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The equation

ċ(x, t) = c′′(x, t) , (1)

with the initial conditions

c(x, 0) = 1 in 0 < x < 1 , (2)

and the nested boundary conditions

c(0, t) = c(1, t) = χ(1−

∫ 1

0

c(x, t)dx) . (3)

has a solution which is split into

c(x, t) = u(x, t) + v(x, t) . (4)

The part u(x, t) fulfils the equation

u̇(x, t) = u′′(x, t) , (5)

with the initial conditions

u(x, 0) = 1 in 0 < x < 1 , (6)

and the boundary conditions
u(0, t) = u(1, t) = 0 . (7)

The part v(x, t) fulfils the equation

v̇(x, t) = v′′(x, t) , (8)

with the initial conditions

v(x, 0) = 0 in 0 < x < 1 , (9)

and the boundary conditions

v(0, t) = v(1, t) = χ(1−

∫ 1

0

c(x, t)dx) , (10)

where χ is the ratio of the volume of the bone, VB versus the volume of the container VC , i.e., χ = VB/VC .
Obviously v(x, t) may be expanded in a Taylor’s series as follows:

v(x, t) = χϕ1(x, t) + χ2ϕ2(x, t) + χ3ϕ3(x, t) + ... (11)

Since χ is a free parameter the functions ϕi(x, t) have to fulfil the equation

ϕ̇i(x, t) = ϕ′′

i (x, t) , (12)

with the initial conditions

ϕ̇i(x, 0) = 0 in 0 < x < 1 . (13)

The boundary conditions become recursive according to the following:

ϕ1(0, t) = ϕ1(1, t) = φ1(t) = (1−

∫ 1

0

u(x, t)dx) , (14)

and

ϕi(0, t) = ϕi(1, t) = φi(t) = −

∫ 1

0

ϕi−1(x, t)dx, for i = 2, 3, 4, ... (15)
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Duhamel’s theorem allow us to solve the ϕi:s as an application of single step boundary conditions dφi(τ) =
dφi(τ)

dτ
dτ representing a concentration dφi(t

′) applied at the time t′,

dϕi(x, t) = u(x, t− τ)
dφi(τ)

dτ
dτ . (16)

Integration from τ ′ = τ to τ ′ = t gives

ϕi(x, t) =
∫ t

0
u(x, t− τ)dφi(τ)

dτ
dτ = [u(x, t− τ)φi(τ)]

t

0 −∫ t

0
du(x,t−τ)

dτ
φi(τ)dτ.

(17)

Considering that u(x, 0) = 0 and ϕi(0, τ) = 0. The general solution is given as

ϕi(x, t) = −

∫ t

0

φi(τ)
du(x, t− τ)

dτ
dτ. (18)

Insertion of the solution

u =
∑

n=1,3,5,..

4e−n2π2tsin(nπx)

nπ
, (19)

gives

ϕi(x, t) = −

∫ t

0

φi(τ)
∑

n=1,3,5,..

4πne−n2π2(t−τ)sin(nπx)dτ. (20)

For large containers and, hence, small values of χ the solution for the concentration u(x, t) according to
(19), clearly gives the approximative solution as χ → 0.

The boundary conditions for ϕ1 are obtained after integration of (19),

φ1(t) = 1−
∑

m=1,3,5,..

8

m2π2
e−m2π2t . (21)

The solution of ϕ1(x, t) with the boundary conditions φ1(t) v(0, t) is the concentration in the container
considering the escape of matter from the bone sample and is

ϕ1(x, t) = −
∫ t

0
(1 −

∑
m=1,3,5,..

8
m2π2 e

−m2π2τ )×

∑
n=1,3,5,..

4πne−n2π2(t−τ)sin(nπx)dτ.
(22)

ϕ1(x, t) = −[
∑

n=1,3,5,..

4
nπ

(1− e−n2π2t)−

−
∑

m = 1, 3, 5, ..
m 6=n

32n
m2(n2

−m2)π3 (e
−m2π2t − e−n2π2t) + f(n, t)]sin(nπx) , (23)

where

f(n, t) =
64

m2(n2 −m2)π4
(e−m2π2t − e−n2π2t)] as m2 → n2 , (24)

which is written

f(n, t) = lim
n2−m2→ǫ

64

n2ǫπ4
e−n2π2t(e−ǫπ2t − 1) = −

64t

n2π2
e−n2π2t . (25)

The contribution to the concentration in the container from ϕ1 becomes
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φ2 =
∫ 1

0
ϕ1dx = −

∑
n=1,3,5,..

8
n2π2 (1 − e−n2π2t)

+[
∑

m = 1, 3, 5, ..
m 6=n

64
m2(n2−m2)π4 (e

−m2π2t − e−n2π2t)] + f(n, t), (26)

This now reads

φ2 = −1− 8
π2 +

∑
n=1,3,5,..

8
n2π2 (1− 8t)e−n2π2t−

=

−1− 8
π2 +

∑
n = 1, 3, 5, ..

{ 8
n2π2 (1− 8t)e−n2π2t+

∑
m = 1, 3, 5, ..

m 6=n

128e−n
2
π
2
t

n2(n2−m2)π4 } = −1− 8
π2+

∑
n = 1, 3, 5, ..

8
n2π2 e

−n2π2t{1− 8t+
∑

m = 1, 3, 5, ..
m 6=n

16
(n2−m2)π2 } ,

(27)

that may serve as boundary conditions for the function ϕ2. Considering a fairly small ratio χ ≈ 0.01 we
anticipate the third order term χ2ϕ2 to be of the order of 10−4. The work to do this does not seem meaningful,
with the accuracy of the present measurements in mind. Figure 1 shows the difference between the solution
without considering the increasing concentration in the container and same with a first order correction.
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Figure 1: The solution for escaped ions for a sample in an infinite container 1 −
∫ 1

0 udx and the same with

first order correction 1−
∫ 1

0
(u + χϕ1)dx.
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