHG: (1) When the electric field of the laser is large,
the electron can tunnel under the Coulomb barrier into the continuum (a). (2) The electron
will then accelerate on almost classical trajectories in the laser field (b). (3) Finally, the
electron may be driven back to the atom and recombine, emitting a high-order harmonic
photon.

quantum mechanical theory for HHG was published in 1994 [17], showing that the
quasiclassical trajectories could be obtained from the Schrödinger equation using the
strong field approximation (SFA). The theory explained why the harmonics were of
comparable strength, but it also revealed that there are several possible ways in which
the electron can return to the atom. These lead to quantum interference and to a
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1.2.2 Attosecond pulse trains

complicated pulse structure with several bursts being emitted from each atom. The
problem of multiple bursts could be circumvented experimentally through macroscopic
phase matching, where the emission from the shortest of the electron trajectories could
be selected and enhanced.

It was soon understood that such high-order harmonics could support light with
pulse durations on the attosecond timescale, i.e. shorter than any light pulses ever
produced [18, 19]. Creating these attosecond pulses would, however, not be easy
because it required control of the complex harmonic phase over a large spectral band-
width [20]. Another considerable challenge was to devise a scheme to measure the
duration of the pulses. Existing methods used in traditional ultrafast optics could
not be directly applied due to the short wavelength and relatively low intensity of the
harmonics.

1.2.2 Attosecond pulse trains

In 2001, more than a decade after the first HHG, the first attosecond pulse train (APT)
was observed using a scheme called RABITT (Reconstruction of Attosecond Beating
by Interfering Two-photon Transitions) [21, 22]. The attosecond pulse duration was
250 as = 250×10−18 s, corresponding to ∼ 1/10 of the laser period, and to ∼ 1/100
of the laser pulse duration used for HHG. Two attosecond pulses were produced per
oscillation of the laser field, resulting in a train of ∼ 30 pulses in the total APT.
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Figure 1.3. A train of attosecond pulses (gray area). The attosecond pulse duration is a
fraction of the fundamental laser period (red dashed curve). The pulse separation is half an
IR laser period and the sign of the attosecond electric field (heavy black curve) changes from
pulse to pulse. The absolute phase of the electric field is arbitrary relative to both the IR
and the attosecond envelope (light black curve). The data was collected for Paper V using
the RABITT scheme.

1.2.3 Single attosecond pulses

Making the IR pulse shorter naturally leads to fewer attosecond pulses. It was soon
demonstrated that a single attosecond pulse (SAP) could be generated using a few-
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cycle IR pulse, ∼ 5 fs [23]. The basic properties of the SAP can be determined using
the attosecond streak camera method [24], while complete characterization requires
the used of the FROG–CRAB scheme (Frequency Resolved Optical Gating – Com-
plete Reconstruction of Attosecond Bursts) [25]. For such short IR pulses, the carrier
envelope phase (CEP), is an important parameter that must be controlled. The gen-
eration of a SAP can be changed into the generation of two attosecond pulses by
carefully tuning the CEP of the laser field [26]. The shortest SAP to date is 80 as [27].

A SAP can also be generated using slightly longer few-cycle laser pulses if an
optical gating method is applied [28, 29]. Combining the two-color optical gate with
a polarization gate leads to double optical gating (DOG), which relaxes the pulse
duration requirements further [30, 31], but introduces more optical elements in the
beam path.

Why attosecond pulses?

From a technical standpoint, attosecond pulses are interesting because they are shorter
than any pulses created by conventional optical lasers. Physically, we understand this
because the duration of a light pulse can not be shorter than its own period. Optical
and IR lasers have a period that is longer than a femtosecond, leading to the so-called
femtosecond barrier for ultrashort pulses. The power needed to drive a laser scales
strongly with the photon energy, P ∝ ω5, which effectively prevents the conventional
laser scheme from going beyond optical wavelengths [14].

Mathematically, we can show that a pulse intensity envelope has a minimal dura-
tion proportional to the inverse of the supporting coherent bandwidth,

τ >
C

∆ω
≈ C

2π

λ2

c∆λ
, (1.3)

where ∆ω (and ∆λ � λ) is the intensity bandwidth of the light. C is a numerical
constant equal to 4 ln 2 for the full-width at half-maximum (FWHM) of Gaussian
intensity envelopes. The minimal pulse duration, called the Fourier-limited pulse
duration, occurs when all the spectral components are compressed. The propagation
of a short pulse in a medium leads to dispersion of the pulse and an increase in duration.
The attosecond pulses produced through HHG can overcome the femtosecond barrier
not only because they have a much shorter wavelength than optical light, but also
because they have a broad coherent bandwidth. Using Equation 1.3 we find that a
pulse of τ ≈ 80 as duration must be supported by a bandwidth of ~∆ω > 20 eV.
It is interesting to compare the coherent bandwidth of the laser used for HHG with
the bandwidth of the attosecond pulses being generated. The IR laser pulses used in
this work for HHG have a duration of 30 fs and a bandwidth of 60 meV; while typical
attosecond pulses are 100 as with a bandwidth of 15 eV, corresponding to ten harmonic
orders. During the HHG process the coherent bandwidth is increased by a factor of
250 from laser to high-order harmonics.

Why are subfemtosecond pulses not generated at large accelerator facilities, such as
synchrotrons, where an extremely short wavelength (XUV or X-ray) is easily achiev-
able? Accelerators provide short-wavelength light, but the light emitted is normally
not coherent and the light pulse duration is then limited by the incoherent electron
bunches, so-called “buckets”, in the accelerator. Intense coherent radiation can, how-
ever, be produced at accelerator facilities if the relativistic electron beam is propagated
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1.2.3 Single attosecond pulses

into an undulator, an arrangement consisting of magnets with alternating polarity.
This setup is called a free electron laser (FEL), and it can produce extremely in-
tense, tunable and coherent light pulses. A problem associated with current FELs
is the difficulty in synchronizing them to external probes. An important advantage
of XUV-attosecond pulses from HHG is that they are are naturally synchronized to
the fundamental laser pulse, making it easier to perform time-dependent experiments,
such as cross-correlations or pump–probe experiments. Schemes where HHG is used
to seed the FEL are being investigated at many facilities and may lead to a similar
natural synchronization between the IR and the XUV light [32, 33].

Attosecond XUV pulses from HHG are more than a new table-top method of
obtaining coherent light for traditional spectroscopy in the water window,1 because
the attosecond pulses have a duration that approaches the atomic unit of time, 24 as.
This corresponds to the timescale of electronic motion in atomic systems. Being able to
study atoms and molecules and control chemical reactions on the electronic timescale
has signaled the start of a new scientific era called attoscience [34–36].

1 Light in the XUV water window (43-80 eV) is of interest in the study of biological systems
because the light is more absorbed by carbon than by water.
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1.3 Motivation and outline of this thesis

The work presented in this thesis is based on nine papers (Papers I−IX), and three
theoretical chapters (Chapters 2−4). The papers contain both experimental and the-
oretical results, while the chapters detail the more theoretical aspects of the work.

The aim of this scientific work is three-fold: first, to probe various atomic pro-
cesses on the attosecond timescale using the temporal resolution provided by attosec-
ond pulses; second, to investigate how the generation of attosecond XUV pulses can
be controlled using 2-color laser fields for HHG; third, to compare established char-
acterization methods for attosecond pulses with more recently developed methods.
In all three of these, the experimental efforts have been strongly complemented with
theoretical work.

The theoretical work was focused on finding interpretations of the experimental re-
sults, rather than laborious numerical simulations. This is especially clear in Papers I
and II, where the analytical work led to a better understanding of the photoioniza-
tion process in the attosecond timedomain. The appropriate theory to describe these
experiments is rooted in a combination of optics and atomic scattering theory, which
is bridged in Chapters 2 and 3. The aim of the work in Chapter 2 is to derive the
propagation of attosecond light pulses and ultrafast nonrelativistic electron pulses in
a common formalism, where the similarities and differences between the two kinds of
pulses are identified. The aim of the work in Chapter 3 is to theoretically treat the
photoionization process, and to account for attosecond delays of the emitted photo-
electrons.

Control of attosecond pulse generation is demonstrated in Papers III and IV,
where a strong second-harmonic laser field is used in addition to the strong funda-
mental laser field. The experimental results are well reproduced with the strong field
approximation (SFA) using a simple trajectory selection method, which is described
in Chapter 4.

Experimental work on the characterization of attosecond pulses is presented in
Paper V, where the RABITT method is compared to a two-color in situ method [37].
The theoretical work presented in Paper VI further examines the reliability of the
two-color in situ method. In Paper VII, a new version of the RABITT method is
experimentally demonstrated, where higher-order IR transitions are employed to gain
information about the attosecond pulses.

Finally, the work presented in Papers VIII and IX deals with the transition from
APT to SAP using the control aspects of two-color HHG. Being able to control the
temporal properties of the attosecond pulses and the number of attosecond pulses is
important for the versatility of the generation process and for future applications. A
common summary and outlook of all the papers and theoretical chapters is given in
Chapter 5.

The experimental setup used to produce attosecond pulses at the Lund Laser
Center is reviewed in Section 1.4. In the following chapters, the focus is on the
theoretical aspects of attosecond experiments and the generation of attosecond pulses.
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1.4 Setup

A schematic diagram of the setup used for the experimental work presented in this
thesis, is shown in Figure 1.4. The “boxes” in the setup are briefly explained below.2

O A

Laser

G F

HHG

X D

Application

N

IR XUV

Oscillator Amplifier Generation Filtering Detection

Probe/Control #2

Probe/Control #1

Target

Figure 1.4. A schematic block diagram over the setup used for generation and application
of attosecond pulses.

1.4.1 Laser system

The laser system is a titanium sapphire chirped pulse amplification (CPA) system [38].
The first box in the laser system is the oscillator, [O]. It is currently a Rainbow system
from Femtolasers, which uses chirped mirrors for dispersion management [39, 40]. The
oscillator can be mode locked, and can produce 2.5 nJ pulses at a repetition rate of
80 MHz. The central photon energy is 1.5 eV and the laser bandwidth is 500 meV.
The laser pulses from the oscillator are approximately 7 fs with a CEP that can be
stabilized using an integrated feedback loop [41, 42]. After the oscillator there is a
so-called Dazzler from Fastlite, which is an acousto-optic programmable dispersive
filter, that allows for control of the phase and amplitude of the oscillator output. The
bandwidth of the laser pulses used after the Dazzler is reduced to 150 meV.

The second box in the laser system is the amplification stage, [A]. The pulses
are stretched using gratings to a duration of 200 ps, and the repetition rate is re-
duced to 1 kHz using a Pockels cell. Amplification is done in two stages. The pulses
pass through a regenerative amplifier, which is pumped by a frequency-doubled 30 W
diode-pumped neodymium-doped yttrium lithium fluoride laser. The pulses typically
make 12 passes in this regenerative amplifier gaining a pulse energy of 0.5 mJ before
continuing to the next amplification step. Here, the pulse energy is increased to 8 mJ
using a cryogenically-cooled 5-pass amplifier. Finally, the pulse is compressed using
gratings to a duration of 35 fs.

2 This is the setup used in the Attolab at Lund Laser Center for the work presented in Papers I,
II, III, V, VII, and VIII. The experimental work presented in Papers IV and VI was carried out
at the 10 Hz beam line from the TW laser at the Lund Laser Center, while, the experimental work
presented in Paper IX was carried out at ETH in Zürich.
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1.4.2 High-order harmonic chamber

Next, the beam is split into two parts: the main part (80%) is used for HHG in the
generation chamber [G], while the smaller fraction (20%) can be used for probing
and/or controlling the HHG process or the target atoms in the application chamber.
The beam is reduced using a solid aperture with a diameter ranging from 10 mm to
15 mm depending on the intensity requirements of the gas used for HHG. Noble atoms
have a high binding potential and require intensities on the order of 1014 W/cm2 for
HHG. To reach these high intensities, the main beam is focused by a mirror with a focal
length ranging from 30 cm to 75 cm (50 cm is most often used). The focused beam
passes through a 1-kHz pulsed valve gas target [43] where HHG occurs. The most
common geometry of the gas target is a narrow cylinder 6 mm in length. Choosing
the best length of the gas target and the best position relative to the focus of the laser
beam is important to obtain the highest conversion efficiency through macroscopic
phase matching of the HHG process. The pressure in the gas target is ∼ 10 mbar, while
the backing pressure in the generation chamber is kept as low as possible, typically
3× 10−3 mbar.

The XUV and IR fields now co-propagate and the IR field must be removed in
order to reveal the XUV-attosecond pulse structure. This is achieved by spatial and
spectral filtering, [F]. First, the pulses pass through a differential pump hole with a
diameter of 2 mm, which removes the more divergent parts of the XUV and the IR
beams. This reduces the total IR energy and “cleans” the phase of the XUV pulse
(which may vary spatially due to contributions from longer quantum trajectories).
After the differential pumping hole, the backing pressure is reduced to ∼ 10−5 mbar.
Second, the pulses pass through a thin metallic foil which transmits the XUV while
the remaining IR is blocked. It is important to choose a suitable metal for the desired
spectral region. Most metals work as band pass filters in the XUV, and some metals
allow a broad spectral range of harmonics to pass through. A beneficial side effect
of the metallic foils is that they can simultaneously compress the attosecond pulses
[44]. The low-energy part of the band pass yields “anomalous” dispersion while the
high-energy part of the transmission window yields normal dispersion. By choosing
an appropriate thickness of the foil, the attosecond pulses can be compressed down
to the Fourier limit, as demonstrated in Paper V. The standard choice of atom–foil
combination used in the Attolab in Lund is Ar–Al (argon gas and aluminum foil),
because the good conversion efficiency of Ar and the high transmission of Al lead
to a reliable output. The low pass of the Al filter is at 20 eV while the high pass
is at 72 eV [45]. This atom–foil combination typically leads to a comb of harmonics
ranging from order 13 to 27, as shown in Figure 1.1. In this case, the lower onset is
due to the Al filter while the upper cut-off is set by the HHG process. Other atom–foil
combinations are used when higher harmonic orders are needed or a specific spectral
range is required, as in the work presented in Paper II, where a 200 nm chromium foil
was used.

1.4.3 Applications

The XUV beam is focused into the application chamber using a grazing incidence
toroidal mirror, where it photoionizes a target gas, [X]. The ejected electrons are de-
tected, [D], using a magnetic bottle electron spectrometer (MBES) [46] or a velocity
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map imaging spectrometer (VMIS) [47]. The MBES is a time-of-flight (TOF) spec-
trometer, which collects half of the photoelectrons (2π solid angle) using a magnetic
parallelization mechanism. The electrons are photoionized in the presence of a strong
magnetic field (∼ 1 T) which is directed along of the flight tube. As the field strength
is adiabatically reduced to a constant value (∼ 1 mT), all electrons with a velocity
component in the direction of the flight tube will gradually turn and propagate along
the flight tube. The arrival time of the electrons at the end of the tube depends on
their initial velocity. A typical photoelectron energy of 20 eV leads to a velocity of
2.7 × 106 m/s. For a flight tube of 60 cm, this implies a time of flight of 220 ns. The
TOF signal is recorded using the integrated signal from a microchannel plate (MCP).
The backing pressure in the MBES is ∼ 10−4 mbar. The MBES was used in Papers I,
II, V and VIII.

Unlike the MBES, the VMIS is not a TOF system. The VMIS measures the trans-
verse momentum (px, py) of the photoelectrons. In the VMIS the focused XUV beam
is crossed with a pulsed atomic beam in a strong electric field (∼ 1 kV, along ẑ). Once
liberated, the photoelectrons are accelerated in the electric field towards the imaging
MCP detector coupled to a phosphor screen, which is read out by a CCD camera.
The accelerating electric field is set by two electrodes: the repeller and the extractor,
VR < VE < 0. The signal on the MCP is a 2D projection of the 3D momentum
distribution. Assuming azimuthal symmetry, the 3D momentum distribution of the
photoelectrons can be retrieved using an iterative inversion algorithm [48]. The VMIS
was used in Paper III and as a complement in the other papers. Both the MBES and
the VMIS can be used for cross-correlation experiments where a probe/control field is
simultaneously present in the ionization process, [X]. The probe/control field can be
used to extract temporal information about the XUV pulses.

Alternatively, the XUV pulses can be directly detected using a XUV photon spec-
trometer at [D] without any interaction in [X]. This has the advantage of resolving the
spatial profile of the XUV beam, but lacks the possibility of obtaining any temporal
information about the XUV pulse using on-target cross-correlation techniques. XUV
spectrometers were used in the work presented in Papers IV, VI and IX.
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Chapter 2

Ultrafast wave packets

This thesis presents experimental measurements of short delays, either for XUV pulses
as they propagate through dispersive media [Paper V], or for nonrelativistic photo-
electrons as they escape from the atomic potential [Paper II]. This Chapter provides
a common theoretical background to these extremely short time delays. In brief, we
will compare the dispersion relations of XUV light and nonrelativistic electrons.

Starting from the Maxwell equations, a one-dimensional wave equation for XUV
attosecond light pulses is derived in Section 2.1. Short light pulses can be described
as a superposition of monochromatic light waves [Sec. 2.1.1] and the propagation of
the pulse can be understood in terms of the phase of these monochromatic waves.
The attosecond pulses can be strongly stretched in time by a dispersive medium, but
conversely, it is also possible to compress a stretched pulse using a medium with neg-
ative (anomalous) dispersion [Sec. 2.1.2]. The stationary phase approximation (SPA)
is introduced and applied to the propagation of attosecond pulses in Section 2.1.3.

The attosecond pulses can be used to ionize atoms at extremely well-defined times,
but how do the resulting photoelectron pulses behave after the ionization event? In
Section 2.2, we perform a wave packet analysis of the emitted photoelectrons. The
electron wave packets consist of superpositions of time-independent electron states.
These states are studied using a semiclassical approximation in Section 2.2.1. Finally,
the transition of a quantum mechanical photoelectron wave packet into a classical
momentum distribution is derived using the SPA [Secs. 2.2.2 & 2.2.3].
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2.1 Attosecond wave packets of light

The propagation of an attosecond XUV light pulse in a dielectric medium is described
by the Maxwell equations [9, 49]

∇ · ~̃E = − 1

ε0
∇ · ~̃P ≡ ρ

ε0
(2.1)

∇ · ~̃B = 0 (2.2)

∇× ~̃E = −∂
~̃B

∂t
(2.3)

∇× ~̃B =
1

ε0c2
∂

∂t

{
~̃P + ε0

~̃E
}
, (2.4)

where ~̃E and ~̃B are the electric and magnetic fields in space–time, and where the
electric permittivity, ε0, and the magnetic permeability, µ0, are related to the speed

of light by c = 1/
√
ε0µ0. The polarization is described by ~̃P , and the magnetization

of the material has been neglected. Taking the curl of the Maxwell-Faraday equation
(Eq. 2.3) leads to the famous wave equation for the electric field

∇2 ~̃E − 1

c2
∂ ~̃E

∂t
= µ0

∂2 ~̃P

∂t2
− 1

ε0
∇(∇ · ~̃P ). (2.5)

A similar equation can be derived for the magnetic field yielding the magnetic contri-
bution to the electromagnetic field, but the magnetic field will not be considered in

following. In free space, ~̃P = 0, and the wave equation [Eq. 2.5] yields waves traveling
at the speed of light, c. In a dielectric material, the right-hand-side is non-zero and it
can be understood as a polarization source term for the wave equation. The last term
in Equation 2.5 can often be neglected because it vanishes for isotropic media and for
plane waves.

The wave equation can be recast into a time-independent form using the orthogo-
nality of the Fourier integral expansions of the time-dependent fields

∇2 ~E +
ω2

c2
~E = − 1

ε0

ω2

c2
~P − 1

ε0
∇(∇ · ~P ), (2.6)

where the electric field is expanded as a superposition of monochromatic waves

~̃E(t, ~r) =
1

2π

∫
dω ~E(ω,~r)e−iωt, (2.7)

and the polarization is given by

~̃P (t, ~r) =
1

2π

∫
dω ~P (ω,~r)e−iωt. (2.8)

where the monochromatic fields in space–frequency are written without a tilde, e.g.
E(ω). Finding solutions to Equation 2.6 may be easy or difficult depending on the
polarization term. The polarization induced by a weak attosecond pulse in an isotropic
medium is given by the linear response

~P (ω,~r) = ε0χ
(L)(ω,~r) ~E(ω,~r), (2.9)
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where the linear susceptibility, χ(L) ≡ χ(1), may depend on space due to changing
density or composition of the medium. Nonlinear polarization can be neglected if it is
assumed that the intensity of the attosecond pulse is low and that there are no other
fields that coherently alter the polarization. Nonlinear polarization must be taken
into account in the case of an XUV beam co-propagating with an intense IR field,
as in the HHG process. The IR field will induce an extreme nonlinear polarization,
χ(NL), which can either enhance of reduce the intensity of the XUV beam depending
on phase matching conditions. The origin of this extreme nonlinear polarization is
discussed in Chapter 4.

2.1.1 Wave propagation of XUV light

The propagation of attosecond light pulses is governed by the frequency-dependent
phase variation of the monochromatic waves. The following ansatz, ~E(ω,~r) ∝
exp [iφ(ω, x)] ẑ, is used to obtain a differential equation for the phase of monochromatic
waves

i
∂2φ

∂x2
−
(
∂φ

∂x

)2

+
ω2

c2
= −ω

2

c2
χ(1). (2.10)

For slow variations of the material, we expect |∂2φ/∂x2| � |∂φ/∂x|2, which leads to
a simpler differential equation,

∂φ

∂x
=
ω

c

√
1 + χ(1). (2.11)

The phase of the electric field can be directly integrated as

φ(ω, x) =
ω

c

∫ x

−∞
dx′

√
1 + χ(1)(x′) ≡ ω

c

∫ x

−∞
dx′ n(x′), (2.12)

where n(x) is the local refractive index of the material. This is an excellent approx-
imation for the phase of a monochromatic field passing through a dilute gas cloud.
The asymptotic phase difference between propagation through a finite material and
free propagation can be written as

δ(ω) = lim
x→∞

ω

c

∫ x

−∞
dx′ [n(x′)− 1] . (2.13)

A frequency-independent refractive index leads to a linear phase shift in frequency.
This linear phase shift causes a time delay, τ = δ/ω, of the attosecond pulse [Eq. 2.7],

Ẽ(t− τ, x) =
1

2π

∫
dω E(ω, x)e−iω[t−τ ], (2.14)

compared to free-space propagation. Equation 2.14 is a direct application of the well-
known shift theorem of Fourier transforms.

Example: A constant refractive index

The asymptotic phase acquired by an attosecond pulse passing through a material of
length, L, with a constant refractive index, n =

√
1 + χ(1), is

δ =
ω

c
[n− 1]L =

2π

λ
[n− 1]L ≈ ω

2c
χ(1)L, (2.15)
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2.1.1 Wave propagation of XUV light

where λ = 2πc/ω is the wavelength of the light wave in vacuum. The corresponding
delay of the pulse is τ = [n− 1]L/c.

Dispersion

So far we have assumed that the linear response is frequency-independent. This is
an adequate approximation for narrow-bandwidth laser pulses, but it is not a good
approximation for attosecond pulses which have a large spectral bandwidth. In a
more realistic model, the material will be dispersive, i.e. the refractive index will
be frequency-dependent, n(ω, x) [45, 50, 51]. This leads to a nonlinear frequency
dependence of the asymptotic phase [Eq. 2.13] and to deformations of the attosecond
pulse in the time domain. It is common to develop the asymptotic (spectral) phase in
a Taylor series,

δ(ω) = δ(ω0) +

∞∑

n=1

1

n!

∂δ

∂ω

∣∣∣∣
ω0

(ω − ω0)n, (2.16)

around the central frequency of the pulse, ω0. We will use the following short-hand
notation, ∂δ/∂ω|ω0

= δ′(ω0) = δ′0, for the spectral derivatives. In most practical
cases it is sufficient to consider the first few terms in this expansion. We have already
seen that the zero-order term determines the overall phase of the pulse, and that
the first order term determines the delay of the pulse. In the optical regime, most
materials have a positive (normal) dispersion, which means that the refractive index
increases as a function of frequency. This implies longer delays for higher frequency
pulses passing through the same medium. Close to resonances the refractive index
has a negative (anomalous) dispersion. The refractive index of argon gas at XUV
frequencies is reviewed in Figure 2.1.

The group delay (GD) is defined as

τGD(ω) =
∂δ

∂ω
, (2.17)

and it represents the delay of a certain spectral region of the attosecond pulse centered
at ω. The nonlinear variation of δ over ω causes different spectral parts of the pulse
to be delayed by different amounts, thus leading to an increase in pulse duration.

Example: Dispersion through a plasma

Consider an XUV wave after traveling through a plasma, where

np(ω) =

√
1−

(ωp
ω

)2

≈ 1− 1

2

(ωp
ω

)2

, (2.18)

is the refractive index of the plasma, ωp =
√
Ne2/ε0m, is the plasma frequency, and

N the concentration of free electrons in the plasma [54]. Using Equation 2.15, the
asymptotic phase becomes negative

δp(ω) =
ω

c
[np(ω)− 1]L ≈ − 1

2

ω2
p

c

L

ω
, (2.19)
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Figure 2.1. Real part (a) and imaginary part (b) of the refractive index for argon gas (Ar)
at XUV frequencies. Above ∼38 eV, the dispersion of Argon is normal with a refractive index
that increases with frequency, while below ∼30 eV the argon gas has negative (anomalous)
dispersion. Argon absorbs (has a negative imaginary refractive index) below ∼42 eV. Above
∼20 eV, the real part of the refractive index is less than one, which results in a superluminal
phase velocity, and the refractive index approaches one as the frequency is increased further.
The data above 30 eV is experimental [line] [52], while the data close to threshold is theoretical
[dashed] [53]. The refractive index of Argon at optical wavelengths is larger than one.

which implies that the phase velocity of the monochromatic field is faster than c
(superluminal). The corresponding group delay is, however, positive

τGD =
∂δp
∂ω

≈ 1

2

ω2
p

c

L

ω2
, (2.20)

which reassures us that any light pulse is delayed by the plasma, and that it travels at
a speed less than c. The superluminal phase velocity can be controlled by increasing
or decreasing the density of the plasma.

In a neutral medium of argon the refractive index of the laser, n0(ω), and the
XUV, n0(Ω), are different, n0(ω) > 1 > n0(Ω) [Fig. 2.1]. This implies that the phase
of the fields travel at different speeds. In the HHG process, it is possible to balance the
effective refractive indices by ionizing the medium and creating the right amount of
plasma to achieve phase matching, n(ω) = n(Ω), where the effective refractive of the
laser field is n(ω) ≈ n0(ω) + np(ω) and the effective refractive index of the XUV light
is n(Ω) ≈ n0(Ω), where n0 denotes the neutral refractive index. Increasing the laser
intensity further will result in more plasma and an overcompensation of the refractive
index, n(ω) < n(Ω).
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2.1.2 Attosecond pulse propagation

In the following, we will assume that the pulse has passed through a medium and
acquired a spectral phase, δ(ω). The time domain electric field [Eq. 2.7] is

Ẽ(t) =
E0

2π

∫
dω exp

[
i(δ(ω)− ωt)− g(ω − ω0)2

]
, (2.21)

where a Gaussian spectral envelope is assumed: ~E(ω) ∝ exp
[
−g(ω − ω0)2

]
ẑ, where

g = 2 ln(2)/∆ω2, corresponding to a FWHM bandwidth ∆ω, centered at ω0. The
time domain electric field can be integrated analytically, using the expansion in Equa-
tion 2.16 up to second order

Ẽ(t) =
E0

2π

√
π

γ
exp

[
i(δ0 − ω0t)−

(δ′0 − t)2

4γ

]
, (2.22)

where γ = g − iδ′′0 /2 is a complex number. The intensity envelope of the pulse is
calculated as the square of the electric field,

Ĩ(t) =
cnε0

2
|Ẽ(t)|2 ∝ 1

|∆t| exp

[
− (δ′0 − t)2

∆t2

]
. (2.23)

The attosecond pulse is a Gaussian with a duration (intensity FWHM) equal to

τ = 2
√

ln(2) ∆t

= 2
√

2 ln(2)

√
g2 + δ′′(ω0)2/4

g

= 2
√

2 ln(2)

√
2 ln(2)

∆ω2
+

∆ω2

2 ln(2)

δ′′0
4
, (2.24)

which depends on both the bandwidth, ∆ω, and the spectral chirp, δ′′0 , of the pulse.
The shortest attosecond pulse duration, τ = 4 ln(2)/∆ω, occurs for δ′′0 = 0, which is
referred to as the Fourier limit. Increasing the spectral bandwidth reduces the pulse
duration. In the case of a large spectral chirp, the pulse duration is τ ≈ ∆ω

√
δ′′0 ,

we see that the pulse duration grows linearly with the bandwidth of the pulse. In
the case of attosecond pulses, which have a very large spectral bandwidth, this means
that extreme care must be taken to remove or compensate for all dispersive material.
Paper V describes an experimental study in which the GD of attosecond pulses can
be controlled by simply changing the density of the gas where they are produced. A
higher gas pressure implies more dispersion, but in the present case, phase matching
and absorption also play important roles. When present, higher order dispersive terms
will deform the pulse in a more complicated way, leading to further broadening and
an asymmetric intensity envelope.

Temporal chirp

The temporal phase of the electric field is defined as

φ̃(t) = arg
[
Ẽ(t)

]
. (2.25)
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Using Equation 2.22 for the case of a Gaussian pulse we find a constant temporal chirp

φ̃′′(t) ≡ ∂2

∂t2
arg
[
Ẽ(t)

]
=

1

4

δ′′0
|γ|2 =

δ′′0
δ′′0

2 + (2g)2
, (2.26)

which is related to both the spectral chirp and the bandwidth of the pulse. A constant
temporal chirp implies a linear variation of the instantaneous frequency of the pulse,
but there is not necessarily one-to-one mapping between the instantaneous frequency
and the GD. In the case of a Fourier-limited pulse, δ′′0 = 0, the instantaneous frequency

is constant. In the limit of large spectral chirp, δ′′0
2 � (2g)2, we find φ̃′′(t) = 1/δ′′0 ,

i.e. that the temporal chirp is the inverted spectral chirp.

Attosecond pulse trains

So far, we have considered the propagation of a SAP, but the experimental work
presented in this thesis [Papers I, II, V and VII] employed APTs, i.e. periodic
sequences of attosecond pulses. APTs arise naturally from the HHG process when
the driving laser field is many periods long. The train contains two pulses per period
of the fundamental field. These two attosecond pulses are identical, except that their
electric fields have opposite sign. Dispersion modifies the attosecond pulses in the
APT as if they were SAPs. Uncompensated dispersion can lead to a temporal overlap
between adjacent attosecond pulses in the APT, when the pulse duration increases
beyond a half-period of the fundamental laser field. An ideal APT can be written as
a Fourier sum, i.e. as a discrete version of Equation 2.7, over all high-order harmonics

Ẽ(t) =
∑

q:odd

|Eq| exp [iδq − iqωt] , (2.27)

where q is odd because only odd harmonics are generated from HHG due to parity
reasons. Ideal indicates that Equation 2.27 leads to an APT that extends to infinity,
while an actual APT will have a duration comparable to that of the fundamental laser
field [55, 56]. The subcycle behavior of the ideal APT can, however, be understood
as an average subcycle pulse structure in the actual APT. Papers III, IV, VIII
and IX present experiments carried out using APT with one pulse per period of the
fundamental field. The generation of these APTs is discussed further in Chapter 4.

Example: Compression of attosecond pulses using metallic foils

Attosecond pulses can be compressed in time using thin metallic foils [44, 57, 58]. In
Figure 2.2, we present experimental data from Paper V, where attosecond pulses are
compressed after propagating through a 400 nm thin aluminum foil. The foil provides
negative dispersion in the low-energy part of the metallic transmission window. The
high-energy part of the transmission window provides positive dispersion. Attosecond
pulses are generated with a positive intrinsic chirp from the HHG process. Fourier-
limited attosecond pulses were generated in the experiment by compensating for the
intrinsic positive chirp of the HHG process by the negative dispersion provided by
the low-energy part of the metallic transmission window. Notice the structure of the
APT, with two pulses per period of the fundamental laser field. Note also, that the
electric field of the two adjacent pulses have different signs.
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Figure 2.2. (a) Attosecond pulses generated in Ar before (gray curve) and after (black
curve) passing through a 400 nm Al foil. In addition to a delay of the pulse of ∼ 250 as, the
pulse shape changes due to the Al foil. The attosecond pulses before the foil have a positive
chirp, which is intrinsic to the HHG process. (b) The uncompressed pulse is 180 as and it is
asymmetric with a small post pulse. (c) After the foil, the compressed pulse is 160 as and
symmetric. The CEP was set arbitrarily. The IR laser field (dashed curve) is plotted for
comparison. Experimental phase data from Paper V was used. The amplitude effects from
the foil are neglected for simplicity.

2.1.3 Applications of the stationary phase approximation

Complex Gaussian integrals and the SPA are reviewed in this section. The SPA is
a popular approximation in attophysics because it can be used to evaluate complex
integrals, such as Fourier transforms. The SPA is frequently used in the quantum
mechanical treatment of HHG, and we have applied the SPA to calculate HHG from
two-color laser fields, in the work presented in Papers III−IX. For pedagogical rea-
sons, the SPA is introduced already in this chapter and it is applied to some elementary
examples concerning the propagation of attosecond light pulses. In the next section,
the SPA will be applied to ultrashort pulses of electrons; and then finally to HHG in
Chapter 4.
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Ultrafast wave packets

Complex Gaussian integrals

Complex Gaussian integrals are important in many applications in attophysics because
they are closely related to the SPA which is discussed below. Consider the following
integral, ∫ ∞

−∞
dx exp

[
−β x2

]
=

√
π

β
, (2.28)

where β may be complex. The integral is regular (vanishes in the limits) if <(β) > 0.
In the special case of <(β) = 0, the integral is not regular in the common sense, but
the equality still holds if =(β) 6= 0 due to rapid complex oscillations in the asymptotic
regions, |x| → ∞. The endpoints of the integral can be moved in the complex plane
using Cauchy’s integral theorem, provided that the asymptotic arc integrals vanish.
We do not provide a rigorous mathematical proof of Equation 2.28, we simply illustrate
the basic properties of the Gaussian integrals numerically in Figure 2.3.
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Figure 2.3. (a) A real Gaussian function (β = 1). (b) The real Gaussian integral equals√
π ≈ 1.7725. (c) A complex Gaussian function (β = −i). Notice the fast complex oscillations

for large values of |x|. (d) The complex Gaussian integral equals
√
π exp[iπ/4].
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2.1.3 Applications of the stationary phase approximation

Stationary phase approximation

The SPA reads

∫ ∞

−∞
dx F (x) exp [if(x)] ≈

∑

s

F (xs)

√
2πi

f ′′(xs)
exp [if(xs)] , (2.29)

where f ′′(xs) = ∂2f/∂x2
∣∣
xs

. The sum runs over all solutions to the stationary phase
equation

∂

∂x
[f(x)] = 0, (2.30)

where the stationary phase solutions, x = xs, are labeled by the index s. The number
of solutions depends on the properties of the phase factor, f . In the simplest cases,
there is only one solution. F is a slow amplitude factor. The SPA can be derived
by Taylor expanding the phase factor to second order around the stationary points
and applying the complex Gaussian integral [Eq. 2.28]. The SPA does not replace the
residue theorems, one should always be careful with poles [59].

Example I: A stretched “attosecond” pulse

In this example, an attosecond pulse [Eq. 2.21] with a large spectral chirp, g � |δ′′0 |,
is reconstructed using the SPA. Let us assume that the variation of the spectral
(Gaussian) amplitude can be considered slow. The SPA then implies that the am-
plitude factor will only contribute a local value, F (ωs) = exp[−g(ωs − ω0)2], occur-
ring at the stationary frequency, ωs. This is quite similar to the way in which a
delta function operates, selecting a specific value of a function, and it arises from a
small constructive window in the complex integral around the stationary frequency.
The next task is to find the stationary frequency, ωs, using Equation 2.30. The
phase factor is identified as f(ω) = δ(ω) − ωt. The stationary phase equation reads,
f ′(ωs) = δ′0 + δ′′0 (ωs − ω0)− t = 0, with the solution

ωs(t) = ω0 +
1

δ′′0
(t− δ′0), (2.31)

which is a function of time. The stationary frequency can be seen as the frequency
that makes the dominant contribution at a given time, t. At the center of the pulse,
t = δ′0, the stationary frequency equals the central frequency, ωs = ω0. More generally,
the stationary frequency varies as ω′s(t) = 1/δ′′0 ≡ φ̃′′, which is the same as the way in
which the instantaneous frequency varies in the limit of a large spectral chirp [Eq. 2.26].
The SPA is not only useful for making approximations, it can also be used to physically
interpret the results. In the current case, identifying the stationary frequency as the
instantaneous frequency yields an intuitive, physical understanding of stretched light
pulses. In some sense, the complicated wave packet is simplified to a number.

In this derivation of the stretched pulse, it is only required that the spectral en-
velope is slow compared to the spectral chirp, it is not necessary to specify the exact
shape of the envelope. Any other slow envelope, F (ω), will work, resulting in a pulse
envelope that varies in the same way in the time domain as it does in the spectraldo-
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main,

|F̃ (t)|︸ ︷︷ ︸
Temporal

=
∣∣ 1

2π

∫
dω F (ω) exp[iδ(ω)− iωt]

∣∣ ≈ 1

2π
|F (ωs(t))|︸ ︷︷ ︸

Spectral

√
2π

|δ′′0 |︸ ︷︷ ︸
Constant

, (2.32)

because the stationary frequency increases linearly in time [Eq. 2.31]. Mapping from
the spectral envelope to the temporal envelope is scaled by the inverse spectral chirp,
1/δ′′0 ≡ φ̃′′. At the end of the next section, we will see that the properties of these
super-stretched light pulses are similar to the way in which nonrelativistic electrons
are dispersed through propagation in vacuum.

Example II: A compressed attosecond pulse

In this example, we consider a general Gaussian attosecond pulse [Eq. 2.21] with any
ratio of bandwidth, ∆ω, and spectral chirp, δ′′0 . In this case, it can not be assumed
that the spectral envelope is slow. The Gaussian envelope must instead be included in
the fast phase factor, f(ω) = δ(ω)− ωt+ ig(ω − ω0)2. The stationary phase equation
is f ′(ωs) = δ′0 + δ′′0 (ωs − ω0)− t+ i2g(ωs − ω0) = 0, with the solution

ωs(t) = ω0 +
δ′′0 − i2g
δ′′0 + (2g)2

(t− δ′0), (2.33)

which is complex and depends on time. When including fast amplitude effects, it is
common to obtain complex stationary points in the SPA. The real part is identified as
the instantaneous frequency using Equation 2.26. The imaginary part of the station-
ary frequency determines the duration of the attosecond pulse. The intensity of the
attosecond pulse will only be large close to the center of the pulse, t = δ′0, where the
imaginary part of the stationary frequency vanishes. Inserting the complex stationary
frequency into the right-hand-side of Equation 2.29 yields the exact solution found in
Equation 2.22.

In the special case of a Fourier-limited pulse, δ′′0 = 0, the stationary frequency
becomes the central frequency of the pulse plus a purely imaginary term, ωs(t) =
ω0 + i[δ′(ω0)− t]/2g. This is closely related to the Fourier-limited pulse shape, which
has a constant carrier frequency equal to the central frequency. The imaginary part
of the stationary frequency leads to the finite duration of the pulse in time. The SPA
is based on approximating the actual integral by a complex Gaussian integral at each
stationary point of the phase. In the current case, the pulse was a complex Gaussian,
so the SPA was exact.

2.1.4 Summary of attosecond pulse propagation

In this section, we have reviewed the basic properties of light pulses which propagate
through a medium in one dimension. Attosecond XUV light pulses are a special
kind of light pulse with a large spectral bandwidth. The larger the bandwidth, the
more sensitive the pulses are to the dispersion induced by the medium. Using an
appropriate medium, it is possible to correct for small spectral chirps and reduce the
attosecond pulses to their shortest possible duration. Once the attosecond pulses are
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2.1.4 Summary of attosecond pulse propagation

adjusted, they can be used to ionize atoms at extremely well-defined times [60]. The
photoionization process will be discussed in Chapter 3, but before that we will review
the properties of nonrelativistic photoelectron pulses, in order to understand how the
photoelectrons evolve after such a well-defined ionization event.
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2.2 Wave packets of photoelectrons

A fundamental application of attosecond pulses is to photoionize atoms and then
study the temporal properties of the emitted photoelectrons. In this section, we
perform a wave packet analysis of photoelectrons similar to that in the previous section.
The propagation of a nonrelativistic photoelectron is described by the time-dependent
Schrödinger equation (TDSE) [61]

H0

∣∣Ψ(t)
〉

= [T + V0]
∣∣Ψ(t)

〉
= i~

∂

∂t

∣∣Ψ(t)
〉
, (2.34)

where H0 is a time-independent Hamiltonian, and Ψ = Ψ(t, ~r) =
〈
~r
∣∣Ψ(t)

〉
is the

time-dependent wavefunction. The Hamiltonian consists of two parts, T and V0, with
T = −~2∇2/2m being the kinetic energy operator, and V0 = V0(~r) being the time-
independent atomic potential. We here assume that the ionizing attosecond pulse
disappears immediately, so that the emitted photoelectron only interacts with the
field-free potential. A common approach to solving the TDSE [Eq. 2.34] is to first find
the solutions to the time-independent Schrödinger equation,

H0ψ(E,~r) = Eψ(E,~r), (2.35)

where E = ~ω is the energy (eigenvalue) of the solution (eigenstate), ψ(E,~r). In the
following, these time-independent solutions are referred to as states. The states form
the basis that spans the complete space in which the electron moves. Photoelectrons
are in the continuum with positive energies, E > 0,

For a spherical potential, V (r), the states can be written on a spherical basis,
ψ(E,~r) = R`(E, r)Y

m
` (θ, φ), where R` is the radial wavefunction and Y m` is a spherical

harmonic [61]. It is possible to reduce the Schrödinger equation to separate radial
equations, each corresponding to a specific angular momentum quantum number, `.

To emphasize the similarities with and differences between the one-dimensional
propagation of light pulses [Sec. 2.1], the effective radial electron states, ψ`(r) =
rR`(r), are used. These states represent the total electron probability density over
the surface of a sphere of radius r. The states do not decrease as r is increased, since
the total probability on the surface is independent of r. The effective radial states can
be interpreted as an electron wave propagating in one dimension through an effective
potential, V0 = V ′0 +V`, where V ′0 is the three-dimensional radial potential and V` is a
centrifugal potential that depends on the angular momentum, `, of the electron. The
effective radial time-independent Schrödinger equation for atomic hydrogen is

[
− ~2

2m

∂2

∂x2

V0︷ ︸︸ ︷
− e2

4πε0x︸ ︷︷ ︸
VC

+
`(`+ 1)~2

2mx2︸ ︷︷ ︸
V`

]
ψ`(E, x) = Eψ`(E, x). (2.36)

Starting with Equation 2.36, the radial variable r is relabeled x to ease the compari-
son of one-dimensional light propagation with the propagation of photoelectrons. The
boundary condition for all states is ψ`(E, 0) = 0. The effective radial time-dependent
wavefunction of a photoelectron (in angular subspace `) can be written as a superpo-
sition

Ψ`(t, x) =

∫ ∞

0

dE a(E, t)ψ`(E, x) exp [−iEt/~] , (2.37)
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2.2.1 Wave propagation of continuum electrons

where a(E, t) is the complex amplitude at energy E. Alternatively, the photoelectron
can be written in terms of the wavevector states

Ψ`(t, x) =

∫
dk a(k, t)ψ`(k, x) exp

[
−i~k2t/2m

]
, (2.38)

where k =
√

2mE/~ is the wavevector (number). Much like the attosecond light pulses
[Eq. 2.7], the photoelectron pulse is written as a superposition of “monochromatic”
continuum states. More information about the normalization of the continuum states
can found be found at the end of this chapter, in Section 2.2.2.

2.2.1 Wave propagation of continuum electrons

The propagation of photoelectron pulses is governed by the way in which the phases
of the continuum states vary as a function of energy. The Wentzel–Kramers–Brillouin
(WKB) approximation is well suited for studying continuum states within a qua-
siclassical framework [61]. The WKB approximation relies on a similar ansatz as
in Section 2.1.1 for XUV light. The effective radial wavefunction is taken to be
ψ`(E, x) ∝ exp[iφ(E, x)]. The ansatz is expected to be adequate when the poten-
tial energy is varying slowly compared to the de Broglie wavelength of the electron,
λdB ≡ h/

√
2mE = 2π/k. Inserting the WKB ansatz into the Schrödinger equation

[Eq. 2.36], leads to a differential equation for the phase of the state,

− i ~
2

2m

∂2φ

∂2x
+

~2

2m

(
∂φ

∂x

)2

= E − V0(x). (2.39)

Assuming that the rate of change is small compared to the local de Broglie wavelength,
|∂2φ/∂x2| � |∂φ/∂x|2, the above equation can be simplified

∂φ

∂x
=

1

~
√

2m[E − V0(x)], (2.40)

which can be integrated

φ(E, x) =
1

~

∫ x

−∞
dx′

√
2m[E − V0(x′)] =

1

~

∫ x

−∞
dx′ p(x′), (2.41)

where p(x) is the local momentum of the electron. The local momentum corresponds to
the local kinetic energy, which is the total energy minus the local potential energy. The
phase of the electron varies faster as the local momentum is increased. Equations 2.12
and 2.41 are now compared to highlight the differences between the propagation of
XUV light and photoelectrons. In a medium with negligible dispersion, the phase of
light is approximately proportional to ω, leading to a simple shift of the pulse in time.
In a negligible potential, the phase of the electron is proportional to the square root
of the energy,

√
E ∝ √ω. This implies that an electron pulse will broaden, even when

propagating in free space. This broadening effect is referred to as “quantum diffusion”
and it can be understood physically from the fact that electrons of different energies
travel at different speeds, v(E) =

√
2E/m; whereas light always travels at the speed

of light, c. Quantum diffusion is a fundamental limiting factor for the efficiency of
HHG, as will be discussed further in Section 2.2.2 and in Chapter 4. When writing
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the WKB solution, it is common to include the first order of |∂2φ/∂x2|. This leads to
the famous form for the WKB state

ψ
(±)
wkb(E, x) ∝ 1√

p(x)
exp

[
± i
~

∫ x

−∞
dx′ p(x′)

]
, (2.42)

where the two solutions, (±), describe an electron moving in the positive and negative

direction, respectively. The probability density, ρ(x) = |ψ(±)
wkb(E, x)|2 ∝ 1/|p(x)|, is

smaller where the electron moves rapidly. Physically, we understand this because the
electron will spend a shorter time in a place when moving with a greater velocity.

Alternatively, we can form a real WKB solution,

ψwkb(E, x) ∝ 1√
p(x)

sin

[
1

~

∫ x

a

dx′ p(x′) + φa

]
, (2.43)

where a classical reflection point is assumed at x = a, i.e. V0(a) = E. The determina-
tion of the absolute phase (reflection phase), φa, requires a theory beyond the WKB
approximation [61]. The basic properties of the real WKB states are illustrated in
Figure 2.4, where electrons are passing through an attractive potential.
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Figure 2.4. Electrons passing through an attractive potential, V0(x). The real WKB
solutions [Eq. 2.43, thin black curves] are compared to the real free electron states [thick gray
curve] at three different energies: E = 1, 2, 3 a.u.. The phase of the electron wavefunction
varies more quickly over the potential, which leads to an accumulated phase difference, δ,
compared to the free case. This phase difference can be related to an electron pulse structure.
Note that the modulations of the wavefunctions should be interpreted in the third dimension
of the graph, and not as an energy modulation.

Wigner delay

Consider the situation illustrated in Figure 2.4, where an electron passes through a
short-range attractive potential. The electron is classically allowed to pass through
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2.2.1 Wave propagation of continuum electrons

the potential, but as it does so, it will acquire a quantum phase. The asymptotic
phase difference, between an electron wave propagating through a short-range poten-
tial [Eq. 2.41] and free wave propagation, is defined in analogy with Equation 2.13

δ(E) =
1

~
lim
x→∞

∫ x

−∞
dx′ [p(x)− p0] , (2.44)

where p0 =
√

2mE is the free (asymptotic) momentum of the electron. The GD
concept [Eq. 2.17] can also be applied to electrons using Equation 2.44

τW (E) =
∂δ

∂ω
= ~

∂δ

∂E
. (2.45)

The electron GD is then only the result of the interaction with the potential, since
the intrinsic delay due to different final velocities has been subtracted. Using the
asymptotic phase to calculate the delay of electron wave packets was first done by
Eisenbud, Wigner and Smith [62–64], hence the name Eisenbud–Wigner–Smith delay,
(or Wigner delay for short). Photoionization is referred to as a half-collision because
the electron only moves out of the atom (and not into it). The delay in photoemission
is, therefore, the derivative of the radial asymptotic phase. Paper II presents an
experiment where a time delay between photoelectrons from the 3p and 3s states in
argon is measured using an APT. Our experiment is complementary to the experiment
of Schultze et al., where a time delay was observed between photoelectrons from the
2p and 2s states in neon using a SAP [65]. Another related time delay has been
measured between the 4f state and the conduction band in condensed matter, single-
crystal tungsten using a SAP [66]. The interpretation of our experimental time delay
is discussed further in Chapter 3, where it is explained in detail, how it relates to the
Wigner delay of the photoelectrons.

Example: Wigner delay from a weak potential

For a weak potential, |V0| � E, the local momentum is p(x) ≈ p0 [1− V0(x)/2E],
which leads to an asymptotic phase

δ(E) ≈ −1

~

√
m

2E

∫ ∞

−∞
dx′ V0(x′) ≡ −1

~

√
m

2E
IV , (2.46)

where the potential integral, IV , is independent of the energy. The Wigner delay is

τW =

√
m

8

IV
E3/2

. (2.47)

It takes a shorter time, τW < 0, for an electron to pass a weak attractive potential,
IV < 0, than through free space. Physically, this is due to the higher local velocity of
the electron in the potential valley. The opposite is true for a weak repulsive potential,
where the electron is slowed down on the potential hill. Furthermore, the timing of
slow electrons is affected more than the timing of fast electrons, due to the longer
total time that the slow electrons spend in the potential.
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Coulomb–WKB states

So far, we have only discussed the phase properties of electrons passing through short-
range potentials. Photoelectrons created from neutral atoms will pass through the
Coulomb potential, VC = −C/x, which has a long range. Far away from the atom,
the WKB approximation [Eq. 2.43] can be applied, E � |C/x|, for x→∞. The local
momentum can then be expanded as p(x) ≈ p0[1 + C/2Ex], where p0 =

√
2mE. The

phase of the WKB state [Eq. 2.41] must, therefore, vary asymptotically as

φ(E, x) ≈ p0

~

∫ x

dx′
[
1 +

C

2Ex′

]
= kx+

ln(kx)

ka0
+ η, (2.48)

where k = p0/~ is the wavevector, and a0 is the Bohr radius. The absolute phase,
η = η(E), is undetermined. The Coulomb–WKB state varies as

ψC(E, x) ∝ sin

[
kx+

ln(kx)

ka0
+ η

]
≡ sin [kx+ Φ(x)] , (2.49)

for x→∞. Interestingly, the phase, Φ(x), does not settle into free particle behavior,
instead the phase diverges logarithmically. What does this divergent phase mean for
the Wigner delay? The logarithmic term leads to a Wigner–Coulomb delay,

τWC(x) ≡ ~
∂

∂E

[
ln(kx)

ka0

]
=

m

~a0k3
[1− ln(kx)] , (2.50)

which depends on how far away the electron is from the ion. The Wigner–Coulomb
delay can be neglected if the electron has high enough energy, k � [1− ln(kx)]1/3 a.u.,
where x ≈ vt = p0t/m is the approximate position of the photoelectron pulse. In cases
when τWC is not negligible, it is necessary to consider the Wigner delay, τW = ~∂η/∂E,
relation to τWC .

The absolute determination of the asymptotic phase, η, is difficult for atoms in
general, because it depends on the detailed nature of the atomic potential at short
range. In the special case of hydrogen, the phase is known analytically [61],

η
(H)
` = −`π/2 + σ`, (2.51)

where
σ` = arg[Γ(`+ 1− i/ka0)] (2.52)

with Γ being the complex gamma function. This result can be generalized for any
spherical atom,

η` = −`π/2 + σ` + δ`, (2.53)

where δ` is the phase difference compared to hydrogen. We will return to the Coulomb–
WKB states in Chapter 3, where we study the continuum–continuum transitions oc-
curring in the RABITT method [Paper II]. The long-range behavior of the Coulomb
potential leads to an additional time delay in the RABITT signal, which must be ac-
counted for theoretically before the photoelectron Wigner time can be extracted from
the experimental data.
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Figure 2.5. Exact hydrogen wavefunctions (thin black curve) for ` = 0, 1 and 2, correspond-
ing to s-, p- and d-waves in the continuum. The Coulomb–WKB approximation (grey thick
curve) is shown for comparison. The agreement between the Coulomb waves and the WKB
solution is excellent far away from the core. At high energies agreement is reached faster.
The WKB approximation is better for ` = 0 than for ` > 0 because of the increasing influence
of the centrifugal potential, V`, which is neglected in the Coulomb–WKB approximation.

Exact Coulomb states

The Coulomb–WKB states are compared with the exact Coulomb states for hydrogen
in Figure 2.5. The exact analytical states of the hydrogen atom are called the regular
Coulomb functions of the first kind [67],

F`(η, ρ) = C`(η) ρ`+1 exp[−iρ] 1F1(`+ 1− iη; 2l + 2; 2iρ), (2.54)

where η = −1/ka0 and ρ = kx. The prefactor is

C`(η) =
2` exp[−πη/2] |Γ(`+ 1 + iη)|

Γ(2`+ 2)
, (2.55)

and the integral form of the confluent hypergeometric function of the first kind is

1F1(a; b; z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

dt exp[zt]ta−1(1− t)b−a−1, (2.56)

which is integrated numerically to produce the exact wavefunctions in Figure 2.5.
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2.2.2 Photoelectron pulse propagation

In this subsection, we discuss the propagation of a photoelectron pulse in time using
the continuum states derived in the previous section. It is convenient to expand the
electron pulse [Eq. 2.38] on wavevector continuum states,1

ψ(k, x) =
1√
2π

exp[ikx]. (2.57)

The explicit electron pulse expansion is

Ψ(x, t) =
1√
2π

∫
dk a(k) exp

[
i

(
kx− ~k2

2m
t+ δ(k)

)]
. (2.58)

The asymptotic phase, δ(k), describes the phase of the electron state after pass-
ing through a short-range potential.2 The wave packet is normalized over k-space,∫∞
−∞ dk |a(k)|2 = 1, which also implies that the wavefunction is normalized in space

at any time,
∫∞
−∞ dx |Ψ(x, t)|2 = 1.3 The complex amplitude is assumed to be a real

normalized Gaussian function,

a(k) =

(
2g

π

)1/4

× exp
[
−g(k − k0)2

]
, (2.59)

where k0 =
√

2mE0/~ and g = 8 ln(2)~2E0/∆E
2m, E0 being the central energy

and ∆E the FWHM energy bandwidth of probability for the photoelectron. Free
propagation, δ(k) = 0, is considered for simplicity. The integral in Equation 2.58
can be evaluated using the SPA [Eq. 2.29]. The phase factor is identified as f(k) =
kx − ~tk2/2m + ig(k − k0)2. The stationary phase equation, f ′(k) = 0, yields the
stationary wavevector,

ks(x, t) =
2gk0 + ix

2g + i~t/m
, (2.60)

which is complex and dependent on the observation point, (x, t). The corresponding
electron pulse is

Ψ(x, t) =
1√
2π

(
2g

π

)1/4
√

2πi

f ′′(ks)
exp [if(ks)] =

=

(
g

2πγ2(t)

)1/4

exp

[
(2gk0 + ix)2

4γ(t)
− gk2

0

]
, (2.61)

where γ(t) = g+i~t/2m. The probability density of the electron takes a more intuitive
form,

ρ(x, t) = |Ψ(x, t)|2 =
1√

π|∆x(t)| exp

[
− (x− v0t)

2

∆x(t)2

]
, (2.62)

1 In Chapter 4, we will need the three-dimensional wavevector states: ψ(~k, ~r) = (2π)−3/2 exp[i~k·~r].
2 δ is also a function of x if the electron is still in the potential, or if the potential is long-range.
3 Follows from Parseval’s theorem and proper normalization,

∫∞
−∞ dx ψ(k, x)∗ψ(k′, x) = δ(k, k′).
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2.2.2 Photoelectron pulse propagation

where the electron is moving with a constant velocity, v0 = ~k0/m, related to the
central wavevector. Furthermore, the size of the electron wave packet is determined
by the real factor 1/∆x2 = g/2|γ(t)|2. The FWHM electron pulse duration can be
estimated as

τ ≈ 2
√

ln(2)
∆x(t)

v0
=

2
√

2 ln(2)

v0

√
g2 + (~t/2m)

2

g
, (2.63)

which is very similar to Equation 2.24 for the duration of an attosecond light pulse.
The duration of the electron wave packet is minimal at t = 0. At later times, t >
0, the electron will start to diffuse. In the limit of large times, the electron pulse
duration will increase linearly with time. It is important to note that the electron
pulse duration depends on time explicitly due to quantum diffusion. This makes
“dispersion management” more difficult for nonrelativistic electron pulses than for
light pulses and relativistic electron pulses. Finally, there is a velocity dependence,
which implies that high-velocity electrons have shorter pulse durations.

In the following, we consider a more complicated electron wave packet [Eq. 2.58],
e.g. the photoelectrons from an APT, in the limit of time going to infinity [64]. The
phase factor will be fast compared to any initial complex amplitude, a(k), which
means that the SPA [Eq. 2.29] can be applied as

Ψ(x, t) ≈ a(ks)

√
i

f ′′(ks)
exp[if(ks)], (2.64)

where the phase is f(k) = kx − ~k2t/2m + δ(k). The stationary phase equation,
f ′(ks) = 0, yields the stationary wavevector, ks. It is interesting to note that Equa-
tion 2.64 provides a direct link between the complex amplitudes of the wavevector
states and the electron wavefunction in space–time. To understand this link better,
we write the corresponding stationary electron velocity,

vs(x, t) ≡
~ks
m

=
1

t

(
x+

∂δ

∂k

)
. (2.65)

This implies that the dominant contribution to the electron pulse at a given point in
space–time (x, t), arises from the part of the wave packet that fulfills vst = x+δ′(k) ≈
x, where the Wigner shift is extremely small compared to the final position. The
complex amplitude is mapped linearly from wavevector to space at any given large
time [68]. The probability density is

ρ(x, t) = |Ψ(x, t)|2 ≈ |a(ks)|2
m

~t
, (2.66)

where the dependence of t is due to spreading of the wave packet, i.e. quantum
diffusion. The photoelectron wavevector-to-space mapping, described above, is similar
to the frequency-to-time mapping for super-chirped light pulses, which was discussed
in Section. 2.1.3. For photoelectrons, the mapping occurs automatically after long
enough times, and there is no need for a dispersive material. Classically, the electron
mapping is obvious since electrons in a classical distribution are moving at different
speeds. If we know that they all started at a distinct point in space–time, then we
know that the fast electrons will reach the detector (at x) first. This mapping of
complex amplitudes into space and time is the basic principle of the TOF detection
scheme, which was used in most experiments presented in this thesis.
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Ultrafast wave packets

Renormalization

It is important to distinguish between bound states (E < 0), and continuum states
(E > 0). Bound states have a finite extent in space because they are trapped by the po-
tential, V0. Bound states are normalized as

∫∞
−∞ dx |ψ(E, x)|2 = 1. Continuum states

have an energy large enough for them to escape the potential and extend to infinity.
Continuum states are normalized using the following trick. First, consider an infinite
box potential of length L. The corresponding states are ψ(EN , x) = C sin(πNx/L),
with energy EN = ~2π2N2/2mL2, where N is a positive integer, and C =

√
2/L is

the normalization factor for states in the box. At high energy, the states will become
very close, and we can calculate the number of states, ∆N , in a small energy region,
∆E,

∆N =
L

2π

√
2m

~2E
∆E ≡ ρ(E)∆E, (2.67)

where ρ(E) is the density of states. The continuum states are normalized to energy
(and not to quantum number),

C2
[E] ≡ ρ(E)C2 =

1

π

√
2m

~2E
, (2.68)

which is independent of the length of the box. Using the energy normalization
convention, C → C[E], the interpretation of |a(E, t)|2∆E is the probability of the
electron being in a region bounded by E ± ∆E/2. Energy normalization also
yields consistency between the radial bound and continuum states in atoms and the
highly excited renormalized Rydberg states will connect smoothly to the continuum
states at the ionization threshold (E = 0). Finally, energy normalization leads to∫∞

0
dx ψ(E′, x)∗ψ(E, x) = δ(E′ − E). A free-electron wave packet can be written

Ψ(free)(t, x) =

∫ ∞

0

dE a(E, t)ψ(E, x) exp [−iEt/~] . (2.69)

In this derivation it is assumed that the electron is located at x > 0, with Ψfree(t, 0) =
0 as required for the effective radial atomic states used in the next chapter.

2.2.3 Summary of attosecond photoionization

Using attosecond pulses, electrons can be ionized at distinct times. The uncertainty
principle (or the time–bandwidth product) then dictates that the energy content must
be very broad. How long do the photoelectrons remain well-localized in time under
typical experimental conditions? The central energy of the photoelectron is calculated
using Einstein’s law for the photoelectric effect, and the bandwidth of the attosecond
pulse is simply transferred to the electron. Consider a photoelectron with E0 = 20 eV
and ∆E = 20 eV, which leads to an initial electron duration of ∼ 200 as. In attosecond
experiments using trains of attosecond pulses, photoelectrons are created twice per
laser period, e.g. a temporal separation of 1.35 fs for a titanium sapphire laser system.
Coincidentally, we find that the electron pulse duration is ∼ 1.3 fs after 2.7 fs, i.e.
the electron occupies half of the laser period already after a single laser period of
propagation. At later times, the photoelectron pulse duration scales as τ ≈ 0.5t. We
should, therefore, not think of the electron pulses as attosecond pulses. After one
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2.2.3 Summary of attosecond photoionization

second of free propagation the electron pulse duration is half a second, and the size of
the electron pulse would be roughly a fifth of the radius of the Earth. Photoelectron
wave packets from attosecond light pulses grow large very fast.
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Chapter 3

Attosecond photoionization

In this chapter, we provide a theoretical background for attosecond photoionization,
which was studied experimentally using APTs, presented in Papers I, II, V and VII.
The attosecond pulse structure in the APT is faster than any detector or electronic
device can record. It is possible, however, to obtain temporal information about
attosecond photoionization indirectly by investigating coherent cross-correlation pho-
toelectron spectrograms between the attosecond pulses and a weak IR laser probe.
The XUV attosecond pulse ionizes the atom and creates a photoelectron [Sec. 3.1],
while the IR probe acts as a phase gate, modulates the emitted electron, and pro-
vides insight into the temporal structure of the attosecond pulse [Sec. 3.2]. Tunneling
ionization is a different kind of ionization mechanism [69], which is important in in-
tense, low-frequeny laser fields, and plays a major role in the generation of high-order
harmonics [Sec. 3.3]. Finally, the detection of photoelectrons is examined from a
scattering theory viewpoint [Sec. 3.4], with the aim of bridging the gap between the
quantum mechanical photoelectron wave packets calculated in this chapter, and the
different electron spectrometers used in the experimental work.
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3.1 First-order time-dependent perturbation theory

3.1 First-order time-dependent perturbation theory

The interaction of an attosecond pulse with an atom can often be approximated using
first-order time-dependent perturbation theory (FTPT) [70]. The field-free states of
the atom satisfy

[T + V (r)]
∣∣ñ
〉

= En
∣∣ñ
〉

= i~
∂

∂t

∣∣ñ
〉
, (3.1)

where T is the kinetic energy operator, and V (r) is the atomic binding potential.
Using FTPT, we can assume that the electron remains mostly in the initial field-free
state at all times, and that only a small fraction of the electron is promoted to the
excited field-free states by the attosecond pulse. The electron wave packet can be
expanded on the field-free states as

∣∣Ψ(t)
〉
≈

∣∣Ψ(0)(t)
〉

+
∣∣Ψ(1)(t)

〉

=
∣∣̃i(t)

〉
+
∑

n

∫
a(1)
n (t)

∣∣ñ(t)
〉
, (3.2)

where the zero-order part,
∣∣Ψ(0)(t)

〉
, is the initial state,

∣∣̃i(t)
〉
≡
∣∣̃i
〉
≡
∣∣i
〉

exp[−iωit]; (3.3)

and the first-order part,
∣∣Ψ(1)(t)

〉
, is a superposition of excited states,

∣∣ñ(t)
〉
≡
∣∣ñ
〉
≡
∣∣n
〉

exp[−iωnt]. (3.4)

The integral–sum in Equation 3.2 runs over all excited bound and continuum states.
The complex amplitudes of the excited states,

∣∣ñ
〉
, are approximated using FTPT [70]

a(En, t) ≡ an(t) ≈ a(1)
n (t) =

1

i~

∫ t

−∞
dt′
〈
ñ(t′)

∣∣VI(t′)
∣∣̃i(t′)

〉
, (3.5)

where VI(t) is the interaction potential of the attosecond pulse. We describe the
interaction between the atom and the attosecond pulse using the dipole approximation
in the length gauge

VI(t) = ez ẼI(t) = ez Λ̃I(t) exp[−iΩt], (3.6)

where ẼI(t) is the electric field of the attosecond pulse; Ω and Λ̃I(t) being the central
frequency and the temporal envelope, respectively. The attosecond pulse is linearly
polarized along the ẑ direction. We define −e = −|e| to be the charge of the electron.
After a long time, when the attosecond pulse has passed, the first-order complex
amplitude is proportional to the dipole matrix element, zni =

〈
n
∣∣z
∣∣i
〉
, and to the

Fourier transform of the electric field,

S
(1)
n/i ≡ lim

t→∞
a(1)
n (t) =

e

i~
zni

∫
dt ẼI(t) exp [i(ωn − ωi)t] =

e

i~
zni ΛI(∆ω), (3.7)

where ΛI(∆ω) is the spectral envelope of the attosecond pulse at

∆ω = ωn − ωi − Ω ≡ ωn − ωc, (3.8)
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Attosecond photoionization

which describes the difference in frequency between the state,
∣∣n
〉
, with energy En,

and the central state,
∣∣c
〉
, with energy Ec = Ei + ~Ω. For photoelectrons, ~Ω >

Ip ≡ −Ei and
∣∣n
〉

are continuum states, this implies that the spectral envelope of the
attosecond pulse is continuously mapped on the complex amplitude of the electron,
but note that the photoelectron is not an exact spectral replica of the attosecond
pulse since the amplitude and phase of the dipole matrix element may change over
the broad spectral bandwidth of the attosecond pulse [71]. In Equation 2.66, we
showed that the probability for an electron to be at the position x, on the detector, is
proportional to the complex amplitude squared, |a(Es, t)|2, where vs =

√
2Es/m =

x/t is the stationary classical velocity. The spectral intensity distribution of attosecond
pulses can, therefore, be determined using an electron TOF spectrometer by counting
the number of photoelectrons reaching the detector as a function of time, and then
correcting for the dipole matrix element, zni. The same information can, of course,
be obtained directly by measuring the spectral intensity of the attosecond pulses with
an XUV spectrometer. Information about the temporal structure of the XUV light is
not accessible in either case.

3.1.1 Photoelectron wave packet

In this section properties and formation of photoelectron wave packets are discussed.
First, finite-duration XUV pulses are considered, and then the limit of XUV fields
with infinite duration.

Photoelectron wave packets from the box

In this subsection we study photoelectron wave packets, created by a weak box-shaped

attosecond pulse, Ẽ(t) = iE
(0)
I [Θ(t) − Θ(t − Tdur)] exp[−iΩt], of duration Tdur and

with ~Ω > Ip.
1 The attosecond pulse is turned on at t = 0 and turned off at t = Tdur

using the Heaviside stepfunctions. Direct application of Equation 3.5 leads to

a(1)
n (t = Tdur) =

ezniE
(0)
I

~

[
exp[i∆ωt′]

i∆ω

]Tdur

0

=
ezniE

(0)
I

~

(
sin[∆ωTdur]

∆ω
+ i

1− cos[∆ωTdur]

∆ω

)
, (3.9)

where ∆ω is the frequency offset from the central state [Eq. 3.8]. Figure 3.1 illus-
trates the evolution of the complex amplitudes and the corresponding reconstructed
photoelectron wave packets,

∣∣Ψ(1)(t)
〉
, for increasing interaction durations, Tdur.

Fermi’s golden rule for photoionization states that the total probability of excita-
tion increases linearly with time, P =

∫
dE |a(E, t)|2 ∝ Tdur. The photoelectron wave

packet, in Figure 3.1, behaves indeed as predicted by Fermi’s golden rule since the
wave packet extends linearly in time. The size of the wave packet is approximately
x ≈ vcTdur, where vc =

√
2Ec/m is the central velocity of the photoelectron after ion-

ization and Tdur is the duration of the interaction. Inside this “classical” extent of the

1 We implement the rotating wave approximation, 2E
(0)
I sin[Ωt] → iE

(0)
I exp[−iΩt]. The CEP

can be introduced as exp[−iΩt + iϕ(Ω)], corresponding to a delayed real field, sin[Ω(t − τ)], where
τ = ϕ/Ω.

35



3.1.1 Photoelectron wave packet
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Figure 3.1. Complex amplitudes (left) and “snapshots” of the corresponding photoelectron
wave packets (right) after photoionization of increasing duration, Tdur: (a,b) 120, (c,d) 240,
(e,f) 480 and (g,h) 2400 as. (a,c,e,g) The probability distribution over energy (black line)
becomes narrower as the interaction duration increases. (b,d,f,h) In space, this corresponds
to an expanding electron wave packet. The size of the photoelectron wave packet is well esti-
mated by the classical distance x = vct (black circle). This is a one-dimensional model calcu-
lation where the continuum states are plane waves and the dipole transition matrix element
approximated as constant. The carrier frequency of the light is ~Ω = 41 eV and the binding
energy is Ip = 13.6 eV, resulting in a central energy, Ec = ~Ω− Ip = 27.1 eV = 1 atomic unit,
of the photoelectron. The photoelectron wave packet is complex; the real and imaginary
parts being shown in red and blue, respectively.

wave packet, the probability density is roughly constant, After the attosecond pulse
is over, the photoelectron will continue to propagate freely and diffuse as described in
Section 2.2.2.
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Attosecond photoionization

Exponential turn-on of ionization

Rather than turning on the ionizing field instantaneously, as was done above, the
electric field can be smoothly increased from minus infinity using an exponential slow

turn-on [70]. The electric field is written Ẽ(t) = iE
(0)
I exp[−iΩt + αt], including an

attenuation factor, α > 0, that reduces the field strength as t → −∞. Inserting the
field into Equation 3.5 yields

a(1)
n (t) =

e

~
zniE

(0)
I

(
1

α+ i∆ω

)
ei∆ωt+αt → e

~
zniE

(0)
I

(
πδ(∆ω)− i℘ 1

∆ω

)
ei∆ωt.

(3.10)
The arrow represents taking the limit, α → 0+, using the Sokhatsky–Weierstrass
theorem. The notation used requires some explanation: We write δ for the Dirac
delta function, and ℘ is written to indicate that the discontinuity of 1/∆ω has been
removed, so that when integrated the result is Cauchy’s principal value.2

Similarly, we can calculate the slow turn-off using exp[−iΩt − αt] from t = 0 to
t → ∞, giving the same result as in Equation. 3.10, but with the opposite sign of
the principal value part. Combining the slow turn-on and the slow turn-off, therefore,
leads to symmetric cancelation of the principal value contribution. The resulting
complex amplitude, corresponding to an interaction with the field from minus infinity
to plus infinity, shows that energy must be conserved,

S
(1)
n/i =

e

~
zniE

(0)
I

[
2α

α2 + ∆ω2

]
→ ezniE

(0)
I 2πδ(En − Ei − ~Ω), (3.11)

and that only the central energy state
∣∣c
〉
, with Ec = ~Ω + Ei, will be populated.

This result correponds to a Fourier transform of a continuously oscillating electric
field [Eq. 3.7]. We stress that it is valid as t → ∞, which we interpret as the electric
field being turned off.

The interesting aspect of the exponential turn-on method, is that it allows us to
reconstruct a photoelectron wave packet at any time, t, while ionization is ongoing
and the electric field is on

∣∣Ψ(1)(t)
〉

=
∑

n

∫
a(1)
n (t)

∣∣ñ(t)
〉

= eE
(0)
I

[
πzci |c〉 − i ℘

∑

n

∫
zni

En − Ec
|n〉

︸ ︷︷ ︸
|ρ>

]
exp[−iωct], (3.12)

where the total phase of the wave packet is evolving at the angular frequency, ωc =
ωi+Ω, corresponding to the energy Ec of the central state |c〉. The wave packet consists
of two terms: first a central part, ∝ |c〉, corresponding to the field-free central state;
and second a superposition of non-central (non-resonant) field-free states, ∝ |ρ〉. The
latter states are either under or over the laser-induced resonance at Ec, and are out
of phase by ±π/2 compared to the central state. This phase offset can be understood

2 The Sokhatsky-Weierstrass theorem can be verified by multiplying the denominator of Eq. 3.10
by its complex conjugate and then identifying the limits of the delta function, α/(α2 + x2)→ πδ(x),
and the principal value, x/(α2 + x2)→ ℘(1/x).
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3.1.2 Asymptotic form of the photoelectron wave packet

in analogy with a classical pendulum which is either overdriven or underdriven by an
external oscillating force. In Paper I we report on similar phase changes of a bound
state, the 1s3p state in He, using tunable, coherent high-order harmonics. In this
chapter, however, we concentrate on the properties of photoelectron wave packet, and
neglect the discrete nature of the bound states.

3.1.2 Asymptotic form of the photoelectron wave packet

It may be difficult to directly envisage what the reconstructed wave packet looks like
in space by considering Equation 3.12. Note that the central part is real and that
the non-central part is imaginary, at t = 0. From Figure 3.1, we expect that the
photoelectron wave packet will be some kind of an outgoing wave,

∼ 1

i
exp[i(kx− ωct)] = {sin[ikx]− i cos[ikx]} exp[−iωct]. (3.13)

To verify this guess, consider the asymptotic form of the central radial atomic wave-
functions [Eq. 2.49],

〈
x
∣∣c
〉
≡ ψ(Ec, x) ≈ C sin [kcx+ Φc(x)] , (3.14)

and the non-central wavefunctions
〈
x
∣∣n
〉
≡ ψ(En, x) ≈ C sin [knx+ Φn(x)] , (3.15)

where Φ(x) ≡ Φ(E, x) = ln(kx)/ka0 + η, and η = η(E) is the total asymptotic
(scattering) phase. C = C(E) is the energy renormalization coeffient. We remind the
reader that x is the radial dimension r of the atom to maintain the same notation
as in the previous chapter for the one-dimensional, effective, radial wavefunctions.
The integral–sum is approximated by a smooth integral from minus infinity to plus
infinity,

∑
n

∫
→
∫∞
−∞ dE, and the discrete nature of the bound states will be neglected.

This approximation is adequate if ~Ω > Ip and it is expected to reproduce the main
features of the close-to-threshold Rydberg states. The behavior of the non-central part
of the wave packet can be found by evaluating the smoothed principal value integral
in Equation 3.12 using contour integration3

〈
x
∣∣ρ
〉
≡ ρ ≈ π ezciC(Ec) cos [kcx+ Φ(Ec, x)] , (3.16)

for x→∞. The total photoelectron wave packet is, indeed, an outgoing wave

Ψ(1)(t, x) ≈ π

i
ezciE

(0)
I C(Ec) exp [i (kcx+ Φ(Ec, x)− ωct)]︸ ︷︷ ︸

Outgoing Coulomb wave

, (3.17)

which includes the effect of the atomic potential through Φ(Ec, x). We stress that this
intuitive form of the first-order wave packet is only valid asymptotically. The real part
of the wave packet is proportional to the regular solution of the field-free problem for
all x [Eq. 3.1], while the imaginary part is proportional to the irregular solution in the
asymptotic regime, x→∞. Close to the core, the imaginary part of the wave packet
will go to zero and not diverge like the irregular solution. The asymptotic form of the
wave packet can be related to the Coulomb Green’s function [72, 73].

3 The sum–integral is approximated as a smooth integral and it is performed by changing the
integrand from energy to wavevector, ℘

∑
n

∫
≈ ℘

∫∞
−∞ dE = ℘

∫∞
−∞ dk ∂E/∂k, and by evaluating

the two complex Euler terms independently.
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Attosecond photoionization

Angular subshells

So far, we have not emphasized the role of the different angular subshells. We have
worked with the atom as if it were one-dimensional, and we have labeled the spatial
dimension, x. In reality, in three dimensions, each dipole transition leads to an adja-
cent angular subspace, `′ = `± 1. This implies that the photoelectron has a different
angular momentum from the initial state. Transitions to higher angular momentum
are more probable as a rule of thumb, but Cooper minima can easily lead to a local
violation of this rule of thumb [74]. In argon there is a relevant Cooper minimum for
~Ω ≈ 47 eV, where the radial dipole integral of the initial p-state and the resonant
d-wave vanishes [75]. We will, however, continue to suppress the angular dimensions
of the atom, since the attosecond delays, which we wish to study, arise in the radial
dimension.

3.1.3 Summary of first-order photoelectron wave packets

In this section, we have found that a sinusoidal (monochromatic) ionizing electric field
leads to an outgoing photoelecton wave packet. The phase of the outgoing electron
is equal to the scattering phase of the real, regular, time-independent states. Any
attosecond XUV pulse can be written as a linear superposition of monochromatic
waves, and the corresponding photoelectron pulse will display a delay equal to τpe =
τGD + τW , where τGD is the group delay of the attosecond pulse [Eq. 2.17] and τW
is the Wigner delay of the electron [Eq. 2.45]. These delays are on the attosecond
timescale, and they can not be resolved in photoelectron TOF spectrometers.

3.2 Second-order time-dependent perturbation theory

Papers I, II, VII, and V presents experimental studies in which the temporal structure
of attosecond pulses and photoelectrons were studied by perturbing the attosecond
ionization event with a weak IR probe. As the photoelectron is released into the IR-
dressed continuum it may absorb and emit IR photons, thereby changing its energy.
Provided that the IR field is weak, the energy of the electron will only change by one
IR photon. Temporal information about the ionization event can then be obtained
using the RABITT method. In this section, we give a theoretical background to this
method, with special emphasis on stimulated continuum–continuum photoelectron
transitions using second-order time-dependent perturbation theory (STPT) [70]. The

second-order complex amplitude from the interaction with VI ∝ E
(0)
I exp[−iΩt] and

the subsequent interaction with VII ∝ E(0)
II exp[∓iωt] is given by

a
(2)
f (t) =

1

i~

∫ t

−∞
dt′

∑

n

∫ 〈
f̃(t′)

∣∣VII(t′)
∣∣ñ(t′)

〉
a(1)
n (t′)

=
1

i~

∫ t

−∞
dt′
〈
f̃(t′)

∣∣VII(t′)
∣∣Ψ(1)(t′)

〉
, (3.18)

where we can identify the first-order wave packet [Eq. 3.12]. It is meaningful to
compare the second-order perturbation complex amplitude [Eq. 3.18] with the first-
order amplitudes [Eq. 3.5]. In the first-order, the electron makes a transition from the
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3.2.1 RABITT method

initial field-free state into the field-free continuum, creating a first-order wave packet.
In the second order, the first-order wave packet can be seen as the initial state for the
second interaction, and the second-order transition will occur from a complex wave
into a different, regular, continuum state. We can write the second-order wave packet
formally as

∣∣Ψ(2)(t)
〉
≡
∑

n

∫
a(2)
n (t)

∣∣ñ(t)
〉
, (3.19)

in analogy with Equation 3.2.

3.2.1 RABITT method

In the RABITT method the delay between the two fields is scanned and a photoelec-
tron cross-correlation spectrogram between the XUV and IR is recorded. Information

Harmonic: q+2

Harmonic: q

Sideband: q+1

Initial state: -Ip

Threshold: 0

Figure 3.2. Left: RABITT spectrogram over photon energy and delay between the APT
and the IR field. The offset in the modulation of the sidebands contains information about
the attosecond pulses and the ionization process. Right: Schematic energy diagram over the
quantum paths leading to the same final energy in sideband q + 1. Experimental data is
taken from Paper V.

about the timing of the photoionization process is found in the modulated sidebands,
which are reached by two interfering quantum paths, see Figure 3.2. The first quan-

tum path is absorption of a harmonic field, V
(q)
I ∝ exp[−iqωt + iϕq], and then the

absorption of an IR photon, V
(1)
II ∝ exp[−iωt + iϕ1], resulting in a photoelectron
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with energy Ef = (q + 1)~ω − Ip. The second quantum path is absorption of a

harmonic, V
(q+2)
I ∝ exp[−i(q + 2)ωt+ iϕq+2], followed by the emission of an IR pho-

ton, V
(−1)
II ∝ exp[iωt − iϕ1], resulting a photoelectron with the same final energy,

Ef = (q + 1)~ω − Ip. The second-order complex amplitude for each quantum path is

a
(2,±)
f (t) =

e

i~
E

(0,±)
II z

(±)
fΨ

∫ t

−∞
dt′ exp [i(ωf ∓ ω − ωc)t′] , (3.20)

with the corresponding limit for t→∞

S
(2,±)
f/i =

e

i
E

(0)
II z

(±)
fΨ × 2πδ(Ef ∓ ~ω − Ec) (3.21)

≡ M
(2,±)
f/i × 2πδ(Ef ∓ ~ω − Ec), (3.22)

where (+) refers to absorption of an IR photon and (−) refers to emission of an IR
photon. The central energy is Ec = Ef ∓ ~ω of the corresponding intermediate first-
order wave packet. The complex dipole matrix element between the first-order wave
packet and the final state is

z
(±)
fΨ ≡

〈
f
∣∣z
∣∣Ψ(1,±)

〉
= eE

(0)
I

[
πzfczci − i℘

∑

n

∫
zfnzni
En − Ec

]
, (3.23)

and the second-order transition matrix element,

M
(2,±)
f/i =

e2

i
E

(0,±)
II E

(0)
I

[
πzfczci − i℘

∑

n

∫
zfnzni
En − Ec

]
, (3.24)

is a complex quantity that contains information about the timing of the ionization
process. It is important to consider both the real, central part and the imaginary,
non-central part of the first-order wave packet [Eq. 3.12]. If we were to apply the so-
called pole approximation for multiphoton transitions [76], which consists of neglecting
the non-central contribution, all attosecond timing would be lost.

The probability to generate sideband q + 1 is proportional to the square of a sum
over all quantum paths, Q, reaching the final state,

P
(2)
q+1 ∝

∣∣∑

Q

M
(2,Q)
f/i

∣∣2 ≈
∣∣M (2,+)

f/i +M
(2,−)
f/i

∣∣2, (3.25)

where the quantum paths of first absorbing/emitting an IR photon and then absorb-
ing an XUV photon are neglected. The exact first-order wave packet can be found
through numerical integration [77], but we will instead develop an approximation for
the complex transition matrix elements, which retains approximate phase and time
information of the photoionization process analytically.

Asymptotic approximation

In this section we develop an asymptotic approximation for the RABITT method using
the asymptotic form of the wavefunctions in the complex transition matrix element,

M
(2)
f/i. We assume that the harmonic photon energy is larger than the ionization
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3.2.1 RABITT method

potential, ~Ω ≡ ~qω > Ip, so that the concept of an outgoing first-order wave packet
can be applied. The exact form of the first-order wave packet is replaced by

∣∣Ψ(1)
〉
∼ exp[i{kcx+ Φc(x)}], (3.26)

and the final state is replaced by

∣∣f
〉
∼ sin[kfx+ Φf (x)]. (3.27)

The asymptotic approximation does not take into account the full short-range in-
teraction between the electron and the core, but it does allow us to account for the
long-range Coulomb potential. The complex dipole matrix element, in atomic units,
becomes

z
(±)
fΨ ≈

〈
f
∣∣x
∣∣Ψ(1)

〉(asymp.)

∝
∫ ∞

0

dx sin[kfx+ Φf (x)] x exp[i(kcx+ Φc(x))]

≈ − 1

2i

∫ ∞

0

dx x exp[i{(kc − kf )x+ Φc(x)− Φf (x)}] (3.28)

= −e
i(ηc−ηf )

2i

(2kc)
i/kc

(2kf )i/kf

(
i

kc − kf

)2+iξ

Γ(2 + iξ) (3.29)

where Γ is the complex gamma function and ξ = 1/kc − 1/kf . We drop the Euler
term with fast oscillations, kf + kc in Equation 3.28. The logarithmic phases in
Φ(x) = ln(kx)/k+η, are brought down from the exponent and the integral is evaluated
in Equation 3.29.4

Phase of two-photon matrix elements

The asymptotic approximation for the complex transition matrix element is

M
(2,±)
f/i ∝ E(0)

II E
(0)
I︸ ︷︷ ︸

(A)

exp [i{ηc − ηf}]︸ ︷︷ ︸
(B)

(2kc)
i/kc

(2kf )i/kf

(
i

kc − kf

)2+iξ

Γ(2 + iξ)

︸ ︷︷ ︸
(C)

. (3.31)

The phase can be separated into three parts. Factor (A) contains the phase of the

light fields: E
(0)
I ≡ |Eq| exp[iϕq], corresponds to absorption of an the qth harmonic

photon; and E
(0)
II ≡ |E1| exp[±iϕ1], corresponds to absorption (+) or emission (−)

of an IR photon. The spectral derivative of the harmonic phase is the GD of the
attosecond pulse [Eq. 2.17]. Factor (B) contains the difference in scattering phase
between the central state,

∣∣c
〉
, and the final state,

∣∣f
〉
. These phases are related to

4 The remaining integral was solved using complex contour integration [59]∫ ∞
0

dx x1+i{1/kc−1/kf} exp[i(kc − kf )x] =

(
i

kc − kf

)2+iξ

Γ(2 + iξ). (3.30)
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the Wigner delay of the electron [Eq. 2.45]. Factor (C) contains an additional phase,
the continuum–continuum (CC) phase

φ(±)
cc = arg

[
(2kc)

i/kc

(2kf )i/kf

(
i

kc − kf

)2+iξ

Γ(2 + iξ)

]
, (3.32)

where k2
c/2 ± ω = k2

f/2. The CC phase depends on the motion of the electron in
the Coulomb potential and the frequency of the laser, ω. The approximate CC phase
has been verified using the asymptotic Coulomb Green’s function [A. Maquet, private
communication (December 1, 2010)]. We will discuss the physical significance of the
CC phase further below.

Sideband modulation in RABITT

The phases of the second-order transition matrix element lead to an offset in the
modulated sideband

Pq+1 ∝ |M (+)|2 + |M (−)|2 + |M (+)∗M (−)| cos[2ω(τ − τGD − τW − τcc)], (3.33)

where τ = ϕ1/ω1 is the IR delay, τGD ≈ (ϕq+2 − ϕq)/2ω is the GD of the attosecond
pulses, τW ≈ (ηc,q+2 − ηc,q)/2ω is the Wigner delay with ηc,q = ηc(Eq), and τcc ≈
(φ

(−)
cc −φ(+)

cc )/2ω is the corresponding CC delay, which is the phase difference between
the emission (−) and absorption (+) processes that reach the final state. Note that
the dependence on the final state asymptotic phase, ηf , has cancelled out. In fact,
the asymptotic approximation leads to the same sideband offset for any allowed final
state.

Intrinsic delay of the RABITT method

It is common to assume that the Wigner delay and the CC delay vary slowly compared
to the GD of the attosecond pulses. The RABITT method will then directly map
out the GD of the attosecond pulses in the sidebands, τ ∼ τGD. This assumption
is valid only at high photon energies, and it is closely related to the strong-field
approximation, where the continuum states are replaced by plane waves. At lower
photon energies the Wigner delay and the CC delay will contribute significantly to
the modulation of the sidebands and they must be properly accounted for in order to
obtain the attosecond pulse structure. If we assume that the GD of the attosecond
pulses, τGD, is known [Eq. 3.33], then the RABITT method can yield information
about the intrinsic two-photon ionization process, τW + τcc. Figure 3.3 compares the
asymptotic approximation for the intrinsic delay in the RABITT method, τW + τcc,
with the corresponding exact analytical result in hydrogen. The agreement between
them is not perfect, but the general trend is reproduced. The intrinsic RABITT delay
is negative, and it vanishes with increasing photoelectron energy. The discrepancy is
due to the asymptotic approximation of the wavefunctions which neglects the close-
to-the-core centrifugal barrier interaction [Fig. 2.5]. In more complicated atoms, there
will be a short-range screening potential due to the remaining electrons in addition
to the centrifugal barrier. The experimental data from the RABITT method can be
used to test screening potentials if the GD of the attosecond pulses is known.
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Figure 3.3. Comparision of the intrinsic delay in RABITT for hydrogen, τW + τcc. The
exact analytical result for the two possible final states: ` = 0 and ` = 2 are equal (black
dashed curve). The asymptotic approximation leads to a similar trend for the delay (red
curve). The theoretical data is taken from Paper II.

Continuum–continuum delay

In this subsection we study the CC delay further. The CC delay for three different
laser frequencies is shown in Figure 3.4. The behavior of the delay is similar at all
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Figure 3.4. Continuum–continuum (CC) delay for three different laser wavelengths: 800 nm
(thick), 1.3 µm (medium) and 2 µm (thin). The delays were calculated using the asymptotic
approximation.

frequencies, but the absolute magnitude changes. A lower laser frequency leads to a
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more negative delay. It is, perhaps, surprising that the delay increases in magnitude
with decreasing laser photon energies, but this is physically resonable since the laser
period increases.

Classical continuum–continuum phase

The behavior of the CC phase can be derived qualitatively by considering the classical
dipole of an electron passing through a potential,

d(ω) ≡
∫
dt ex(t) exp[iωt], (3.34)

where x(t) is the position of the electron. The integral can be transformed into an
integral over space rather than time using

v(x) =
dx

dt
→ dt =

dx

v(x)
→ t(x) =

∫ x dx′

v(x′)
, (3.35)

where the velocity depends on the position of the electron in the potential, V (x), in
which the electron moves,

v(x) =

√
2

m
[E − V (x)]

1/2 ≈
√

2E

m

[
1− 1

2

V (x)

E

]
. (3.36)

The electron reaches its asymptotic energy, E, as x→∞. Time is an explicit function
of space

t(x) =

∫ x dx′

v(x′)
≈
∫ x

dx′
√

m

2E

[
1 +

1

2

V (x′)
E

]
. (3.37)

The approximations in Equations 3.36 and 3.37 are valid only in the case of |E| �
|V (x)|. We write the Fourier transform of the dipole as an integral over space

d(Ω) =

∫ ∞

−∞
dx

ex

v(x)
exp[iωt(x)]

≈
∫ ∞

−∞
dx

√
m

2E
ex exp

[
iω

∫ x

dx′
√

m

2E

{
1 +

1

2

V (x′)
E

}]
, (3.38)

where the zero-order velocity is used for the amplitude and first-order time is used for
the phase. The physical interpretation is that the electron passes over the potential
and radiates as it is being accelerated. If V (x) is small, the electron trajectory is
only slightly distorted and the approximation is good. In the case of a Coulomb
potential, V (x) = −C/|x|, there is a divergence at the origin, and the potential will
be larger than the asymptotic energy for positions close to the core. This causes the
approximation for the classical trajectories to break down, much like the way in which
the WKB states break down close to the core. In the RABITT scheme the electron
only leaves the atom (a half collision) and the lower limit in the integral should be
zero rather than minus infinity. Inserting the Coulomb potential into Equation 3.38
and evaluating the integrals leads to the classical version of the asymptotic CC phase

φ(cl)
cc (ω,E) = arg

[(
i

−ω/
√

2E

)2+iξ(cl)

Γ(2 + iξ(cl))

]
, (3.39)
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where ξ(cl) = ω/(2E)3/2. This classical phase corresponds to the low-laser frequency
limit, E = Ec ≈ Ef � ~ω, of the quantum mechanical phase, φcc [Eq. 3.32]. As-
suming that the photon energy is small compared to the photoelectron energy is the
essence of the so-called soft-photon approximation [78], which is used in the Volkov
and Coulomb–Volkov approximations for XUV–IR ionization. Our approximation
of the quantum mechanical CC phase [Eq. 3.32] goes beyond the soft-photon ap-
proximation and, thereby, beyond the classical picture. Armed with this classical

picture we understand that τ
(cl)
IR (ω,E) = ∂φ

(cl)
cc /∂ω describes the delay in absorp-

tion or emission of an IR laser photon with frequency ω after photoionization by
an XUV photon Ω. This is, however, not the delay which is present in RABITT,

τ
(cl)
cc (E) ≈ [φ

(cl)
cc (−ω,E) − φ(cl)

cc (ω,E)]/2ω, for a given laser frequency, ω. The classi-
cal limit of RABITT is especially interesting in relation to the attosecond streaking
method.

Intrinsic RABITT delays in neon

Figure 3.5 presents the relevant delays for the RABITT method in neon for ~ω =
1.55 eV. The Wigner delays, τW , for neon (red line) were computed using Hartree-
Fock scattering phases [79], η = σ + δ, where σ is the scattering phase of hydrogen
and δ is the asymptotic phase shift of neon compared to hydrogen [Eq. 2.53]. We
observe that the difference in Wigner delay, ∂δ/∂Ω, between neon (red) and hydrogen
(dashed) is barely visible in the energy range shown. The total Wigner delay increases
slightly with angular momentum, `, and decreases with energy for both neon and
hydrogen. This is consistent with Equation 2.47 for an increasing repulsive potential,
0 < V` ∝ `(`+ 1). The Wigner delay increases dramatically close to threshold, below
∼ 10 eV. The CC delay has the opposite sign compared to the Wigner delay. We
have used the asymptotic approximation for the CC delay which is identical for all
angular channels. The total intrinsic RABITT delay, τW + τcc, follows τcc to a good
approximation because the Wigner delay is small compared to the CC delay.

Intrinsic RABITT delays in argon

Figure 3.6 presents same delays in argon for ~ω = 1.55 eV. There is a considerable
difference in Wigner delay, ∂δ/∂Ω, between argon and hydrogen for the d-wave. This
leads to a noticeable shift of the intrinsic RABITT delay, compared to the CC delay.
The Wigner delays for s-waves and the p-waves are very small. The corresponding
intrinsic delay is, therefore, caused mainly by the CC delay. The difference in intrinsic
delay between p-waves and d-waves is ∼ −50 as, in the energy region shown. The
intrinsic delay from the 3s and 3p state in argon was studied experimentally [Paper II],
where we demonstrated how the GD of the attosecond pulses can be cancelled from
the RABITT measurements.

3.3 Higher-order processes

This section reviews higher-order photon processes, such as multiphoton ionization
and tunneling ionization.
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Figure 3.5. Neon (Ne) delays for three different photoionization channels: (a) 2p → εs,
(b) 2s → εp and (c) 2p → εd. The Wigner delay of hydrogen [WH ] is a thin dashed curve,
while the Wigner delay from neon [WNe] is a red curve. The asymptotic approximation for
the CC delay is a blue curve which is insensitive of the short range interactions and, hence,
independent of `. The total intrinsic delay of RABITT [R] is the sum of Wigner and CC
delays, τW + τcc, which is plotted as a black curve for neon.

Multiphoton ionization

Multiphoton processes can be accounted for using higher-order pertubation theory if
the interaction is weak [70, 76]. The complex amplitudes of order j can be computed
as

a
(j)
f (t) =

1

i~

∫ t

−∞
dt′

∑

n

〈
f̃(t′)

∣∣VI(t′)
∣∣ñ(t′)

〉
a(j−1)
n (t′)

=
1

i~

∫ t

−∞
dt′
〈
f̃(t′)

∣∣VI(t′)
∣∣Ψ(j−1)(t′)

〉
, (3.40)

where the sum runs over all relevant states |n〉 that are populated in the previous

order, j − 1, by the complex amplitude a
(j−1)
n (t′). The integral–sum is understood to

include also the bound states and continuum states. The j − 1 order wave packet can
be identified in analogy with Equations 3.5 and 3.18. This perturbative approach is
closely related to the photon picture, where the jth order corresponds to a maximal
absorption of j photons. The transition rate of an j-order process can be written in
the spirit of Fermi’s golden rule, where the probability increases linearly with time,

47



3.3 Higher-order processes

10 20 30 40
−200

−150

−100

−50

0

50

100

150
(a): 3p → εs

Energy [eV]

D
el

ay
[a

s]

10 20 30 40

(c): 3p → εd

Energy [eV]

 

 

10 20 30 40

(b): 3s → εp

Energy [eV]

W
H

W
Ar

CC
R

Figure 3.6. Argon (Ar) delays for three different photoionization channels: (a) 3p → εs,
(b) 3s → εp and (c) 3p → εd. The Wigner delay of hydrogen [WH ] is a thin dashed curve,
while the Wigner delay from argon [WAr] is a red curve. The asymptotic approximation for
the CC delay is a blue curve which is insensitive of the short range interactions and, hence,
independent of `. The total intrinsic delay of RABITT [R] is the sum of the Wigner and CC
delays, τW + τcc, which is plotted as a black curve for argon.

provided that the interaction is weak. In Paper VII, we report on an extension
of the RABITT method, where higher-order IR transitions lead to higher frequency
components in the cross-correlation spectrogram. Given an appropriate experimental
probe intensity, these higher frequency modulations can provide temporal information
about the APT, when the IR field is too strong for the traditional RABITT method to
be valid. The perturbative approach breaks down when the interaction is too strong.
In Chapter 4, we review HHG, a process in which multiphoton processes occur as a
result of strong interaction with a laser field.

ADK tunneling rate

The photoionization process can be separated into two distinct limits according to
the theory of Keldysh [80]: the multiphoton ionization regime, for γ � 1; and the
tunneling ionization regime, for γ � 1, where γ =

√
Ip/2Up is the Keldysh parameter,

and Up = e2E2
0/4mω

2 is the ponderomotive energy [Eq. 4.11]. In this section, the static
tunneling process is reviewed. This may seem out-of-place, but the final result is useful
for understanding the tunneling ionization mechanism of an atom in an intense, low-
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frequency laser field.
Consider an electron, with wavefunction ψ(+), and energy E, moving in the positive

direction through a large positive potential barrier that is classically forbidden to enter.
The tunneling starts and ends when the electron energy equals the potential energy,
E = V0(a) = V0(b), and the potential is 0 < E < V0(x) for a < x < b. The penetration
coefficient [76] is defined as the ratio of the state amplitudes before, x = a, and after,
x = b, passing the potential,

D =
ψ(+)(b)

ψ(+)(a)
. (3.41)

The penetration coefficient can be estimated using the WKB states [Eq. 2.41] as

D = exp

[
−αBC

~

∫ b

a

dx′
√

2m [V0(x′)− E]

]
, (3.42)

where the WKB phase factor is turned into an exponential damping factor due to
E−V0 < 0, i.e. the WKB state turns into a tunneling wavefunction. The exponential
coeffient, αBC = 2, arises from matching the boundary contitions at the entrance and
at the exit of the potential.5 The main features of static tunneling are captured in
the following example.

Example: Tunneling ionization from a metal

The tunneling formula is applied to the Sommerfeld model for a metal in a static
electric field, V0(x) = −Ip for x < a = 0, and V (x) = −eE0x for x > 0, where Ip
is the binding potential in the metal, and E0 is the electric field strength outside the
metal. The second reflection point, b, is given by Ip = eE0b, where the potential
energy of the metal matches the potential outside the metal. We obtain a penetration
coefficient of

D = exp

[
−4

3

√
2m

e~
|Ip|3/2
E0

]
. (3.43)

The probability of passing the classically forbidden barrier, w = |D|2, is referred to as
the tunneling rate. More generally, the same equation is valid for tunneling ionization
from atoms in static fields and in slowly varying (quasistatic) fields, using slightly dif-
ferent numerical coefficients. This ADK tunneling theory was developed by Ammosov,
Delone and Krainov (1986), and the potential, |Ip|, should be interpreted as the first
ionization potential of the atom. Tunnel ionization from atoms is the dominant ion-
ization process for ultra-short, intense, low-frequency laser pulses. Because the tunnel
ionization rate depends exponentially on the electric field strength, the ionization can
occur in very short bursts close to the peak of the electric field amplitude. This effect
has recently been exploited for time-resolved tunneling spectroscopy on the attosec-
ond timescale [81, 82]. Tunneling ionization arises naturally in the SFA for atoms in
intense, low-frequency laser fields, which is the topic of Chapter 4.

5 The determination of αBC requires a more sophisticated theory, since the WKB solutions
become invalid at the reflection points.
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3.4 Measurement process

Photoelectron wave packets were derived in Section 3.1 using quantum mechanics
and time-dependent perturbation theory. For each photon that the electron absorbs,
its angular momentum quantum number, `, changes by one. For an initial p-state,
this implies that the first-order wave packet is a combination of s-waves and d-waves,
while the second-order wave packet is a combination of p-waves and f -waves. At
the end of Section 2.2.2, the SPA was used to relate the complex amplitudes of
one-dimensional field-free continuum states to the photoelectron probability density
at a distant detector. The situation similar in three dimensions, but there may be
more than one way for the electron to reach the detector. If the initial state is a
p-wave, then the first-order photoelectron can reach the detector as either an s-wave
or as a d-wave. Will these two contributions interfere or are they independent? To
answer this question, we need to specify more precisely how the detector works. In
this thesis, experimental studies are presented in which two different schemes were
used for measuring photoelectrons:

(i) angular integrated energy distributions, ∼
∣∣E, `,m

〉
,

(ii) angular resolved momentum distributions, ∼
∣∣~k
〉
.

One of the most fundamental postulates in quantum mechanics says that the mea-
suring process can be seen as a projection of the total wavefunction,

∣∣Ψ
〉
, on an

eigenstate,
∣∣M
〉
, of some observable M . The probability of the outcome M is [70]

PM =
∣∣〈M

∣∣Ψ(t)
〉∣∣2. (3.44)

Consider the three-dimensional, first-order photoelectron wave packet

∣∣Ψ(1)(t)
〉

=
∑

`,m

∣∣Ψ(1)
`,m(t)

〉
=

∑

n,`,m

a`,m(En)
∣∣n, `,m

〉
exp[−iωct], (3.45)

which is a sum over all separate angular channels, `,m. The complex amplitudes,
a`,m(E), describe the coherent population of the degenerate angular waves. The the-
oretical aspect of the two detection schemes are discussed in more detail below.

3.4.1 Energy scheme

(i) If the detector collects photoelectrons over all angles, then the angular wave packets
can be considered orthogonal and they will not interfere.

The energy scheme was used in most of the experiments presented in this thesis using
the MBES. If the energy of the photoelectrons is measured over all angles (4π solid an-
gle), then the MBES simultaneously observes all energy degenerate states,

∣∣E, `,m
〉
,

where the angular momentum quantum number, `, ranges from zero to infinity for
photoelectrons, E > 0. The probability postulate [Eq. 3.44] should be applied inde-
pendently to all degenerate final states,

PE =

∞∑

`=0

∑̀

m=−`

∣∣∣
〈
E, `,m

∣∣Ψ(1)(t)
〉∣∣∣

2

=

∞∑

`=0

∑̀

m=−`
|a(1)
`,m(E)|2, (3.46)
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so that they can have any relative phase. In practice, only a few of the angular states
can be reached from the ground state due to the selection rules for linearly polarized
light: ∆` = ±1 and ∆m = 0. The strength of the angular waves is related to the
Clebsch-Gordan coefficients from the angular integration, and also to the radial inte-
gration, which depends on the exact shape of the overlap between the initial state and
the final state close to the core. There are no selection rules for the radial integrations.
There is no interference between the degenerate final states since they are orthogonal.

The MBES actually only collects photoelectrons in half of the unit sphere (2π
solid angle). The alignment of the polarization is arbitrary in the simplest cases (one-
photon transition) when the distribution of photoelectrons is symmetric (eigenstate
of parity). The total number of electrons detected will thus be half the total number
of photoelectrons ejected. In more advanced experiments, multiphoton processes can
break the photoelectron symmetry and the alignment of polarization can lead to dif-
ferent results. In this case the wave packet must be integrated over the appropriate
angles of detection.

3.4.2 Momentum scheme

(ii) The local photoelectron probability density will depend on the asymptotic phase
difference, ∆ηc, of the different angular waves. A detector at a specific position in
space will, therefore, display interference between different angular waves.

The VMIS was used as a complement to the MBES in several experiments presented
in this thesis. In this case, the photoelectron position is determined using an imaging
MCP, which can be associated with an asymptotic momentum (wavevector) using the
SPA in 3D.

Short-range potential: In the momentum scheme, the total wavefunction
should be projected on a state with appropriate asymptotic momentum. For sim-
plicity, we first consider a photoelectron traveling along the ẑ-axis with a wavevector
kẑ. The desired state is an eigenstate to the field-free Hamiltonian, and it contains
both a projectile part and the modifications due to elastic scattering in the poten-
tial. For a short-range potential with spherical symmerty, the asymptotic form should
consist of a plane wave and a spherical outgoing wave [61]

ψkẑ(~r) ≈ exp[ikz] + f(θ)
exp[ikr]

r
, (3.47)

where f is the scattering amplitude. After making an asymptotic partial wave expan-
sion of Equation 3.47 using the regular solutions to the time-independent problem,
ψ`(r) ≈ sin[kr− `π/2 + δ`], the scattering amplitude can be identified in terms of the
asymptotic phases, δ`, as,

f(θ) =
1

k

∞∑

`=0

√
4π(2`+ 1) Y 0

` (θ) sin[δ`] exp[iδ`], (3.48)

where Y 0
` are the spherical harmonics with m = 0.6 The scattering state can be

6 A useful expansion of the plane wave on a spherical basis, eikz =
∑∞
`=0(2`+1)i`j`(kr)P`(cos θ),

where the asymptotic form of the spherical Bessel function is j`(kr) ≈ sin[kr − `π/2]/kr, and the

Legendre polynomial is related to the spherical harmonic, P`(cos[θ])
√

(2`+ 1)/4π=Y`,0.
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written as a complex superposition of partial waves,

ψkẑ(~r) =
1

kr

∞∑

`=0

√
4π(2`+ 1) Y 0

` (θ) ψ`(r) exp[iπ`/2 + iδ`], (3.49)

where the complex phase of each term is related to the centrifugal phase, `π/2, and
the asymptotic phase shift, δ`. Using this scattering state [Eq. 3.49] as

∣∣M
〉

in the
measurement postulate [Eq. 3.44], it is clearly seen that the outcome will depend on
the interference between the different angular waves due to their different asymptotic
phases. This derivation is only valid for short-range potentials, where the asymptotic
form is given by Equation 3.47. In the case of the Coulomb potential, the asymptotic
scattering wavefunction needs to be modified.

Coulomb Potential: When an electron scatters in the presence of a Coulomb
potential, VC(r), and a short range potential, VS(r), Equation 3.47 must be modified
due to the long-range nature of the Coulomb potential [61]. The projectile plane wave
should be replaced by an incoming Coulomb wave, exp[ikz]→ ψC(~r); and the outgoing
spherical wave should include the logarithmic Coulomb phase term, exp[ikr]/r →
exp[i(kr − ν ln(2kr))]/r, where ν = −1/ka0, is the Coulomb parameter [Sec. 2.2.1].
We label the scattering factor f ′ in analogy with Equation 3.47 for the modified ansatz,

ψkẑ(~r) ≈ ψC(~r) + f ′(θ)
exp[i(kr − ν ln(2kr))]

r
. (3.50)

The analytical form of the incoming Coulomb projectile is known,

ψC(~r) = exp[−πν/2] Γ(1 + iν) F (−iν, 1; ik(r − z))︸ ︷︷ ︸
Coulomb correction

exp[ikz]︸ ︷︷ ︸
Plane wave

, (3.51)

in terms of the complex gamma function, Γ, and the confluent hypergeometric series,
F . The behavior of the projectile can be identified as the plane wave factor in the
right part of Equation 3.51; while the remaining prefactor contains the modifications
due to the Coulomb potential. After making an asymptotic partial wave expansion
using the regular Coulomb functions corresponding to the pure Coulomb potential:
V0 = VC , F`(r) ≈ sin[kr − ν ln(2kr) + σ` − `π/2]; and the regular solutions to the
combined potentials: V0 = VC + VS , ψ` ≈ sin[kr − ν ln(2kr) + σ` + δ` − `π/2], the
scattering factor can be identified as,

f ′(θ) =
1

k

∞∑

`=0

√
4π(2`+ 1) Y 0

` (θ) sin[δ`] exp[iδ` + i2σ`], (3.52)

which is similar to the scattering factor in the short-range potential [Eq. 3.48], but with
an additional phase factor of twice the asymptotic Coulomb phase. The scattering
state in a Coulomb potential can be written as a complex superposition of partial
waves,

ψkẑ(~r) =
1

kr

∞∑

`=0

√
4π(2`+ 1) Y 0

` (θ) ψ`(r) exp[iπ`/2 + iδ` + iσ`︸ ︷︷ ︸
iη`

]. (3.53)

The scattering states in the Coulomb potential [Eq. 3.53] differ from the short-range
case [Eq. 3.49] by an additional Coulomb phase factor, exp[iσ`]. Interestingly, when

52



Attosecond photoionization

measuring photoelectrons in a specific direction there will be interference between the
different angular Coulomb waves. This interference is dictated by the total asymp-
totic phases, η`, of the radial functions. This is quite intuitive if we consider the
angular channels separately. An electron in a given channel, `, will reach the detector
with the total asymptotic phase of that angular channel, η`. If the electron can also
reach the detector through another angular channel, `′, with the opposite asymptotic
phase, η`′ = η` + π, then the electron will quantum mechanically avoid the detector.
Attosecond physics and scattering theory are closely related.

So far, we have only considered photoelectrons with an asymptotic momentum
along the ẑ-axis. A more general form of the scattering state can be obtained using
the addition theorem for spherical harmonics,

ψ~k(~r) =
4π

kr

∞∑

`=0

∑̀

m=−`
Y m∗` (k̂) Y m` (r̂) ψ`(r) exp[iπ`/2 + iδ` + iσ`], (3.54)

where the electron has an asymptotic momentum in the k̂ direction and the position
vector is in the r̂ direction. It is common in attosecond physics to approximate the
scattering states by plane waves. This approximation is equivalent to setting all the
asymptotic (scattering) phases to zero, which implies that all the information about
the attosecond electron dynamics is lost. It is cleary important to use proper scattering
states in attosecond physics, especially close to the ionization threshold [83, 84].
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Chapter 4

Extreme nonlinear optics

This chapter contains a theoretical derivation of the HHG process. In Section 4.1,
we review the Volkov states that describe a nonrelativistic free electron in a laser
field. These states are then used in Section 4.2 to model the interaction of an atom
with an intense, low-frequency laser field. The electron will tunnel ionize from the
atom and move on quasiclassical trajectories in the continuum. The HHG originates
from a recombination process of such strongly driven electrons [Sec. 4.3]. The time–
energy properties of the returning electrons are discussed for a one-color laser field
[Sec. 4.3.1], and for a two-color laser field [Sec. 4.3.2]. This chapter serves as a theo-
retical background to the results presented in Papers III–IX, where both the control
and probe aspects of the two-color HHG are closely examined, both experimentally
and theoretically.
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4.1 Volkov states

4.1 Volkov states

Consider a free electron in a laser field, ~E(t) = E(t)x̂. The intensity of the laser field
may be large, but not so large that the electron motion becomes relativistic, or that
the magnetic field bends the trajectories. The classical motion of the electron can then
be described by the Lorentz force, ~F = −e[ ~E +~v× ~B] ≈ −e ~E, where −e is the charge
of the electron. The corresponding quantum mechanical evolution of an electron in
a laser field can be described using Volkov states. The following derivation of the
Volkov states is detailed, because they are extremely useful for describing strong-field
processes such as HHG and above-threshold ionization (ATI). The total Hamiltonian
of an electron in a laser field is H = T + VI , where T is the kinetic energy operator
and VI = exE(t) is the dipole potential in the length gauge. The TDSE reads

[T + VI(t)]
∣∣k̃
〉
= i~

∂

∂t

∣∣k̃
〉
, (4.1)

where
∣∣k̃
〉

is a Volkov state. Unlike most time-dependent problems in quantum me-
chanics, there is an exact analytical expression for the time-dependent Volkov state.
Consider the corresponding one-dimensional TDSE

[
− ~2

2m

∂2

∂x2
+ exE(t)

]
ψ̃[k](t, x) = i~

∂

∂t
ψ̃[k](t, x). (4.2)

A time-dependent ansatz for the Volkov state is written in terms of the wavevector
states [Eq. 2.57], ψ̃[k](t, x) = a(t, x)ψ(k, x), where the tilde indicates time dependence
of the Volkov state. Notice that the prefactor, a(t, x), depends on both time and
space. Inserting the ansatz yields

− ~2

2m

[
∂2a

∂x2
+ 2ik

∂a

∂x
− k2a

]
+ exEa = i~

∂a

∂t
, (4.3)

with the solution
a(t, x) = exp [iexA(t)/~− iS(k, t, t0)/~] , (4.4)

where

A(t) = −
∫ t

−∞
dt′ E(t′), (4.5)

is the vector potential of the laser, and where

S(k, t, t0) =
~2

2m

∫ t

t0

dt′ [k + eA(t′)/~]2, (4.6)

is the electron action due to the laser field. There is an arbitrary reference time, t0, in
the definition of the action because the absolute phase of an electron state is arbitrary.
Inserting the Volkov amplitude [Eq. 4.4] into the ansatz for the Volkov state yields

ψ̃[k](t, x) = a(t, x)ψ[k](x) =
1√
2π

exp [i(k + eA(t)/~)x− iS(k, t, t0)/~] . (4.7)

The physics of the Volkov state is seen more clearly if it is written,

ψ̃[k](t, x) =
1√
2π

exp

[
ik̃(t)x− i ~

2m

∫ t

t0

dt′ k̃(t′)2

]
, (4.8)
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introducing the instantaneous wavevector, k̃(t) = k + eA(t)/~. The overall phase of
the state is given by the second term in the exponent, which is the integrated instan-
taneous kinetic energy of the state, ∝ k̃2/2. When the vector potential is positive,
the wavevector and the energy of the Volkov state are increased. When the vector
potential is negative, the wavevector and the energy of the Volkov state are decreased.
In a monochromatic laser field, the vector potential will vary between positive and
negative values, resulting in a “breathing” motion of the Volkov state. It is important
to note that an electron initially in state

∣∣k
〉

will smoothly deform according to the

Volkov state,
∣∣k̃
〉
, as the laser pulse is developing. As the laser pulse ceases, the elec-

tron will return to
∣∣k
〉
. The electron can thus not change state, but it may acquire a

quantum phase compared to the field-free case. The difference in quantum phase due
to the laser interaction is

δI =
~

2m

∫ ∞

−∞
dt′

[
k̃(t′)2 − k2

]
=

~
2m

∫ ∞

−∞
dt′

[
2keA(t′)/~− (eA(t′)/~)2

]
. (4.9)

The first term in the integral, which is ∝ kA(t′), vanishes because it is required that∫∞
−∞ dt A(t) = 0 for a physical laser pulse. The second term, δP ∝ A(t′)2, is called the

ponderomotive phase shift and it describes the increase in total average energy of the
electron in the laser field. The ponderomotive phase can modify the absolute phase
of an electron wave packet, but it does not affect any other temporal properties of the
wave packet, since it is independent of the electron wavevector. In the case of a long,
constant laser interaction, Tdur � T , the ponderomotive phase is

δP =
e2

2m~

∫ ∞

−∞
dt′A(t′)2 ≈ e2

2m~
A2

0

2
Tdur ≡

UpTdur
~

, (4.10)

where the ponderomotive energy is identified as

Up =
e2A2

0

4m
=

e2E2
0

4mω2
=

e2λ2I

8π2ε0mc3
. (4.11)

The ponderomotive energy increases with intensity, I, and the wavelength squared, λ2,
of the laser because the electron is forced to oscillate more violently in response to the
laser. It is, perhaps, surprising that the ponderomotive energy increases with longer
laser wavelengths, i.e. with decreasing laser photon energy. Physically, this effect
arises from the fact that a slower variation in the electric field will lead to a longer
time for the electron to accelerate before the electric field changes sign and decelerates
the electron. A longer laser wavelength, therefore, leads to a higher average kinetic
energy of the electron, i.e. a higher ponderomotive energy.

The three-dimensional Volkov state

In analogy with Equation 4.7, the three-dimensional Volkov state is

ψ̃[~k](t, ~r) =
1

(2π)3/2
exp

[
i(~k + e ~A(t)/~) · ~r − iS(~k, t, t0)/~

]
, (4.12)

where ~k is the wavevector, and where the laser polarization is determined by ~E ∝ ~A.
The action in the three-dimensional case is

S(~k, t, t0) =
~2

2m

∫ t

t0

dt′
[
~k + e ~A(t′)/~

]2
, (4.13)
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where t0 is an arbitrary reference time. Using bracket notation we can write the
Volkov state as

∣∣k̃
〉

=
∣∣k̃(t)

〉
=
∣∣~k + e ~A(t)/~

〉
exp[−iS(~k, t, t0)], (4.14)

where
∣∣~k + e ~A(t)/~

〉
is the instantaneous, normalized ket corresponding to the direc-

tion ~k′ = ~k + e ~A(t)/~. Direct substitution of the dressed continuum states by the
Volkov states is a common approximation in attosecond physics and the fundamental
assumption in the SFA.

4.2 Strong-field approximation

The SFA [17], which deals with the interaction of atoms in intense, low-frequency laser
fields, is derived in this section using the properties of the Volkov states. The TDSE
of the combined atom and laser interaction is

[T + V (r) + VI(t)]
∣∣Ψ(t)

〉
= i~

∂

∂t

∣∣Ψ(t)
〉
, (4.15)

where T is the kinetic energy operator, V (r) ∝ −1/r is the atomic binding potential
and VI = ezE(t) is the dipole operator in the length gauge for a laser field with linear
polarization in the ẑ-direction.

4.2.1 Assumptions and approximations

Equation 4.15 can be solved using the SFA with three simplifying assumptions.

Assumption I: No depletion

The ground state is undepleted by the laser field.
A similar approximation is made in time-dependent perturbation theory, where it is
assumed that the total population stays mostly in the initial state. The laser intensity
must be lower than the saturation intensity of the atom. For argon this means that
the intensity must be kept well below 4 × 1014 W/cm2. Depletion can be accounted
for quantitatively by using sophisticated ionization models [85].

Assumption II: No internal resonances

The atom is described by one bound state only, denoted
∣∣i
〉
.

The remaining bound states can be neglected if the photon energy is much smaller
than the ionization potential of the atom Ip � ~ω. For argon and a titanium sapphire
laser, Ip/~ω = 15.76/1.55 ≈ 10, which satisfies the requirement. The bound state is
assumed to be a spherically symmetric hydrogen-like state,

∣∣i
〉
∼ N exp

[
−Zr
a0

]
, (4.16)

where Z is the effective charge of the nucleus and N = 2(Z/a0)3/2 is the normalization
factor. The energy of the state is

Ei = −Ip = −1

2

e2

4πε0a0
Z2. (4.17)
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The effective charge of the nucleus, Z, can be tuned to fit the ionization potential
of any atom. For argon, this implies a slightly higher nuclear charge than hydrogen,
ZAr =

√
15.76/13.6 ≈ 1.077.

Assumption III: Free particle trajectories

The continuum states are not influenced by the atomic potential, V (r).
For this to be valid, twice the ponderomotive energy must be greater than the ion-
ization potential, Ip < 2Up. The acceleration of the electron will then be mainly due
to the laser field and not the atomic potential. The assumption justifies substitution
of the proper continuum states of the atom [Eq. 3.54] by simple plane wave states
[Eq. 4.14]. For argon, this implies an intensity of I > 1.3 × 1014 W/cm2, but the
SFA is also adequate below this intensity for some specific applications, such as HHG,
where corrections due to scattering are not critical.

4.2.2 SFA ansatz and derivation

The electron wavefunction is written as the sum of a bound part and a continuum
part

∣∣Ψ(t)
〉

=
∣∣ΨB(t)

〉
+
∣∣ΨC(t)

〉
=
∣∣̃i
〉

+

∫
dk3 c~k(t)

∣∣k̃
〉
. (4.18)

The bound part,
∣∣ΨB(t)

〉
, consists of the initial state, which satisfies

[T + V (r)]
∣∣̃i
〉

= − Ip
∣∣̃i
〉

= i~
∂

∂t

∣∣̃i
〉
, (4.19)

where Ip = −~ωi is the ionization potential of the atom, and the time-dependent
bound state is

∣∣̃i
〉
=
∣∣̃i(t)

〉
=
∣∣i
〉

exp[iIpt/~]. The complex amplitude of the bound state
is set to one, according to Assumption I. All remaining bound states are neglected,
according to Assumption II. The continuum part,

∣∣ΨC(t)
〉
, consists of Volkov states,

which satisfy

[T + VI(t)]
∣∣k̃
〉
= i~

∂

∂t

∣∣k̃
〉
, (4.20)

where VI is the laser field interaction. When using the Volkov states, the influence of
the atomic potential is neglected, according to Assumption III. Inserting the ansatz
[Eq. 4.18] into the Schrödinger equation [4.15] yields

i~
∫
d3k ċ~k(t)

∣∣k̃
〉

= VI(t)
∣∣̃i
〉

+ V (r)

∫
d3k c~k(t)

∣∣k̃
〉
, (4.21)

where Equations 4.19 and 4.20 are used to cancel two terms on each side. A differential
equation for the complex amplitude of the Volkov states is obtained by multiplying
Equation 4.21 by

〈
k̃′
∣∣ and applying the orthogonality of the Volkov states,

〈
k̃′
∣∣k̃
〉
=

δk′,k. The differential equation simplifies to

i~ ċ~k′(t) =
〈
k̃′
∣∣VI(t)

∣∣̃i
〉

+

∫
d3k c~k(t)

〈
k̃′
∣∣V (r)

∣∣k̃
〉
, (4.22)

where the first term on the right-hand side describes the transition from the ground
state to the Volkov state, and the second term describes continuum–continuum tran-
sitions between the Volkov states due to scattering in the atomic potential. The
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scattering term can be neglected if either: the ponderomotive energy of the electron is
very large due to the laser field [Assumption III]; or the ionization is weak so that the
first term, with the undepleted bound state, is dominant [Assumption I]. Neglecting
the continuum–continuum scattering term, the complex amplitude [Eq. 4.22] can be
integrated directly

c~k(t) =
1

i~

∫ t

−∞
dt′
〈
k̃(t′)

∣∣VI(t′)
∣∣̃i(t′)

〉
. (4.23)

Notice that the SFA complex amplitude has the same form as the complex am-
plitude derived from FTPT [Eq. 3.5]. While the expressions appear similar, it is
important to note that the final state in SFA is dressed by the laser field and is not
a field-free state. The transition rate depends on the instantaneous wavevector of the
Volkov state [Eq. 4.8]. The instantaneous wavevector depends on the laser intensity,
and it affects the exponential factor of the Volkov state. This implies that a small, lin-
ear increase in the intensity will lead to an exponential change in the overlap between
the bound state and the continuum state in the dipole matrix element, and, thus, an
exponential change in the transition rate. Strong field ionization, which arises natu-
rally in SFA, is of tunneling type [69]. It is common to associate tunneling ionization
with the Keldysh parameter, γ =

√
Ip/2Up < 1 [80], which corresponds to a qua-

sistatic limit, where the instantaneous tunneling rate reduces to the ADK tunneling
theory [Eq. 3.43].

The total electron wave packet [Eq. 4.18] in the strong laser field becomes

∣∣Ψ(t)
〉

=
∣∣̃i(t)

〉
+

e

i~

∫
d3k

∣∣k̃(t)
〉∫ t

−∞
dt′ E(t′)

〈
k̃(t′)

∣∣z
∣∣̃i(t′)

〉
, (4.24)

where the electron enters the continuum state
∣∣k̃(t′)

〉
at time t′. Once in the contin-

uum, the electron will remain in the same Volkov state,
∣∣k̃(t)

〉
, as long as the atomic

potential is neglected. Equation 4.24 is identical to the more explicit, famous form of
the SFA wave packet [17]

∣∣Ψ(t)
〉

=
∣∣i
〉

exp [iIpt/~] +
e

i~

∫
d3k

∣∣~k + e ~A(t)/~
〉
× (4.25)

∫ t

−∞
dt′ exp

[
i
{
Ipt
′ − S(~k, t, t′)

}
/~
]
× (4.26)

E(t′)
〈
~k + e ~A(t′)/~

∣∣z
∣∣i
〉
, (4.27)

where the electron is tunnel ionized at time t′ [Eq. 4.27]. It then propagates in the

continuum until time t [Eq. 4.26], acquiring a phase, {Ipt′ − S(~k, t, t′)}/~, where the
electron action is

S(~k, t, t′) =
~2

2m

∫ t

t′
dt′′

[
~k + e ~A(t′′)/~

]2
. (4.28)

The total wave packet is identified as a bound state plus plane wave states [Eq. 4.25].
According to this quantum mechanical treatment, the electron may tunnel at any
time, t′ < t, with any velocity, v(t′) = [~/m](~k + e ~A(t′)/~). In practice, only a few of
these “trajectories” will contribute constructively.
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Scattering in the atomic potential

The effect of scattering in the atomic potential can be included in a Born series expan-

sion of Equation 4.22, where c~k(t) ≈ c
(0)
~k

(t) + c
(1)
~k

(t) + . . ., with the zero-order being
Eq. 4.23. This results in qualitative agreement for the process of ATI. Corrections
due to the atomic potential can be taken into account using the Eikonal–Volkov ap-
proximation through an iterative procedure [83, 85]. Quantitative rescattering of the
photoelectrons in the atomic potential [86–88] requires the use of atomic scattering
states [Eq. 3.54]. Making corrections for the atomic potential is less important for the
HHG process, and the zero-order SFA wave packet [Eq. 4.22] will, therefore, be used
below.

4.3 High-order harmonic generation

In this section, the electron wave packet described by Equation 4.24 is used to calculate
the nonlinear polarization of an atom in an intense, low-frequency laser field. This
nonlinear polarization will result in the emission of high-order harmonic photons. The
polarization is proportional to the position expectation value of the electron

P̃ (t) ∝ ez(t) = e
〈
Ψ(t)

∣∣z
∣∣Ψ(t)

〉
≈ e

〈
ΨB(t)

∣∣z
∣∣ΨC(t)

〉
+ c.c., (4.29)

where we assume linear laser polarization along ẑ. The frequency domain, nonlinear
polarization is

P (Ω) =

∫
dt P̃ (t) exp[iΩt] ∝

∫
dt e[

〈
ΨB(t)

∣∣z
∣∣ΨC(t)

〉
+c.c.] exp[iΩt]. (4.30)

From Equations 4.29 and 4.30, it is clear that the polarization occurs due to an
interference effect between the bound state,

∣∣ΨB(t)
〉
, and the continuum wave packet,∣∣ΨC(t)

〉
. The properties of this time-dependent dipole matrix element are

〈
ΨB(t)

∣∣z
∣∣ΨC(t)

〉
=

e

i~

∫ t

−∞
dt′
∫
d3k

〈
i
∣∣z
∣∣~k + e ~A(t)/~

〉
× (4.31)

exp
[
−i
{
S(~k, t, t′) + Ip(t− t′)

}
/~
]
× (4.32)

E(t′)
〈
~k + e ~A(t′)/~

∣∣z
∣∣i
〉
, (4.33)

where the electron first tunnels into the continuum at time, t′ [Eq. 4.33]; it then
propagates in the continuum and acquires a phase, or a quasiclassical action [Eq. 4.32];
finally it returns to the bound state [Eq. 4.31], emitting a high-order harmonic photon
in the process. In this interpretation, the quantum mechanical electron can tunnel
at any time, t′ < t, with any wavevector and still return to the core at time, t.
This is reminiscent of Feynman’s path integral formulation of quantum mechanics
[70, 89, 90], in which the electron is allowed to take all paths to reach the final
destination. Each path that the electron takes is associated with a classical action.
The most probable paths are the classical paths that extremize the classical action,
δS = 0. Inspired by Feynman’s path integrals, Lewenstein et al. used the SPA to
find the quasiclassical trajectories in the SFA that gave the dominant contributions
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to the high-order polarization [17]. The fast phase factor of the SFA is identified as

f(~k) = −{S(~k, t, t′) + Ip(t− t′)}/~, and the approximate volume integral is

〈
ΨB(t)

∣∣z
∣∣ΨC(t)

〉
≈ e

i~

(m
~

)3/2
∫ t

−∞
dt′

(
2πi

(t− t′)

)3/2

× (4.34)

〈
i
∣∣z
∣∣~k(st) + e ~A(t)/~

〉
× (4.35)

exp
[
−i
{
S(st) + Ip(t− t′)

}
/~
]
× (4.36)

E(t′)
〈
~k(st) + e ~A(t′)/~

∣∣z
∣∣i
〉
, (4.37)

where S(st) = S(st)(t, t′) = S(~k(st), t, t′) is the stationary action over the three-
dimensional wavevectors.1 The stationary wavevector,

~k(st) = ~k(st)(t, t′) = − 1

t− t′
∫ t

t′
dt′′ e ~A(t′′)/~, (4.38)

fulfills the stationary phase equation,

∇~kf = ∇~k
{
S(~k, t, t′) + Ip(t− t′)

} ∣∣
~k=~k(st)

= 0. (4.39)

Using this three-dimensional stationary phase method (3D:SPA), it is clear that only
the “classical trajectories” contribute to the polarization. The velocity of this classical
trajectory is ~v(cl)(t′′) = (~/m)[~k(st)(t, t′) + e ~A(t′′)/~]. The electron follows Newtonian

motion and it returns to its original position, ∆~x(cl) =
∫ t
t′
dt′′ ~v(cl)(t′′, t′) = 0, at

time, t. There is a one-to-one correspondence between tunneling times, t′, and return
times, t. In the language of Feynman path integrals, the trajectories with ~k ≈ ~k(st),
add constructively; while other trajectories, with ~k 6= ~k(st), destructively cancel due
to the rapid variation in action [Eq. 4.32].

Using 3D:SPA, the exact cut-off law for the high-order harmonics can be found
[17]

~Ωco = 1.3Ip + 3.2Up, (4.40)

which is slightly higher than the empirical law presented in the first chapter [Eq. 1.1].
The 3D:SPA was used to calculate the generation of high-order harmonics in the
theoretical work presented in Papers III-IX.

Quantum diffusion

The prefactor that arises in 3D:SPA, 1/τ3/2, where τ ≡ t − t′, can be understood
physically. This dependence on the duration of the trajectory in the continuum ac-
counts for the spreading of the electron wave packet due to quantum diffusion.2 Longer
trajectories will naturally diffuse more and recombine with lower probability to the

well-localized bound state,
∣∣〈ΨB

∣∣z
∣∣ΨC

〉∣∣2 ∼ 1/τ3.

1 The one-dimensional SPA can be applied to each wavevector direction independently because
the Hessian matrix is diagonal, (∂2/∂i∂j)[S(~k, t, t′) + Ip(t− t′)]/~ = (~/m)(t− t′)δi,j , where i and j
are any of [kx, ky , kz ]. Note that all diagonal elements are equal and lead to three identical prefactors,

[
√

2πim/(~(t− t′))]3 = [(m/~)(2πi/(t− t′))]3/2.
2 The analysis of an electron wave packet in one dimension [Sec. 2.2.2], shows that the size of the

pulse increases linearly with time, ∆x ∝ τ [Eq. 2.63]. The probability of recombination should then
vary as ∝ 1/τ3 in three dimensions. This confirms the interpretation of the SPA prefactor [Eq. 4.34]
as quantum diffusion.
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Five-dimensional stationary phase approximation

It is possible to go further, and to use the SPA when integrating over the remaining
two time integrals [17, 55, 91]. It is then necessary to solve the stationary equation

over ~k [Eq. 4.38] in combination with two additional stationary phase equations. The
second stationary equation is over tunneling times, t′, and it describes the tunneling
process

mv(cl)(t′)2

2
∼ ~2

2m
[~k + e ~A(t′)/~]2 = − Ip, (4.41)

while the third stationary equation is over return times, t, and it imposes energy
conservation for the high-order emission process

mv(cl)(t)2

2
∼ ~2

2m
[~k + e ~A(t)/~]2 = ~Ω− Ip. (4.42)

The five-dimensional stationary phase method (5D:SPA), has complex stationary

points, [~k(st), t(st), t′(st)], due to the tunneling step [Eq. 4.41]. The spectral phase
of the high-order harmonics can be approximated using 5D:SPA as

φ(Ω) ≈ −S(st)/~− Ip
[
t(st) − t′(st)

]
/~ + Ωt(st), (4.43)

where S(st) = S(~k(st), t(st), t′(st)). The properties of the high-order harmonic phase
is reviewed in Figure 4.1 for a monochromatic laser field. There are two sets of
solutions to 5D:SPA for continuum times less than a period, τ < T . The phase of
these two contribution is roughly linear [Fig. 4.1 (a)], the first emission (called the
short trajectory) is emitted first, since it has a smaller phase slope (group delay).
The second emission (called the long trajectory) is emitted later, since it has a more
steep phase slope (group delay). In the next subsection, we will see that these two
contributions can be explained qualitatively using classical mechanics.

4.3.1 One-color HHG

Consider an atom in a monochromatic, intense, low-frequency laser field. The laser
field is referred to as the fundamental field, and it corresponds to the output of a
titanium sapphire laser system with a laser period of T1 = T = 2.66 fs [Sec. 1.4]. For
a periodic process, i.e. an infinite laser pulse duration, it is sufficient to consider the
polarization from one period of the fundamental laser field, 0 < t < T . The tunneling
times, t′, should, in principle, be integrated from minus infinity [Eqs. 4.34-4.37]. This
is, of course, not possible numerically, and it is not necessary in practice. Quantum
diffusion strongly suppresses the contribution from trajectories with durations longer
than one period of the fundamental laser field. Reducing the tunneling time integral
to t − T < t′ < t, yields an adequate approximation for single-atom polarization.
Interestingly, two different classical trajectories return with the same energy within
this restricted time-window. These are called the short trajectory and the long tra-
jectory. The time–energy properties of the two trajectories are shown in Figure 4.2.
The short trajectory spends a shorter time, 0 < τ (S) < 0.65T , than the long tra-
jectory, 0.65T < τ (L) < T , in the continuum. In a macroscopic sample, the short
and the long branch will phase match with different efficiencies depending on the ex-
perimental conditions. It is common to phase match the short branch and, thereby,
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Figure 4.1. (a) Spectral phase of high-order harmonics from argon at intensity 2 × 1014

W/cm2 [black curve] and for neon at intensity 3× 1014 W/cm2 [blue curves]. (b) The emis-

sion time of harmonic Ω is <{t(st)(Ω)} = ∂φ/∂Ω. The emission time is given in units of the
fundamental field period, T = 2.66 fs. (c) The spectral phase derivatives with respect to in-
tensity is an important quantity for macroscopic phase matching of the high-order harmonics
(and it is often labeled as ∂φ/∂I = −α). The short (long) trajectory is drawn with a full
(dashed) line.

select one of the two trajectories. Solving this problem numerically is a formidable
task, which requires great computational power, involving the numerical evaluation
the macroscopic Maxwell equations with the TDSE (or SFA) as a source term for
the nonlinear polarization [92]. Rather than taking this rigorous numerical route, we
directly select the short branch from the single-atom response. This simple trajectory
selection (STS) method for the short branch consists of limiting the integral bounds
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Figure 4.2. (a) Kinetic return energy, Ek(t) = (~2/2m)[k(st)(t, t′) + eA(t)/~]2, for electrons
that tunnel at time, t′ into a monochromatic laser field. The short branch of trajectories (S)
and the long branch of trajectories (L) merge at the cut-off with the maximal return energy,

E
(CO)
k = 3.2Up [dashed line]. (b) Continuum times, τ = t− t′, of the trajectories. The cut-off

occurs for τ (CO) = 0.65T . The trajectories are repeated periodically over half a fundamental
period, T/2.

for the tunneling times t − 0.65T < t′ < t, which is equivalent to 0 < τ < 0.65T .
The nonlinear polarization will then only exhibit the features of the short branch.
Harmonics calculated with the STS method are expected to be accurate for orders in
the plateau; while the harmonic close to the cut-off may depend on how the cut in
the tunneling time integral is made. To gauge the reliability of the STS method, the
numerical integration has been ramped down smoothly and the position of the cut has
been adjusted, while time–frequency window methods (Gabor transforms) have been
used to visualize the trajectories in time–frequency space. Decreasing the tunnel time
integral leads to a part of the high-energy, short trajectory being missing; while an
increasing tunnel time integral leads to the inclusion of high-energy, long trajectory
components.

4.3.2 Two-color HHG

So far, we have only considered the trajectories due to a monochromatic electric field
with angular frequency, ω = 2π/T . The experimental work presented in Papers III,
IV and VIII shows that a strong second-harmonic field can be used to control the
electron trajectories, and thereby alter the properties of the high-order harmonics
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[93–97]. The total electric field driving the HHG process is

Ẽ(t) = E1 sin[ωt] + E2 sin[2ωt+ φ], (4.44)

with an intensity ratio, R ≡ E2
2/E

2
1 & 10%.3 The classical two-color trajectories in

Figure 4.3 show how the second harmonic can be used to deform the trajectories
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Figure 4.3. (a) Kinetic return energy, Ek(t) = (~2/2m)[k(st)(t, t′) + eA(t)/~]2, for electrons
that tunnel at time, t′ into a two-color laser field. The intensity ratio between the second
harmonic and the fundamental is R = 25%. The phase difference, φ, between the fields are:
0, 0.6 and 1.2 rad for the red, green and blue line respectively. The maximal return energy is
lower than the one-color case [dashed line] in the first half-cycle. The maximal return energy
is higher than the one-color case [dashed line] in the second half-cycle. (b) The continuum
times, τ = t − t′, of the trajectories are mostly constant in the first half-cycle; while the
changes are more striking in the second half cycle. The trajectories are repeated periodically
over a full fundamental period, T .

compared to the one-color case [Fig. 4.2]. Note that the trajectories in adjacent half-
cycles are deformed differently. This symmetry breaking originates from the following
properties of the fields: E1(t) = −E1(t+T/2) and E2(t) = +E2(t+T/2). The second
harmonic may, for instance, decelerate the electron in one half-cycle and accelerate
the electron in the other.

3 An efficient broadband second-harmonic field is generated using a thin doubling crystal. In
Paper III, we used a 0.6 mm KDP (potassium dihydrogen phosphate) type I crystal and achieved
an effective intensity ratio of R ≈ 15%. Using a thicker crystal will increase the total conversion
efficiency, but will also increase the pulse duration of the second harmonic field. Only the part of the
second-harmonic field that overlaps the 30 fs fundamental laser pulse is useful for control of HHG.
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The short trajectories have an approximate time in the continuum, τ (S) ≈ 0.5T ,
corresponding to a full period of the second harmonic field. The second harmonic field
can be synchronized to increase the total electric field at the tunneling time of the
trajectories in one half-cycle. This boosts the tunneling rate, but at the expense of a
weaker recombining force approximately half a period later, when the second harmonic
field instead decreases the total electric field. The result is stronger harmonics but
a lower maximal harmonic order, compared to the one-color case [Fig. 4.3: High →
Low ]. Conversely, the trajectories in the other half-cycle correspond to weaker tunnel
ionization and stronger recombination [Fig. 4.3: Low → High]. As already mentioned,
small changes in the instantaneous electric field lead to an exponential change in
tunneling rate [Eq. 3.43]. This results in a negligible contribution from the second
half-cycle compared to the first half-cycle and an attosecond pulse train of one pulse
per cycle [98].

The long trajectories spend a longer time in the continuum, τ (L) ≈ 0.75T , thus the
boost in tunneling can be combined with an increase in the maximum kinetic energy.
This scheme shows great promise for increasing the bandwidth of the HHG process,
but it has not yet been successfully implemented due to the experimental difficulties
in phase matching the long trajectories.

Figure 4.4 shows high-order harmonic intensities calculated using the STS method
for two-color HHG with R = 10%. The maximal photon energy of the short trajec-
tories [Fig. 4.4 (a)] can be controlled using the second harmonic control field, but, as
expected from the classical analysis, it is only possible to decrease the maximal photon
energy to values below the exact one-color cut-off, 1.3Ip + 3.2Up [dashed line]. The
maximal harmonic energy can also be controlled for the long trajectories [Fig. 4.4 (b)],
and photon energies above the one-color cut-off can be produced at certain relative
phases.

The detailed structure of the harmonic spectrogram [Fig. 4.4] can be better un-
derstood by considering the boost of tunneling in more detail. The even and odd
harmonics behave in a similar way, both displaying a clear “tilt” over φ. This tilt
is negative for the short trajectories, and positive for the long trajectories. The dif-
ferent signs of the tilt can be attributed to mapping from boosted tunneling time to
the return energy of the electron trajectories. Together, these lead to a Λ-shaped
spectrogram over φ. The same scenario is then repeated for every half-cycle, where
the other half-cycle takes the role of high→low. This control of the tunnel ionization
leads to the spectral control of 2-color HHG presented in Paper III. Experimental
and theoretical studies are presented in Paper IV, where weak interference between
the deformed half-cycle trajectories is studied and showing how the phases of the elec-
tron trajectories are modified by the strong second harmonic. Changing the phase of
the generation process using two-color laser fields provides an interesting approach to
optimize macroscopic phase matching of high-order harmonics [93].

In the case of few-cycle laser pulses, the nonlinear polarization must be calculated
at each time, t, of the pulse, and not just for one period. For ultra-short laser pulses,
the electron trajectories will be modified in the rising (falling) part of the pulse due to
the increasing (decreasing) overall field strength, compared to the trajectories in the
stationary peak of the field. In Paper VIII, the similarities between two-color HHG
and few-cycle HHG are stressed, where subcycle control and yield of the electron
trajectories is imposed by the CEP [27].

In Paper IX, the combination of an APT with one pulse per period and a few-
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Figure 4.4. Theoretical high-order harmonic intensity as a function of relative phase, φ,
between fundamental and second-harmonic fields. The relative intensity is strong, R = 10%.
The upper dot-dashed line indicates the exact one-color cut-off, 1.3Ip + 3.2Up, while the
lower dot-dashed line indicates the atomic ionization potential, Ip, for argon. The three panels
correspond to: (a) the short branch, 0 < τ < 0.65T , (b) the long branch, 0.65T < τ < T ; and
(c) both branches, 0 < τ < T . The data in false color were produced using the STS method
developed in Paper III. The full-period integration (c) shows the “connection” between the
short (left tilt) and long branches (right tilt) at the cut-off. The high→low half-cycle is
completely dominant, which results in harmonics orders that are lower than the one-color
cut-off at all delays for the short trajectories. The relative phase is related to the delay as
φ = −2ω1τ .

cycle fundamental field [99] was used to study the progression from a many attosecond
pulses to fewer attosecond pulses experimentally. The experimental results show that
a SAP could have been extracted if spectral filtering had been applied for a special
combination of CEP and relative phase between the two fields. The rich interference
structures observed were interpreted as pulse-to-pulse interference, in analogy with
the interference structure from multiple slits in Fourier optics.
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4.3.3 Probing high-order harmonic generation

In this section we will discuss the application of a weak, second-harmonic probe field
to the HHG process. The total electric field is the same as in Equation 4.44, but with
R ∼ 0.1%. The main idea is to obtain information about the unperturbed process us-
ing the probe field. Figure 4.5 shows high-order harmonic intensities calculated using
the STS method. The spectrogram consists of strong odd harmonics [red] and very

Figure 4.5. Theoretical high-order harmonic intensity as a function of relative phase,
φ, between fundamental and second-harmonic fields. The relative intensity is very low,
R = 0.1%. The upper dot-dashed line indicates the cut-off; while the lower dot-dashed line
indicates the ionization potential. The three panels correspond to: (a) the short branch,
0 < τ < 0.65T , (b) the long branch, 0.65T < τ < T ; and (c) both branches, 0 < τ < T . The
data in false color were produced using the STS method, while the red lines, which indicate
the maximum of the even harmonics, were calculated using the 5D:SPA method developed
in Paper VI. The agreement between the STS and the 5D:SPA is excellent in the center of
the harmonic plateau for both the short and long trajectories. The full-period integration
(c) agrees with the long branch 5D:SPA calculations close to the cut-off. The relative phase
is related to the delay by φ = −2ω1τ .

weak even harmonics [blue]. The odd harmonics arise from the fundamental process
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with a monochromatic laser field; while the modulated even harmonics are induced by
the second-harmonic probe field. The slope of the modulation is negative (positive) for
the short (long) branch over φ. The modulation offset provides a robust, background-
free experimental observable, which has been studied in depth in Papers IV, V and
VI. The inspiration for this work originates from a study by Dudovich et al. [37], in
which “the birth of attosecond pulses” was studied in situ using a second-harmonic
probe field. Dudovich et al. used classical analysis to interpret the in situ phases, i.e.
the offset in modulation of the even harmonics, as being proportional to the emission
times of the harmonics from the atoms. This interpretation is appealing since the
spectrograms [Fig. 4.5] are similar in appearance to the photoelectron spectrograms
generated by the RABITT method [Fig. 3.2]. Paper V presents a side-by-side com-
parison of the RABITT method and the in situ method, where the slopes of the two
methods are found to be similar in the lower part of the harmonic plateau. There is,
however, a strong deviation, a “kink”, close to the cut-off that can not be explained
using classical theory. This kink was studied further experimentally using a different
experimental setup, as reported in Paper IV. A quantum mechanical, perturbative
approach to predict the maxima of the modulation in the even harmonics was devel-
oped and is presented in Paper VI [Fig. 4.5: red line]. The phase induced by the
probe field is

σ(~k, t, t0)/~ =
e

m

∫ t

t0

dt′
[
~k + e ~A1(t′)/~

]
· ~A2(t′, φ), (4.45)

where [~k, t, t0] are the five-dimensional stationary points of the one-color case. The
induced action is a complex number because the probe field will influence both the
tunneling probabilities of the electron trajectories and the phase of the electron tra-
jectories in the continuum. The phase is odd over half-cycles and breaks the inversion
symmetry, which causes even harmonics to appear. The kink was reproduced using
both perturbative quantum mechanical theory and the STS method, and it is iden-
tified as a switch in dominance of the short and the long trajectories [Fig. 4.5]. The
tunneling effects render the slope of phases that maximize the even harmonics mostly
insensitive and to the intensity of the fundamental field. It would be interesting to
study these phases further experimentally, since they provide a clean, background-free
signal that can be compared with quantum mechanical single-atom calculations, but
they are not suitable for temporal characterization of APTs.

In Papers IV-V, a simplified “classical” interpretation of Equation 4.45 was used,
where the tunneling effects (the imaginary part) of the induced action [Eq. 4.45] is
neglected. As the strength of the probe field, A2, is increased, the induced phase
increases. At a given probe intensity, the induced phase can be shifted between the
two half-cycles by changing the relative phase between the two fields, and mapping
out the interference between trajectories in adjacent half-cycles. The interference
can be understood in analogy with Newton rings, where the number of “rings” that
appear over a period of relative delay reveals the maximal phase difference between the
adjacent half-cycles. Note that the interference observed experimentally, and described
in Paper IV, is weak since the contrast between the adjacent cycles is low when tunnel
ionization favors one half-cycle. The fast modulations can also be identified in the
STS method for both the short and the long trajectories in between the main tilts
[Fig. 4.4 (a), (b)]. The general signature of interference between adjacent subcycles is
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that the odd and even harmonics behave in opposite ways: The odd harmonics peak
when the even harmonic dip. Conversely, the signature of one pulse per period is that
both odd and even harmonics behave in a similar way.

4.3.4 Summary of two-color HHG

The work presented in this thesis shows that a two-color HHG setup provides a ver-
satile attosecond pulse source. By changing the relative phase between the control
field and the fundamental field, the properties of the harmonics can be adjusted: the
spectral bandwidth can be shifted; the spectral phase can be varied; the divergence
of the harmonics can be controlled; and an APT with one pulse per period can be
obtained.
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Chapter 5

Summary and outlook

Attosecond science is attracting a great deal of attention because it promises accurate
probing and control of electron processes in atomic and molecular systems. The work
presented in this thesis shows that coherent high-order harmonics can indeed be used
to probe atomic processes on the attosecond timescale. These high-order harmonics
correspond to attosecond pulse trains in the time domain, but the duration of the
actual pulses is not always critical. Depending on the application, the coherent na-
ture of the harmonics and the broad bandwidth are sufficient to perform attosecond
experiments using photoelectron interferometry. Paper I describes how high-order
harmonics and a weak IR field can be used to study the phase of resonant two-photon
ionization. The 15th harmonic is resonant with the bound state (He: 1s3p 1P1), while
the higher harmonics launch photoelectrons into the continuum. The role of the IR
field is two-fold: to emit a near-threshold photoelectron from the resonant intermedi-
ate state, and to create an attosecond reference clock in the continuum. The phase of
the resonant two-photon transition depends critically on the frequency offset between
the lowest-order harmonic and the bound state. By tuning the frequency of the laser
or by shifting the resonant level of the atom, we observe how the phase of the resonant
transition changes compared to the reference clock. In this way, it is possible to map
how the bound state is shifted due to the Stark shift from the IR field. Paper II
describes the use of high-order harmonics and a weak IR field to probe the phase dif-
ference of two-photon ionization processes from different initial states. The fact that
the same high-order harmonics (21, 23, 25 and 27) are used to photoionize both initial
states (Ar: 3s2 and 3p6) makes it possible to subtract the phases of the harmonics
and isolate the difference in phase between the electron transitions, corresponding to
a delay of ∼ −100 as. After a careful theoretical investigation, this delay was identi-
fied as the sum of the photoelectron Wigner delay and an additional delay, caused by
the stimulated continuum transitions induced by the IR field. The total experimental
delay observed in a RABITT scan is, therefore, composed of three parts: the group
delay of the attosecond pulses; the Wigner delay of the photoelectrons; and the delay
from continuum–continuum transitions induced by the IR field.

In Chapter 2, the temporal properties of attosecond XUV pulses were theoretically
compared to the temporal properties of photoelectron wave packets. Photoelectrons
are free particles with wavefunctions that are closely related to classical mechanics,
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while the corresponding wave packet durations increase linearly in time due to strong
quantum diffusion. The attosecond photoionization process was studied further in
Chapter 3, where an asymptotic form for the photoelectron wavepacket was derived.
Using this wave packet it was possible to estimate the extremely short delays that
are present in laser-stimulated continuum–continuum transitions of photoelectrons. It
would be interesting to study these delays further and to compare the corresponding
quantum mechanical- and classical pictures in detail.

Coherent control experiments on the attosecond timescale can be carried out if
the strength and phase of the individual high-order harmonics can be controlled. The
different frequency components of the high-order harmonic bandwidth can then act
on the target in a predetermined sequence causing a coherent reaction. In this work,
the HHG process was coherently controlled using a second-harmonic control field. It
is demonstrated that both the intensity and phase of HHG can be controlled using the
control field. Paper III describes how the spectral content of the HHG process can
be tuned using a strong second-harmonic control field. Using the STS method, it was
concluded that the spectral shaping could be explained by the single-atom response.
The second-harmonic field boosts the tunneling ionization of specific electron trajecto-
ries and alters their path in the continuum. In this way, it is possible to create APTs
with one pulse per period, to increase the yield of the HHG process, and to control the
spectral content of the APTs. Paper IV reports on faint, rapid modulations, observed
experimentally, as a function of the delay between the fundamental and the second-
harmonic field. These modulations were explained as interference between adjacent
attosecond pulses. In analogy with Newton rings, it is possible to determine the phase
difference of attosecond pulses induced by the second-harmonic control field by count-
ing the number of modulations (rings) per period of relative delay. The induced phase
difference influences the divergence of the harmonic beam and changes the temporal
structure of the APT. The theoretical background for the SFA and the STS method
was reviewed in Chapter 4. The phase properties of the HHG process has been studied
using the 5D:SPA for both one-color and two-color laser fields. It would be interesting
to apply the STS method to other atoms and laser field wavelengths, and to consider
HHG from aligned molecules.

It is important to be able to characterize the phase of the high-order harmonics and
the temporal structure of the attosecond pulses. Most existing methods of attosec-
ond pulse characterization rely on making photoelectron replicas of the attosecond
pulses, and then probing the photoelectrons using an IR field. A photoelectron cross-
correlation spectrogram is obtained by recording the photoelectron energy distribution
as a function of the delay between the attosecond pulses and the IR field. Understand-
ing the ultrafast electron dynamics, and how it is related to the temporal structure
of the attosecond pulses is critical for attosecond science. This thesis describes ex-
perimental studies in which the established RABITT method was compared with new
alternative characterization schemes. Paper V presents an experiment where an APT
is characterized using both the RABITT method and a novel two-color method which
probes the HHG process in situ. The aim of these studies was to investigate the
evolution of the attosecond pulses from single-atom emission to on-target detection.
The experimental results indicate that the in situ method can provide complemen-
tary information to the RABITT method, but inconsistencies were found between the
theory of the in situ method and the experimental data close to the harmonic cut-off.
Paper VI presents an improved theory for the in situ method. This new theory is
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Summary and outlook

capable of reproducing the main features of the two-color HHG close to the harmonic
cut-off, but it also reveals that the in situ method cannot always be used for temporal
characterization of APTs. It would be interesting to see more experiments using the
in situ method, especially on different atoms and under conditions where both the
short and the long trajectories are present. Paper VII presents experimental stud-
ies in which the RABITT method was investigated at increasing IR probe intensity.
The transition from the photon picture to the so-called streaking regime occurs as
the intensity of the probe is increased. It was found that the temporal information
provided by the RABITT method was lost when the IR field intensity was increased
beyond a perturbation, but that it was then possible to extract the temporal struc-
ture of the APTs from higher order components in the corresponding cross-correlation
spectrograms.

An ideal source of attosecond pulses provides any number of attosecond pulses
with any pulse spacing and any photon energy region. In practice, this is difficult
to achieve, and the work described in this thesis has focused on applying the two-
color control scheme to reduce the number of pulses in the APT and control the pulse
properties. Paper VIII discusses the similarities between the control of HHG using
a few-cycle IR field and using a two-color field. The advantage of the APT over the
SAP is that the experiment is repeated coherently multiple times, which increases
the signal. The disadvantage of APT is that the attosecond temporal information is
given in modulus of a half fundamental period. In this sense, SAPs are better suited
for studying absolute delays of a processes that are longer than a half fundamental
period. An intrinsic attosecond delay of the photoelectrons is present also for SAP
using the streaking method in analogy with the CC delay of the RABITT method.
It would be interesting to compare these extremely short delays, which both contain
information about the attosecond continuum–continuum transitions and the atomic
screening potential. The use of a few-cycle two-color field is presented in Paper IX,
where the number of pulses in the APT varies over the spectral bandwidth. The
sequence of attosecond bursts was controlled using the CEP and the relative phase
and strength between the two fields. The interference structure visible in the spectral
domain was interpreted as the beating between a few distinct attosecond bursts in
analogy with the diffraction pattern from a few slits in Fourier optics. This simple
interpretation was verified using the STS method for the single-atom response and for
full macroscopic simulations. Combining few-cycle pulses with a control field provides
improved control of the generation of SAP. Two-color fields provide control of the
single-atom response, and by changing the relative delay between the two fields, the
amount of phase acquired by the quasiclassical trajectories can be controlled. It would,
therefore, be extremely interesting to study the phase matching aspects of two-color
HHG further.

In the work presented in this thesis, the two-color field consisted of a strong 800 nm
fundamental field and a probe/control field at 400 nm. Going to longer wavelengths,
such as 1.3µm or 2µm, implies longer trajectories, more quantum diffusion and more
acquired phase. Here, a second harmonic control field could help to reduce quantum
diffusion and to improve macroscopic phase matching. A fundamental field plus a
third harmonic provides control of the trajectories without breaking the inversion
symmetry. The tunneling ionization can be controlled, as well as the chirp of the
attosecond pulses and the acquired phase. Using the third harmonic to flatten the
intensity-dependent HHG phase could lead to improved phase matching conditions
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and more intense two-pulse-per-cycle APTs. Another interesting field combination is
a weak fundamental and a strong second harmonic. In this case, there will be four
different short trajectories that will interfere in pairs. Depending on the fundamental
wavelength, this setup could produce single-atom information complementary to the
existing in situ method. It would also be interesting to study solid state media in
intense, low-frequency fields and to apply the three-step model in a band structure.
Being able to program a large, arbitrary coherent bandwidth into the HHG process
will, most likely, require a long fundamental wavelength and many odd harmonic
control fields that can be used to carefully alter the quasiclassical trajectories. As
the photon energy increases, it will be possible to induce and probe deeper atomic
dynamics, such as inner-shell ionization and multiple-electron excitations. Breaking a
molecule coherently from the inside is a dream shared by many attosecond scientists.
First, a high-frequency pulse from the coherent bandwidth initiates photoionization.
Second, a lower-frequency part can be used to coherently control the dynamics of the
excited states. Finally, a third, intermediate-frequency pulse can be used to probe
the system. As the intensity of the attosecond pulses increase, it will be possible to
perform nonlinear interactions with the attosecond pulses. This will enable exciting
new possibilities for characterization and control on the attosecond timescale.

The link between classical mechanics and quantum mechanics in attoscience is fasci-
nating, and I hope to encouter it again, many times, in different places.
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Comments on the papers

I Phase Measurement of Resonant Two-Photon Ionization in Helium
In this paper we study the phase properties of two-photon resonant ionization
of He. The phase information is gained by cross-correlating an IR field with
a high-order harmonic comb, where the lowest harmonic is resonant with the
bound 1s3p state in He. I took part in the execution of experimental work and
I performed analytical calculations using second order perturbation theory to
describe the observed phase shift and how it depends on the duration of the
laser pulse. The calculations were transferred into a MATLAB program by M.
Swoboda and compared to the TDSE calculations by K. J. Schafer in Figure 3.
I took an active part in the writing of the manuscript.

II Probing Single-Photon Ionization on the Attosecond Time Scale
In this paper we study temporal properties of the photoionization process from
two different initial states in Ar. Temporal information about the ionization
process is gained by cross-correlating an IR probe with an APT and subtracting
the chirp of the attosecond pulses. I was deeply involved in this experiment
from idea to execution. I performed analytical calculations to describe the two-
photon ionization process and I interpreted the observed delay as a sum of two
contributions: the Wigner delay and the continuum-continuum delay, which
depends on the laser wavelength. I wrote the theory part of the manuscript and
I produced Figures 3 and 4.

III Spectral Shaping of Attosecond Pulses using Two-Color Laser Fields
In this paper we study spectral properties of two-color HHG with a strong second
harmonic field. We obtain a tunable central energy of the attosecond pulses as
a function of the relative phase between the fields. I performed calculations
using SFA. I developed the STS method and I found good agreement with the
experimental results by isolating the short trajectories. I wrote the theory part
of the manuscript and I provided data for Figures 1, 3, 4 and 5.
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Comments on the papers

IV Interference Effects in Two-Color High-Order Harmonic Generation
In this paper we studied the spectral modulation of two-color HHG with a strong
second harmonic field as a function of the relative phase between the fields. I
worked on the analysis of the experimental data and I interpreted the modulation
as an interference effect between electron trajectories in adjacent half cycles.
By comparing the experimental modulation with a simple interference model, I
could estimate the amount of phase which was induced by the second harmonic
field to the electron trajectories. I also explained that this induced phase leads
to control of the high-order harmonic beam divergence. I wrote a large part of
the manuscript and I worked on all figures.

V Atomic and Macroscopic Measurements of Attosecond Pulse Trains
In this paper we compare two characterization methods for attosecond pulses
in trains. The well-established RABITT method measures the group delay dis-
persion of the attosecond pulses on target, while the in situ method yields in-
formation about the attosecond pulses as they are produced. I took part in
the planning and execution of the experiment and I performed the analysis of
the experimental data. I simulated the in situ method using SFA with the STS
method. I wrote the manuscript and I produced all figures.

VI Quantum Mechanical Approach to Probing the Birth of Attosecond
Pulses using a Two-Color Field
In this paper we perform a theoretical study the in situ method for characteriza-
tion of attosecond pulses. I performed the theoretical investigation using a per-
turbative stationary phase analysis for two-color HHG. I wrote the manuscript
and I produced all figures.

VII Intensity Dependence of Laser-Assisted Attosecond Photoionization
Spectra
In this paper, we study the RABITT method at high probe field strengths. An
extension to the method is proposed, based on higher-order perturbation theory,
which I suggested: Higher-order RABITT signals at high probe intensities, where
the fundamental RABITT signal at 2φ fails. I performed an analytical analysis.
I contributed to the writing of the manuscript.

VIII Sub-cycle Control of Attosecond Pulse Generation using Two-Colour
Laser Fields
I this paper we discuss the similarities between the generation of SAP and two-
color HHG. I contributed to the manuscript and I provided the data for Figure
5 using SFA with the STS method.
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Comments on the papers

IX Spectral Signature of Short Attosecond Pulse Trains
In this paper we use an ultrashort laser pulse mixed with its second harmonic
to generate attosecond pulses. I took part in the execution of the experiment
briefly at ETH. I performed SFA calculations and I interpreted the interference
structures in the spectrum as pulse-to-pulse interferences in the generated APT.
I contributed mostly to the theoretical part of the manuscript.
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84. D. G. Arbó, J. E. Miraglia, M. S. Gravielle, K. Schiessl, E. Persson and
J. Burgdörfer. Coulomb-Volkov approximation for near-threshold ionization by
short laser pulses. Phys. Rev. A 77, 013401 (2008).

88



References

85. M. Y. Ivanov, T. Brabec and N. Burnett. Coulomb corrections and polarization
effects in high-intensity high-harmonic emission. Phys. Rev. A 54, 742–745 (1996).

86. Z. Chen, A. Le, T. Morishita and C. D. Lin. Quantitative rescattering theory for
laser-induced high-energy plateau photoelectron spectra. Phys. Rev. A 79, 033409
(2009).

87. A. Le, R. R. Lucchese, S. Tonzani, T. Morishita and C. D. Lin. Quantitative
rescattering theory for high-order harmonic generation from molecules. Phys. Rev.
A 80, 013401 (2009).

88. Z. Chen, Y. Liang and C. D. Lin. Quantitative rescattering theory of correlated
two-electron momentum spectra for strong-field nonsequential double ionization of
helium. Phys. Rev. A 82, 063417 (2010).

89. R. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics.
Rev. Mod. Phys. 20, 367–387 (1948).
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G. Wahlström. High-order tunable sum- and difference frequency mixing in the
XUV region. J. Phys. B 29, L163 (1996).

96. L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch and J. P. Marangos. Ideal
waveform to generate the maximum possible electron recollision energy for any
given oscillation period. Phys. Rev. Lett. 102, 063003 (2009).

97. M. V. Frolov, N. L. Manakov, A. A. Silaev and N. V. Vvedenskii. Analytic de-
scription of high-order harmonic generation by atoms in a two-color laser field.
Phys. Rev. A 81, 063407 (2010).

98. J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer and M. B.
Gaarde. Attosecond Pulse Trains Generated Using Two Color Laser Fields. Phys.
Rev. Lett. 97, 013001 (2006).

99. T. Pfeifer, L. Gallmann, M. J. Abel, D. M. Neumark and S. R. Leone. Sin-
gle attosecond pulse generation in the multicycle-driver regime by adding a weak
second-harmonic field. Opt. Lett. 31, 975 (2006).

89





Papers





Paper I
Phase Measurement of Resonant Two-Photon
Ionization in Helium

M. Swoboda, T. Fordell, K. Klünder, J. M. Dahlström, M. Miranda,
C. Buth, K. J. Schafer, J. Mauritsson, A. L’Huillier, and
M. Gisselbrecht.

Phys. Rev. Lett. 104, 103003 (2010).





Paper I

Phase Measurement of Resonant Two-Photon Ionization in Helium

M. Swoboda,1 T. Fordell,1 K. Klünder,1 J.M. Dahlström,1 M. Miranda,1,2 C. Buth,3,4 K. J. Schafer,3,4 J. Mauritsson,1

A. L’Huillier,1,* and M. Gisselbrecht1

1Department of Physics, Lund University, P.O. Box 118, 22100 Lund, Sweden
2Departamento de Fı́sica, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
3Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

4PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
(Received 18 December 2009; published 12 March 2010)

We study resonant two-color two-photon ionization of helium via the 1s3p 1P1 state. The first color is

the 15th harmonic of a tunable Ti:sapphire laser, while the second color is the fundamental laser radiation.

Our method uses phase-locked high-order harmonics to determine the phase of the two-photon process by

interferometry. The measurement of the two-photon ionization phase variation as a function of detuning

from the resonance and intensity of the dressing field allows us to determine the intensity dependence of

the transition energy.

DOI: 10.1103/PhysRevLett.104.103003 PACS numbers: 32.80.Rm, 32.70.Jz, 32.80.Qk, 42.65.Ky

Multicolor resonant ionization is at the heart of numer-
ous and diverse applications in fundamental and applied
sciences. Examples are studies of very high Rydberg states
[1], investigations of biomolecules [2] and specific selec-
tion of radioactive species [3]. In the simplest scheme,
resonantly enhanced two-photon ionization (R2PI) occurs
via the absorption of two photons, generally of different
colors, one tunable (!1) used to scan across a resonant
state (r), and the second (!) ionizing from the excited
state. In traditional R2PI, the yield of the produced ion
species is recorded as a function of laser wavelength, and
the position and shape of the observed resonance provides
information on the underlying electronic and rovibrational
structures. These studies rely on spectroscopic information
using narrow-bandwidth lasers, which do not allow any
temporal resolution. Here, we present an ultrafast time-
resolved-technique to retrieve also the phase of R2PI when
sweeping through the resonance. We demonstrate it by
studying R2PI of He via the 1s3p 1P1 state which lies
23.087 eV above the ground state.

The basic principle of our experiment is illustrated in
Fig. 1. We study the interference between two pathways to
the same ionized final state (f1), one through the resonance
with absorption of two photons with frequency !1 and !,
and the second through a continuum path, using a third
color (!2), involving absorption of a photon with fre-
quency !2 and emission of a photon with frequency !.
The phase of the R2PI is encoded in the modulation of the
photoelectron signal Sf1 as a function of the delay �

between the (!1, !2) fields and the ! field [Fig. 1(b)].
When the energy of the exciting radiation !1, and thus the
detuning from the resonance is changed, the phase varia-
tion of the resonant transition leads to a measurable shift of
the Sf1 oscillation. This phase shift needs to be referenced

against another modulation Sf2 that is independent of the

resonance and thus providing a clock to our measurement.

A process providing an independent modulation requires a
fourth color (!3) and involves another final state (f2) (see
Fig. 1).
An essential requirement for our measurement is the use

of phase-locked radiation fields with commensurate fre-
quencies, and a temporal precision better than the period-
icity of the interference signal, in our case 1.3 fs. Another
requirement, is a high spectral resolution for the excitation
of a narrow resonance. These requirements can be simul-
taneously fulfilled by using the high-order harmonic fre-
quency combs produced when an intense laser field
interacts with a gas of atoms or molecules [4]. As is now
well understood [5,6], harmonics arise due to interferences

FIG. 1 (color online). (a) Schematic diagram illustrating the
phase measurement of R2PI. The dashed and solid !1 lines
represent two excitation energies on either side of the resonance.
The photoelectron peaks used in the measurement are Sf1 and

Sf2 . (b) Illustration of modulated sideband signals Sf1 and Sf2 .

Two Sf1 modulations are indicated, corresponding to the two

excitation energies in (a). (c) Experimental harmonic spectrum
used in the measurements.
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between attosecond pulses produced by tunnel ionization,
acceleration of the created wave packet in the field and
recombination back to the ground state at each half cycle of
the laser field. The spectral width of the individual har-
monics is thus related to the number of attosecond pulses,
and decreases as the laser pulse duration increases [7]. In
this process, a comb of phase-locked harmonics of odd
order is generated.

In the present work, we use high-order harmonics to
study two-color photoionization of He via the 1s3p 1P1

state [8,9]. In contrast to the ‘‘reconstruction of attosecond
bursts by interference of two-photon transition’’
(RABITT) technique, used to determine the pulse duration
of attosecond pulses [10,11] and similarly to previous work
performed in Ne [12] and N2 [13], we eliminate the influ-
ence of the temporal characteristics of the attosecond
pulses to concentrate on the influence of the atomic prop-
erties. We study the R2PI phase as a function of detuning
from the resonance, by varying the fundamental wave-
length (around 805 nm) or alternatively by increasing the
fundamental intensity. We apply these measurements to
determine the intensity-dependence of the energy of the
1s2 ! 1s3p transition, and interpret the results using theo-
retical calculations consisting of solving the time-
dependent Schrödinger equation (TDSE) in conditions
close to the experimental ones [14].

Our experiments were performed with a 1-kHz 35-fs
4-mJ Ti:sapphire laser system. An acousto-optic program-
mable dispersive filter (DAZZLER) was used to change the
central wavelength between 802.5 and 809.3 nm, while
maintaining the spectral width of the amplified pulses
approximately equal to 25 nm. High-order harmonics
were generated in a pulsed Ar gas cell, filtered using a
spatial aperture and a 200-nm thick Al thin film [15], and
focused by a toroidal mirror into a vacuum chamber con-
taining an effusive He gas jet. A magnetic bottle electron
spectrometer (MBES) allowed us to record and analyze in
energy the ejected electrons. Part of the laser field was
extracted before the generation of harmonics, and recom-
bined downstream collinearly with the harmonics, after a
variable time delay that could be adjusted with sub-100-as
precision [12].

A comb of about seven phase-locked harmonic fields
[Fig. 1(c)], corresponding in the time domain to a train of
attosecond pulses of 260 as duration, was thus sent into the
interaction chamber together with the dressing field at
frequency ! with an adjustable phase ’ (or time � ¼
’=!) delay. In addition, a half-wave plate and polarizer
in the dressing IR field arm allowed precise control of the
pulse energy and therefore the intensity in the interaction
region of the MBES. The detuning was determined from
� ¼ 15hc=�0 � E3p, where E3p is 23.087 eVand �0 is the

barycenter of the fundamental frequency spectrum, shifted
to the blue by �� ’ 3:5 nm to account for the blueshift
from free electrons in the generation gas [16,17]. The
dressing laser intensity was determined by measuring the

energy shifts of the photoelectron peaks of harmonics 17 to
23 in the presence of the laser field, which is simply equal
to the ponderomotive energy Up � 6:0I eV where the

intensity I is in units of 1014 W cm�2 for a laser wave-
length of 800 nm [18,19].
Figures 2(a) and 2(b) present electron spectra as a func-

tion of delay between the harmonics and the dressing field,
obtained for two different detunings. Electrons are ob-
served at energies corresponding to one-photon absorption
of the harmonics (from the 17th) and at ‘‘sideband’’ en-
ergies due to two-photon ionization processes, which we
label by the corresponding net number of infrared photons
(16, 18, etc.). These sideband peaks strongly oscillate with
the delay at a frequency equal to 2!. The oscillations of
sidebands 18, 20, 22, and 24 do not depend on the detun-
ing, while sideband 16 is strongly affected by it. A Fourier
transform of the sideband signal over about 10 fs (four
cycles) allows us to determine the relative phases of the
sideband oscillations with a precision of 0.1 rad. The
phases are plotted in Fig. 2(c) for the two cases shown in
(a),(b).
The relationship between the R2PI phase and the ex-

perimental results in Fig. 2 can be understood within
second-order perturbation theory [10,12]. Using the nota-
tion from Fig. 1, the photoelectron signal Sf1 can be ex-

pressed as

Sf1 ¼ jaa1 þ ae2j2; (1)

where aa1 and a
e
2 are the two-photon probability amplitudes

with the superscript a or e referring to an absorption or
emission of an ! photon and with the subscript 1 or 2
referring to absorption of an !1 or !2 photon. Introducing
’1 and ’2 as the phases of the radiation fields, as well as

FIG. 2 (color online). Electron spectra as a function of delay
for detunings � ¼ 10 meV (a) and � ¼ 190 meV (b). The
oscillation of the 16th sideband depends on the detuning while
the others do not (see dashed line) (c) Phase of the oscillations of
the sideband peaks in light orange for (a) and dark red for (b).
The two results have been superposed at sideband 18.
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’a
1 and ’e

2 as the phase terms involved in the two-photon
transitions, Eq. (1) becomes

Sf1 ¼jjaa1jei’a
1
þi’1þi’þjae2jei’e

2
þi’2�i’j2

¼jaa1j2þjae2j2þ2jaa1ae2jcosð’a
1�’e

2þ2’þ’1�’2Þ:
(2)

The cosine term leads to the modulation of the signal
observed in the experiment. In general, the phase terms
involved do not depend much on the photon energies. In
two-photon ionization via a resonant state, however, the
phase (’a

1) changes by � across the resonance. The study
of the variation of ’a

1 as a function of detuning � provides
interesting information on the two-photon ionization pro-
cess, e.g., on the relative importance of resonant and non-
resonant contributions, ac Stark shift of the resonant state,
depending on the spectral characteristics of the XUV and
laser fields.

The variation of ’a
1 with the detuning can be experi-

mentally obtained from Sf1ð’Þ provided the other phase

terms ’e
2, ’1, ’2 do not depend on � and provided the

phase delay ’ is known in absolute value, which is gen-
erally not the case. Sf1ð’; �Þ is therefore referenced against
Sf2ð’Þ, assuming that the phase terms involved,’a

2 and’
e
3,

are independent of the detuning and thus removing the
need of knowledge of the absolute ’. When changing �,
the laser intensity used to generate the harmonics varies
slightly, leading to a (small) variation of the group delay of
the attosecond pulses and thus of ’1 � ’2. We take this
effect into account by assuming a linear group delay [20],
which we experimentally determine using higher-order
sidebands. Its contribution is then subtracted from the mea-
sured phases and the phase of sideband 18 is set to zero for
all detunings. The results are presented in Fig. 3(a). As
expected, the phases corresponding to all sidebands except
the 16th are almost superposed to each other and show no
influence of detuning.

Figure 3(b) shows the variation of the R2PI phase as a
function of detuning. We can tune only over half the
resonance since for lower (negative detunings) sideband
16 moves progressively below the ionization threshold,
thus making our phase measurement inaccurate. We also
compare our measurements with the results of two differ-
ent calculations (solid lines): The dark red line is obtained
by a simple perturbative model [21], only considering the
resonant state. Gaussian envelopes were used for the ir and
XUV pulses with FWHMs of 30 and 10 fs, respectively.
The light orange curve shows the result of calculations
performed by numerically integrating the TDSE in the
single active electron approximation [14] in conditions
close to the experiment. We use a He pseudopotential
with the energy of the 1s3p state equal to 23.039 eV. The
result is therefore shifted by 40 meV for comparison with
the experiment. The result shown in Fig. 3(b) agrees very
well with the experiment, thus confirming our detuning
calibration.

In order to investigate how the 1s3p resonance behaves
in a laser field, we measured the dependence of the R2PI
phase on the dressing laser intensity. Figure 4(a) shows the
R2PI phase determined similarly to Fig. 3(a) but keeping
the wavelength constant at 805.5 nm and gradually increas-
ing the dressing intensity. We verified that even at the
highest intensity, higher-order multiphoton transitions
were still negligible [22], thus not affecting our phase
determination. Increasing the intensity from 0.1 to 1:8�
1012 W=cm2, the R2PI phase varies from�0:7 to 0.9 radi-
ans. Figure 4(b) presents the intensity dependence of all of
the measured phases (circles). We find an almost linear
increase of the phase with intensity, as indicated by the
dark red curve obtained by averaging, with a saturation at
around 1:3� 1012 W=cm2, due to the suppression of R2PI
when part of the two-photon excitation bandwidth moves
partly below the ionization threshold. The light orange line
obtained by TDSE calculations agrees well with our
measurements.
Combining our previous phase measurements as a func-

tion of detuning for a fixed (low) intensity and as a function
of intensity (for a fixed detuning) allows us to determine
the intensity dependence of the 1s2 ! 1s3p transition
energy. Both experimental (dark red solid) and TDSE
(light orange solid) results are shown in Fig. 5(a). The
dashed line is equal to �E1s2 þUp, representing the varia-

tion of the transition energy if the 1s3p state was moving as
a high-lying Rydberg state, following Up [19]. The ac

Stark shift of the fundamental state �E1s2 is very small,
equal to �0:3I eV where the intensity I is in units of
1014 W cm�2 [23,24] so that �E1s2 þUp � Up. We find

that the measured transition energy increases about 40%

FIG. 3 (color online). (a) Measured sideband phases corrected
for the attosecond group delay and normalized at zero for
sideband 18. Different detunings are indicated by the color
code [going from 11 meV below the resonance (dark red, lower
points in order 16) to 190 meV above the resonance (light
orange, upper in order 16)]. (b) Measurements (circles) of the
R2PI phase as a function of detuning. The dark red line indicates
results of a simple perturbative model while the light orange line
shows results of simulations based on solving the TDSE.
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more rapidly with the laser intensity than Up, up to the

saturation at 1:3� 1012 W cm�2.
To better understand this faster than ponderomotive

shift, we have calculated the XUV absorption cross sec-
tion for helium in the presence of an 800 nm field by
numerically solving the TDSE as a function of both
XUV wavelength and laser intensity [Fig. 5(b)]. Using an
XUV bandwidth of 50 meVor smaller we find that beyond
1� 1011 Wcm�2, the 3p resonance has at least two com-
ponents the higher of which shifts significantly faster than
the ponderomotive energy. With the experimental XUV
bandwidth (150 meV), however, the different components
cannot be resolved. As a result, we observe shifts exceed-
ing E1s2 þUp. Experimentally, the predicted structure in

the 3p resonance could be observed using longer funda-
mental laser pulses, leading to spectrally narrower har-
monic peaks.

In conclusion, we have shown how well-characterized
phase-locked high-order harmonics can be used to measure
the phase of R2PI and we have applied it to the determi-
nation of the ac Stark shift of the 1s3p 1P1 state. Although
our resolution was unsufficient to detect the splitting of the
excited state, we observed a nontrivial, faster than pon-
deromotive, ac Stark shift. Our method, here demonstrated
in He, could be applied to the study of numerous resonant
or quasiresonant processes in atoms and molecules.
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FIG. 4 (color online). Intensity dependence of the R2PI phase.
(a) Harmonic phase differences at dressing intensities from 0.1
(dark red) to 2:2� 1012 Wcm�2 (light orange), with attosecond
chirp correction and normalization at sideband 18. (b) R2PI
phase (circles) as a function of intensity, with a six-point moving
average (dark red line) and TDSE (light orange).

FIG. 5 (color online). (a) Measured transition energy of the
1s3p state. Experimental results (solid dark red), compared with
�E1s2 þUp (dashed) and TDSE calculation (solid light orange).

(b) TDSE calculation of XUV absorption for three different
intensities with 50 meV resolution. The position of the 1s3p
state is indicated by the dashed line.
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We study photoionization of argon atoms excited by attosecond pulses using an interferometric

measurement technique. We measure the difference in time delays between electrons emitted from the

3s2 and from the 3p6 shell, at different excitation energies ranging from 32 to 42 eV. The determination of

photoemission time delays requires taking into account the measurement process, involving the interac-

tion with a probing infrared field. This contribution can be estimated using a universal formula and is

found to account for a substantial fraction of the measured delay.
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The interaction of light with matter is an essential pro-
cess in nature and, in particular, the photoelectric effect has
been studied during decades using synchrotron radiation
[1]. The development of ultrashort light pulses in the atto-
second range allows scientists to tackle temporal aspects of
electron transitions in atoms, molecules, and more com-
plex systems. Cavalieri et al. [2] investigated photoemis-
sion from the valence and the conduction band in tungsten
crystals using single attosecond pulses and an infrared (ir)
probing field through the streaking technique [3]. Recently,
Schultze et al. [4] implemented the same technique to
study photoemission from the 2s2 and 2p6 shells in neon
at a pulse energy of 100 eV. They measured a difference in
photoemission time delays equal to 21 as, a value which is
significantly larger than the expected theoretical value, as
further discussed in a series of theoretical articles [5–8].

In this Letter, we examine photoemission of electrons
from the 3s2 and 3p6 shells in argon. Our method uses a
frequency comb of high-order harmonics with photon en-
ergies varying from 32 to 42 eV for the photoionization and
a weak ir field for probing the outgoing electrons. It is
based on interferometry and presents analogies with co-
herent control schemes used for phase measurements close
to resonant states [9–11]. Here we explore single photo-
ionization in the threshold region for the 3s2 shell, where
one expects large variation in photoemission times. The
measurement shows a delay between the ionization from
the 3s2 and 3p6 shells which varies with photon energy. We
investigate the influence of the interaction with the weak ir
field, which is needed to do the interferometric measure-
ment and get the temporal information. Probing the out-
going electron wave packet (EWP), even with a weak ir
field, affects electron motion and therefore the measured
delay. Fortunately, this effect can be analytically calculated
and takes a universal form, that allows us to disentangle the
different effects and gives us access to the single-photon
ionization time, also called Wigner time [12,13].

The basic principle of our experiment is shown in Fig. 1.
We ionize argon using a comb of high-order harmonics.
With a central frequency of the harmonic comb above the
binding energy of the 3s shell we simultaneously create
two independent EWPs, one originating from the 3s2 and
one from the 3p6 shell. The presence of a fraction of the
fundamental laser field with frequency ! induces the for-
mation of sideband peaks due to two-photon transitions
including absorption or emission of an ir photon [14,15].
Two different and interfering quantum paths involving
consecutive harmonics lead to the same sideband (see
Fig. 1). When changing the delay � between the harmonic
comb and the laser field, the sideband signal from a given
shell is modulated as [16]

Sð�Þ ¼ �þ � cos½2!ð�� �A � �IÞ�; (1)

FIG. 1 (color online). Principle of the measurement. Two
EWPs originating from different shells are simultaneously cre-
ated using the same comb of high-order harmonics. The out-
going EWPs are further probed with a weak ir field. For
simplicity only two harmonics are indicated. Also shown is the
experimental harmonic spectrum used.
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where �, � are two constants independent of �. The term
�A is proportional to the difference in phase between
consecutive harmonics and describes the group delay of
the attosecond pulses, while �I represents the atomic delay
due to the two-photon ionization process [17]. As we will
show below �I can be connected to the Wigner time delay
�W for the single-photon ionization. The knowledge of �A
as well as of the absolute value of the delay � would enable
us to determine �I directly. However, these variables are
difficult to obtain separately. The simultaneous measure-
ment of the two EWPs allows us to cancel the influence
of the attosecond group delay �A and to determine
�Ið3sÞ � �Ið3pÞ at the same photon energy, i.e., at kinetic
energies separated by the difference in binding energy
between the two shells (13.5 eV).

Our experiments were performed with a 800 nm, 30 fs
titanium-sapphire laser system [18]. High-order harmonics
were generated in a pulsed Ar gas cell and spatially filtered
using a small aperture [19]. We used a 0:2 �m thick
chromium thin film to select a 10 eV-broad spectral win-
dow corresponding to harmonic 21 to 27 at 38 eV central
energy (see Fig. 1). This filter was chosen to separate the
wave packets emitted from the 3s and 3p shells in energy.
The comb of four phase-locked harmonics, corresponding
to a train of attosecond pulses with a 450 as duration, was
focused by a toroidal mirror into the sensitive region of a
magnetic bottle electron spectrometer containing a diffu-
sive Ar gas jet. Part of the laser field was extracted prior to
the high-order harmonic generation and recombined colli-
nearly with the harmonics with a variable time delay �. The
precision of our measurement does not depend on the
duration of the attosecond extreme-ultraviolet (xuv) pulses
but on the interferometric stability of our experiment,
estimated to be 50 as.

Figures 2(a) and 2(b) present electron spectra as a func-
tion of the delay � between the xuv and the ir pulses. The
low-energy spectrum in Fig. 2(a) shows electron peaks at
energies corresponding to single-photon ionization from
the 3s shell by the harmonics and additional sideband
peaks due to two-photon transitions. The high-energy
part of the spectrum shown in Fig. 2(b) presents the corres-
ponding photoelectron spectra for 3p ionization. Although
simultaneously recorded the results are presented sepa-
rately due to the unequal signal strength caused by the
difference in cross section and detector sensitivity (note the
different color scales). For both channels the sideband
signal oscillates, allowing us to extract the delay by
Fourier transform along the time axis for a weak ir field
[20]. The ir intensity was estimated to be well below
1012 W cm�2. Figure 2(c) presents the delays obtained
for the scan shown in (a) and (b), corrected for the influ-
ence of the Cr filter, which is positively dispersive in this
region [21]. The variation in delay reflects mainly the
positive chirp of the attosecond pulses. The main experi-
mental result of the present work is the significant offset

between the delays measured for the two wave packets. To
emphasize this result, we show as a dashed line the
3p delays shifted down in energy by 13.5 eV. Taking the
difference between the measured delays at the same exci-
tation energy allows us to eliminate the attosecond chirp
and to reduce the effect of temporal drifts in the interfer-
ometer. Averaging over five independent measurements,
we determine a difference in delays �Ið3sÞ � �Ið3pÞ equal
to �40� 10 as for sideband 22, �110� 10 as for side-
band 24, and �80� 30 as for sideband 26.
To understand the meaning of these time delays, we need

to establish the connection between single-photon ioniza-
tion and the two-photon ionization process used in the
measurement. The phase of the transition matrix element
describing a single ionization process towards a final state
with angular momentum ‘ is the scattering phase �‘, i.e.,
the phase accumulated by the photoelectron when escaping
from the atom. Its energy derivative �W ¼ @@�‘ð�Þ=@�
represents the ‘‘photoionization time delay’’ also called
Wigner time delay [12,13]. Clearly, both �‘ and �W de-
pend on the details of the atomic potential and their
computation remains a challenge for theory. Using
second-order perturbation theory, the transition matrix ele-
ment for two-photon ionization involving absorption of a
harmonic photon !H and an ir photon ! from an initial
state ’i to a continuum state ’~k with asymptotic momen-

tum ~k can, using atomic units, be written as

Mð2Þ
a ð ~kÞ¼�iELEH lim

"!0þ

XZ
n

h’~kj ~� � ~rj’nih’nj ~� � ~rj’ii
�iþ!H��nþ i"

: (2)

The complex amplitudes of the laser and harmonic fields
are denoted EL and EH and ~� is their common polarization
vector. The energies of the initial and intermediate states
are denoted �i and �n, respectively. The integral sum is
performed over all possible intermediate states ’n.

FIG. 2 (color). Energy spectra as a function of delay from
electrons liberated from the 3s shell (a) and the 3p shell (b),
respectively. (c) Retrieved delays corrected for the Cr group
delay. Also shown are the 3p delays shifted down in energy for
comparison with the 3s delays (dashed line).
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The index a indicates that we first discuss a two-photon
process with absorption of the ir photon.

We consider the channels s ! p ! ‘ with ‘ ¼ s, d.
Using spherical coordinates, separating radial and angular
parts, and expanding the final wave function into partial
waves, the transition matrix element becomes

Mð2Þ
a ð ~kÞ ¼ �iELEH

X
‘¼0;2

C‘0Y‘0ðk̂Þei�‘ðkÞTð2Þ
a ðkÞ; (3)

where Y‘0 is a spherical harmonic,C‘0 is the corresponding
angular coefficient, and �‘ is the scattering phase of the
final state. The radial two-photon transition matrix element

Tð2Þ
a ðkÞ can be expressed as [15,17]

Tð2Þ
a ðkÞ¼XZ

n

hRk‘jrjRn1ihRn1jrjRi0i
�iþ!H��nþ i"

¼hRk‘jrj�ka1i: (4)

In the right part of Eq. (4) we introduce the perturbed wave
function �ka1 with the wave number ka such that k2a=2 ¼
�i þ!H ¼ k2=2�! (see Fig. 1) [22]. To get an estimate

of the phase of Tð2Þ
a , we consider the asymptotic behavior of

the wave functions involved in Eq. (4). The perturbed wave
function �ka1 is an outgoing wave [23,24]

lim
r!1�ka1ðrÞ / ei½kar�1=2�þ1=ðkaÞ lnð2karÞþ�1ðkaÞ�; (5)

while Rk‘ is real with an asymptotic behavior:

lim
r!1Rk‘ðrÞ / sin

�
kr� ‘

2
�þ 1

k
lnð2krÞ þ �‘ðkÞ

�
: (6)

The factor ‘�=2 arises from the centrifugal potential,
while lnð2krÞ=k is a correction due to the long-range
Coulomb potential. Using Eqs. (3)–(6) we find an approxi-

mate expression for Mð2Þ
a ðkÞ

Mð2Þ
a ðkÞ / ei�1ðkaÞ|fflffl{zfflffl}

ðIÞ
�

�
i

ka � k

�
iz ð2kÞi=k
ð2kaÞi=ðkaÞ

�ð2þ izÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

; (7)

where z ¼ 1=ka � 1=k and �ðzÞ is the complex gamma
function. The first phase term (I) is the scattering phase of
the intermediate state and identical to the phase of the
corresponding one-photon ionization. The phase of term
(II) can be assigned to the laser-driven transition connect-
ing the two continuum states in the presence of the long-
range Coulomb potential, ’cc

a . It is independent of the
short-range behavior of the atomic potential and therefore
universal. Corrections to this approximation due to the core
are expected to become important only at energies close to
threshold.

The phase of the two-photon matrix elementMð2Þ
e for the

second pathway, i.e., absorption of an harmonic photon!H

followed by emission of an ir photon! via an intermediate
state with wave number k2e=2 ¼ k2=2þ! (see Fig. 1),
can be derived in a similar manner. The total interference

signal is obtained by angular integration of jMð2Þ
a þMð2Þ

e j2.
It can be written as Eq. (1), with

�I ¼ �1ðkeÞ � �1ðkaÞ
2!|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�W

þ ’cc
e ðkÞ � ’cc

a ðkÞ
2!|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�cc

: (8)

This result gives an intuitive understanding of the ioniza-
tion time �Ið3sÞ. It can be expressed as the sum of the
Wigner time delay �W for one-photon ionization 3s ! �p
and an additional continuum-continuum delay �cc inherent
to the measuring process. This analytical derivation can be
easily generalized to other ionization channels.
Figure 3 shows the delays involved in the three ioniza-

tion channels 3p ! �s (a), 3p ! �d (b), and 3s ! �p (c)
in Ar as a function of kinetic energy. The Wigner time
delay �W (dashed) is obtained by taking the derivative of
the scattering phase (Coulomb phase plus phase shift taken
from [25]). For comparison, we also show in (d) the delays
for the pathway 1s ! �p in hydrogen in the same energy
region, using the Coulomb phase. The continuum-
continuum delay �cc (dash-dotted) is calculated for a
800 nm laser wavelength and identical for all the channels
and atoms. The solid line indicates �I as the sum of the two
contributions. The Wigner time delay variation can be
nicely and intuitively interpreted. Low-energy electrons
take a longer time to escape from a given shell than
high-energy electrons. Furthermore, electrons escaping to
a channel with higher angular momentum take a longer
time than those escaping to a channel with low angular
momentum because of the centrifugal barrier. The
continuum-continuum delay has the opposite behavior

FIG. 3 (color online). Computed delays associated with the
following ionization channels: (a) 3p ! �s, (b) 3p ! �d,
(c) 3s ! �p in Ar, and (d) 1s ! �p in H. The dashed lines
(red) are the one-photon Wigner time delays. The dash-dotted
lines (blue) represent the estimated delays induced by the
measurement �cc. The sum of the two delays is shown as a solid
line (black). The dotted line (black) in (d) is the result of an exact
calculation in H.
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and leads to an apparent quicker escape for the low-energy
electrons. Finally, we also indicate in Fig. 3(d) results from
exact calculations in H (dotted line). The comparison
between the solid and dotted lines gives an estimation of
the error made in considering only the asymptotic behav-
iors of the perturbed and final wave functions. For the
energy range considered in the present work the asy-
mmetry parameter remains close to 2 [26], which indi-
cates that the ionization channel 3p ! �d dominates over
3p ! �s. Neglecting the 3p ! �s channel, we calculate
�Ið3sÞ � �Ið3pÞ at the same excitation energy [Eq. (8)].
Figure 4 presents the approximated delays (solid line),
together with the experimental results (r). The experimen-
tal results at the two highest energies agree well with the
results of our calculation, indicating that the scattering
phases [25] and our approximated continuum-continuum
transition are reliable in this region. The lowest energy
point, however, lies several standard deviations away from
the calculated value. In this region the core may play a
more important role for the continuum-continuum transi-
tion, and the Wigner time delays may differ from those
calculated in [25]. In addition, the finite difference ap-
proximation to the Wigner time delay in Eq. (8) might
break down in the presence of sharp resonances [27]. Using
our experimental measurements combined with our esti-
mated continuum-continuum delays, we can tentatively
deduce the difference in single photoemission delays to
be equal to 140 as at 34 eV and �20 as at 37 and 40 eV.

In conclusion, we have performed experimental mea-
surements of photoemission from the 3s2 and 3p6 shells in
Ar, using interferometry with a weak ir field to probe the
created EWPs. We identify two contributions to the
measured delays: the Wigner time delay and a delay in-
herent to the measurement process. Both contributions are
most important near threshold and vanish as the energy

increases. We believe that the work presented here will
stimulate further experiments, aiming at measuring photo-
emission delays in a variety of systems, and providing data
that could be compared to advanced theoretical
calculations.
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J. Schafer for stimulating discussions. This research was
supported by the Marie Curie programs ATTOCO (IEF)
and ATTOFEL (ITN), the European Research Council
(ALMA), the Joint Research Programme ALADIN of
Laserlab-Europe II, the Swedish Foundation for Strategic
Research, the Swedish Research Council, the Knut and
Alice Wallenberg Foundation, and the French ANR
ATTO-WAVE.

*anne.lhuillier@fysik.lth.se
http://www.atto.fysik.lth.se

[1] V. Schmidt, Rep. Prog. Phys. 55, 1483 (1992).
[2] A. L. Cavalieri et al., Nature (London) 449, 1029 (2007).
[3] J. Itatani et al., Phys. Rev. Lett. 88, 173903 (2002).
[4] M. Schultze et al., Science 328, 1658 (2010).
[5] V. S. Yakovlev, J. Gagnon, N. Karpowicz, and F. Krausz,

Phys. Rev. Lett. 105, 073001 (2010).
[6] J. C. Baggesen and L. B. Madsen, Phys. Rev. Lett. 104,

043602 (2010).
[7] C.-H. Zhang and U. Thumm, Phys. Rev. A 82, 043405

(2010).
[8] A. S. Kheifets and I. A. Ivanov, Phys. Rev. Lett. 105,

233002 (2010).
[9] R. Yamazaki and D. S. Elliott, Phys. Rev. Lett. 98, 053001

(2007).
[10] S. Haessler et al., Phys. Rev. A 80, 011404 (2009).
[11] M. Swoboda et al., Phys. Rev. Lett. 104, 103003 (2010).
[12] E. P. Wigner, Phys. Rev. 98, 145 (1955).
[13] F. T. Smith, Phys. Rev. 118, 349 (1960).
[14] J.M. Schins et al., J. Opt. Soc. Am. B 13, 197 (1996).
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FIG. 4 (color online). Comparison between the measured de-
lay differences for ionization of Ar from the 3s and 3p shells
(diamonds) with calculations performed according to the ap-
proximate theory developed in this work (solid black line). Also
shown is the delay expected for one-photon ionization (dashed
red line) and the laser-driven continuum-continuum transition
(dash-dotted blue line).
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Abstract. We use a strong two-colour laser field composed of the fundamental
(800 nm) and the second harmonic (400 nm) of an infrared (IR) laser field to
generate attosecond pulses with controlled spectral and temporal properties.
With a second-harmonic intensity equal to 15% of the IR intensity the second-
harmonic field is strong enough to significantly alter and control the electron
trajectories in the generation process. This enables us to tune the central photon
energy of the attosecond pulses by changing the phase difference between the IR
and the second-harmonic fields. In the time domain the radiation is emitted as a
sequence of pulses separated by a full IR cycle. We also perform calculations
showing that the effect of even stronger second-harmonic fields leads to an
extended tunable range under conditions that are experimentally feasible.
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1. Introduction

Attosecond pulses represent the sharpest instruments available to study ultrafast dynamics [1].
These pulses are formed when a strong laser field interacts with a gaseous medium and the
underlying physics is well described by the three step model. In this model the electron tunnels
through the atomic potential, which is distorted by the strong laser field (I); gets accelerated
by the field in the continuum (II); and may recombine with its parent ion (III) emitting the
accumulated excess energy as a burst of extreme ultra-violet (XUV) light [2, 3]. For multi-
cycle pulses, the repetition of the process, combined with the inversion symmetry of the atomic
potential, leads in the time domain to a train of attosecond pulses separated by half a laser
cycle and in the spectral domain to odd harmonics of the laser frequency. Spectral and temporal
control of the attosecond pulse generation requires shaping of the generating laser field on
a sub-cycle level. One example of such sub-cycle control is the use of phase stabilized few-
cycle laser pulses [4], where the short pulse duration leads to a change in the field amplitude
between consecutive half-cycles. Another, more elaborate, method is to use pulses with a time-
varying polarization [5]–[7]. These methods allow control to be exerted by changing the carrier
envelope phase of the laser pulse, in particular leading to the generation of single attosecond
pulses [7, 8]. The technique with time-varying polarization also gives control of the photon
energy of the pulses [9].

An alternative approach to control the sub-cycle field structure and thereby the electron
dynamics is to mix the fundamental infrared (IR) field with its second harmonic [10]–[12]. The
combined field can be written as: E(t) = Eω[sin(ωt) +

√
Rsin(2ωt + ϕ)], where

√
R= E2ω/Eω

is the ratio between the two field amplitudes E2ω and Eω, ω is the IR frequency, and ϕ a
controllable phase difference between the fields, see figure 1(a). The shape and strength of the
combined field in consecutive IR half-cycles differ beyond the simple sign change that occurs
in a one colour field. The electron trajectories are also altered and instead of the normal two
trajectories with excursion times (τ ) shorter than one IR period (T ), we now get four [12], as
illustrated in figure 1(b). Two of these trajectories (a short and a long) come from ionization
during the half-cycle when the electric field is strong and recombination during the weaker
half-cycle, we will refer to these as high → low trajectories. The other two trajectories start
when the field is weak and return during the stronger half-cycle (low → high) with the result
that the harmonic emission from these trajectories reaches high photon energies but the yield
can be orders of magnitude weaker than the emission from the high → low trajectories due
to the difference in ionization probability. Schemes to use the low → high trajectories for
isolated attosecond pulse generation have been proposed [13, 14]. We instead use the high
→ low trajectories which give much higher conversion efficiencies. In previous work, we
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Figure 1. (a) IR field (dashed black) (I = 7.5 × 1013 W cm−2) and second-
harmonic fields with R= 15%. The phase differences for the three second-
harmonic fields are ϕ = 0 rad (ice-blue), ϕ = 0.6 rad (green) and ϕ = 1.2 rad
(red). The resulting E field is the sum of the IR and one of the 2ω fields. The
timescale units are IR periods (T ). (b) Return energy for the high → low and
low → high trajectories calculated using classical mechanics for ϕ = 0.6 in
solid and dotted green, respectively. Long trajectories are in the shaded regions,
τ > 0.65T . (c) High → low return for the three phases shown in (a). The dashed
black curves in (b) and (c) show the return energy for a one-colour IR field. The
kinetic energy of the electrons is given in units of the ponderomotive energy Up

for the IR field. τ is the time the electron spends in the continuum from ionization
to recombination and 1E is the tunable energy range.

have demonstrated that adding a second harmonic with a relative intensity of R= 10% will
induce a sufficiently strong variation between consecutive IR-half-cycles to efficiently cancel
the generation every second half-cycle, which results in the generation of an attosecond pulse
train (APT) with only one pulse per IR cycle [12]. In combination with the polarization gating
technique mentioned above this can lead to the generation of isolated attosecond pulses [15].

In this paper we show that the field structure within each half-cycle can be controlled by
using an even stronger blue field. The generated APT still consists of one pulse per IR cycle
and the signature of the additional control is that central energy of the attosecond pulses can
be tuned by changing ϕ. We demonstrate that already R= 15% is sufficient to tune the peak
of the harmonic spectrum between 23 and 29 eV. We also perform calculations to investigate
the influence of higher field strengths. We find that the tunable range can be extended to 2.5Up,
Up being the ponderomotive energy of the IR, for R= 50% and by carefully choosing the
conditions a narrow frequency range can be selected and further enhanced.

In figure 1(c), we plot the return energy as a function of return time for the high → low
trajectories for three different values of ϕ together with the return energy for a one colour
driving field. For a one colour driving field the highest return energy (cut-off) corresponds to
an excursion time (τ ) of 0.65T where T is the period of the IR field [16]. Trajectories with
longer excursion times result in more divergent harmonic emission and can hence be strongly
reduced after the generation using an aperture [17]. For the two-colour field we will continue
to use τ = 0.65T to distinguish between short and long trajectories since the divergence of
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Figure 2. Experimental setup for two-colour generation and characterization
of APTs.

the emission mainly depends on the time spent in the continuum. The highest energy reached
during the short (high → low) trajectory depends strongly on the relative delay between the two
fields, ϕ, figure 1(c). We find both experimentally and theoretically that we get most of the
emission where the slope of the return energy curve decreases. In some cases the curve goes
through a maximum at this point (figure 1(c) blue curve). By selecting only the emission from
the short, high → low trajectories we thus get a pulse train with only one pulse per cycle
and a central energy that can be tuned by changing the delay between the two fields. The
central energies of spectra calculated within the strong field approximation (SFA) for the same
parameters are marked with + in figure 1(c) and the energy difference between the two markers
i.e. the tunable range is denoted 1E .

2. Experimental method

The setup used to generate the attosecond pulses and characterize their spectral and temporal
properties is schematized in figure 2. Incoming 35 fs, 800 nm, 2 mJ laser pulses are sent
through a 0.6 mm KDP (potassium dihydrogen phosphate), type I crystal for second-harmonic
generation. The IR and the generated second-harmonic radiation (blue) are separated in a
dichroic interferometer where the phase difference between the two colours, ϕ, can be adjusted.
Before the IR and the blue are combined at the exit of the interferometer, the polarization of
the blue is made parallel with the IR and a fraction of the IR is split off as a probe. After
the interferometer the two-colour field is focused into a 1 kHz pulsed Ar gas-target to generate
harmonics, which are filtered spectrally and spatially. The spectral filtering is done using a
200 nm thick aluminium (Al) transmission filter that blocks the two-colour driving field and the
low-order harmonics and improves the synchronization of the transmitted harmonics [18]. The
filter does not significantly affect the shape of the high harmonic spectrum as the transmission
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of Al is rather constant in the studied spectral region (20–40 eV)4. The emission is spatially
filtered using a 1.5 mm aperture, located 400 mm from the laser focus, which efficiently blocks
the more divergent contributions from the long trajectories [19]. The spatial filter serves the dual
purpose of being a recombination mirror. The back side is a convex mirror off which the probe
is reflected and made collinear with the XUV light.

The harmonic emission and the co-propagating probe are focused into an atomic Ar beam
inside a velocity map imaging spectrometer (VMIS) [20]. The VMIS projects the 3D momentum
distribution of the ejected photoelectrons onto a micro-channel plate detector coupled to a
phosphor screen, which is read out by a CCD camera. From the measured 2D projection, the
full 3D momentum distribution of the photoelectrons can be unambigously retrieved using an
iterative inversion algorithm [21], and from this the photoelectron and corresponding photon
spectra shown below can be easily extracted. With the probe present at the time of ionization the
energy distribution of the electrons can be shifted as a function of XUV–probe delay [22]–[24].
The shift in momentum is proportional to the vector potential of the probe field, A(t), at the
time of ionization, 1p = −eA(ti). The streaking of the photoelectrons allows us to recover
the duration of the attosecond pulses [25] since the pulse periodicity is matched exactly to a
full IR cycle and consecutive ionization events are identical for a multi-cycle laser [26]. The
strength of the probe field has to be chosen below that necessary to turn the photoelectrons
around and thereby induce coherent electron scattering [26] in order not to perturb the temporal
characterization. Coherent electron scattering occurs when the dimensionless parameter

γ̃ =

√
h̄ωc−Ip

2Up
is less than 1, where h̄ωc is the central energy of the XUV light and Ip is the

ionization potential of the target atom. In the experiment γ̃ = 3.7 and no electron–ion interaction
is expected.

3. Results

Experimental results showing spectral shaping are presented in figures 3(a) and (c). In (a)
harmonic spectra are plotted as a function of ϕ, for an IR intensity estimated to be 7.5 ×

1013 W cm−2 and R= 15%. The odd and even harmonics have comparable strengths and
oscillate with ϕ with a period of π . The positions of the oscillation maxima depend strongly and
almost linearly on the harmonic order. As a consequence, the central frequency can easily be
varied simply by changing ϕ. The measured tunability extends over 6 eV, limited mainly by the
target gas (Ar) and the intensities used. The tunable range, 1E , can be increased by increasing
the IR intensity while keeping R fixed. Higher intensity might demand a target gas with higher
ionization potential. For a fixed R, 1E is proportional to Up and thus the intensity. For the
intensity we use in the calculations and experiment presented in figures 1 and 3, 1E ≈ Up.

We also perform a temporal measurement at a phase ϕ marked with green in figure 3(a).
The phase was chosen to be within the range where the APT consists of one pulse per IR
cycle, i.e. between the ice-blue and red lines. In figure 4, the presence of the probe shifts the
photoelectron distribution. The on-axis photoelectron spectra are plotted as a function of the
XUV–probe delay in (a) together with an angular distribution in (b), taken at the XUV–probe
delay indicated by the white line in (a), where streaking is maximized. The fact that the energy
transfer in (a) is either upward or downward proves that we only have one attosecond pulse
per IR cycle. The phase of the attosecond pulses can be retrieved either by considering the

4 Center for X-Ray Optics, Lawrence Berkley National Laboratory.
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Figure 3. (a) and (b) photon energies as a function of ϕ, (a) an experimental scan
and (b) a calculated scan where only short trajectories are included. (c) and (d)
spectra for minimum and maximum energy taken at the relative phases marked
with ice-blue and red lines in the scans, (c) experimental and (d) calculated. The
green line in (a) indicates the relative phase for which the pulse duration was
measured.

Figure 4. (a) Electron energy distribution along the polarization axis as a
function of XUV–probe delay. (b) Electron momentum distribution at the
XUV–probe delay when streaking is maximized. The probe-field is polarized
along the y-axis. (c) Momentum asymmetry as a function of GDD, red curve
and left y-axis, and pulse duration as a function of GDD, green curve and right
y-axis. The ice-blue arrows point out the path starting from the measured
1p1/1p2 to the retrieved GDD where it meets the red curve and the pulse
duration where it meets the green curve.
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full scan [27] (figure 4(a)) or the up/down asymmetry, 1p1/1p2, of the angular distribution
at XUV–probe delays corresponding to maximum streaking i.e. when A(t) = 0 at the time
of ionization (figure 4(b)). We choose the latter technique which in principle can be used to
measure the pulse-duration of the attosecond pulses with a single shot. Electrons leaving the
atom upward and downward to the probe polarization direction are affected differently by
the probe field [22]. In figure 4(b) the upward electrons get a more narrow distribution than
the downward electrons (1p1 < 1p2). For each combination of harmonic spectrum and probe
intensity the ratio 1p1/1p2 depends on the group delay dispersion (GDD) of the attosecond
pulses in a unique way. The probe intensity can be extracted from the maximum momentum
shift in the scan. For our measured harmonic spectrum and probe intensity we calculate, using
the SFA, how the electron distributions change with GDD. This allows us to deduce 1p1/1p2

as a function of GDD (figure 4(c) red line). The variation of the pulse duration with GDD
is indicated by the green line. From our experimentally measured ratio, 1p1/1p2 = 0.85, we
obtain a GDD of 0.015 fs2 and a pulse duration of 300 as. The negative GDD of the Al-filter
compresses the pulse from 450 as towards the transform limit of 250 as.

Our theoretical calculations consist of solving the time-dependent Schrödinger equation
within the SFA [28]. The atomic dipole 〈x(ω)〉 from the calculations is converted to an
intensity spectrum by taking the product ω4

|〈x(ω)〉|2. Experimentally, contributions from the
short trajectories can be selected through phase matching and spatial filtering [29]. To mimic
this effect in the single atom calculations we restrict the SFA integration to include only the
excursion times with: 0 < τ < 0.65T . Comparing calculations and experiment, in figure 3, we
find a good agreement between the experimental (a) and the calculated (b) spectra. Note that
the calculations, based on a continuous driving field, give information about the intensity but
not the shape of individual harmonics. The experimental results together with the calculations
confirm the idea of sub-cycle control induced by the second-harmonic field. The probability
for ionization and return of the electron wave packet is increased over a certain energy range
close to the highest detected energy. This energy range can be tuned by changing the phase
difference ϕ.

We investigate theoretically how the sub-cycle control can be improved by increasing
R even further. The situation whereR= 25% and ϕ = 0.6 (see figure 5) stands out in particular
since the electron is pulled back with an almost constant energy over an extended period of
time, ∼ T/4, i.e. there are many sub-cycle tunnelling times that lead to the same final energy
(figure 5(b)). This results in a significant enhancement of the harmonic emission at that
particular energy. The intensity within the enhanced energy region is well above the already
strong harmonics for ϕ = 0 and 1.2 rad in figure 5(c).

ForR> 25%, the electron is pulled back to the atom in a more complex way and the return
energies are now highly dependent on ϕ. In figure 6(b), the calculated return energy is plotted as
a function of τ for three phase differences. We note that the energy curve can peak twice; once
for 0 < τ < 0.65T and another time for 0.65T < τ < T . The highest obtainable energy within
the short and long trajectory integration windows vary in opposite ways with ϕ. This results in a
central photon energy that decreases with ϕ for the short trajectories and increases for the long
trajectories, see figures 6(a) and (c). Under these conditions, 2 × 1014 W cm−2, R= 50%, the
tunable range is increased and we find that it is feasible to tune the energy over 2.5Up.
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Figure 5. (a) A calculated scan of ϕ including the phases presented in (b)
and (c). The calculations are done for an IR intensity of 2 × 1014 W cm−2 and
R= 25%. (b) Kinetic energy of the returning electrons for the three ϕ-values
shown in figure 1, ϕ = 0 rad (ice-blue), ϕ = 0.6 rad (green) and ϕ = 1.2 rad (red).
(c) Harmonic spectra showing the enhanced emission at 42 eV corresponding to
the flat region in the return energy curve (b).

Figure 6. Calculations for an IR intensity of 2 × 1014 and R= 50%. (a) SFA
calculations including short trajectories, 0 < τ < 0.65T . (b) Electron return
energies for ϕ = −0.4 rad (ice-blue), ϕ = 0.6 rad (green) and ϕ = 1.6 rad (red).
(c) SFA calculations for long trajectories, 0.65T < τ < T . The ϕ-values used to
calculate the return energies are indicated in the scans by the vertical dashed
lines. The horizontal dashed lines mark the peak of the spectra and connect the
peak to the return energy curves.

4. Conclusion

We have shown that by altering the driving laser field on a sub-cycle level using a two-colour
laser field, we can control the spectral properties of the generated APT by varying the phase
difference ϕ between the IR and its second harmonic. With this method we have extended the
spectral control beyond that of transmission filters. For applications this will be very useful
as the photon energy of the emitted attosecond pulses can be tuned close to or just below the
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ionization potential of a target gas to study below threshold ionization [30]. For almost all
values of ϕ one pulse per IR cycle is generated. For a sequence of pulses the central frequency
can be tuned by varying ϕ except for a narrow transition ϕ-region where two pulses per cycle
are generated. In the same manner, isolated attosecond pulses generated by a two-colour field
can be tuned in frequency by varying ϕ within the range where only one pulse is generated. By
increasing the second-harmonic intensity compared to the experiment presented here, we predict
that the tunable frequency range can be extended further and provide a flexible attosecond source
to meet future needs.
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We study high-order harmonic generation in argon driven by an intense 800 nm laser field and a small fraction of
its second harmonic. The intensity and divergence of the emitted even and odd harmonics are strongly modulated
as a function of the relative delay between the two fields. We provide a detailed analysis of the underlying
interference effects. The interference changes drastically when approaching the cutoff region due to a switch of
the dominant trajectory responsible for harmonic generation.
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High-order harmonic generation (HHG) from the inter-
action of an intense infrared (IR) laser field and a gas
target provides a coherent table-top radiation source in the
extreme ultraviolet (XUV) range, of interest for a number of
applications, in particular the production of attosecond light
pulses [1,2]. The underlying physics of HHG is well described
by the so-called three-step model [3–5]: an electron wave
packet is created by tunneling through the Coulomb barrier
deformed by the laser field; it is subsequently accelerated by
the laser field; and returns to the atom where it recombines to
the ground state, leading to the production of an XUV light
burst. This process is repeated every half-cycle of the IR laser
field, resulting in an attosecond pulse train (APT) with a pulse
separation of one-half IR period and to a spectrum of odd
harmonics.

There is a growing interest to achieve even better control
of the generation process [6], e.g., to obtain higher conversion
efficiency or to tailor attosecond pulses or pulse trains for
specific applications. Two-color HHG driven by an IR laser
and its second harmonic (blue) provides subcycle control
of the generating electric field, with the interesting property
that two consecutive half-cycles become different, and not
simply opposite in sign. This breakdown of the electric field
inversion symmetry has been used for several applications,
e.g., the generation of even and odd high-harmonics with
increased conversion efficiency [7,8] and the production of
attosecond pulse trains with one pulse per IR cycle [9,10]. In
some conditions, when the intensity of the second harmonic
is much weaker than that of the fundamental laser field,
even harmonics can be used to provide information about the
generation process [11–13].

In this article, we investigate both experimentally and
theoretically high-order harmonic generation driven by a
two-color laser field consisting of a 800 nm fundamental
and a fraction of its second harmonic. The even and odd
harmonic intensities are found to be modulated as a function
of IR-blue delay, forming in some cases a rich interference
pattern (Fig. 1). We investigate how these oscillations depend
on harmonic energy and intensity of the blue field and how
the spatial profiles of the emitted harmonics are affected. We
provide an interpretation based on quasiclassical calculations.

Experiments were performed using an amplified 10 Hz
titanium sapphire laser system delivering 40 fs pulses at
800 nm with energy up to 1 J. The results presented in this
article are obtained with only a small fraction (less than 10 mJ)

of this energy. The laser beam was sent through a 1.3 mm-thick
type I KDP (potassium dihydrogen phosphate) crystal to
generate the second harmonic. A Michelson interferometer
was used to separate and delay the second harmonic and to
make the polarizations of the two laser fields parallel to each
other. The relative delay was adjusted with a 500 µm-thick
glass plate. After recombination of the two colors, the beam
was focused by a spherical mirror with a 2 m focal length
into a cylindrical gas cell with 1 mm diameter and 15 mm
length, filled with Ar gas. Variable apertures were placed
in the fundamental and second harmonic beams to adjust
intensities and focusing geometries. These conditions are
such that phase matching is optimized and pulse energies per
harmonic reaching 100 nJ have been measured. The harmonic
spectra were detected by a flat-field XUV spectrometer, located
1.5 m from the source and allowing us to obtain spatial and
spectral information simultaneously [14].

Figures 1(a)–1(c) presents the spectra of the 21st to 24th
harmonics as a function of relative delay (τ ) in units of the
period of the blue field TB = 1.3 fs. The color code indicates
the intensity of the emitted light. When the blue intensity is
less than a percent of the IR [panel (a)], the odd and even
harmonics oscillate with opposite phase twice per blue cycle
[11–13]. When the blue intensity is increased to a few percent
[Figs. 1(b) and 1(c)], even and odd harmonics become
comparable in strength and vary more strongly with the IR-blue
delay.

Figure 2 compares the intensities of the 22nd (a) and
23rd (b) harmonics as a function of τ for the three different
intensities of the blue field used in Fig. 1. At low intensity (thin
red line), the odd and even harmonics oscillate out of phase.
When the blue intensity is increased, the patterns become more
complex, exhibiting multiple maxima per half blue period.
The number and position of these maxima depend on the blue
intensity, as well as harmonic order. These results arise from
the interferometric nature of the HHG process, which will be
analyzed in more detail in the following.

To understand the interference structure shown in Figs. 1
and 2, let us consider the radiation emitted every IR cycle
over a certain energy range. It comprises predominantly two
bursts, one each half-cycle. In absence of the blue field, they
are identical except for a change of sign. We further assume
that the emitted bursts are identical from one IR cycle to the
next. The radiation emitted from the interaction of an intense
laser field comprising n periods with an atom can be generally
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FIG. 1. (Color online) 21st to 24th harmonic spectra as a function
of the relative delay between the IR and blue fields for different
intensity ratios, increasing from about half a percent in (a) to a few
percent in (b) and (c). The IR intensity is estimated to be 1.8 ×
1014 W/cm2, based on the cutoff position. The color code indicates
the harmonic intensities in arbitrary units.

expressed as

s(t) =
j=n∑
j=1

a+(t) ⊗ δ(t − jT ) + a−(t) ⊗ δ

(
t − jT − T

2

)
,

(1)

where a+(t) and a−(t) are the fields emitted in the first and
second half period, respectively, and T is the IR field period.
If the blue field is weak, it mainly affects the phase of the
emitted radiation. a±(t) ≈ ±a(t) exp[±iσ (t)], where a(t) is
the pulse emitted from the first (positive) half period due to
the interaction with the fundamental field only, and σ (t) is a
slow function over time. The Fourier transform of the pulse
train can then be approximated as

S(�) ≈ A(�)
j=n∑
j=1

eij�T +iσ (�) − eij�T +i �T
2 −iσ (�), (2)
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FIG. 2. (Color online) Intensities of the 22nd (a) and 23rd
harmonics (b), normalized to the maximum value of the 23rd
harmonic for the three cases in Fig. 1. The thin red line, green dashed
line, and thick blue line correspond to (a), (b), and (c).

where A(�) is the Fourier transform of a(t) and σ (�) =
σ [tr (�)]. tr (�) represents the time at which the component
at frequency � of the light burst is emitted, i.e., the return
time of the corresponding classical electron trajectory. The �

dependence accounts for the chirp of the emitted radiation [15].
The power spectrum reduces to the form

|S(�)|2 ≈4 |A(�)|2
∣∣∣∣∣ sin

(
n�T

2

)
sin

(
�T

2

)
∣∣∣∣∣
2∣∣∣∣sin

[
�T

4
− σ (�)

]∣∣∣∣
2

, (3)

which has a straightforward interpretation. The first factor is
the spectrum emitted by a single attosecond pulse, the second
factor modulates this broad spectrum, leading to a comb of
even and odd harmonics. Finally the last factor cancels the
even harmonic components when there is no second harmonic
(σ = 0). When a second harmonic field is present, it modulates
the amplitude of both even and odd harmonics. For the even
harmonics (� = qω where ω is the IR frequency and q is
an even integer), |S(qω)|2 ∝ |sin[σ (qω)]|2, while for the odd
harmonics (q odd), |S(qω)|2 ∝ |cos[σ (qω)]|2.

The phase change induced by the blue field can be estimated
using the classical limit, Ip → 0. By treating the blue field as
a perturbation, σ (�) is found to be [13]

σ (�) = e

h̄

∫ tr

ti

dt ′xR(tr ,t
′)EB(t ′), (4)

where ti is the ionization time and e the electron charge. xR

denotes the position at time t ′ of an electron that starts its
motion in the IR field [ER(t) = E0

R sin(ωt)] at time ti . Finally,
EB is the second harmonic field EB(t) = E0

B sin(2ωt + φB).
Equation (4) can be rewritten as

σ (�) = σ0 sin[φB + δ(�)], (5)

with σ0 = eE0
B�(�)/h̄. �(�) and δ(�) are the frequency-

dependent modulus and argument of the Fourier transform at
2ω of the electron trajectory in the IR field.

Figures 3(a) and 3(b) shows the calculated intensity of
two consecutive harmonics (even and odd) as a function
of σ0 and delay, expressed here as (φB + δ)/2π , while
(c), (d) present lineouts at three different σ0, indicated by the
corresponding lines in (a) and (b). The odd and even harmonic
intensities strongly varies with delay in opposite phase with
each other, so that the total intensity remains constant. The
number of maxima increases with σ0, i.e., with the blue field
intensity.

When the blue field is weak (σ0 � 1), the intensity of
the even harmonic varies as |σ0 sin(φB + δ)|2, while the odd
harmonic intensity varies as 1 − |σ0 sin(φB + δ)|2 [thin red
line in Fig. 3(d)]. At moderate blue intensity, corresponding
to the conditions of Fig. 1(b), the even harmonic intensity
(green dashed line) show two peaks of equal strength over
a delay of TB/2, while the odd harmonics show one strong
and one weak peak. This behavior compares well to that
observed experimentally in Fig. 2 where two (one) peaks are
visible in the even (odd) harmonics. We estimate σ0 to be
just above π/2 in this case. At higher blue intensity, as in
Fig. 1(c), the even harmonic intensity (thick blue line) show
two peaks (1,2), while the odd harmonics presents a broad
peak with two maxima (1,2) and an additional sharp peak
(3). The same qualitative behavior is observed experimentally
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FIG. 3. (Color online) Harmonic intensity as a function of σ0

and IR-blue delay for even (a) and odd (b) harmonics. The σ0

corresponding to the intensities used in Figs. 1(a)–1(c) are indicated
by the thick blue solid (1a), green dashed (1b), and thin red lines (1c).
(c) and (d) show the corresponding lineouts.

(blue line in Fig. 2). σ0 is thus estimated to be slightly above
π . From this analysis, we can estimate the ratios of the blue
to IR intensities to be 0.4, 5, and 20 % in Figs. 1(a), 1(b),
and 1(c). The relative strength of the experimental peaks in
Fig. 2 is not accurately modeled using Eq. (3) since we include
neither amplitude effects nor propagation in our calculation.
In addition, experimental effects, such as dephasing between
the IR and the blue, could lead to decrease in contrast.

Complementary information on the generation process
can be obtained by studying the spatial distribution [16]. In
Figs. 4(a) and 4(b) we show the spatial distribution of the 22nd
and 23rd harmonics. In the one-color case, the divergence of
the qth harmonic 	q can be estimated using Gaussian optics
by the simple expression [14],

	q = λq

πwq

√
1 + 4α2

qI
2
R

w4
q

w4
R

≈ |αq |IR

λqwq

πw2
R

, (6)

where IR is the peak IR intensity, wR , wq are the radii of
the IR and qth harmonic fields and λq the qth harmonic
wavelength. αqIR is the single-atom phase, corresponding to
the phase accumulated by the electron on its trajectory, often
called “dipole phase”. When αqIR is large, it dominates the
diffraction limit in Eq. (6) and the divergence takes the simple
expression shown on the right side in Eq. (6). For the short
trajectory, we have |αq | ≈ 2.7 × 10−14 cm2/W for the 23rd
harmonic [14,17].

As shown in Eq. (2), the addition of a weak blue field affects
the phase of each half-cycle contribution by ±σ . The diver-
gence of the qth harmonic is then expected to vary between
	q(1 ± σ/|αq |IR), the limits being reached when one half-
cycle is dominant. These limits are indicated by the grey lines
in Figs. 4(c) and 4(d), calculated by using the experimentally
determined one-color divergence 	q = 0.33 mrad. The two
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FIG. 4. (Color online) Spatial profiles for the 22nd (a) and 23rd
(b) harmonics as a function of delay, in the conditions of Fig. 1(c).
The experimental divergence angles (red symbols) are compared to
the theoretical half-cycle divergences in (c) and (d) for the 22nd and
23rd harmonics, respectively.

lines (solid and dashed) show the variation of the divergence
for two (positive or negative) half-cycles. Our experimental
results for the 22nd and the 23rd harmonics are indicated by the
red symbols. As expected, the measured divergence angles are
comprised between the theoretical values for two consecutive
half-cycle contributions. The variation of the measured diver-
gence can be interpreted as follows: In (c), one half-cycle (cor-
responding to the dashed line) is dominant from τ = 0.3TB to
0.7TB , while the other half-cycle prevails for the other delays.
In contrast in (d), the measured divergence does not indicate
preferential emission during one particular half cycle since it is
well within the expected half-cycle values for almost all delays.

Finally, we investigate how the interference pattern depends
on �, i.e., harmonic order, from the plateau to the cutoff
region. Figure 5(a) shows the harmonic spectra as a function
of delay, in the weak blue intensity case [corresponding to
Fig. 1(a)]. The nodes of the oscillations of the even harmonics
are indicated by the white crosses. The position of the nodes
varies approximately linearly from harmonic order 22 to 28, in
agreement with the prediction of the simple model presented
above (see also [11,13]), for the short trajectory (see red line).
In Fig. 5(b), we examine the behavior of higher-order har-
monics, approaching the cutoff region. Surprisingly, the 30th
harmonic hardly oscillates, while the 32nd and 34th oscillate
almost out of phase with the 28th. To understand the apparent
lack of oscillation of the 30th harmonic, we analyze its spatial
profile. In Fig. 5(c), we present the 30th harmonic intensity
obtained by integrating over the outer (central) part of the
spatial profile, plotted as a thick blue (thin red) line. This allows
us to unravel two different oscillations almost opposite in phase
[see also + and ∗ symbols in Fig. 5(a)]. The phase obtained
by integrating the outer part of the spatial profile is close to
that obtained for the 32nd and 34th harmonics in Fig. 5(b).

033410-3

121



Interference Effects in Two-Color High-Order Harmonic Generation

X. HE et al. PHYSICAL REVIEW A 82, 033410 (2010)

H
ar

m
on

ic
 o

rd
er

IR−blue delay (units of T
B
)

(a)

−0.5 0 0.5

22

24

26

28

30

32

34

10

30

32

34
(b)

51/10

−0.5 0 0.5
IR−blue delay (units of T

B
)

(c) 1

0.6

FIG. 5. (Color online) (a) Harmonic spectra as a function of delay.
(b) Corresponding high energy region using a saturated color scale.
The white crosses indicate the position of the nodes of the oscillations.
The red curve in (a) is δ(�) for the short branch. (c) 30th harmonic
intensity as a function of delay, spatially integrated (green dashed),
integrated over the central part (thick blue line); and over the outer
part (thin red line) of the spatial profile. The + and ∗ symbols in
(a) refer to the nodes of the central and outer part, respectively.

We interpret this result as due to the long trajectory which
becomes more important when approaching the cutoff region.
The switch between the two trajectories seems to occur at
the 30th harmonic in our experiment. If this harmonic has
comparable (and approximately out of phase) contributions
from the two trajectories, it would only weakly oscillate with
τ , which is what is observed experimentally. Phase matching
calculations performed using our experimental conditions
show a progressive switch from the short trajectory to the
long trajectory when approaching the cutoff region and thus
confirm this interpretation.

In summary, we have experimentally identified and theoret-
ically analyzed interference effects in two-color HHG. Adding
a weak blue field allows us to control the intensity and diver-
gence of the harmonic emission. An interesting switch between
the short and long trajectories of the harmonic emission has
been identified when approaching the cutoff region.
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We characterize attosecond pulses in a train using both the well established “reconstruction of attosecond
beating by interference of two-photon transitions” �RABITT� technique and the recently demonstrated in situ
method, which is based on a weak perturbation of the harmonic generation process by the second harmonic of
the laser field. The latter technique determines the characteristics of the single atom emission, while RABITT
allows one to measure attosecond pulses “on target.” By comparing the results of the two methods, the
influence of propagation and filtering on the attosecond pulses can be extracted.
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I. INTRODUCTION

Attosecond pulse trains �APTs� are created when intense
infrared �ir� laser pulses interact with a gas of atoms or mol-
ecules �1�. The characteristics of the attosecond pulses de-
pend both on the quantum-mechanical single atom dynamics
as well as on macroscopic effects due to propagation in the
nonlinear medium �2�. Under normal experimental condi-
tions, the pulse train contains two pulses per cycle of the
laser field �3–5�. The properties of these pulses can be modi-
fied by transmission through filters �6� or reflection by grat-
ings and/or multilayer mirrors �7�. Several techniques to
characterize attosecond pulse trains have been proposed,
each with specific advantages and limitations. In this paper
we concentrate on analyzing and comparing two of these
techniques: the reconstruction of attosecond beating by inter-
ference of two-photon transitions �RABITT� �1� and a two-
color in situ method �8�, which uses a weak perturbation of
the high-order harmonic generation �HHG� by the second
harmonic of the fundamental laser field. Both techniques aim
to characterize the average attosecond pulse structure in an
APT.

Figure 1 illustrates schematically the difference between
these two techniques. RABITT allows us to determine the
final structure of the attosecond pulses after propagation in
the gas cell and filtering. The attosecond pulses are charac-
terized “on target,” i.e., in the chamber where they can be
used for applications. The RABITT scheme is implemented
by ionizing an atomic gas with the APT in presence of a
synchronized weak ir field. The perturbation due to the ir
field results in sidebands in the photoelectron spectra as
shown in Fig. 2�a�. Information about the structure of the
attosecond pulses can then be obtained by studying the in-
tensity oscillations of these sidebands with respect to the
subcycle delay between the probe field and the APT.

The in situ method measures the single atom emission
from the individual atoms. In contrast to RABITT, the initial
shape of the attosecond pulses, before propagation and filter-
ing, is now measured �Fig. 1�. This is important for applica-
tions that are conducted in the generation process itself, e.g.,
the tomography of electronic orbitals �9�. The presence of a

weak second harmonic �blue� field in the generation chamber
leads to the generation of even harmonics as shown in Fig.
2�b� �10�. The harmonic generation process is nonlinear be-
yond the perturbative regime, which results in comparable
probabilities for the processes shown in Fig. 2�b� even
though the number of ir photons absorbed differs by 4. In-
formation about the initial properties of the attosecond pulse
is obtained by studying the intensity oscillations of the even
harmonics with respect to the phase between the ir and the
blue field.

In this paper we present a detailed theoretical and experi-
mental comparison between the two characterization meth-
ods. Implementing both schemes allows us to measure both
the initial and final shapes of the attosecond pulses. From
these measurements the influence of propagation as well as

FIG. 1. �Color online� Cartoon illustrating the differences be-
tween the two characterization methods. The in situ method mea-
sures the single atom emission, while the RABITT scheme deter-
mines the corresponding attosecond pulses “on target.” The
influence of phase matching and filtering on the attosecond pulses
can be deduced through the implementation of both methods on the
same HHG setup.
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filtering can be determined. The paper is composed as fol-
lows: Sec. II reviews the theory of the two characterization
methods, Sec. III gives an overview of the experimental
setup, Sec. IV presents results from both methods at low gas
generation pressure, Sec. V discusses the reasons for the dif-
ference observed at higher gas pressures, and Sec. VI sum-
marizes the paper with an outlook.

II. THEORY

The electric field of an attosecond pulse can be written as

Ẽ�t�= �̃�t�exp�i�̃�t��, where �̃�t� and �̃�t� represent the tem-
poral envelope and phase, respectively. It can also be de-
scribed through its Fourier transform

E��� = ����exp�i����� �1�

=� dt�̃�t�exp�i�̃�t� − i�t� , �2�

where ���� and ���� are the spectral envelope and phase.
The Fourier integral in Eq. �2� can be approximated using the
saddle point method when the linear part in the temporal
phase cancels the Fourier component,

� d�̃

dt
�

t=t����
− � = 0, �3�

and the quadratic part of the temporal phase is large,

�� d2�̃

dt2 ��
t=t����

� 0. �4�

Note that the temporal phase must be expanded at different
times for different Fourier components, i.e., the saddle point
time is a function of frequency, t����. The saddle point ap-
proximation yields

E��� � �	 2�

� d2�̃

dt2 �
�̃�t�exp
i�̃�t� − i�t �

i�

4
��

t=t����

,

�5�

where the positive �negative� phase factor corresponds to a
positive �negative� chirp which is the case for attosecond
pulses from the short �long� branch. The spectral phase is
approximately equal to

���� = �̃„t����… − �t���� �
�

4
�6�

and its first derivative is

d�

d�
= − t���� , �7�

which is obtained using the chain rule and Eq. �3�. We can,
therefore, interpret the group delay �GD=−d� /d�� as the
time when the temporal phase oscillates as �. A deeper
analysis is needed if Eqs. �3� and �4� are not satisfied, which
is the case of frequencies above the harmonic cutoff.

We define the relative timing of spectral components �or
relative group delay� as

t�rel���,�0� = t���� − t���0� = −
d�

d�
+ �d�

d�
�

�0

, �8�

where t�rel��� ,�0� is the time it takes for the attosecond pulse
to go from oscillating at �0 to oscillating at �. The reference
frequency, �0, is arbitrarily chosen to be the lowest fre-
quency of the pulse.

In the present work performed with relatively long �mul-
ticycle� driving pulses, the emission spectrum contains peaks
at harmonic frequencies. In what follows, we use the follow-
ing notation for the spectral phase �n=��n�R�, where n is
the harmonic number and �R is the angular frequency of the
ir laser field.

A. RABITT

The sidebands that appear in the RABITT method can be
understood through the use of second-order perturbation
theory �1�: absorption of a high-order harmonic photon fol-
lowed by absorption or emission of an ir photon. Interfer-
ences occur between the different quantum paths that lead to
the same sideband �Fig. 2�a��. If we assume that the compet-
ing quantum paths have the same amplitude, then the inten-
sity of the sideband varies as

I2n��� 	 1 + cos�2� − 
�2n − 
�2n
at � , �9�

where � is the phase of the probe field oscillations relative to
the attosecond pulses, 
�2n=�2n+1−�2n−1 is the difference
between the phases of the corresponding harmonics, and

�2n

at is the difference in atomic phase for the corresponding
energies �11�. The atomic phase is neglected in the following
because it only has a small effect on the final result in the
spectral region that we consider. The first derivative of the

FIG. 2. �Color online� Energy diagrams associated with the two
characterization methods. �a� Sidebands are created through the ab-
sorption and emission of an ir photon ��R� in the RABITT method.
�b� Even harmonics are produced in the in situ method due to the
presence of a weak blue field �2�R�. Attosecond pulses are charac-
terized by studying the interferences arising from the degenerate
ways of reaching the sidebands or even harmonics.
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spectral phase can then be determined using the approximate
relation

�d�

d�
�

2n�R

�

�2n

2�R
. �10�

The final shape of an average attosecond pulse in the APT
can be reconstructed using Eq. �10� combined with a mea-
surement of the spectrum �12�. The aim of this paper is,
however, not to reconstruct attosecond pulses but rather to
study how the corresponding relative timing is affected by
macroscopic dispersion in the generation cell. Using Eqs.
�8�–�10�, the relative timing can be written as a function of
experimental observables as

tfinal
�rel� ��,�0� � −

1

�R
��min��� − �min��0�� , �11�

where �min��� is the relative phase between the probe and
the APT that minimizes the sideband intensity, I2n��min����
=0, for �=2n�R. The subscript final is used to indicate that
this is the final state of the pulse as it is detected on target.

B. In situ

We will now derive an analog to Eq. �11� for the in situ
method, where the relative timing of the initial attosecond
pulses is determined from the oscillation of the induced even
harmonics. Using the strong field approximation �SFA�, the
Fourier components of the HHG dipole can be approximated
as �13�

x�n 	� dtd�d3p� exp
 iS�p� ,t,��
�

− in�Rt� , �12�

where p� is the canonical �drift� momentum, � is the time
between tunneling and recombination, S is the quasiclassical
action, and n is the harmonic order. Finding the stationary
points of the quasiclassical action and then applying the
saddle point approximation five times reduce the integrals in
Eq. �12� to a sum of discrete contributions, each correspond-
ing to a quasiclassical trajectory �5,14�. In the limit of a
vanishing ionization potential, the quasiclassical trajectories
become classical and the quasiclassical action becomes the
classical action,

S�x�t,t��� = �
t−��t�

t

dt��mv�t,t��2

2
+ qx�t,t��E�t�� , �13�

where x, v, m, and q are the position, velocity, mass, and
charge of the electron, respectively. We label the electron
trajectories as x=x�t , t��, where t is the return time and t� is
the integration variable for the action. The electron is re-
leased from the atom at time t−� and accelerated by the laser
field, E, until it returns and recombines with the atom at time
t. In the one-color HHG, where E=ER=ER0 sin��Rt�, the
process is repeated with an alternating sign every half period,
xR�t , t��=−xR�t+TR /2, t�+TR /2�, since ER�t��=−ER�t�
+TR /2�. The action is, however, the same, SR�t�=SR�t
+TR /2�.

Adding a weak blue field, E=ER+EB, EB=EB0 sin�2�Rt
+��, induces a small change in the trajectories and the accu-

mulated action. We treat the blue field as a perturbation and
expand the trajectory,

m
d2

dt2 �
n=0



�nx�n� = qER + �qEB, �14�

where � is the usual perturbation parameter. The zeroth-order
solution is the same as in the one-color case, x�0�=xR, and the
first-order solution is purely given by the blue field, x�1�

=xB. Higher orders, n�1, are equal to zero. We expand the
action as S=S�0�+�S�1�+�2S�2�. The zeroth-order action is the
same as in the one-color case, S�0�=SR. The first-order action,
S�1�=�, is composed of three cross terms that can be rewrit-
ten using a few partial integrations,

� = �
t−�

t

dt��mvRvB + qxREB + qxBER� �15�

=q�
t−�

t

dt�xREB, �16�

where the following boundary conditions are used: xR�t , t�
=xR�t , t−��=vR�t , t−��=xB�t , t�=0. It is interesting to note
that � can be written as an integral over the unperturbed
trajectory, xR, and the blue field �or as an integral over the
trajectory perturbation, xB, and the red field�. Unlike SR, the
first-order action changes sign between opposite half cycles
of the ir field, ��t�=−��t+TR /2�, which reflects the fact that
the electron is now moving differently in the two half cycles,
x�t , t���−x�t+TR /2, t�+TR /2�. The second order action is
given purely by the blue field, S�2�=SB, and it has, therefore,
the same sign in opposite half cycles of the ir. The sum of the
contributions from the zeroth and the second order is labeled
as �=S�0�+S�2�.

The integrals of Eq. �12� are evaluated for the two-color
case using the saddle point solutions for the ir field only, i.e.,
we assume that � and SB are slowly varying compared to SR.
Only the two stationary points corresponding to the short
branch of trajectories in two neighboring half cycles of the
fundamental are used, in accordance with the experiment
where the long branch has been removed using spatial filter-
ing in a narrow aperture. The contributions from the first-
order action can be combined using Euler’s formula. The
HHG dipole takes the following form for the odd harmonics:

x�n=2N+1 	 cos
�n

�
�exp
 i�n

�
− in�Rtn� , �17�

where the first-order change in action, �n, leads to a change
in dipole amplitude. In the limit of a vanishing blue field, we
recover the one-color case: cos��n /��→1 and �n→SRn. The
HHG dipole for the even harmonics takes the following
form:

x�n=2N 	 sin
�n

�
�exp
 i�n

�
− in�Rtn� , �18�

where the amplitude again is dependent on the change in
action. The even harmonics vanish if there is no blue field
since sin��n /��→0. The intensities of the odd and even har-
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monics vary out of phase: the odd harmonics decrease when
the even harmonics increase. A weak blue field implies that
sin��n /����n /�. In this regime the even harmonic ampli-
tudes grow linearly with the applied blue field and oscillate
with the relative phase, �. It is in this regime that an in situ
measurement can be carried out.

Using Eq. �16�, we seek the relative phase, �min�t�, that
induces no even harmonic amplitude,

�„t,�min�t�… = q�
t−��t�

t

dt�xR�t,t��EB„t�,�min�t�… = 0,

�19�

where the return time, t= t���, is a saddle point solution to
Eq. �12� and, therefore, a function of frequency �in close
analogy with Eqs. �3� and �4��. We find excellent agreement
with the pioneering work of Dudovich et al. �8� using unper-
turbed classical trajectories in Eq. �19�. The solution, �min�t�,
is expanded to first order around the central return time, tc
=0.35TR,

�min�t� − �min�tc� � − �1 + ���R�t − tc� , �20�

where ��−0.06 is the “systematic scaling difference” be-
tween �min and �Rt. Our numerical linearization of �min�t� in
Eq. �20� depends on the choice of tc: � varies from 0.1 �in the
shortest return� to 0 �in the cutoff regime�. It is, however, the
scaling around the central return time �central frequency� that
is most appropriate for calculating the initial properties of the
entire attosecond pulse. Using Eqs. �8� and �20�, we find the
following simple relation between the oscillations in the
even harmonics and the relative emission time from the
atom:

tinitial
�rel� ��,�c� � −

�

�R
��min„t���… − �min„t��c�…� , �21�

where �=1 / �1+���1.06 is a correction factor. Equation
�21� resembles Eq. �11� from the RABITT section in both
form and interpretation. The even harmonic oscillations are
mapping out the relative emission times from the atom much
like the sidebands in a RABITT scan map out the relative
arrival times on target. In contrast to RABITT, the in situ
method needs a correction factor, �, which is slightly larger
than one for the short branch of trajectories. The validity of
Eq. �21� is limited to the high-order harmonic plateau where
the constant amplitude approximation �Eq. �12�� and the lin-
earization of �min�t� �Eq. �20�� are sound. The in situ method
can also be applied to the second �long� branch of trajecto-
ries. The correction factor for the long branch is ��0.88 for
tc=0.55TR.

We want to stress that the in situ method is not a direct
measure of the emission time �or the group delay� because
�min�t� is not related to the return time in a trivial way �Eq.
�19��. In fact, one could also interpret the in situ method as a
measurement of the continuum time which is an equally
good parameter of the process.

All technical details aside, we have found that the in situ
method produces traces of oscillating even harmonics which,
to reasonable agreement, can be treated as RABITT scans. In
the following, we will present data which are uncorrected,

�=1, verifying numerically and experimentally the validity
of ��1 for harmonics in the plateau. Unlike RABITT, the in
situ method is not limited to sampling the relative timing at
only even harmonic energies. The oscillations in the odd har-
monic energies �Eq. �17�� can be treated in a similar way,
thus doubling the number of sampling points for the relative
timing compared to RABITT.

C. Numerical SFA calculation

We perform a numerical experiment using SFA to verify
the analytical work presented in Sec. II B for an ir intensity
of IR=2�1014 W /cm2. Our numerical calculations are
based on Eq. �13� in �5� where the saddle point approxima-
tion is done only over p� space. The integration over con-
tinuum time, �, and actual time, t, is done numerically. This
allows us, in a simple way, to access either branch of trajec-
tories by numerically restricting the integral over the con-
tinuum time, �. We calculate the single atom response for the
short branch of trajectories by restricting the continuum time
integral to 0���0.65TR. Then we calculate the response
from the long branch of trajectories by restricting the con-
tinuum time integral to 0.65TR���TR. The corresponding
group delays are calculated numerically from the first deriva-
tive of the spectral phase of the short branch dipole �Fig.
3�a�, �� and the long branch dipole �Fig. 3�a�, ��. The time-
energy curves are compared to a simple classical model �Fig.
3�a�, gray line�, consisting in finding the classical kinetic
return energy for a classical electron in a sinusoidal electric
field, E�t�=E0 sin �t, which starts and returns to the origin,
and then adding the ionization energy.

Next, we perform the numerical in situ measurement by
calculating the single atom response from the same ir field
plus a weak blue field with a relative intensity of IB / IR
=0.1%. The phase of the blue field, �, is then shifted relative
to the ir and the atomic response is calculated again. As
expected, we obtain weak oscillations in the even harmonics
which vary with respect to �. The relative phases, �min, that
minimize the even harmonic signal are extracted from the
short branch �Fig. 3�b�, �� and the long branch �Fig. 3�b�,
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FIG. 3. �Color online� �a� The single atom response of the short
��� and the long ��� branches are calculated using SFA for a typi-
cal ir intensity, IR=2�1014 W /cm2. The group delays, −d� /d�, of
both branches are in good agreement with the simple classical
model �gray line�. The group delay branches merge beyond the
cutoff �dotted line�. �b� The numerical in situ scans generated using
SFA with a weak blue field, IB / IR=0.1%, show qualitative agree-
ment for both the short ��� and the long ��� branches with the
simple classical model �gray line�.

DAHLSTRÖM et al. PHYSICAL REVIEW A 80, 033836 �2009�

033836-4

128



Paper V

��. We find that the in situ method produces time-energy
slopes �lines in Fig. 3�b�� that are in qualitative agreement
with the simple classical model �Fig. 3�b�, gray line� for
harmonics below the cutoff �Fig. 3�b�, dotted line�. There is,
however, an absolute time difference between −�min /�R, and
the �unshifted� simple classical model �Fig. 3�b�, gray line�.
A careful study of the numerical experiment indicates that
the in situ measurement suffers from a small systematic de-
viations from the group delay which can be attributed to the
correction factor, �. We stress that all data presented in Fig.
3�b� are uncorrected, i.e., �=1.

A larger and possibly more interesting systematic devia-
tion between the group delay and the in situ method arises
for harmonics close to and beyond the cutoff �Figs. 3�a� and
3�b�, dotted line�. This deviation occurs in a spectral region
where Eqs. �3� and �4� are questionable and it is, therefore,
more difficult to interpret the deviation. It is clear, however,
that the in situ measurement is not a direct measurement of
the group delay �or the relative timing� of the attosecond
pulses and that a deeper analysis is needed for understanding
the behavior beyond the cutoff.

The numerical experiment is repeated at progressively
higher relative intensities to investigate the robustness of the
in situ method. We observe the depletion of the odd harmon-
ics, as expected from Eq. �17�. The information retrieved
from the even harmonics is intact as long as IB / IR�1% for
IR=2�1014 W /cm2. Increasing the relative intensity further
results in an invalid in situ measurement.

III. EXPERIMENTAL SETUP

The experimental work is carried out at the Lund Laser
Center �LLC� using a kHz Ti-sapphire chirped pulse ampli-
fied laser operating at a wavelength of 800 nm �ir�. The
pulseenergy is 2 mJ and the pulse length is 35 fs. The APTs
are generated by focusing the ir laser pulses into a synchro-
nized pulsed argon gas cell �15�. Having a pulsed gas cell
allows us to maintain a low average background pressure in
the generation chamber while the effective gas pressure in
the gas cell is high. We do not measure the instantaneous
generation pressure in the gas cell but it is reasonable to
assume that it scales with the average background pressure in
the generation chamber.

We use aluminum filters after the HHG to
�i� remove the remaining ir and the low-order harmonics

in the pump line and
�ii� compress the pulses in the APT.
Eliminating the intense ir beam after the generation cell is

important since neither of the characterization schemes work
if there is a strong ir field present in the detection process.
The individual filters are 200 nm thick and the number of
filters used can be changed using a motorized filter holder
�6�. Being able to change the number of filters is important in
order to access the effect of filters on the attosecond pulses
�3�. The attosecond pulses are finally detected using a mag-
netic bottle electron spectrometer �MBES�. The detection gas
is argon which allows us to study the high-order harmonics
from the plateau and cutoff regions.

In the RABITT method the ionization step in the MBES is
perturbed by a synchronized weak ir probe field, which is

coupled into the MBES using a Mach-Zehnder interferom-
eter �Fig. 4�a��. The relative phase, �, between the APT and
the ir is controlled using a piezoelectric translation stage in
the interferometer. A typical RABITT scan is shown in Fig.
4�b�.

In the in situ method the ir pulse is used to generate a
second harmonic field �blue� with a 1.3-mm-thick potassium
dideuterium phosphate �KDP� type-I crystal. The ir and the
blue field are synchronized before the generation chamber
using a three-dimensional dichroic interferometer �Fig. 4�c��.
A glass plate in the interferometer enables control of the
relative phase, �, between the ir and the blue fields. The
interferometer is engineered so that the polarizations of the
recombined red and blue fields are parallel �16�. A typical in
situ scan is shown in Fig. 4�d�. Using Eqs. �11� and �21�, we
know that the information about the attosecond pulses is de-
rived in the same way from both methods, while the physical
interpretation of the two measurements differs.

IV. PROOF OF PRINCIPLE FOR IN SITU
MEASUREMENTS

In this section, we study the properties of an APT using
both the RABITT and the in situ method. A direct compari-
son of the two measurements is not meaningful since attosec-
ond pulses are probed at different times. Two main effects
influence the properties of the attosecond pulses:

�i� dispersion from the Al filters;
�ii� phase matching in the generation cell.
To avoid effects due to phase matching as much as pos-

sible �2,17�, we perform the measurement at the lowest pos-
sible pressure, corresponding to a background pressure of
PG�1.5 �bar. At this pressure, the high-order harmonic
signal is weak but still stable enough for both characteriza-
tion methods to work. The results from the RABITT method
are shown in Fig. 5�a� and the results from the in situ method
are shown in Fig. 5�b�.

The change in relative timing induced to an attosecond
pulse propagating through one aluminum filter, 
tAl

�rel��� ,�0�,
can be determined using two RABITT measurements,


tAl
�rel���� = tfinal2

�rel� ��� − tfinal1
�rel� ��� , �22�

where tfinal1
�rel� is the relative timing of the attosecond pulse

having passed one filter and tfinal2
�rel� is the relative timing after

passing two filters. Note that we now drop the notation for
the reference frequency since it is �0=14�R for all experi-
mental data. We have verified that 
tAl

�rel���� agrees with the
GD deduced from the refractive index of aluminum �18�.
Assuming that the two filters are identical we can calculate
the relative timing of the attosecond pulse before passing the
filter�s�,

tfinal0
�rel� ��� = tfinal1

�rel� ��� − 
tAl
�rel���� . �23�

The “unfiltered” relative timing of attosecond pulses �Fig.
5�a�, �� is in good agreement with the simple classical
model �gray line� for an effective intensity of IR�1
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�1014 W /cm2. This intensity corresponds to a cutoff at har-
monic �23�, which agrees well with spectral measurements
taken without the probe field present.

Having estimated the initial state of the attosecond pulses
using the RABITT method, we now proceed with the in situ
scheme. One important advantage of the in situ scheme is
that all information is imprinted spectrally, which makes it
possible to analyze attosecond processes with great accuracy
using a photon spectrometer rather than an electron spec-
trometer. In this paper, however, we use the same MBES as
for the RABITT so that a straightforward comparison of the
two schemes is made.

The in situ measurements are taken immediately after
their respective RABITT measurements for one and two alu-
minum filters �Fig. 5�b��. The HHG conditions, therefore,
have little time to evolve when changing schemes �a few
seconds�. The filters should not influence the in situ measure-

ment because the information is imprinted spectrally already
in the HHG process. Using the in situ scheme, we should
ideally obtain identical information regardless of the number
of filters. The measurements again nicely follow the classical
model for I=1�1014 W /cm2 �gray curve�. We determine
the initial relative timing, tinitial

�rel� ���, and compare it to the
relative timing obtained with the RABITT method, tfinal0

�rel� ���,
in Fig. 5�c�. The corresponding group delay dispersion
�GDD� is calculated by fitting a line to the relative timing
using sidebands and even harmonics �14�–�22�,

− �d2�

d�2�
18�R

� � 2.31 � 104 as2/rad �RABITT�
� � 2.24 � 104 as2/rad �in situ� ,


�24�

with a root mean square deviation of approximately 23 as for

(a) (b)

(c) (d)

FIG. 4. �Color online� �a� In RABITT mode the blue field �from KPD� is split off �BS1� and blocked. A weak ir probe field is created
�BS2� and delayed on the subcycle scale using a translation stage. The APT is generated from the intense ir pulses �HHG �ir�� in a
synchronized pulsed gas cell. The intense ir field is eliminated using aluminum filter�s�. The APT and the probe are recombined �APT
+probe� using a mirror with a narrow aperture. The APT passes through the aperture while the probe is reflected on the mirror. The
temporally overlapping APT and probe field are then focused using a toroidal mirror and detected using an electron spectrometer �not
shown�. �b� The RABITT scan is recorded using an electron spectrometer with subcycle synchronization of the APT and the probe in the
detection chamber. �c� In in situ mode the ir and the blue field �from KDP� are separated �BS1� into a dichroic interferometer. The ir field
is delayed on the subcycle scale using a glass plate �which can be tilted� before it is recombined with the blue field �BS3�. The probe is
blocked �after BS2�. The APT is generated from intense ir pulses in the presence of a weak blue field �HHG �ir+blue�� in a synchronized
pulsed gas cell. The ir and blue fields are eliminated using aluminum filter�s�. The APT is detected using an electron spectrometer �not
shown� after passing a narrow aperture. �d� The in situ scan is recorded using an electron spectrometer with subcycle synchronization of the
ir and the blue fields in the generation cell �HHG �ir+blue��. The color scale in �b� and �d� is saturated so that the interferometric beating is
more clearly seen.
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the corresponding difference in relative timing. We treat the
in situ data as a RABITT scan, and the numerical value of
the GDD must, therefore, be multiplied by the correction
factor, �. The experiment shows that the correction factor is
close to unity for the short branch, as expected from the
theory section. The good agreement between these measure-
ments shows that either the RABITT or the in situ method
can be used to characterize the APTs at low generation pres-
sures for energies in the central and upper regions of the
harmonic plateau.

It is tempting to increase the intensity of the blue field so
that the even harmonics become stronger and more visible.
We use an adjustable aperture in the blue arm of the three-
dimensional dichroic interferometer so that the intensity of
the blue field can be increased while all other experimental
parameters are constant. It has been demonstrated that an
increased blue intensity will alter the quasiclassical trajecto-
ries in the HHG process �19,20�, but a systematic study of
how the in situ method breaks down has not yet been re-
ported. Even harmonic oscillations appear beyond the cutoff
for a slight increase in the blue intensity. The information
extracted from these oscillations show strong deviations with
the expected group delays, while the information from the
plateau region remains rather accurate �Fig. 5�d�, *�. Even
harmonic oscillation beyond the cutoff regime should, there-
fore, not be included in our simple interpretation �Eq. �21��
of the in situ method. The experimental results at high pho-
ton energy are in qualitative agreement with the numerical

calculations of the long branch shown in Fig. 3�b� shifted by
half their period. At moderately higher blue intensities we
observe a shift of the modulations in the plateau �Fig. 5�d�,
��. This shows that the in situ method now predicts the
wrong relative timing for the initial attosecond pulses also in
the plateau region and that the relative intensity must be
reduced.

V. COMPARISON OF RABITT AND IN SITU
MEASUREMENTS AT HIGHER PRESSURE

We now study how the phase of the attosecond pulses is
modified due to a higher gas pressure in the generation
chamber. It has recently been shown that in some conditions
an increasing gas pressure can lead to a compression of the
attosecond pulses �17�. The effect predicted theoretically
was, however, small and difficult to demonstrate experimen-
tally. Here, combined measurements using the RABITT and
the in situ method allow us to unambiguously extract the
contribution of phase matching to the temporal structure of
attosecond pulses.

RABITT results obtained at different pressures are shown
in Fig. 6�a�. The data are collected with one aluminum filter,
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FIG. 6. �Color online� �a� Relative timing measurements from
RABITT for a variety of high background pressures in the genera-
tion chamber: 5�10−3 ���, 6�10−3 ���, and 7�10−3 ��� mbar
�the exact instantaneous pressure in the gas cell is unknown�. The
effect of the Al filter has been subtracted. At high pressures there is
an increased deviation from the simple classical model �IR=0.9
�1014 W /cm2� �gray curve�. �b� The corresponding in situ mea-
surements are mostly unaffected by the increased pressure. The data
are not corrected, �=1. �c� The difference in relative timing,

tmacro

�rel� �� , PG� �pink �, �, and ��, is interpreted as the macro-
scopic delay due to phase matching in the gas cell. The symbols
correspond to the same pressures as in the figures above. The delay
from phase matching has approximately the same magnitude as an
aluminum filter �gray dashed curve�. �d� The relative timing due to
phase matching �false color in units of TR� is calculated using a
one-dimensional model �17� for pressures ranging from 0 to 100
mbar. The intensity used in the model is 1.25�1014 W /cm2 and
the duration of the pulse is 35 fs. The length of the cell is modeled
as 5 mm.
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FIG. 5. �Color online� �a� RABITT measurements with one �+�
and two ��� aluminum filters are used to determine the relative
timing of the unfiltered attosecond pulses ���. All temporal mea-
surements are presented as relative timings with reference to har-
monic �14�. �b� In situ measurements with one �+� and two ���
aluminum filters. The data are uncorrected, �=1. The simple clas-
sical model �IR=1�1014 W /cm2� ��a� and �b� gray curve� is plot-
ted for reference. �c� Unfiltered RABITT measurement �red, ��
compared to the average in situ measurement �blue, *�. �d� A slight
increase in the blue intensity �blue, *� has a small effect on the
measurement in the harmonic plateau �harmonics �14�–�24�. In-
creasing the blue intensity further �pink, �� results in an invalid
measurement. The simple classical model �IR=0.9�1014 W /cm2�
�gray line� is plotted for reference.
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but the effect of this filter is removed using Eq. �23�. The
corresponding in situ measurements are shown in Fig. 6�b�.
The in situ measurements are mostly insensitive to the in-
creased gas pressure, while the RABITT measurements are
deformed in a nontrivial way. Deviations in relative timing
for attosecond pulses due to the macroscopic propagation
through the gas cell can be extracted by subtracting the final
and initial relative timings,


tmacro
�rel� ��,PG� = tfinal0

�rel� ��,PG� − tinitial
�rel� ��,PG� , �25�

where we have explicitly written PG to indicate that the mac-
roscopic effects depend on the gas pressure. In tinitial

�rel� �� , PG�,
the PG dependence refers to a possible change in the funda-
mental field in the nonlinear medium that could affect the
single atom response. The results are shown in Fig. 6�c�,
together with the effect of a 200 nm Al filter �gray�. Macro-
scopic effects introduce a �nontrivial� negative relative tim-
ing, first decreasing then increasing with frequency. The cor-
responding induced GDD might help to compensate for the
single atom GDD for low orders, but for higher orders the
GDD is increased. These results agree well with those pre-
sented in �17�.

To understand the origin of the macroscopic group delay,
we perform a simple model calculation �17,21�. We consider
for simplicity a one-dimensional approximation along the
propagation axis z, a homogeneous medium of length L, and
a collimated geometry. In this simple case, the contribution
of the single atom response and of propagation can be sepa-
rated and the effect of propagation both on the phase �or
more exactly phase variation� and amplitude of the nth har-
monic can be described by

Fn =
1 − exp��− i
kn − �n�L�

i
kn + �n
= �Fn�exp�i�n

mac� . �26�

The phase mismatch 
kn is equal to kn−nk1, where kn and k1
denote the wave vector of harmonic n and the fundamental,
respectively. Absorption at the nth harmonic frequency is
described by �n. The macroscopic phase can be written as

�n
mac = − arctan
 sin�
knL�

cos�
knL� − exp��nL�� − arctan

kn

�n
� .

�27�

Figure 6�d� presents in color its derivative as a function of
harmonic order and pressure. These results show a variation
in the phase derivative that qualitatively agrees with the mea-
sured one. For a given pressure �20 mbar, the induced GD
is negative, showing a decrease at low orders, a minimum
around the 23rd harmonic, followed by an increase. We
stress that this satisfactory agreement is obtained with a
simple model, not including the geometric phase due to fo-
cusing or two-dimensional effects. Combined RABITT and
in situ measurements provide a way to really unravel the
effect of propagation in the generation of attosecond pulses.

VI. CONCLUSIONS

We have performed a proof of principle experiment for
the in situ scheme by comparing it to the well established
RABITT method. We have found excellent agreement be-
tween the methods at low generation gas pressures when the
macroscopic phase matching plays a negligible role.

We have found that it is not possible to use the in situ
scheme to predict the final relative timing of the average
attosecond pulses if the generation pressure is high or if it
passes through some unknown dispersive material. It is
equally important to realize that accurate single atom mea-
surements cannot be conducted at high generation gas pres-
sures with the RABITT scheme. In a RABITT measurement
there will always be a trade off between the number of har-
monic photons generated and their phase perturbation from
propagation through the generation cell.

The advantages and disadvantages of the two schemes
become quite clear when the generation pressure is high and
one could argue that both schemes are needed for a more
complete understanding of the attosecond pulse production
and propagation.
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Abstract
We investigate the generation of even and odd harmonics using an intense laser and a weak
second harmonic field. Our theoretical approach is based on solving the saddle-point
equations within the strong field approximation. The phase of the even harmonic oscillation as
a function of the delay between the fundamental and second harmonic field is calculated and
its variation with energy is found to be in good agreement with recent experimental results.
We also find that the relationship between this phase variation and the group delay of the
attosecond pulses depends on the intensity and wavelength of the fundamental field as well as
the ionization potential of the atom.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Attosecond pulses [1, 2] are created through the interaction
between intense infrared (IR) laser fields and atoms or
molecules in a process known as high-order harmonic
generation (HHG). This process is initiated by the creation
of an electron wave packet through tunnelling ionization,
followed by acceleration in the laser field and recombination
with the ion core resulting in extreme ultraviolet (XUV)
emission confined to a fraction of the laser cycle. The
generation process can be controlled by shaping the driving
laser field, e.g. by coherently adding laser fields of different
wavelengths to the fundamental laser field [3–6]. Most
investigations have been carried out by adding the second
harmonic generated in a doubling crystal [7–14], with
various goals ranging from optimization of the conversion
efficiency, characterization of the emitted attosecond pulses
and production of attosecond pulse trains with one pulse per
cycle of the fundamental field. Several parameters can be
varied in these experiments: the intensity ratio, the phase
difference and the relative polarization direction.

When the second harmonic field is a weak perturbation to
the fundamental, the generation of odd harmonics is barely
changed, but the induced symmetry breaking leads to the
appearance of weak even harmonics. High-order harmonic

spectra recorded as a function of delay between the two fields
show that the intensity of the even harmonics is modulated
and that this modulation has an offset depending on the
harmonic order, as shown in figure 1(a) [13]. These photon
spectrograms are at a first glance similar to the photoelectron
spectrograms of the RABITT (reconstruction of attosecond
beating by interference of two-photon transitions) method
[1] used to characterize attosecond pulses. Dudovich et al
[16] suggested that the two-colour HHG spectrograms could
be used to determine the emission times of the attosecond
pulses in situ, thus ‘probing the birth of attosecond pulses’.
This method was then applied by Doumy et al [17], using
laser systems of different wavelengths, and by us [18], in a
direct experimental comparison with the RABITT method.

In this paper we investigate HHG by a laser field and
its second harmonic by solving the Schrödinger equation
within the strong field approximation (SFA), using the saddle-
point equation method [20]. We assume throughout that the
second harmonic is weak and can be considered as a small
perturbation to the fundamental field. We calculate the phase
variation of the even harmonic oscillation and compare it
with the harmonic emission times. Our model also allows
us to interpret the rapid variation of this phase at high energy,
observed in several experiments [13, 18], as a change of the
dominant quasiclassical trajectory from the short to the long
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Figure 1. (a) Experimental two-colour high-order harmonic
spectrogram over relative delay [13]. The diamonds (�) indicate the
experimental delays corresponding to maxima of the modulation in
the even harmonic orders. (b) Calculated delays corresponding to
maxima of the even orders for an effective intensity of 1.4 × 1014

W cm−2. The full (dashed) curve is calculated for the short (long)
branch labelled 1 (2). Below (above) harmonic order 28, the short
(long) branch fits the experimental data (�).

one (figure 1(b)). The paper is organized as follows. In
section 2 we review and compare classical and quasiclassical
electron trajectories for one-colour (section 2.1) and two-
colour HHG (section 2.2). In section 3 we study the generation
of even harmonics close to the cutoff (section 3.1) and we
relate the phase of the even harmonic oscillation to the
emission times of the attosecond pulses (section 3.2). In
section 4 we summarize our results by presenting a more
general relationship between the phase of the even harmonic
oscillation and the emission times.

2. Quasiclassical trajectories

Our method is based on the stationary phase method
(also referred to as the saddle-point method) to solve the
Schrödinger equation for an atom exposed to a strong laser field
using the SFA [19]. In particular, we consider the interaction
of an atom with a strong IR laser field (frequency ω) and a weak
second harmonic (frequency 2ω). In the SFA, the electron will
(i) tunnel into the continuum, (ii) accelerate in the strong laser
field and then (iii) return to the atom and emit a harmonic
photon (frequency �). The phase of the harmonic radiation is
related to the quasiclassical action of the electron

S(�p, t, t0) =
∫ t

t0

dt ′
(

(�p − e �A(t ′))2

2m
+ Ip

)
, (1)

where �A(t) is the vector potential of the laser field, Ip is the
ionization potential of the atom, and �p, t0, t, m and e are
the drift momentum, tunnelling time, return time, mass and
charge of the electron, respectively. The high-order harmonic
emission will mainly originate from the stationary points of
S–h̄�t , with respect to all variables

[�p, t, t0
]
, which satisfy

the following three equations [19]:∫ t

t0

dt ′e �A(t ′) = (t − t0)�p, (2)
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Figure 2. Real and imaginary parts of the stationary points,
[p, t, t0]. Ionization potentials: argon I (Ar)

p = 15.76 eV (thick blue)
and classical I (0)

p = 0 eV (thin red). The classical case is shifted by
1.3Ip to match the quantum mechanical cutoff. The short branch is
a line; while the long branch is a dashed line. The intensity is
2 × 1014 W cm−2 and the wavelength is 800 nm.

(�p − e �A(t0))
2

2m
= −Ip, (3)

(�p − e �A(t))2

2m
= h̄� − Ip. (4)

The electron is thus required to return to the atom at
time t (equation (2)), to undergo complex tunnelling at
time t0 (equation (3)) and to satisfy energy conservation
(equation (4)). For any realistic atom, we have Ip > 0
which implies that the electron must tunnel into the continuum.
The tunnelling process results in damping of the electron
trajectories, i.e. complex stationary points in the harmonic
plateau [20]. The electron trajectories beyond the cutoff are
always strongly damped (also for Ip = 0), because they are
always classically forbidden, corresponding to large imaginary
components of the stationary points. The physical emission
time of a given harmonic is given by the real part of the complex
emission time [15, 21, 22].

2.1. One-colour case

We first consider the one-colour case with a vector potential,
�A(t) = �A1 sin(ωt), where ω is the angular frequency of
the fundamental laser light. The complex stationary points[�p(n), t (n), t

(n)
0

]
are calculated as a function of the high-order

harmonic photon angular frequency, �. The index n is
used to separate different sets of solutions, where n = 1
corresponds to the short branch and n = 2 corresponds
to the long branch. A direct comparison between the
stationary points for Ip = 15.76 eV (Ar) and Ip = 0 eV
(referred to as the classical case) is shown in figure 2. The
detailed behaviour of these stationary points will prove to be
important not only for the generation of attosecond pulses
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from one-colour HHG but also in the quantitative analysis of
two-colour HHG. The classical case corresponds to solving
equations (2)–(4) for Ip = 0. The stationary points are
first real, describing classical trajectories in the continuum.
Using classical trajectories to explain the HHG process
leads to the approximate cutoff law: h̄�max ≈ 3.2Up + Ip

[23, 24]. Harmonics above this cutoff cannot be generated
because there are no electrons returning with sufficient kinetic
energy. Quantum mechanically, we see that the stationary
points quickly develop large imaginary components above
the cutoff, which result in an exponential damping of the
harmonic yield. Solving equations (2)–(4) for Ip �= 0, the
exact cutoff law is found to be h̄�max = 1.3Ip + 3.2Up [19].
In figure 2 we have, therefore, shifted the classical solutions
by 1.3Ip so that the cutoff harmonic of the classical case
coincides with the quantum mechanical case of argon for a
more meaningful comparison. The similarities and differences
between the classical case (red line) and the quantum case
(blue line) are clearly observed. The real parts of the drift
momenta (figure 2(a)) are almost the same in the two cases,
apart from a small systematic shift. The real parts of the
return times (figure 2(c)) overlap almost perfectly in the main
part of the plateau for both the short (line) and long (dashed)
branches. This demonstrates the usefulness of the classical
model for understanding the intrinsic chirp of the returning
electron wave packet and the resulting chirp of the attosecond
light pulses. The real parts of the tunnelling times (figure 2(e))
are, however, quite different. In the lower part of the plateau
there is a discrepancy of a factor of 2 for the short branch.
The short branch trajectories tunnel at earlier times compared
to the classical case due to the ionization potential. This
implies longer times in the continuum and an increased amount
of phase acquired, as the path of integration extends in
equation (1). For the long branch the trend is opposite
and smaller. The imaginary parts of the stationary points
(figures 2(b), (d), (f)) lead to exponential damping of the
electron amplitudes. This is especially clear for the imaginary
part of the tunnelling time (figure 2(f)) where the complex part
is zero in the classical case where no tunnelling is required;
while, in the complex case, the short branch will suffer more
damping than the long branch due to a lower instantaneous
electric field strength at the time of tunnelling.

The high-order harmonic dipole from one-half period of
the laser field can be approximated as a sum of stationary
contributions

�x� =
∫

d3p

∫ T/2

0
dt

∫ t

−∞
dt0� exp[iS(�p, t, t0)/h̄ − i�t]

≈
∑
n=1,2

�x(n)
� . (5)

These discrete contributions correspond to different sets of
stationary phase solutions

�x(n)
� = �(n)

(
ih5

det
[
M

(n)
ij

]
)1/2

J exp[iS(n)/h̄ − i�t(n)], (6)

where S(n) = S
(�p(n), t (n), t

(n)
0

)
and where

Mij = ∂2

∂i∂j
[S(�p, t, t0) − h̄�t] (7)

is the Hessian matrix of second-order derivatives of the
Legendre transformed action with i and j being any of our
variables [�p, t, t0]. The Hessian matrix is complex symmetric
and we have assumed that it can be diagonalized so that
the one-dimensional stationary phase approximation can be
applied to all five integrals independently. The prefactor
� = d(�p − e �A(t))∗E(t0)d(�p − e �A(t0)) describes the dipole
transitions to the continuum at time t0, and the subsequent
recombination to the ground state at time t. In the following,
we will assume that � is slowly varying and that it, therefore,
does not affect the stationary points. A more exact analysis
could, however, also include the effect of the energy-dependent
atomic scattering phases, ηl , in the stationary phase equations
(equations (2)–(4)) (from the recombination matrix element
d(�p − e �A(t))∗ ∝ exp[−iηl]). This would lead to a small
change in the stationary points, which would be especially
interesting to study in argon due to an unusually strong
variation of the scattering phase in the present energy region
[25, 26].

Assuming the process to be periodic, the total dipole
response, �X�, is found by summing the stationary points from
one whole period of the fundamental laser field, 0 < t < T ,
i.e. two adjacent half-periods. There are thus two contributions
from each branch,

�x(n)
� (t + T/2, t0 + T/2) = −�x(n)

� (t, t0) exp [−i�T/2] , (8)

separated by a half-period, T/2. The overall minus sign
comes from the change of sign of E(t), while the phase
factor originates from the Fourier component in the Legendre
transformed action. The total dipole response becomes

�X� ≈
∑

n

�x(n)
� {1 − exp[−i�T/2]}

= 2
∑

n

�x(n)
�

{
1, �/ω is odd
0, �/ω is even,

(9)

where the two contributions add constructively for odd orders
and destructively cancel for even orders.

2.2. Two-colour case

We now consider a two-colour laser field composed of a
fundamental laser field and a weak second harmonic with the
same polarization, �A(t) = �A1 sin(ωt) + λ �A2 sin(2ωt + φ),
where λ is a perturbation parameter. It is possible to solve the
two-colour high-order harmonic emission using the stationary
phase equations (equations (2)–(4)) directly, but this requires
evaluation of the system at all values of φ. We will follow
a different route where the second harmonic is treated as a
perturbation and only the stationary points of one-colour HHG
need to be calculated. The two-colour action is expanded in λ

as

S ≈
∫ t

t0

dt ′
(

[�p − e �A1(t
′)]2

2m
+ Ip

)
︸ ︷︷ ︸

S1

× −λ

∫ t

t0

dt ′
[�p − e �A1(t

′)][e �A2(t
′, φ)]

m︸ ︷︷ ︸
λσ

. (10)
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The first term in equation (10) corresponds to the action in
the one-colour case, S1 and the second term is the correction
term due to the interaction with the second harmonic field,
σ = σ(φ). The correction term can be calculated as

σ = e

m

[
�p �A2

cos(2ωt ′ + φ)

2ω

+ e �A1 �A2

(
sin(3ωt ′ + φ)

6ω
− sin(ωt ′ + φ)

2ω

)]t

t0

, (11)

where σ depends on the ionization potential through the
stationary points. Note that the derivation of equation (11)
using the quantum mechanical stationary points differs from
those presented previously [16, 18], because it includes the
effect of the ionization potential within the SFA.

The two-colour high-order harmonic dipole can be
calculated by using equation (6) and by adding an additional
slow factor due to the second harmonic. In analogy with
equation (9), the dipole from one period of the fundamental
field contains one discrete contribution for each branch and
half-period:

�X� ≈
∑

n

�x(n)
�

{
exp[iσ (n)] − exp

[
−iσ (n) − i�T

2h̄

]}

= 2
∑

n

�x(n)
� ×

{
cos[σ (n)/h̄], �/ω is odd

i sin[σ (n)/h̄], �/ω is even
(12)

where �x(n)
� is the half-period contribution in the one-colour

field, and where the property

σ (n)(t + T/2, t0 + T/2) = −σ (n)(t, t0) (13)

relating the two-colour phase between adjacent half-periods
for a given branch n is used. The intensity of the even order
harmonic emission from a single atom can be approximated
by

I� ∝ | �X�|2 ≈
∣∣∣∣2 ∑

n

�x(n)
� iσ (n)

/
h̄

∣∣∣∣2

, (14)

which is valid for |σ (n)| 
 π . We define the intensity from a
specific branch, n, as

I
(n)
� (φ) ∝ |σ (n)(φ)|2. (15)

This (artificial) separation of the branches can be realized in a
macroscopic medium either by phase matching in a long gas
cell [13] or by spatial separation in the far field [11, 16].

3. Subcycle delay dependence of even harmonics

One fascinating aspect of two-colour HHG is that it depends on
the subcycle delay (or relative phase φ) between the laser fields.
Dudovich et al [16] have proposed to use the φ-dependence of
even-order harmonics in order to estimate the emission times
of the attosecond pulses in situ. We will refer to the relative
phases that maximize the intensity of the even harmonics as
the in situ phases: φ

(1)
0 (�) and φ

(2)
0 (�), for the short and

long branch, respectively. The in situ phases are plotted in
figures 3(a) and (d) as a function of harmonic order for argon
at two different IR intensities. The corresponding emission
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Figure 3. Quantum mechanical in situ phases, φ
(n)

0 , between the
fundamental and weak second harmonic field that maximize the
even harmonic emission in argon (I (Ar)

p = 15.75 eV) for intensities
of (a) 1.5 × 1014 W cm−2 and (d) I = 4 × 1014 W cm−2. The in situ
phases are presented as delays τ

(n)

0 = −φ
(n)

0 /2ω in units of T/2.
The corresponding high-order harmonic emission times are shown
in (b) and (e), in units of T. Classical in situ phases (I (0)

p = 0) for
intensities of (c) 1.5 × 1014 W cm−2 and (f) I = 4 × 1014 W cm−2.
The short (long) branch is a full (dashed) curve. T = 2π/ω is the
period of the fundamental laser field.

times of the high-order harmonics, Re{t (n)(�)} = t
(n)
R (�), are

shown in figures 3(b) and (e).
The intensity in (a), (b) is realistic for typical laser pulses

of 30 fs in argon, while the intensity in (d), (e) is greater
than the saturation intensity and, therefore, not experimentally
feasible for multicycle laser pulses. The aim of our analysis is
to distinguish between what can be measured experimentally,
φ

(n)
0 (�), and the desired emission times, t

(n)
R (�). The in

situ phases from the classical model (Ip = 0) are plotted in
figures 3(c) and (f) for comparison.

3.1. Behaviour close to cutoff

The similarity between the in situ phases and the emission
times is striking, especially for the high intensity (figures 3(d),
(e), (f)) where the short and long branch merge in the cutoff
at harmonic 63. At lower intensity (figure 3(a)) the in situ
phases do not merge in the cutoff. Intuitively, one might think
that the short and long branch should merge in the cutoff, but
this is not necessary in the quantum mechanical case. The
stationary points of the short and long branch do not merge
on the imaginary axis in the cutoff (figures 2(b), (d), (f)).
The different behaviour of the in situ phases for the short
and long branch in the cutoff is, hence, an amplitude effect
rather than a pure phase effect. This is verified by inserting
only the real part of the stationary points into equation (15)
which does indeed yield coincidental cutoff behaviour of both
branches, as expected for pure phase effects. Furthermore,
it is the long branch that remains physical beyond the cutoff,
while the strange behaviour of the short branch arises from
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a set of stationary points that become unphysical beyond the
cutoff [27]. In the classical model (figures 3(c), (f)), the in situ
phases always merge in the cutoff since there are no amplitude
effects (damping) in the plateau (figures 2(b), (d), (f)).

It is also worth noting that the in situ phases of the two
branches intersect at lower harmonic orders than the cutoff.
This ‘intra-plateau crossing’ is marked with a cross (×) in
figures 3(a), (d) and it should not be confused as the position
of the cutoff. At high intensities it is easy to distinguish
between the intra-plateau crossing and the cutoff, while at low
intensities they may be separated by a few harmonic orders
only. In figure 1 we present an experimental result where
φ0 is linear from harmonic 22 to harmonic 28. At higher
harmonic orders, a dramatic bend is observed [13, 18]. Using
our quantum mechanical model we identify the lower orders
as part of the short branch, n = 1 (full curve), while the higher
orders are identified as the long branch, n = 2 (dashed curve).
We stress that the dominance of the long branch close to the
cutoff is a new result which already appears at the single-
atom level when the short branch becomes unphysical. This
new finding illustrates the usefulness of quantitative probing
of HHG using a perturbative field. This effect would be
very difficult to observe with the RABITT method because
the corresponding emission times always merge in the cutoff,
see figures 3(b), (e). The classical model fails to reproduce
the bend (figure 3(c)) because the corresponding intra-plateau
crossing occurs at much lower harmonic orders (not shown).
Having discussed the details of the behaviour close to the
cutoff, we now turn our attention to the central part of the
harmonic plateau.

3.2. Ratio of in situ phases and emission times

In the following, we consider the first spectral derivative of the
in situ phase, ∂φ

(n)
0 /∂�, which we wish to compare with the

group delay dispersion (GDD), ∂t
(n)
R

/
∂�. Both quantities are

evaluated in the central 50% of the harmonic plateau, i.e. in a
region set by 1.3Ip + (1.6 ± 0.8)Up, where both φ

(n)
0 (�) and

t
(n)
R are linear to a very good approximation. We avoid fast

and nonlinear variations both close to the ionization potential
(h̄� = Ip) and close to the cutoff (h̄� = 1.3Ip + 3.2Up)
using this central region. We define the ratio between the two
quantities as

γ (n) = −ω
∂t

(n)
R

∂�

/∂φ
(n)
0

∂�
= −ω

∂t
(n)
R

∂φ
(n)
0

. (16)

The GDD can in principle be obtained from the φ-
dependence of the even-order harmonics as ∂t

(n)
R

/
∂ω =

−γ (n)∂φ
(n)
0

/
∂ω/ω. This relation would be very useful if

γ (n) was a constant (or at least a constant for each branch n).
Unfortunately we show that γ (n) depends on the ionization
potential of the atom, as well as the laser intensity and
wavelength.

3.2.1. Role of ionization potential. In this subsection we
study how γ (n) varies with laser intensity for a given laser
wavelength (800 nm) and different atomic species (helium,
argon, sodium and the classical case). In our model of γ (n),
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Figure 4. Ratios for different ionization potentials as a function of
fundamental intensity for (a) the short branch and (b) the long
branch. Symbols are � helium I (He)

p = 24.58 eV, � argon I (Ar)
p =

15.76 eV, � sodium I (Na)
p = 5.14 eV and ◦ classical I (0)

p = 0 eV.

atom-specific properties enter only through the value of the
ionization potential, Ip. In figure 4, we plot γ (n) for the
short branch (a) and the long branch (b). In the classical
case (Ip = 0) we find constant ratios: γ (1) ≈ 1.1 for the
short branch and γ (2) ≈ 0.84 for the long branch, while
in all realistic cases, where Ip > 0, there is a significant
change in γ (n) as a function of the fundamental intensity.
In the case of argon there is an especially strong variation
of the ratio: from 1.6 to 0.5 for the short branch over the
given intensity range. This strong intensity dependence is
problematic for the experimental determination of two-colour
HHG since the exact effective intensity is often unknown in
experiments. The variation of the ratios is smaller for the
long branch, because the stationary points are more similar
to the corresponding classical case, as seen in figure 2. The
variation of the ratios is smaller for sodium than for helium
because of the smaller ionization potential. Sodium is chosen
as an example to show that there is a significant difference
between the classical and quantum mechanical cases even for
a relatively small ionization potential. Using the two-colour
HHG approach for characterization of attosecond pulses would
require an accurate determination of the laser intensity, as well
as a quantum mechanical calculation of γ (n).

Next we comment on our previous work [18] where we
compared the in situ method and the RABITT method for
GDD of attosecond pulses. An explanation for the good
agreement we found between the two methods may come
from the crossing of γ (1) for argon occurring at 1.8 × 1014

W cm−2 with the classical limit, see figure 4(a). It would be
interesting to see more experimental results, carried out on
different atoms.

3.2.2. Role of laser wavelength. Finally, we study the
dependence of the ratios, γ (n), with laser wavelength. The
ratios are calculated for 800 nm, 1.3 μm and 2 μm,
corresponding to a titanium–sapphire laser system and two
mid-IR laser sources. We use the ionization potential of argon.
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Similar to figure 4, all ratios look different when they are
plotted as a function of laser intensity, see figure 5(a) for the
short branch and (b) for the long branch. The ratios of the short
branch show larger variations than those of the long branch.
Furthermore, it is seen that the longer wavelengths lead to less
variation of the ratios over intensity. The recent experiments
of Doumy et al [17] were carried out at these wavelengths.
Applying our method improves the scaling law for the GDD
from λ−0.77 to λ−1.05, which is closer to the expected λ−1

scaling of the harmonic chirp times intensity. We stress that
in order to use the calculated ratios to determine the GDD, the
experimental intensity must first be measured as accurately as
possible independent of the two-colour HHG scheme.

4. Discussion and conclusions

In our quantum mechanical derivation of two-colour HHG we
find that both amplitude and phase effects are important. The
ratio of the ponderomotive energy and the ionization potential,
Up/Ip, serves as a measure on how ‘classical’ or ‘quantum’
the electron trajectories are. Choosing this ratio as our x-axis
for the data in figures (4) and (5), we find that all individual
ratios γ (n) follow a universal curve, as shown in figure 6.
Photoelectron emission ranging from the photon picture to the
tunnelling picture is described in the theory of Keldysh [28]
where the ratio

√
Ip/2Up 
 1 (corresponding to Up/Ip � 1)

implies efficient tunnel ionization. In this limit we find that
γ (n) slowly converges towards the classical limit, Ip = 0. One
should look at figure 6 with some caution since the SFA is
derived for the long wavelength limit requiring Ip � h̄ω and
Up/Ip > 1/2. It is clear that the behaviour of the HHG process
changes dramatically around Up/Ip ≈ 1, i.e. when the kinetic
energy of the electron is close to the potential energy of the
atom.

In conclusion, we have studied the HHG process perturbed
by a weak second harmonic field within the SFA. We find
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Figure 6. Universal ratio between the group delay dispersion and
the derivative of the in situ phases as a function of the ratio of
ponderomotive energy and ionization potential for (a) the short
branch and (b) the long branch. The classical limit, I (0)

p = 0, is
reached very slowly, see the grey arrows.

that the dependence of the even harmonics on the subcycle
delay between the two fields, cannot be understood using
classical theory. Our calculations show good agreement
with experimental results [13, 18] showing the change of
behaviour at high energy, explained as a change of dominant
quasiclassical branch of trajectories. We stress that there is an
intra-plateau crossing between the short and the long branch
which does not coincide with the true cutoff. Furthermore, we
calculate the ratio between the GDD of the attosecond pulses
and the phase variation of the even-order harmonics, γ (n), as
a function of intensity, wavelength and ionization potential.
The analysis method called in situ probing of the birth of
attosecond pulses [16] must be improved by considering the
influence of the atomic properties and laser parameters, before
it can be applied for quantitative experimental studies. Using
the classical analysis will only lead to a qualitative prediction
for the GDD of the attosecond pulses with the correct sign.
It will be interesting to compare the results of our quantum
mechanical approach to probing the birth of attosecond pulses
using a two-colour field with more refined calculations.
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1 I. INTRODUCTION

Laser�assisted ionization processes provide an ele�
gant tool to study dynamics and details of atomic and
molecular systems [1–3]. For time�dependent mea�
surements, the assisting laser needs to be synchronous
to the ionization event on a time scale shorter than that
of the process to be resolved. A number of experiments
in the past years have shown that the attosecond (as)
time scale is routinely accessible and laser�assisted
ionization processes have become the chief tool for
experiments in the field of attosecond science [1–6].

The emission of a comb of high�order harmonics
when an atomic medium is exposed to a driving
intense laser field is well understood. The resulting
attosecond pulse trains (APT) [7, 8] provide a premier
tool to controllably ionize atomic media [5, 9] and it is
important to determine their characteristics, both
amplitude and phase. This can be done by cross�cor�
relation with an IR probing field under stable interfer�
ometric conditions. Using weak infrared (IR) fields,
this is often done with the Reconstruction of Attosec�
ond Beating by Interference of Two�Photon Transi�
tion (RABITT) method [7], while the AC�Streak
camera method [10, 11], using stronger IR fields, has
mainly been applied to the characterization of isolated
attosecond pulses. A special case is the full character�
ization method FROG�CRAB (Frequency�Resolved
Optical Gating�Complete Reconstruction of Attosec�
ond Bursts), which is based on an iterative deconvolu�

1 The article is published in the original.

tion of a time�frequency spectrogram [12, 13]. In this
paper, we study the transition from the weak to the
strong field regime, and the effect of the probe field
strength on the validity of the characterization.

In Section 2, the experimental setup and per�
formed experiments will be presented. We perform in
Section 3 a conventional analysis of the data in the
RABITT regime, studying specifically the probe
intensity dependence of the phase measurement. A
Fourier�series approach (Section 4) allows us to see
the fingerprints of processes with more than one con�
tributing IR photons and provides a more general
description of our delay�dependent laser�assisted pho�
toionization spectra.

2. EXPERIMENT

2.1. Setup

The experiments were performed at the High
Power Laser Facility of the Lund Laser Centre. We use
a 1 kHz chirped�pulse�amplification (CPA) titanium�
sapphire based laser system, providing 2 mJ 30 fs
pulses centered around 800 nm. The pulses are
focused into an Ar gas cell, pulsed at 1 kHz, to gener�
ate high�order harmonics, which then propagate
through silica plates and a thin Al�foil to filter the har�
monics to form a well�defined APT (cf. Fig. 1). The
APT is then recombined with an IR probe beam in a
Mach−Zehnder�type interferometer. In the last step of
the interferometer, the APT is passed through a drilled
mirror while the IR is reflected on the back side of the
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mirror. Both beams are focused into the detection gas
of a magnetic�bottle electron spectrometer (MBES)
with the help of a toroidal mirror. Using a combination
of half�wave plate and polarizer in the probe beam, the
pulse energy of the IR can be varied continuously
between 5 and 100 µJ. As all focusing parameters are
kept constant, any change in the probe pulse energy
will directly result in a proportional change of the IR
intensity in the detection region of the MBES. The
MBES has a 2π acceptance angle and a maximum
energy resolution of about 100 meV.

The relative delay of IR probe and APT can be
adjusted on two time scales. Using a motorized trans�
lation stage in the probe arm we can vary the delay in
the range of one femtosecond to several picoseconds.
To accurately resolve attosecond processes, a delay
stage with a piezoelectric crystal is used to change the
relative phase of the two beams with a precision of a
few tens of as. This stability allows us to perform inter�
ferometry of two�photon pathways as in the RABITT
characterization scheme, as shown below. It is also
crucial for the use of the AC streak camera method,
where the relative phase of the two beams has to be sta�
ble with similar precision.

2.2. Delay�Dependent Two�Color Photoionization 
Spectra

In the experiments presented here, the resulting
photoelectron spectra from an IR probe and XUV field
were recorded. A shift in the relative delay of the two
fields induces a change in the observed spectrum, and
recording the spectra at different subcycle delays

allows us, in some conditions, to determine the tem�
poral structure of the XUV emission.

Figure 2 shows the seven scans that constitute our
experimental results. From left to right, the probe
pulse energy changes by a factor of 20, ranging from 5
to 100 µJ. At the lowest intensity, the presence of a
weak IR field leads to weak sidebands between the odd
harmonic orders. These sidebands originate from ωn +
ωR and ωn – ωR two�photon transitions [14], where ωR

is the IR photon frequency and ωn = nωR, with n being
an odd integer, see Fig. 3a. The two possible pathways
to each final state lead to the observed interference
pattern. This pattern is repeated every IR half�cycle,
TR/2, reproducing the frequency of the attosecond
pulse periodicity. This probe intensity regime is com�
monly referred to as the RABITT regime.

With increasing IR intensity, the amplitude of the
sidebands becomes comparable to direct photoioniza�
tion by the harmonics (see, e.g. sideband 22 in
Figs. 2d–2g). These two�photon processes induce a
depletion of the peaks at odd harmonic energies, at the
delays where the sidebands are maximum. The cutoff
region is first affected by depletion since the strength
of continuum�continuum transitions rapidly increases
with the energy of the initial state (Figs. 2b and 2c at
harmonic 25 and above). For a probe pulse energy of
40 µJ (Fig. 2d), depletion effects become visible even
in the low energy region (see harmonic 19 to 23 in
Figs. 2d–2g).

At the higher probe intensities (Figs. 2d–2g), pro�
cesses involving more than one IR photon become sig�
nificant. This is the so�called streaking regime, where
the AC�streak camera becomes the preferred charac�
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gas cell

Silica plates

Thin�film
filters

Toroidal mirror
MBES

Delay
stage

Aperture/
drilled mirror

HHGf/50
mirror

Beamsplitter

Fig. 1. Setup for the experiment: a 2 mJ, 30 fs laser pulse is split into a probe and a pump arm. The larger part is used in high�order
harmonic generation while a fraction travels through a delay stage to serve as probe pulse. The generated harmonics are filtered
spectrally and spatially by silica plates, a thin�film metallic filter and an aperture, before recombining with the probe using a
drilled mirror and being focused into the detection gas of a magnetic bottle electron spectrometer.

Probe
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Polarizer

Halfwave
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terization method [10, 11, 13]. The streaking regime is
clearly entered in the last two of the scans in Fig. 2, the
cutoff being increased by as much as seven IR photons
(from harmonic 27 and above). Note that the electron
signal is still showing discrete IR photon energy spac�
ing because of the periodicity of photoionization from
the sequence of attosecond pulses.

3. ANALYSIS OF THE EXPERIMENT

3.1. Reconstruction of Attosecond Beating
by Interference in Two�Photon Transitions (RABITT)

We now analyze the results in Fig. 4 (same as
Fig. 2a) within a perturbation theory framework.
Here, we will consider the photoionization of the
detection gas by the APT as a first�order perturbation
and the onset of the sidebands and the RABITT mod�
ulation as a perturbation of the second order. This is a
good description of two�color photoionization at low
IR intensities.

Contributions to the final state probability ampli�
tudes of order N can be obtained from those of order
(N – 1) through the following equation [15, 16]:

(1)

where l is the index of the respective contributing
states, ωf are the frequencies acting on the atom and m
denotes the final state. The effect of the IR on the

am
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ground state is negligible. The population of contin�
uum states after perturbing the system with a har�
monic frequency can be approximated by

(2)

where µn, g is the transition dipole matrix element from
the ground to the continuum state, and t the interac�
tion time, approximately a measure of the pulse dura�
tion. The population of the sideband state (n – 1) can
be expressed as

(3)

where the factor M represents a combination of the
various transition dipole moments, which we approxi�
mate as equal for both quantum paths, and ER0, EX0 are
the amplitudes of the IR and XUV fields. The sideband
intensity will finally oscillate

(4)

with φR = ωRτ, τ being the delay between the XUV and
the IR fields. ∆φn – 2, n is the phase difference between
the harmonic spectral phases φn – 2 and φn. This allows
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Fig. 2. XUV photoionization spectra, recorded for varying sub�cycle delay between IR and XUV field. The corresponding probe
pulse energies are written in the upper part of the figures. A change of this energy translates proportionally to a change of the probe
intensity. The zero delay indicates the delay at which the maxima of the IR pulse and the APT coincide.

149



Intensity Dependence of Laser-Assisted Attosecond Photoionization Spectra

1594

LASER PHYSICS  Vol. 19  No. 8  2009

SWOBODA et al.

us to obtain the phase difference ∆φn – 2, n from a Fou�
rier transform of the spectrum over delay.

Using the obtained phase, we can reconstruct a
pulse shape as in Fig. 5. The Fourier limit for our spec�

trum is 160 as. Due to the chirp rate of 18400 as2 we
obtain an average pulse duration of 440 as FWHM.
This method of measuring APTs has been successfully
employed in a number of experiments [7, 8, 17]. The

0

E

(a) (b) (c) (d) (e)

(2) (3) (4) (4) (4)

|n + 2〉

|n + 1〉

|n〉

|n − 1〉

|n − 2〉

|n − 3〉

|n − 4〉

|g〉

Fig. 3. Sketch over possible transitions involving single harmonic� and multiple IR photons. (a) Shows the RABITT transition,
which couples two harmonic photons with an energy difference of 2ωR to a final state with energy (n – 1)ωR. (b) Shows that the
absorption/emission of two IR photons leads to a similar coupling with odd final energy nωR. (c) Illustrates that yet another IR
photon can be used to couple harmonic photons that are 6ωR apart in an even final energy (n – 1)ωR. (d, e) Shows that three IR
photons will also couple new harmonics that are 2ωR apart in even final energy (n – 1)ωR, which will distort the information from
the RABITT signal in (a).
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Fig. 4. Delay�dependent photoionization spectrum in the RABITT regime, measured at 5 µJ probe pulse energy. The dashed line
indicates the sideband maxima.
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high chirp rate and asymmetric pulses come as no sur�
prise as only one thin aluminum filter was employed to
counter the intrinsic chirp of the HHG process. The
addition of more filters would help to approach the
Fourier limit and further compress the pulses [17, 18].
The RABITT method provides access to the relative
phase difference of presumably monochromatic har�
monics [7, 14]. The measured phase difference is
equal to the group delay (GD) over the spectrum of the
APT, and an integration allows us to reconstruct an
average attosecond pulse in the train. Such a retrieved
pulse represents a good approximation for pulses
within the FWHM of the APT, accounting for about
90% of the signal from experiments with such trains.
There are extensions and implementations of the
method that yield more information on the full struc�
ture of the APT [19, 20].

3.2. Intensity Dependence of RABITT Signal

The influence of an intense probe field on the mea�
sured spectral phase was studied by progressively
increasing the IR intensity and recording the delay�
dependent photoionization spectra. Figure 6 shows
the phase differences ∆φn – 2, n evaluated according to
the method outlined above, for varying probe intensi�
ties. It is clear that the slope is decreasing with increas�
ing intensity, as if the chirp rate was lower, even though
the actual APT remained the same.

As a consequence of the phase variation with inten�
sity shown in Fig. 6, the reconstructed pulses will
appear more compressed at higher probe intensities,
which is a pure artifact of the increased IR intensity.
The RABITT analysis relies heavily on the presence of
a single IR photon contributing to the final state as to
allow only the phase difference of the neighboring har�
monics to be measured. Higher�order processes per�
turb the RABITT signal, as will be discussed in more
detail in Section 4.

3.3. Streaking

We now consider briefly the regime of high probing
intensities (Fig. 7, same as Fig. 2g) where the interac�
tion between photoelectrons and probing laser field
can be understood by simple classical arguments. In
this regime, an electron is released into the continuum
at a given ionization time ti due to photoionization by
an attosecond pulse. It will gain an additional momen�
tum proportional to the IR vector potential A(ti) at the
time of ionization. This momentum shift imparted by
the IR probe is therefore dependent on the relative
delay between the two fields. With APTs generated by
two�color fields, or with single attosecond pulses, the
pulse properties (duration and chirp) can be extracted
from analyzing the streaking trace and the pulse(s) can
be reconstructed [10, 11, 13]. In the case of an APT
with two pulses per cycle, the situation is more com�
plex and a reconstruction of the attosecond pulses

from the experimental data is more difficult, since the
sign of the probe field reverses for consecutive pulses.
Without going further with the analysis of our experi�
mental data, we note that the chirp of our attosecond
pulses, however, is clearly visible in the high energy
region of the spectrum (see dashed line in Fig. 7). The
onset of the streaking regime also explains the
observed phase shift of the sideband orders close to the
cutoff in Fig. 6. In the perturbative regime and, for
simplicity, in absence of attosecond chirp, the maxima
of the sidebands occur at the maxima of the probe laser
electric field. At moderate probe intensity, depletion of
the harmonic states will lead to maxima of the har�
monics shifted by π/2 with respect to the sidebands,
thus corresponding to the zeros of the electric field. At
high energy, electron peaks, coming from direct elec�
trons being streaked by the probe field, will therefore
be maxima at the zeros of the electric field, thus shifted
by a factor π/2 from the sidebands.

4. FOURIER DECOMPOSITION 
OF THE PHOTOELECTRON SPECTRA

4.1. Perturbation Theory Analyzis

To better understand the influence of a high IR
intensity on a RABITT measurement, we extend the
analyzis performed in the previous section, based on
perturbation theory to the next orders. The third order
of perturbation includes components coupling the

−400 0 400
Time, as

1.0

0.8

0.6

0.4

0.2

0

In
te

n
si

ty
, 

au

In
te

n
si

ty
, 

au

14 16 18 20 22 24 26

6

26

5
4
3
2
1
0

P
h

as
e,

 r
ad

Fig. 5. Reconstruction of average pulse in the pulse train,
measured by the RABITT method. The upper panel shows
the harmonic intensities (solid line) and integrated spec�
tral phase (dashed line). Using these intensities and phase,
one can reconstruct the pulse shape as in the lower panel.
The Fourier limited pulse shape is shown as dashed.
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states (n + 2) and (n – 2) to the harmonic (n) state by
two IR photon absorption or emission (Fig. 3b):

(5)

This term gives rise to oscillations at frequencies 4ωR,
2ωR, and to a constant term. The intensity of the 4ωR

modulation at the harmonic energy nωR is

(6)

which is similar to Eq. (4). The next order of perturba�
tion leads to a 6ωR component in the sideband states
and the next to an 8ωR component in the harmonic
states. Higher IR intensities lead to new couplings of
states lying further apart and thus higher modulation
frequencies.

Figure 3 illustrates how the number of pathways
that lead to a given modulation frequency is unique
only under certain restrictions. Even numbers of con�
tributing IR photons couple to harmonic states while
odd numbers couple to sideband states. The 4ωR fre�
quency is meaningful only in the harmonic final states,
as shown in Eq. (5) and the phase difference that can
be determined is that between harmonic states (n – 2)
and (n + 2). A Fourier transform that isolates this
component will allow us to access to the spectral phase
in the same way as with the conventional RABITT,
looking at the 2ωR modulation in the sideband states.
Experimentally, due to the resolution of our scans, the
6ωR component is the highest resolvable. It is already
close to the Nyqvist limit, with only three to four data
points per period.

Figure 8 shows a comparison of the group delay
obtained over the spectrum for three different modu�
lation frequencies. The usual RABITT is based on the
5 µJ�scan, the phases of the 4ωR�modulation were
obtained at 20 µJ, and the 6ωR�modulation was
present for the central harmonics in the 80 µJ�scan.
Excellent agreement was found between the chirp
rates obtained with the different methods. Our results
are also consistent with previous experiments [8, 17].
From the 2ωR�measurement we obtain a chirp rate of
18400 as2 or—in terms of a group delay—an emission
time difference ∆te = ∆φ/(2ωR) = 87 as. This is very
similar to 16800 as2 (∆te = 79 as) obtained from the
4ωR�component in the harmonics. The slope of the
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phase difference in the 6ωR�component is also in good
agreement with 16900 as2 chirp rate or a ∆te of 80 as.

4.2. Generalization

Because of the analogy between the conventional
RABITT and the possibility to extract the same infor�
mation from higher components we will now intro�
duce a more general expression for the delay depen�
dence of our photoelectron spectrum. This expression
will hold beyond the breakdown of the perturbation
picture. The amplitude of any photoelectron peak in
the spectrum is periodic with delay φR between the IR
and XUV fields. It can therefore be expressed as a dis�
crete Fourier series:

(7)

with  = . Considering only the k = ±1 contribu�
tions we have

(8)

which is the common RABITT case, for low IR inten�

sity, with arg( (IR)) = ∆φn – 1. For higher IR intensi�
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iφR2k
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k 0=
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Fig. 8. Comparaison of the obtained phase differences for
three different frequency components present in the
experimental electron signal. The conventional RABITT
includes contribution from sidebands 14 to 26. The 4ωR�
component has been extracted from harmonics 15 to 23
and the 6ωR�modulation was obtained from sidebands 18
to 24. The curves have been shifted for better comparison.
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ties, higher order terms contribute, the argument will

change and higher order terms of the sum (IR) will
grow revealing higher contributing frequencies. In the
case of k = 2,

(9)

which can readily be identified as the 4ωR component
with an argument of ∆φn – 2, n + 2 for a suitable probe
intensity. Figures 3d–3e show the effect of the partici�
pation of three IR photons, and how two non�sur�
rounding harmonics contribute their phase difference
to sideband n – 1, destroying the unique source of the

2ωR modulation. Thus arg( (IR)) changes and the
phase observed in the RABITT analysis varies with IR
intensity.

At the same order of perturbation, a 6ωR modula�
tion can be constructed with three IR photons cou�
pling harmonic n – 4 and n + 2 to sideband n – 1 (cf.
Fig. 3d). For sufficiently high intensity, the number of
contributing IR photons is �1, resulting in a great
number of frequencies added to form the delay�
dependent signal in the sideband. More and more har�
monics contribute to the phase, which becomes flat.
The oscillation does not uniquely depend on the adja�
cent orders anymore—the requirement for RABITT.
This is the streaking regime, where the classical limit is
reached.

As we previously studied the effect of the IR inten�
sity on the phase measurement in the conventional
RABITT method, we perform a similar analysis for

S̃k

S2 φR IR,( ) 2 S̃2 IR( ) 4φR S̃2 IR( )( )arg+( ),cos=

S̃1

our measurements with the 4ωR component. Figure 9
shows the intensity dependence of the harmonic phase
measured in this component. We find that at 20 to
60 µJ the phase is meaningful compared with the con�
ventional measurement. The measurement at 80 µJ is
showing a similar characteristic flattening of the phase
as the conventional RABITT. The 4ωR breakdown
occurs for much higher probe intensities. In this case
the number of contributing photons becomes so high

that arg( (IR)) is affected by ambiguous coupling of
states. The analyzis of this 4ωR component provides an
additional check on the measured phase from conven�
tional RABITT method. This allows us to assess
whether the probe intensities in any experiment have
been too high by comparing the 2ωR with the 4ωR

components and possibly even higher orders.

5. CONCLUSIONS

We have studied the influence of IR probe intensity
in two�color XUV photoionization experiments. In
the laser�assisted ionization process that is at the heart
of the RABITT method for characterizing APTs, the
probe intensity needs to be maintained at levels which
only perturb the process very slightly. A high probe
intensity will greatly alter the measured phase relation
of the individual high�order harmonics, making it
appear flat over the spectrum, as if the pulses were
compressed. RABITT is only valid in the limit of weak
IR intensity.

In a next step, the increasing number of contribut�
ing IR photons was tracked down by Fourier�analysis
of sideband and harmonic states. As an increasing
number of photons allows to couple states further and
further away, higher modulation frequencies occur.
The 4ωR component of the harmonic states allows us
to obtain their mutual phase relation. Also in this case
an increasing IR intensity started to affect the phase
measurement making the pulses appear artificially
compressed. We believe these experiments will allow
the scientific community to gain a better understand�
ing of the IR intensity dependence of laser�assisted
ionization of a gas using high�order harmonics.
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Abstract
Strong field laser–matter interaction is intrinsically a sub-cycle phenomenon, which is clearly
illustrated by the generation of attosecond pulses through the high-order harmonic process.
Therefore, to control strong field processes the structure of the field driving the generation has
to be controlled on a sub-cycle level. One approach is to use phase stabilized few-cycle driving
pulses and vary the carrier-envelope phase of these pulses; an alternative method is to use
longer pulses and include the second harmonic to tailor the field structure.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Strong field processes start with the creation of temporally
localized electron wave packets (EWPs) through ionization
when atoms or molecules are exposed to strong laser fields.
These subfemtosecond EWPs are produced twice per optical
cycle and may be driven back to the ion for further interaction.
This basic sequence of events, commonly known as the three-
step model [1, 2], is the essence of strong field laser physics
and leads to many different phenomena [3–7]. One method
to control these processes is to tailor the sub-cycle structure
of the driving field. The strength and shape of the half-cycle
during which the electron is ionized determines the timing
and amount of ionization whereas the next half-cycle sets the
energy of the electron when it returns to the ion.

The sub-cycle field structure can be controlled if the
fundamental infrared (IR) field is mixed with its second
harmonic. The combined field can be written as: E(t) =
Eω[sin(ωt) +

√
R sin(2ωt + ϕ)], where

√
R = E2ω/Eω is the

ratio between the two field amplitudes, ω is the IR frequency
and ϕ a tunable phase difference between the two fields. This
method to control multiphoton ionization of atoms attracted
both experimental [8, 9] and theoretical [10, 11] interest at
the time when the three-step model was put forward. It was
demonstrated that the first step in this model, the ionization,
can be controlled using a two-colour laser field. Both the
amount of ionization and the direction of the ejected electron
are affected when the relative phase between the two fields is
changed. It was soon demonstrated that also the second and

third steps are controllable [12–14]. At this time the metrology
to characterize attosecond pulses was not yet developed and
only spectral measurements were possible.

An alternative method to break the inversion symmetry is
through the use of few-cycle pulses where consecutive half-
cycles are different due to the very short envelopes of the
pulses. With these pulses asymmetries have been observed
in multiphoton ionization experiments [15, 16] and high-
order harmonic generation [17]. The ability to control strong
field processes using few-cycle pulses significantly improved
when it became possible to stabilize the carrier-envelope
phase (CEP) of femtosecond optical pulses in the visible
and near infrared wavelength regions. This technique has
lead to a variety of new applications, ranging from precision
spectroscopy to attophysics [17–21]. The effect of changing
the CEP of few-cycle pulses is similar to that obtained when
changing the relative phase, ϕ, between the two fields in a
bichromatic laser field (figure 1).

Attophysics is among the most celebrated offspring
of strong field laser physics. It is the short-timescale
frontier of physics and replaces femtochemistry in this regard.
Attosecond pulses have most likely been generated since the
process of high-order harmonic generation was discovered,
but the metrology to characterize these pulses was not
developed until 2001. At that time two groups independently
generated and characterized attosecond pulses using very
different schemes [22, 23]. Both schemes are based on high-
order harmonic generation from IR laser pulses; however,
while the first method uses multi-cycle pulses to generate

0953-4075/09/134003+06$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK

159



Sub-cycle Control of Attosecond Pulse Generation using Two-Colour Laser Fields

J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 134003 J Mauritsson et al

0

1
(a) (b)

0 2 4

0

1

Time (fs)

(c)

0 2 4
Time (fs)

(d)

Figure 1. Comparison between the asymmetry and control of
few-cycle pulses and two-colour fields. In (a) and (b) few-cycle
(3.3 fs) cosine and sine pulses are plotted and compared to
two-colour fields with R = 9% for two different values on ϕ (c) and
(d). The role of the relative phase, ϕ, between the two fields is very
similar to that of the CEP for a few-cycle laser pulse. Just as the
relation between consecutive half-cycles changes when the CEP is
varied for a few-cycle pulse, so does the shape of consecutive
half-cycles in a multi-cycle two-colour field change when ϕ is
varied.

trains of attosecond pulses [22] the second method use few-
cycle pulses, which may result in the generation of isolated
attosecond pulses [23, 24].

In this paper we focus on the effect of symmetry breaking
on attosecond pulse generation, and in particular how the
use of bichromatic driving field complements and bridges the
two schemes presented above. The half-cycle to half-cycle
symmetry of the two-colour driving field is broken which
opens up for sub-cycle control of the generation process,
also with multi-cycle driving pulses [25–27]. Experimentally
a multi-cycle two-colour field is less demanding than CEP
controlled few-cycle pulses, but the two techniques still have
a lot in common.

2. Experimental two-colour setup

With the experimental setup in Lund we are able to generate the
second harmonic and control the relative intensity, polarization
and phase between the two fields. We do this in a two-
colour interferometer with one colour in each arm, which
means that we, as opposed to collinear setups, can manipulate
the two colours independently. Incoming 35 fs, 2–3 mJ,
800 nm laser pulses are first frequency doubled in a 1.3 mm
thick KDP (potassium dihydrogen phosphate), type I crystal.
After the frequency doubling the polarizations of the IR and
blue pulses are orthogonal, which is usually not desirable for
attosecond pulse generation. The relative polarization can be
controlled simply by placing a half-wave plate in one arm of
the interferometer, but this will increase the amount of material
the pulses have to pass through and also limit the bandwidth,
in particular when the setup is used with short pulses [28].
Therefore, it is preferable to use a design where the blue arm
of the interferometer contains a periscope, which rotates the
polarization 90◦, see figure 2.

Figure 2. Versatile experimental setup to generate a two-colour
laser field. The setup can be made very compact and stable, but still
be versatile and useful in different types of two-colour experiments.
The incoming IR pulses are frequency doubled before the
two-colour interferometer. The polarization of the blue beam is
rotated without the use of a half-wave plate so that the setup can be
used with short pulses.

Another advantage of having one of the arms partly in a
vertical plane is that the two beam splitters in the interferometer
can be used in a better configuration. To maximize the
bandwidth of both the IR and blue the beam splitters should
transmit P-polarized IR and reflect S-polarized blue light. This
is the case for the first beam splitter, but the beam splitter used
for recombination of the arms transmits S-polarized IR with
some energy losses as a result, the bandwidth is, however, not
significantly reduced. Before the recombination of the two
colours a fraction of the IR beam is split off to be used as a
probe to characterize the temporal structure of the generated
attosecond pulses [26, 29]. The amount of light sent to the
probe beam is also a way to control the relative strength of
the two frequency components when a high ratio of blue is
required. For experiments that require a weak blue component
[30] a variable aperture can be added to the blue interferometer
arm. This will reduce the blue intensity relative to the IR
without affecting the bandwidth or pulse duration. The focus
size of the blue beam will increase with decreasing aperture
and ensure that the blue intensity is almost constant across the
red focus.

The relative phase between the two colours is controlled
by a translation stage in the blue interferometer arm and a
thin plate in the IR interferometer arm. The overlap between
the pulses is set by the delay stage, while the relative phase
is fine tuned by rotating the delay plate, thereby delaying the
IR pulses with respect to the blue. The delay between the IR
pulses and the probe, however, is not affected by the delay
plate since they are separated after this plate.

The two-colour field exiting the interferometer is focused
into a pulsed Ar gas target for harmonic generation. To form
attosecond pulses the harmonic emission is spectrally filtered
by a metallic filter and spatially filtered by an aperture [32].
The back side of the aperture is a convex mirror on which
the probe beam is combined with the attosecond pulses. The
combined beam is finally focused into the sensitive region of an
electron spectrometer. Two types of electron spectrometers are
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used; a magnetic bottle time-of-flight spectrometer (MBES)
or a velocity map imaging spectrometer (VMIS). The probe
can be delayed with respect to the harmonic beam with a
high precision piezo translation stage to perform pump-probe
measurements.

The two-colour setup can be used not only to control,
but also to characterize the generation process [30]. When
the relative strength of the second harmonic is very weak
compared to the IR field it will induce a small shift in the
electron phase without significantly perturbing the trajectory
itself. In the case of argon, the blue field intensity should be
approximately 0.1% of the IR intensity for typical generation
conditions where the IR intensity is 1 × 1014 W cm−2. The
sign of the induced phase is opposite for adjacent half-cycles
of the IR, which breaks the half-cycle periodicity and results in
the emission of weak even high-order harmonics. The phase
difference between consecutive harmonics can be deduced
by measuring the even harmonic strengths as a function
of the relative phase between the red and the blue pulses.
In combination with the harmonic amplitudes this provides
sufficient information to reconstruct the average temporal
structure of the attosecond pulse as it is being generated
[30]. An experimental proof of principle for the two-colour
characterization method using the well-established RABITT
method as a reference is soon to be published [31].

3. Control of attosecond pulse generation using
two-colour fields

For multi-cycle, one-colour laser pulses the sequence of
ionization, acceleration and recombination is repeated every
half-cycle. The only difference between consecutive half-
cycles is the sign change of the field. This means that the
attosecond pulses are generated with a half-cycle periodicity,
and that there is a phase shift of π from one pulse to the next.
The periodicity leads, in the frequency domain, to a comb of
harmonics spaced by two times the driving laser frequency.
These harmonics are odd multiples of the driving frequency
due to the phase shift of π from pulse to pulse (figure 1(a)).

With few-cycle pulses the short envelope gives half-cycle
to half-cycle variations of the carrier. By changing the phase of
the carrier wave with respect to the envelop the relative strength
of consecutive half-cycles is varied. The phase variation
between consecutive attosecond pulses may, therefore, differ
from the simple π -shift observed for longer pulses, which
consequently leads to a shift of the spectral peaks [17, 28].

For two-colour laser fields the shape and strength of
consecutive half-cycles are controlled by varying the relative
phase, ϕ, and/or the relative intensity, R, of the two fields.
The half-cycle periodicity is then replaced by a full-cycle
periodicity and both odd and even harmonics are generated
(figures 3(b) and (c)). If the blue field is sufficiently strong,
odd and even harmonics are generated for almost all relative
phases, but their relative strengths varies with ϕ (figures 3(b)
and (c)). The ionization, and hence the harmonic yield, is also
affected when ϕ is changed (figure 4). We find that odd and
even harmonics have comparable strengths for the value of ϕ

that corresponds to the maximum generation efficiency.
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Figure 3. (a) Experimental harmonic spectrum generated in argon
with a 35 fs, 800 nm pulse focused to an intensity of approximately
I = 2 × 1014 W cm−2. When the second harmonic (R ≈ 10%) is
added to the generation process the inversion symmetry is broken
and the spectral signature of this is the appearance of even
harmonics (b). By changing the relative phase between the two
fields the total field structure is altered and the strength of the
harmonics can be tailored.

Figure 4. Experimental harmonic spectra generated in argon with a
two-colour laser field, (R ≈ 10%) as a function of the relative
phase, ϕ, between the fields. The total yield is strongly modulated
and odd and even harmonics have comparable strengths for the same
values on ϕ that maximizes the yield. The spectra in figures 3(a) and
(b) are line-outs from this scan when the yield is minimized and
maximized, respectively.

When the symmetry of the driving field is broken, the
strength of the field driving the electron back to the ion is
also different between consecutive half-cycles. For few-cycle
pulses each half-cycle has a unique cut-off energy that can
be estimated by calculating the highest return energy for an
electron driven back during that half-cycle. This means that
there will be one effective cut-off for every contributing half-
cycle [33]. The symmetry breaking using a two-colour field
results in two different cut-offs that depends on ϕ. For some
ϕ these cut-offs can differ by many harmonic orders as seen in
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Figure 5. Harmonic spectra calculated for an IR intensity of
I = 2 × 1014 W cm−2, R = 10% and two different values on ϕ. In
(a) and (c) the harmonic generation from different half-cycles is
separated and calculated for ionization when the field is positive or
negative. In (b) and (d) the total harmonic spectra are presented.
The values on ϕ are selected to maximize ((a) and (b)) or minimize
((c) and (d)) the difference in the spectral shape from consecutive
half-cycles. When the strength from consecutive half-cycles is
comparable the contributions interfere, which is clearly seen for all
energies in (d), but only around harmonic order 40 in (b).

figure 5(a) while other relative phases result in similar energies
for both cut-offs (figure 5(b)). The lowest energy cut-off is
produced when the field driving the electrons back to the ion is
rather weak; these electrons are, however, ionized during the
strongest half-cycle with a resulting high harmonic yield. This
leads to a very efficient suppression of the harmonic generation
every second half-cycle and enhancement for the other half-
cycles, which in the time domain corresponds to a strong APT
with only one pulse per IR cycle [26, 27].

For a particular value of ϕ consecutive half-cycles share
almost the same spectral signature (figure 5(c)), which suggest
that two nearly identical pulses are generated by the different
half-cycles. The pulses are, however, generated by different
driving fields and their temporal structure may still differ
dramatically. The phase of the attosecond pulses depends
on the time the electron spends in the continuum between
the ionization and the recombination. In a two-colour field
the electron trajectories that have the same return energy
for consecutive half-cycles may have spent different times
in the continuum. The two cut-off trajectories in figure 5(c)
correspond to electron continuum times of 0.45T and 0.65T ,
where T is the period of the IR field, i.e., the electrons are
pulled back with maximal energy much faster in one half-cycle
compared to the other. The difference in temporal structure
results in an interference in the total spectra when different
half-cycles have amplitudes of comparable strengths as seen
in figures 5(d) and 3(b). This interference diminishes when
the harmonic yield from one half-cycles clearly dominates over
the other by several orders of magnitude as seen in figures 5(b)
and 3(c).

Any effect of the symmetry breaking will be enhanced by
increasing the asymmetry between consecutive half-cycles.
For a few-cycle pulse the asymmetry is increased by reducing
the pulse duration, while for the two-colour field the intensity

of the second harmonic is simply to be increased compared to
the IR field. The shortest IR pulses generated, as of today, are
3.3 fs with a carrier wavelength of 720 nm [34], which leads
to a maximum amplitude asymmetry of 0.71:1. To obtain a
similar asymmetry with the two-colour field the intensity of
the second harmonic has only to be approximately 2.5% of the
IR intensity.

A stronger second harmonic field, R � 15%, induce
dramatic changes to the sub-cycle field structure [29]. The
cut-off energy and the continuum time for the cut-off electrons
strongly depend on ϕ. Phase matching in a generation
target in combination with an aperture removing divergent
harmonic emission can act as a temporal filter that efficiently
suppresses emission from electrons with a continuum time
longer than 0.65T . Within this time window the maximum
electron energy varies when ϕ is changed. As the ionization
probability increases for electrons returning with higher energy
the net result is attosecond pulses with tunable central energy.
Another example of temporal control using a two-colour field
can be obtained when R ≈ 25%. For this particular value of R
the right choice of ϕ results in many electron trajectories that
have the same return energy for a large part of the half-cycle.
This leads to a dramatic increase in harmonic intensity for this
particular energy while the other energies are suppressed (see
[29]).

4. Attosecond pulse CEP

The role of the CEP has so far mainly been studied for
optical pulses in the visible and near IR wavelength regions.
Attosecond pulses have a central frequency in the XUV
wavelength region and can therefore be very short and still
consist of multiple cycles. As the duration of the attosecond
pulses gets shorter, approaching the single cycle limit [32, 35],
it gets meaningful to talk also about their CEP.

The addition of the second harmonic to the driving field
provides the possibility not only to control the periodicity of the
pulses in the generated APT but also the CEP of the pulses [26].
An APT generated by a single colour driving field consists of
a train of attosecond pulses with a periodicity equal to half
that of the driving field and a π shift between consecutive
pulses; see figure 6. The addition of a small amount of second
harmonic to the driving field enables control of the CEP. By
carefully selecting R and ϕ, consecutive attosecond pulses
can be made to accumulate an additional phase of π , which
results in an APT that still has a half-cycle periodicity, but
with the same CEP from pulse to pulse (figures 6(c) and (d)).
In the frequency domain this corresponds to a comb of even
harmonics [30]. The spectral range over which a comb of even
harmonics can be obtained is limited by the intrinsic chirp rate
of the attosecond pulses, but can be extended by increasing the
IR intensity or using longer wavelength drivers [36, 37]. As
the blue intensity is increased the attosecond pulse generation
will rapidly decrease for every second half-cycle, and a pulse
train with only one pulse per cycle is effectively generated
for almost all values of ϕ once R ≈ 10%. In the generated
APT with one pulse per cycle the CEP will also be the same
from pulse to pulse (figures 6(e) and (f)). Furthermore, the
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Figure 6. (a) A one colour driving field results in a comb of odd
harmonics. (b) Phase locking produces an APT with periodicity
equal to half that of the driving field and a π phase shift from pulse
to pulse. (c) With a small amount of second harmonic added to the
generation process a comb of even harmonics can be produced,
which in the time domain (d) corresponds to an APT with
periodicity equal to half that of the driving field and no phase shift
from pulse to pulse. (e) A stronger blue field results in equally
strong odd and even harmonics and (f ) an APT with a full IR cycle
periodicity and stable CEP.

increased amount of blue helps to stabilize the CEP of the
attosecond pulses across the pulse train [26].

5. Towards XUV–XUV pump-probe experiments

Dynamics of various systems are frequently studied using
pump-probe techniques where the sample is excited by a
pump pulse and the time evolution recorded by a probe pulse
after a variable delay. This can be generalized to situations
where the object is to control the dynamics, e.g., by using
additional, intermediate control pulses or by initiating the
dynamics at specific times when the outcome is known to
be favourable. Such pump-probe and control experiments of
electron dynamics call for flexible attosecond pulse sources
where the number of pulses, the delay between them and their
relative CEP can be tailored.

The number of attosecond pulses can be varied by
changing the CEP of a few-cycle pulse driving the high-
harmonic generation process. If more than a few pulses are
desired, a longer driving IR pulse combined with suitable
phase matching [38, 39] or polarization gating [40, 41, 35]
can be used, or combinations thereof [42]. In order to control
the delay between pulses, one needs to vary the period, i.e. the
wavelength, of the driving IR field. Continuous tuning over
limited intervals is available with parametric sources; however,
if discrete tunability is sufficient, then it is enough to add the
second harmonic blue field to the generation process. This

will allow the user to choose between half-cycle and full-cycle
intervals with the additional freedom of selecting the relative
carrier-envelope phase between consecutive pulses, thus open
the door for the possibility of observing CEP effects with
attosecond pulses.

Combining a two-colour driving field with few-cycle
pulses and/or polarization gating can provide a flexible
source to be used in XUV–XUV pump-probe and control
experiments, especially if combined with a tunable parametric
chirped pulse amplifier system. Indeed, such a double optical
gate has been shown to produce isolated attosecond pulses
starting with 10 fs driving IR fields [43, 44]. By adding the
second harmonic to the driving field cleaner isolated pulses,
with weaker pre- and/or post-pulses can be produced. The
extended continuous spectral bandwidth opens for even shorter
isolated attosecond pulses, provided that the right material can
be found to compensate the phase variation across the pulses
[45].

6. Conclusion

In this paper we have compared the effect of symmetry
breaking using a two-colour field with that obtained with
few-cycle pulses. The two techniques have many things in
common and complement each other very well. With two-
colour fields the induced asymmetries can easily be made
very large and we have demonstrated that this allows us to
control the periodicity, the CEP and the central frequency of
the generated attosecond pulses. If combined with polarization
gating and/or few-cycle pulses this enables the generation
of controlled sequences of attosecond pulses. The ability
to tailor attosecond pulse sequences in terms of number of
pulses, periodicity and CEP will be important when attosecond
physics move towards XUV–XUV pump-probe experiments.
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We report experimental measurements of high-order harmonic spectra generated in Ar using a carrier-

envelope-offset (CEO) stabilized 12 fs, 800 nm laser field and a fraction (less than 10%) of its second

harmonic. Additional spectral peaks are observed between the harmonic peaks, which are due to

interferences between multiple pulses in the train. The position of these peaks varies with the CEO

and their number is directly related to the number of pulses in the train. An analytical model, as well as

numerical simulations, support our interpretation.
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The availability of one, two or a few attosecond light
pulses will enable physicists to pump and probe, and
possibly to coherently control electronic processes at an
unprecedented time scale. While attosecond pulse trains
(APT), comprising many pulses, are easily produced by
harmonic generation in gases [1,2], the generation of single
attosecond pulses (SAP) requires state-of-the-art laser sys-
tems and advanced characterization techniques, which to
date, have been achieved by only two groups [3,4]. Today,
many laboratories in the world are working towards this
goal. Different methods are being explored including gen-
eration with ultrashort laser pulses [3], polarization gating
[4–6], two-color frequency mixing [6,7] and spatial filter-
ing [8,9]. A common denominator to all of these methods
is the requirement of stabilization of the laser CEO [10–
12], which allows for the optimization of the electric field
waveform required to generate one or two pulses [13].

This Letter presents spectral measurements in condi-
tions where the harmonic emission consists of only a few
pulses. When the CEO is stabilized, we observe additional
frequency components between the harmonics, the number
of which decreases from low to high photon energies, as
shown in Fig. 1. We provide a simple and straightforward
interpretation of the origin of these components, in terms
of interferences between all of the emitted pulses in the
train. We discuss how the number of these extra peaks
gives information about the number of pulses in the train
depending on the frequency region considered. This is a
general result that will be encountered when a small num-
ber of attosecond pulses are generated with phase-
stabilized laser systems. The additional frequency compo-
nents can be used to get immediate information on the
number of pulses in the train as well as on the CEO value
needed for the production of a given number of pulses. The

position of the frequency components varies with the CEO,
in a way that depends on which trajectory (long or short)
contributes to the harmonic emission [14].
Our work is closely related to two previous experimental

results obtained in quite different conditions. Sansone and
co-workers [15] studied interferences between the long
trajectories contributions of two consecutive harmonics
and pointed out that these could also be interpreted as
interferences between multiple pulses in the train. Pfeifer
et al. [16] used ultrashort laser pulses and observed har-
monic spectra containing harmonics and a continuous cut-
off. By Fourier filtering they were able to remove the
harmonic oscillation, thus revealing an additional modula-
tion due to interferences between at least three pulses. In
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FIG. 1 (color online). Experimental harmonic spectrum. The
dashed light blue lines indicate the position of the harmonics,
starting from the 14th. The top pictures illustrate the composition
of the pulse train corresponding to a selection of an approxi-
mately 3 eV spectral bandwith. The relative amplitude of the
pulses is not known.
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the present paper, multiple pulse interferences are observed
directly and over the whole emitted spectrum, thus allow-
ing us to get an immediate diagnostic of the status of the
pulse train.

For our experimental studies we use a Ti:sapphire laser
system delivering 30 fs CEO-stabilized 800 nm pulses at a
repetition rate of 1 kHz with a maximum pulse energy of
0.8 mJ. The pulses are temporally compressed in a filament
followed by chirped mirrors [17]. The compressed 12 fs
laser pulses are sent through a 80 �m type I BBO crystal
for second harmonic generation. The IR and the generated
second harmonic radiation (blue) are separated in a di-
chroic interferometer where the relative phase, ’, between
the IR and the blue can be finely controlled [18]. The two-
color laser beam enters a vacuum chamber and is focused
by a 50 cm radius of curvature spherical mirror into a
pulsed argon jet. The Ar gas jet is positioned just after
the laser focus for maximum efficiency as well as for
phase-matching preferentially the short trajectory [19].
The high harmonic emission, generated in the jet, enters
an XUV-spectrometer composed of a platinum grating and
a backside-illuminated CCD. The acquisition of each har-
monic spectrum is performed over a few thousand laser
shots.

Figure 1 presents the key result of this work: The har-
monic spectrum generated by the few-cycle two-color
driving pulse exhibits spectral peaks in addition to the
even and odd harmonics. The number of extra peaks de-
creases as the harmonic frequency increases, while their
amplitude relative to the harmonic peaks increases. Their
origin can be understood through a time domain descrip-
tion of harmonic generation. Let us first consider for
simplicity n identical attosecond pulses, separated by a
constant time interval (T ¼ 2:7 fs in the experiment),
with the same complex amplitude [aðtÞ]. Their sum can
be expressed as a convolution,

sðtÞ ¼ aðtÞ � Xj¼n�1

j¼0

�ðt� jTÞ; (1)

and the Fourier transform of Eq. (1) gives

Sð�Þ ¼ Að�Þ Xj¼n�1

j¼0

eij�T; (2)

where Að�Þ is the spectral amplitude of each of the pulses
which is equal to the Fourier transform of aðtÞ. The power
spectrum is thus equal to

jSð�Þj2 ¼ jAð�Þj2
��������
sinðn�T=2Þ
sinð�T=2Þ

��������
2

; (3)

and consists of main peaks when the denominator in
Eq. (3) is zero, positioned at frequencies � ¼ q!, where
q is an integer and ! the laser carrier frequency. These are
the harmonic peaks which, in the simple case where the
periodicity is assumed to be a full laser cycle, can be odd or

even. The spectrum in Eq. (3) exhibits smaller peaks when
the numerator is maximized, at the positions ðqþ k=nþ
1=2nÞ! where k is an integer between one and n-2 [20].
The number of additional peaks between two harmonics is
equal to n-2 and their intensity is of course reduced com-
pared to the harmonics. Our model can be generalized to
describe attosecond pulses with pulse-to-pulse varying
amplitude and phase, formally expressed as

Sð�Þ ¼ X

j

Ajð�Þeij�T; (4)

where the number of pulses contributing is now included in
the distribution of (complex) spectral components Ajð�Þ.
Based on this simple model, our interpretation of the
results presented in Fig. 1 is the following: The spectral
structure is the result of the coherent sum of a few atto-
second pulses. By simply counting the number of fringes,
we can determine the number of pulses in the train for a
given energy range. As shown by the insets in Fig. 1, and as
expected since the highest energy region requires the high-
est field amplitude, this number decreases with increasing
energy. The importance of the additional frequency com-
ponents relative to the main harmonic peaks reflects the
intensity distribution of the pulses, their phase difference
and the number of contributing pulses.
The physics discussed here is quite general and by no

means specific to a two-color field. Calculations performed
with a one-color field and for realistic amplitude and phase
variations between consecutive attosecond pulses also
show additional frequency components for short enough
APTs. The relationship between the number of these com-
ponents and the number of pulses in the train is found to be
remarkably robust. In our experiment, the addition of the
blue field helps to observe the fringe structure simply
because it reduces the number of pulses which interfere
by half.
To verify our interpretation, we have also performed

numerical calculations based on the coupled solutions of
the time-dependent Schrödinger equation and the Maxwell
wave equation [21]. Results shown in Fig. 2 represent the
contribution from the short trajectory only, which is se-
lected by limiting the available return times in the single
atom part of the calculation. The top of the figure indicates
the structure of the pulse train at certain energies. The
number of generated attosecond pulses increases towards
lower energies and agrees reasonably well with the number
of additional spectral components plus two. It confirms our
interpretation that the frequency structure between the
main harmonic peaks gives information on the time-
frequency structure of the pulse train and more specifically
on the number of pulses in the train contributing to a
certain frequency range. This simple and direct method,
which can be implemented ‘‘on line’’, is complemen-
tary to more advanced characterization techniques like
Reconstruction of attosecond bursts by interference of
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two-photon transition (RABITT) [1] or Frequency-
resolved optical gating- Complete reconstruction of atto-
second burst (FROG-CRAB) [22].

The behavior of the measured harmonic spectra strongly
depends on the relative IR-blue phase ’ as shown in
Fig. 3(a). In general, the additional frequency components
are best observed when ’ is such that even harmonics are
as strong as odd harmonics [see gray curve in Fig. 3(b),
corresponding to the delay outlined in gray in (a)], which
leads in the time domain to a train of pulses with one pulse
per cycle [18]. When two pulses per IR-cycle are gener-
ated, the harmonic signal is weaker and the high energy
part of the experimental spectrum is dominated by the
beating of two pulses separated by half an IR-cycle [see
the green curve in Fig. 3(b)]. Finally, for the delay outlined
by the red line, a continuum above 37 eV is observed. This
is the spectrum of a short APT where one pulse is more
intense and reaches higher photon energy than the others.
Spectral filtering of this energy region (above 37 eV) is
expected to yield a single attosecond pulse. The two-color
scheme [7] proposed in the present experiment is of inter-
est for single attosecond pulse generation since it does not
require ultrashort laser pulses [3] and since it should be
more efficient than schemes based on polarization gating
[4–6].

In Fig. 4(a), we study the variation of the spectra as a
function of the CEO phase (�0). The position of the
spectral structures changes with CEO, with a tilt increasing
with energy. Indeed, when the CEO is not stable, the fringe
structure is smeared out. Some of the fringes split or merge
together as the CEO is changed. Finally, after a 2� change
of �0 the fringes come back to their original position. This
periodicity can be understood with simple arguments. The
spectral component Ajð�Þ corresponding to each attosec-

ond pulse, which includes an amplitude and a phase re-
flecting the electron trajectory, depends on the value of the
laser intensity (Ij) at which the attosecond pulse is created.

When�0 changes by 2�, Ij ! Ijþ1 and Aj ! Ajþ1, so that

Sð�; �0Þ ¼ Sð�; �0 þ 2�Þ expð�i�TÞ. Consequently,
the fringe pattern (proportional to jSð�; �0Þj2) varies pe-
riodically with �0. The phase of Ajð�Þ can be approxi-

mated by �ð�ÞIj, where � depends on the spectral region

as well as on the electron trajectory causing the emission
[14]. The phase variation with intensity leads to a tilt of the
interference fringes. For small phase variation, the position
of the fringes can be shown to vary linearly with the CEO,
with a slope proportional to �ð�Þ [23]. The observed tilt of
the bimaxima is thus a signature of the dipole phase
variation during the laser pulse. How rapidly the fringes
move depends on whether the harmonic emission is pre-
dominantly from the short or the long trajectory. A similar
effect was observed by Sansone and co-workers and attrib-
uted, in their experimental conditions, to the long trajec-
tory [15]. Finally, the variation of the amplitude jAjð�Þj
affects the intensity distribution of the attosecond pulses,
and even sometimes the number of pulses effectively con-
tributing to the radiation, thereby changing the number of
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FIG. 3 (color online). (a) Experimental harmonic spectrum as
a function of the phase difference between the infrared and blue
fields, ’. (b) Spectra taken at the three phases marked in (a); the
green and gray curves are shifted 0.6 and 1.2 intensity units,
respectively. The dashed light blue lines indicate approximately
the positions of harmonics 15 to 31.
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FIG. 2 (color online). Calculated harmonic spectrum and
structure of the pulse train at different energies. The position of
the harmonics 14 to 25 is indicated by the dashed light blue lines.
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additional peaks. This effect can be seen experimentally as
fringes splitting and merging as the number of pulses
contributing changes with the CEO. To illustrate the differ-
ent effects discussed above, we present in Figs. 4(b)–4(d)
the results of simple calculations based on Eq. (4). Fig-
ure 4(b) shows the effect of the amplitude variation for a
Gaussian 10 fs-long fundamental pulse, neglecting phase
variation. The number of extra peaks oscillates between
one and two as a function of the CEO. The effect of both
phase and amplitude variation is shown in (c),(d) for �
values corresponding to the short and long trajectories,
respectively, in the spectral region considered. Our experi-
mental observation is consistent with the (rather slow)
variation of the short trajectory.

In conclusion, we have studied high-order harmonic
generation by short laser pulses, so that the attosecond
pulse train comprises only a few pulses. In these condi-
tions, the spectra do not include only harmonics of the laser
frequency, but also extra peaks whose number decreases as
a function of photon energy. These additional spectral
peaks are due to multiple interferences between the pulses
in the train. The number of additional peaks allows us to

determine the structure of the attosecond pulse train as a
function of energy. In addition the tilt of the fringes with
carrier envelope phase gives us information on the dipole
phase variation as a function of intensity, with a clear
distinction between the short and the long trajectories.
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FIG. 4 (color online). (a) Experimental harmonic spectrum as
a function of �0. (b) Calculated harmonic spectra as a function
of �0 including amplitude effects. (c) Phase variations for the
short trajectories added to the calculation in (b). (d) Phase effects
corresponding to the long trajectories added to the calculation
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