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Populärvetenskaplig sammanfattning

Fysik handlar om att försöka förstå hur världen omkring oss fungerar utifrån vissa
grundläggande principer. Fasta tillståndets fysik fokuserar på de fasta material vi
har omkring oss. Dessa material har olika strukturer beroende på vilka grundäm-
nen de är uppbyggda av och hur de har bildats. Om en gas av atomer kyls ner
långsamt tenderar atomerna att ordna sig i specifika regelbundna mönster, så kal-
lade kristaller. Kristallstrukturen påverkar till stor del materialets egenskaper. De
stora skillnaderna mellan grafit och diamant, som båda är uppbyggda av kolato-
mer men har väldigt olika egenskaper, utgör ett tydligt exempel på detta. I diamant
är kolatomerna hårt bundna och varje kolatom delar en negativt laddad elektron
med fyra andra kolatomer, vilket gör diamanter väldigt hållbara och hårda. Kri-
stallstrukturen påverkar även vilka energitillstånd elektronerna kan befinna sig i
och därmed materialens optiska egenskaper. I diamant kostar det mycket energi
för att excitera elektronerna till tillstånd med högre energi, vilket gör att materialet
inte absorberar synligt ljus och därför har de blänkande egenskaper som vi normalt
associerar med diamanter. Grafit består av löst sammanhållna lager av kolatomer.
På grund av den annorlunda strukturen kan grafit absorbera ljus i hela det synliga
spektrumet vilket gör att materialet uppfattas som svart. Den svarta färgen, eller
mer korrekt avsaknaden av färg, samt det faktum att de löst sammansatta lagrerna
lätt faller sönder, gör att grafit är ett bra material att tillverka blyertspennor av men
knappast kan användas till sågklingor och smyckestillverkning som diamanter.

För att beskriva elektronernas tillstånd kan man inte använda den klassiska me-
kaniken som vi är vana vid att beskriva den makroskopiska världen med. Istället
måste man använda en teori som kallas kvantmekanik. Den kvantmekaniska värl-
den skiljer sig mycket från vår alldagliga värld. Ett klassiskt exempel på en ointuitiv
kvantmekanisk effekt är att det är omöjligt att veta både hastigheten och positionen
för en elektron samtidigt. När man mäter elektronens position blir dess hastighet
helt obestämd. Med detta menas att en senare mätning av elektronens hastighet
kan ge vilket värde som helt, det är helt enkelt på ett fundamentalt plan omöj-
ligt att förutse resultatet av hastighetsmätningen. Om man sedan faktiskt mäter
hastigheten för samma elektron så får elektronen en välbestämd hastighet, men
till priset av att elektronens position blir helt obestämd. Det vi uppfattar i den
makroskopiska världen är medelpositionen och medelhastigheten hos en väldigt
stor mängd kvantmekaniska partiklar. Dessa makroskopiska objekt rör sig då en-
ligt den klassiska mekaniken även om de partiklar som bygger upp dem beskrivs
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kvantmekaniskt.

Kvantmekaniska system beskrivs med den så kallade Schrödingerekvationen. Den-
na ekvation kan lösas exakt för få antal partiklar men antalet elektroner i fasta äm-
nen är väldigt många, storleksordningen 1023 stycken per cm3 och därför behöver
man använda olika approximationer för att beskriva dessa system. Vilka approx-
imationer som är relevanta beror på hur stark växelverkan mellan elektronerna i
materialet är.

I denna avhandling används och utvecklas metoder för att beskriva så kallade starkt
korrelerade material. Ett material sägs vara starkt korrelerat om elektronernas väx-
elverkan med varandra är så pass stark att varje elektrons tillstånd specifikt beror på
vilka tillstånd de övriga elektronerna befinner sig i. Den starka växelverkan mellan
elektronerna ger upphov till en uppsjö av intressanta egenskaper, till exempel så
tillhör de kopparbaserade hög-temperatur supraledarna denna kategori av mate-
rial, men den starka växelverkan gör också att de approximationer som används
för att beskriva andra, mindre starkt korrelerade material, inte fungerar. Därför
förlitar man sig ofta på förenklade modeller som är tänkta att fånga de viktigas-
te aspekterna av de verkliga systemen. Modellerna har ofta input-parametrar som
man gissar för att få resultat som överensstämmer med experimenten eller upp-
skattar teoretiskt med olika metoder. Ett alternativt tillvägagångssätt är att försöka
beskriva materialen från grundläggande fysikaliska principer, med så kallade ab
initio-metoder. I en ab initio-beräkning anger man enbart vilka atomer som byg-
ger upp materialet och hur dessa är arrangerade och sedan löser man ekvationerna
som beskriver systemet numeriskt, det vill säga med hjälp av datorer och avancera-
de datorprogram, genom att göra olika approximationer. Modellberäkningar har
ofta enklare reducerade ekvationer vilket gör att man behöver färre approximatio-
ner för att lösa dem medan ab initio-metoder har mer kompletta ekvationer men
då behövs grövre approximationer för att lösa dem. De approximationer som be-
höver göras i ab initio-metoder är i många fall för grova för att kunna ge korrekta
beskrivningar av starkt korrelerade material. Å andra sidan är materialen som vi
vill beskriva väldigt komplexa så det finns en risk att manmissar viktiga delar av fy-
siken när man reducerar beräkningarna till enklare modeller. Då modellerna beror
på vilka parametrar man har som input och vilka aspekter av systemet man väljer
att fokusera på har även modellberäkningar en begränsad kapacitet att förutspå
nya material och materialegenskaper. Målet med denna avhandling är att förena
ab initio-metoder med modellberäkningar för att kunna dra nytta av styrkan hos
båda metoderna.
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Man kan tänka sig kristallen som en periodisk uppsättning av positioner i ett tre-
dimensionellt gitter som elektronerna kan hoppa mellan. Interaktionen och kor-
relationen mellan elektroner på samma position är större än interaktionen och
korrelationen mellan elektroner på olika positioner i gittret i och med att den
elektriska repulsionen mellan två negativt laddade elektroner är större om de är
nära varandra. I modellberäkningar av starkt korrelerade material reducerar man
antalet tillstånd och elektroner i modellen till ett minimum och bortser oftast från
interaktioner och korrelationer mellan elektroner som befinner sig på olika posi-
tioner i gittret. De elektroner och excitationer som inte tas med explicit i model-
len kan inkluderas implicit genom att ta hänsyn till att de skärmar , och därmed
reducerar, interaktionerna mellan elektronerna i modellen. I artikel I och VI be-
räknar vi de effektiva interaktionerna mellan elektronerna med ab initio metoder
som tar hänsyn till skärmingen som inte är inkluderad i modellerna för ett antal
olika lanthanider och kuprater. Dessa interaktioner kan sedan användas i modell-
beräkningar av materialen. I artikel II-IV går vi ett steg längre och utvecklar en
metod för att systematiskt reducera den kompletta beskrivningen av materialet till
en väldefinierad modell utan odefinierade input-parametrar. Våra beräkningar tar
även hänsyn till korrelationer och interaktioner mellan elektroner på olika posi-
tioner i gittret. Vi visar att det för många material är viktigt att ta hänsyn till dessa
icke-lokala korrelationer för att kunna beskriva elektronernas tillstånd och möjliga
excitationer.
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Results
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1
Introduction

Quantitative theoretical descriptions of strongly correlated materials remain one
of the great challenges of modern condensed matter theory. Materials that exhibit
strong electron-electron correlations include high-Tc superconductors, materials
with colossal magneto-resistance, spintronic materials and heavy fermion materi-
als. Common to these materials is that the valence electrons originate from par-
tially filled 3d or 4f shells and are relatively localized around the atomic sites. This
leads to strong electron-electron correlation effects due to the strong Coulomb
repulsion between electrons on the same site. The strong local correlations make
these materials notoriously difficult to describe theoretically, since mean-field or
perturbative treatments break down. One general recipe is to focus on the im-
portant degrees of freedom and solve the problem in a small subspace more ac-
curately. This is the idea behind the Hubbard model [77], that describes a lattice
with nearest-neighbour hopping and onsite interaction only. However, in order
to be predictive we do not only need to solve the simplified models (which in it-
self is highly nontrivial), but also make sure that these models are close to reality.
This involves a systematic downfolding of the full many-body Hamiltonian onto
a low-energy problem and making sure that the approximations done when solv-
ing the low-energy problem do not throw away any important physical processes.
This thesis both investigates the downfolding procedure and also different ways to
solve the low-energy problem.

However, before describing our theoretical approach I will begin with a short dis-
cussion of what is meant by ”strongly correlated”, which materials that typically
exhibit strong correlation effects and why these materials are interesting.

A quantum mechanical system is described by the Hamiltonian H through the
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Schrödinger equation:

iℏ
∂

∂t
|Ψ(t)⟩ = H|Ψ(t)⟩. (1.1)

The complete Hamiltonian for the solid is (in atomic units with ℏ, the electron
mass and electron charge set to 1) given by

H = −
∑
α

∇2
α

2mα
+

1
2

∑
α ̸=β

ZαZβ

|Rα −Rβ|︸ ︷︷ ︸
nucleon

−
∑
i

∇2
i
2

+
1
2

∑
i̸=j

1
|ri − rj|︸ ︷︷ ︸

electron

−
∑
α,i

Zα

|Rα − ri|︸ ︷︷ ︸
electron−nucleon

+ HRel, (1.2)

where HRel includes all relativistic effects. In this thesis I will not consider rel-
ativistic effects and will therefore put HRel = 0. Further on, I will neglect lat-
tice vibrations and hence the nucleon part of the Hamiltonian vanishes and the
electron-nucleon part reduces to an external periodic potential for the electrons,
henceforth referred to as the crystal potential Vcrys. With these approximations
the Hamiltonian (1.2) reduces to

H =
∑
i

(
−∇2

i
2

+ Vcrys(ri)

)
+

1
2

∑
i ̸=j

1
|ri − rj|

. (1.3)

An exact solution for the eigenvalues and eigenvectors of the Hamiltonian in Eq.
1.3 would, apart from relativistic effects and lattice vibrations, yield an exact de-
scription of the stationary states in the solid. However, since the solid contains
the order of 1023 electrons the electron-electron interaction (last term in Eq. 1.3)
makes this an infeasible task. For practical calculations we therefore need to resort
to different approximations. Which approximations that are suitable are deter-
mined by the strength of the electron-electron interaction in the solid which to a
large extent is determined by the valence electrons of the atoms constituting the
solid.

To understand what we mean by ”strongly correlated” it is instructive to consider
the dimer model depicted in Fig. 1.1. In this model we have two sites with one
single-particle energy level on each site corresponding to the states |1⟩ and |2⟩. The
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1 2

Possible configurations 
with two electrons

1 2

Dimer model: Two sites with one 
orbital on each site

Figure 1.1: Schematic figure of a two site (dimer) model with one orbital per site. The different possible two-electron
configurations are shown to the right.

Coulomb repulsion between two electrons on the same site is U and, for a large
separation between the sites, the Coulomb repulsion between electrons localized
on different sites is negligible. With a single electron in the system there is no
Coulomb repulsion term and the two energy eigenfunctions are given by

|ψg⟩ =
1√
2
(|1⟩+ |2⟩) (1.4)

|ψu⟩ =
1√
2
(|1⟩ − |2⟩). (1.5)

Since the kinetic energy depends on the curvature of the wavefunction it is mini-
mized if the wavefunctions are smooth and extended over the two sites. Therefore
the even state |ψg⟩ will be lower in energy than |ψu⟩.

We now consider what happens if we add a second electron to the system. If we
assume that the electron-electron interaction U is small compared to the kinetic
energy it is justified to treat this term in a mean-field approximation, i.e. replace
the interaction term with a single-particle potential that includes the average effect
of the interaction, such as the Hartree approximation. The two-particle problem
is then reduced to an effective single-particle problem and the many-body eigen-
states are single Slater determinants of the single-particle eigenstates of the effective
problem. On the other hand, if U is large, configurations with two electrons on
the same site will not be energetically favourable. Hence, given an electron on
one of the sites there is a high probability that the other electron is found on the
other site, in other words, the two electrons are strongly correlated. The kinetic
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energy is higher if the electrons are confined and the hopping between the sites is
suppressed by the Pauli principle if the two electrons have the same spin. Thus,
in the large U limit, the lowest energy eigenstate will be the linear combination of
the two first configurations shown in Fig. 1.1 corresponding to the singlet

|Ψ⟩ = 1√
2
(|1 ↑⟩|2 ↓⟩ − |1 ↓⟩|2 ↑⟩). (1.6)

This state cannot be written as a single Slater determinant. The triplet will be
higher in energy since it has an antisymmetric spacial wavefunction and hence a
larger kinetic energy.

In simple metals and semiconductors where the valence states are of s or p char-
acter the electrons are relatively delocalized in the solid. This means that they are
described by extended wave-functions and hence the electron-electron interaction
term is small compared to the kinetic term and crystal potential. These solids are
therefore called weakly correlated and their electronic structure is typically well de-
scribed with a mean-field treatment in bandstructure calculations using Density
Functional Theory (DFT) [71, 88] with the Local Density Approximation (LDA)
[88, 148, 149, 150] or perturbatively within the GW approximation [64].

The lanthanides occupy a special place at the bottom of the periodic table. These
materials have 4f valence electrons that are extremely localized around the atomic
core. When forming a solid these materials therefore retain a large part of their
atomic properties and exhibit strong correlation effects. On the other hand, the
correlation effects are mainly local around the atoms and long-range correlations
between electrons at different atomic sites are small. These materials can therefore
be described within dynamical mean field theory (DMFT) [52, 53, 112] combined
with the local density approximation (LDA+DMFT) [6, 103, 90, 67] that gives
a nonperturbative treatment of local onsite correlations but neglects long-range
correlations [106]. Relativistic effects can also be large for the 4f and 5f materials
and a proper description of these effects is indeed a challenging task.

Apart from Paper i that deals with the lanthanides this thesis is mainly concerned
with transition metal compounds. Examples of such compounds are FeSe as well
as cuprate high-Tc superconductors. A proper description of these compounds is
therefore essential to understand the mechanisms behind high-Tc superconduc-
tivity. Another class of interesting transition metal based compounds are the per-
ovskites. Transition metal oxides in perovskite structure exhibit many interesting
properties including colossal magneto-resistance, spin-state transitions, multifer-
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Figure 1.2: Image of a sample of the high-temperature superconductor BSCCO-2223. Taken from Ref. [151].
Credit: James Slezak

roics and multifunctional catalytic properties [94]. In this thesis we consider the
cubic perovskites SrVO3 and SrMoO3, the former is considered a prototype of a
strongly correlated metal and is therefore often used to benchmark new electronic
structure methods. However, SrVO3 is also interesting from an industrial point of
view with applications as electrode material for functional perovskite oxides [117],
transparent conductors used in photovoltaics [43] and in Mott-transistors [194].

The early transition metals with 3d valence electrons are somewhere in between
the sp-compounds with long-range weak correlations and the f-compounds with
short-range strong correlations. On the one hand valence states for many of these
compounds are sufficiently localized so that the local correlations are too strong to
be treated using the GW approximation, on the other hand the valence states are
sufficiently delocalized so that the DMFT-assumption of only retaining local cor-
relations becomes questionable. The typical approach to most of these materials is
to use LDA+DMFT with parameters adapted to fit the experimental data or com-
puted from the LDA bandstructure. This yields an interpretation of the spectra in
terms of renormalized quasiparticle peaks and Hubbard bands due to strong local
correlations. One of the major topics of this thesis is devoted to showing that this
interpretation is not always correct for the transition metal compounds. For these
compounds the long-range correlations are important and can drastically change
the physical interpretation of the spectra:
Satellite features in the spectral function previously interpreted as Hubbard bands aris-
ing from local atomic like excitations should in fact be interpreted as plasmons origi-
nating from long-range collective charge excitations.

In the following chapters I outline our theoretical approach starting from the basic
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constituents, density functional theory, the GW approximation and dynamical
mean-field theory. I do not aim to give any rigorous proofs, rather I try to present
my understanding of the theory in a more physically intuitive way, that I hope
could serve as a compliment to the standard text-books in the subject.

1 Units

In the remainder of this thesis I will, unless otherwise specified, use atomic units
in which ℏ = e2

4πε0 = me = 1, where me is the electron mass.

2 Role of first-principle calculations

A common and powerful way to understand the different physical phenomena
observed in condensed matter systems is to construct models that focus on dif-
ferent aspects of the system and takes input parameters that are either estimated
from experiment, or adjusted to yield physically reasonable results that agree with
experiment. Since this makes it possible to focus on certain mechanisms that are
thought to be important and also solve the models for a wide range of input pa-
rameters it is a powerful way to understand the system under study and different
emergent phenomena. However, solid-state systems are extremely complex and
therefore models with adjustable parameters often lack predictive power. A model
that is suitable for one material does not have to be suitable for another material
and the input parameters can also be very different.

First-principle calculations on the other hand do not make use of adjustable pa-
rameters. Instead the starting point is the Hamiltonian in Eq. 1.3. To solve this
Hamiltonian the only input needed is the charge and position of the different
atoms in the solid. This makes it possible to predict the equilibrium crystal struc-
ture of different solids and also their electronic structure. Using first-principle
approaches it is therefore, in principle, possible both to understand and describe
existing materials and to predict new materials that have not yet been synthesized
experimentally, with different intriguing properties. However, the challenge in
first-principle calculations is to find suitable approximations that makes the system
described by the Hamiltonian numerically solvable and still provides an accurate
description of the important physical processes in the solid. In this thesis I use,
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develop and discuss different first-principle methods and to which materials they
are applicable.

3 Density functional theory

A solution of the complete many-body problem defined by the Hamiltonian in
Eq. 1.3 is, as discussed in the previous section, an infeasible task even for moder-
ately large systems. The complete solution of the N-particle many-body problem
requires the knowledge of the full many-body wave functions, complex quantities
with 3N-coordinates. However, usually one is only interested in certain quanti-
ties, such as total ground-state energies and densities, excitation spectra and mag-
netic properties. Although the values of these quantities can be derived from the
many-body wavefunctions, the complete wavefunctions include a lot of redun-
dant information that one is typically not interested in. The idea behind DFT
is to reduce the problem so that one can still compute the interesting quantities
without having to find the exact many-body wave functions. The basis of DFT
relies on the two Hohnberg-Kohn (HK) theorems that were originally derived for
non-degenerate systems in Ref. [71] and later extended to degenerate systems by
Levi and Lieb [100, 101, 104, 105].

The first theorem states that the ground-state densities of two systems with external
potentials that differ by more than a constant will always be different. This means
that the Hamiltonian, and therefore also the complete many-body wave func-
tions, are completely determined by the ground-state density. Thus, given only
the ground-state density, all properties of the system are determined. It should be
noted that, while for non-degenerate systems this implies that there is a one-to-
one correspondence between the ground-state density and the external potential,
for degenerate systems there can be more than one ground-state density that cor-
responds to the same external potential. However, a given ground-state density
uniquely determines the external potential.

The second theorem states that for each system with a given external potential
Vcrys(ri) there exist a unique functional of the density EHK[n(r)] whose mini-
mum gives the ground-state energy of the system,

EHK[n(r)] = FHK[n(r)] +
∫

d 3rVcrys(r)n(r) + EII, (1.7)
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where FHK[n(r)] = T[n(r)]+Eint[n(r)] includes all internal energies (kinetic and
interaction energies) and EII is the interaction energy of the nuclei. The functional
FHK[n(r)] has to be universal since it does not contain any system specific con-
stituents. It should be noted that, while the functional EHK[n(r)] is sufficient to
determine the ground-state density and energy of the system, it does not provide
any information about excited states.

As mentioned above the Hohenberg-Kohn theorems were originally only proven
for non-degenerate systems. Furthermore, the Hohenberg-Kohn functional is
only defined for densities that can be generated by an external potential (V- repre-
sentability). V-representability has been proven for lattice systems [36, 87] (for
relatively mild restrictions on the densities) but the general conditions for V-
representable densities are not known.

The formulation ofDFT by Levy and Lieb (LL) circumvents these problems through
a constrained search formulation. Similar to theHK-formulation the LL-formulation
defines an energy functional ELL[n(r)] whose minimum gives the ground-state
energy of the system.

ELL[n(r)] = FLL[n(r)] +
∫

d 3rVcrys(r)n(r) + EII. (1.8)

However, the functional FLL[n(r)] is defined through a two-step procedure: First
the internal energy FLL is written as an expectation value in terms of the energy
eigenstates or wavefunctions. Then the energy is minimized with respect to all
wavefunctions that correspond to a given density n(r),

FLL[n(r)] = min
Ψ→n(r)

⟨Ψ|T̂+ V̂int|Ψ⟩. (1.9)

This formulation is valid also for degenerate systems and the functional FLL[n(r)]
is defined for any density that can be derived from a many-body wave-function
(N-representability). Any density satisfying simple conditions can be shown to be
N-representable [54].

3.1 The Kohn-Sham approach

Although HK and LL formulations of DFT are interesting from a fundamen-
tal point of view they do not provide any guidance on how to construct the to-
tal energy functionals or how to compute physical properties of a many-electron
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system. However, for the ground-state total energy this is solved in the Kohn-
Sham approach to DFT [88]. The Kohn-Sham approach to DFT relies on the
mapping of the full interacting many-body problem to an auxiliary noninteract-
ing problem that can be solved numerically. The auxiliary system is assumed to
have the same ground-state density as the full interacting system (non-interacting
V-representability or V 0-representability) and all the complicated effects of the
many-body terms are included in an exchange-correlation functional Exc[n(r)]
of the electron density. The non-interacting V-representably is an ansatz in the
Kohn-Sham formulation which can be proven for the homogeneous electron gas
and small deviations from it [88] as well as lattice systems [36], but has not been
proven in general cases. In Ref. [170] the problem of V 0-representability is dis-
cussed in detail, and it is shown that it is always possible to set up a Kohn-Sham
scheme that produces any interacting V-representable density.

With these definitions the problem is reformulated into finding physically moti-
vated approximations to Exc[n(r)].

The auxiliary Hamiltonian is chosen to have a local effective potential VKS(r).
The Schrödinger equation for the auxiliary system is given by(

−1
2
∇2 + V σ

KS(r)

)
ψσ
i (r) = ϵσi ψ

σ
i (r) (1.10)

and the density by

n(r) =
∑
σ

Nσ∑
i=1

|ψσ
i (r)|2. (1.11)

The Kohn-Sham expression for the ground-state energy is then given by

EKS[n(r)] = Ts[n(r)] +
∫

d 3rVext(r)n(r) + EH[n(r)] + EII + Exc[n(r)],

(1.12)

where Ts is the kinetic energy of the independent particles described by the wave-
functions ψσ

i (r)

Ts = −1
2

∑
σ

Nσ∑
i=1

⟨ψσ
i |∇2|ψσ

i ⟩ (1.13)
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and EH the Hartree energy. From the second HK-theorem requiring δEKS
δn(r) = 0

yields the Kohn-Sham potential

V σ
KS(r) = Vext(r) + VH(r) + V σ

xc(r), (1.14)

where VH(r) is the usual Hartree potential

VH(r) =

∫
d 3r′

n(r′)
|r− r′|

(1.15)

and the exchange-correlation potential is defined as

V σ
xc(r) =

δExc
δn(r, σ)

. (1.16)

For a given approximation of Exc[n(r)] and starting from an initial guess of the
density (or single particle wave-functions) Eq. 1.10-1.14 can be iterated until self-
consistency is reached. Hence, the Kohn-Sham formulation presents a practical
scheme how to compute the ground-state total energy. What is left is to find an
approximation of the exchange-correlation energy functional.

One of the most widely used approximations, and also the one used in this the-
sis, is the Local Density Approximation (LDA) [88], or for spin-polarized sys-
tems local spin density approximation (LSDA) [176] . In this approximation
the exchange-correlation energy density is locally assumed to be the same as the
exchange-correlation energy density of the homogeneous electron gas with the
same density

E LSDA
xc [n↑(r), n↓(r)] =

∫
d 3r n(r)ϵhomxc (n↑(r), n↓(r)). (1.17)

3.2 Bandstructure: DFT as a mean-field approach

While, according to the basic theorems of DFT, all quantities of the system can
be computed from the ground-state density, the Kohn-Sham approach only yields
the correct total ground-state energies as well as the energy of the highest occupied
state [102]. Nevertheless the Kohn-Sham orbitals and eigenenergies (depicted in a
bandstructure plot) are conventionally, and with great success, interpreted as cor-
responding to the quasiparticle energies of the system in the photoemission (PES)
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and inverse photoemission (IPES) spectra. The fact that the DFT-bandstructure
corresponds relatively well to the PES/IPES spectra for weakly to moderately cor-
related materials implies that the exchange-correlation potential, evaluated for
the self-consistent electron density in the Kohn-Sham auxiliary Hamiltonian (Eq.
1.10), provides a good mean-field approximation to the system. However, there
are no rigid proofs why this has to be the case. In this sense DFT bandstructure
calculations correspond to mean-field calculations with the Kohn-Sham potential
acting as the mean-field. Time-dependent DFT [135] can give information about
excited states, but this is outside the scope of this thesis.

4 Probing the electronic structure: Photoemission, inverse
photoemission and relation to the Green’s function

In order to investigate the physical properties of a system one has to probe or
interact with it in some way. In photoemission spectroscopy (PES) the binding
energies of the electrons are probed by shining monochromatic light onto the
sample. The kinetic energies of the emitted electrons after absorption of a single
photon with energy ν are, from the conservation of energy, given by

Ek = ν − EB − Φ0, (1.18)

where EB is the binding energy of the electron andΦ0 is the work function, i.e. the
minimum energy needed to remove an electron from the sample to the vacuum.
In angle-resolved PES (ARPES) it is also possible to measure the momenta of the
emitted electrons which are related to the crystal momenta of the electrons in the
solid (Fig. 1.3). However, the momentum perpendicular to the surface is not
conserved. Therefore, to get complete information of the crystal momentum of
the electrons one usually has to rely on certain assumptions of the final states in
the photoemission process [145].

Inverse photoemission (IPES), also called Bremsstrahlung Isochromate Spectroscopy
(BIS) gives information about the unoccupied electronic structure in the solid.
IPES relies on the opposite process compared to PES. A collimated beam of elec-
trons is directed onto the sample. The electrons are absorbed in high lying energy
eigenstates that later decay to lower energy eigenstates. The energies of the emitted
photons gives information about the unoccupied part of the spectra.
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Figure 1.3: Schematic figure of ARPES setup. Taken from Ref. [7].

In order to interpret and predict the results of PES and IPES experiments we need
a way to describe these processes theoretically. This can conveniently be done using
the Green’s function formalism. Below I give a brief review of the Green’s function
formalism following Refs. [8, 46, 158].

The time-ordered Green’s function is defined as

iG(1, 2) =
⟨ΨN

0 |T̂
[
ψ̂(1)ψ̂†(2)

]
|ΨN

0 ⟩

⟨ΨN
0 |ΨN

0 ⟩
, (1.19)

here 1 and 2 are generalized indices including both spacial, spin and time variables

1 = (r1, t1), (1.20)
r1 = (r1, σ1), (1.21)

|ΨN
0 ⟩ is the many-body ground state of the N-particle system, ψ̂†(1) is a Heisen-

berg field operator that creates an electron with spin σ1 at position r1 and time t1
and T̂ the time ordering operator:

T̂
[
ψ̂(1)ψ̂†(2)

]
= θ(t1 − t2)ψ̂(1)ψ̂†(2)− θ(t2 − t1)ψ̂†(2)ψ̂(1). (1.22)

Hence, for t1 > t2 the Green’s function describes the probability amplitude for an
electron created at 2 to propagate to 1 and similarly for t1 < t2 it describes the
probability amplitude for a hole created at 1 to propagate to 2.
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By making use of the completeness relation,
∑

N,i |ΨN
i ⟩⟨ΨN

i | = 1̂ the Green’s
function for a time-independent Hamiltonian can be written in terms of the quasi-
particle amplitudes

fi(r) = ⟨ΨN−1
i |ψ̂(r)|ΨN

0 ⟩,
gi(r) = ⟨ΨN

0 |ψ̂(r)|ΨN+1
i ⟩ :

iG(1, 2) =θ(t1 − t2)
∑
i

exp
(
i(E N

0 − E N+1
i )(t1 − t2)

)
gi(r1)g∗i (r2)

−θ(t2 − t1)
∑
i

exp
(
i(E N−1

i − E N
0 )(t1 − t2)

)
fi(r1)fi ∗(r2), (1.23)

where it becomes apparent that the Green’s function for a system in equilibrium
(with a time-independent Hamiltonian) only depends on the time-difference t1−
t2.

From the Green’s function one can compute the ground-state expectation value
of any single-particle operator, the ground-state energy as well as the spectrum of
the system, i.e. the information experimentally obtained through PES and IPES.
The relation between the Green’s function and the PES/IPES spectra can be seen
by considering the Fourier transform of G(1, 2) in Eq. 1.23:

G(r1, r2;ω) =
∑
i

gi(r1)g∗i (r2)
ω − (E N+1

i − E N
0 ) + iδ

+
∑
i

fi(r1)fi ∗(r2)
ω + (E N−1

i − E N
0 )− iδ

.

(1.24)

The poles of the Green’s function correspond to the excitation energies of adding
or removing a single electron from the ground state.

The relationship to the PES/IPES spectra becomes even more apparent by express-
ing the Green’s function in terms of its spectral function A(r1, r2, ω)

G(r1, r2;ω) =
∫ µ

−∞
dω′ A(r1, r2, ω′)

ω − ω′ − iδ
+

∫ ∞

µ
dω′ A(r1, r2, ω′)

ω − ω′ + iδ
, (1.25)

where µ is the chemical potential.
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Within the sudden approximation (see e. g. Ref. [66]) the spectral function,
A(r1, r2, ω), is the quantity that is measured in PES/IPES experiments and is re-
lated to the imaginary part of the Green’s function

A(r1, r2, ω) =∑
i

[
fi(r1)fi ∗(r2)δ(ω − µ + eN−1

i ) + gi(r1)g∗i (r2)δ(ω − µ − eN+1
i )

]
=

− 1
π
ImG(r1, r2, ω)sgn(ω − µ), (1.26)

where eN±1
i = E N±1

i − E N
0 .

5 The self-energy and the Dyson equation

From the equation of motion of the field operators

i
∂

∂t
ψ̂(1) =

[
ψ̂(1), Ĥ

]
(1.27)

it follows that the Green’s function obeys [8](
i
∂

∂t
− h0(r)

)
G(1, 2)−

∫
d1′Σ(1, 1′)G(1′, 2) = δ(1− 2), (1.28)

where the self-energy Σ is defined as∫
d1′Σ(1, 1′)G(1′, 2) =

− i
∫

d1′v(1− 1′)⟨ΨN
0 |T̂ [ψ̂†(1′)ψ̂(1′)ψ̂(1)ψ̂†(2)]|ΨN

0 ⟩ (1.29)

and h0 is the first term in Eq. 1.3. Here

v(1− 2) =
1

|r1 − r2|
δ(t1 − t2) (1.30)

is the instantaneous bare Coulomb interaction.

The bare Green’s function G 0 is defined as the solution to Eq. 1.28, but with the
self-energy set to zero:(

i
∂

∂t
− h0(r)

)
G 0(1, 2) = δ(1− 2). (1.31)
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Inserting this definition into Eq. 1.28 and multiplying with
(
i ∂∂t − h0(r)

)−1 on
both sides we obtain, after some minor manipulations, the Dyson equation:

G(1, 2) = G 0(1, 2) +
∫

d1′d2′G 0(1, 1′)Σ(1′, 2′)G(2′, 2). (1.32)

By introducing a basis and Fourier transforming Eq. 1.32 to frequency space the
Dyson equation can be mapped to a matrix equation

G(ω) = G 0(ω) + G 0(ω)Σ(ω)G(ω). (1.33)

For practical applications one needs a way to evaluate the self-energy matrix in
Eq. 1.33. By making use of Wick’s theorem the interacting Green’s function G, or
equivalently the self-energy Σ, can be expanded in a perturbation series in terms
of the non-interacting Green’s function and the Coulomb interaction. This ex-
pansion, conveniently expressed through diagrams, is discussed in detail in Refs.
[46, 158], and the reader is referred to these references for further reading. Alter-
natively one can also use the Schwinger functional derivative technique described
in Chapter 2.2. This approach circumvents the use of Wick’s theorem.

6 Finite temperature formalism

The equations in the preceding sections are defined for zero-temperature. In order
to be able to explore finite temperature effects, such as transition temperatures for
magnetic materials, and also to be able to use quantumMonte-Carlo methods, the
concepts introduced in the preceding sections need to be extended to finite tem-
peratures. Below I very briefly define and discuss the finite-temperature Green’s
function following Refs. [46, 158].

To describe finite temperature properties it is convenient to use the grand canonical
ensemble, that allows for a variable particle number. The grand canonical partition
function is defined as

Z = e−βΩ = Tre−βK̂. (1.34)

Here Ω is the thermodynamic potential, β = 1/kBT where kB is the Boltzmann
constant and T the temperature. K̂ is the grand canonical Hamiltonian defined as

K̂ = Ĥ− µN̂. (1.35)
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In the modified Heisenberg picture the field operators obey

ψ̂(r, τ) = eK̂τ ψ̂(r)e−K̂τ , (1.36)

ψ̂†(r, τ) = eK̂τ ψ̂†(r)e−K̂τ . (1.37)

While ψ̂†(r, τ) is not the adjoint of ψ̂(r, τ) when τ is real, if τ is interpreted as
a purely imaginary time this is the case. Hence, for τ = it the finite temperature
Heisenberg picture is identical to the zero-temperature relation with the substitu-
tion Ĥ → K̂.

With these definitions the finite-temperature Green’s function is defined as

G(r τ, r′τ ′) =
1
Z
Tr

(
e−βK̂T̂

[
ψ̂(r, τ)ψ̂†(r′, τ ′)

])
. (1.38)

For a time independent Hamiltonian the Green’s function only depends on the
difference τ ′ − τ and can therefore be denoted as G(r, r′, τ).

The Fourier transform and its inverse are defined as

G(iνn) =
∫ β

0
dτ eiνnτG(τ) (1.39)

G(τ) =
1
β

∑
n

e−iνnτG(iνn), (1.40)

where the Matsubara frequencies are

νn =
2n+ 1
β

π (1.41)

and n is an integer. The odd frequencies follow from the fermionic anti-periodic
boundary conditions

G(r, r′, τ − β) = −G(r, r′, τ). (1.42)

The bosonic quantities, such as the polarization and screened interaction (See
Chapter 2) follow periodic boundary conditions and are therefore defined for even
frequencies

ωn =
2nπ
β
. (1.43)
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6.1 The problem with analytic continuation

In order to interpret the results of finite temperature calculations on the Matsub-
ara axis it is necessary to extract the real-frequency or real-time results from the
Matsubara data. One can easily compute the Matsubara Green’s function from
the spectral function on the real frequency axis by using the Hilbert transform

G(iνn) =
∫

dωA(ω)
1

iνn − ω︸ ︷︷ ︸
K(iνn,ω)

, (1.44)

or equivalently for the imaginary time Green’s function

G(τ) =
∫

dωA(ω)
e−τω

1+ e−βω︸ ︷︷ ︸
K(τ,ω)

. (1.45)

However, these equations are not easily inverted, there are infinitely many A(ω)
that will produce, within some error, the same G(iωn). In practice this means
that if G and A are approximated as vectors and K by a square matrix the determi-
nant of K is exponentially small, which means that the inverse is ill-defined. For
clean data without noise it is possible to use the Padé-approximant method [175],
where G(iνn) is fit to a rational function which is the ratio of two polynomials.
The imaginary frequency data can then be directly continued to the real axis by
substituting iνn → ω + iδ. However, in this thesis we make use of quantum
Monte-Carlo methods, and hence our data will be noisy. For such cases the Padé
method does not work very well. The standard method is instead the Maximum
Entropy Method (MaxEnt) [28, 57]. Below I give a very brief introduction of the
concepts behind MaxEnt loosely following Ref. [82].

MaxEnt is based on Bayes’ theorem which states that the joint probability P(a, b)
for two events a and b is equal to the conditional probability for a given b P(a|b)
times the probability for b P(b)

P(a, b) = P(a|b)P(b) = P(b|a)P(a). (1.46)

Since the physical spectra is normalizable and positive definite A(ω) can be treated
as a probability distribution. Eq. 1.46 can then be inverted to yield

P(A|G̃) = P(G̃|A)P(A)/P(G̃), (1.47)
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where G̃ is the measured, noisy, finite temperature Green’s function. The problem
is then reformulated to finding the spectral function A that maximizes P(A|G̃),
which is the conditional probability of A given the data G̃. P(G̃|A) is usually
called the likelihood function, P(A) the prior probability and for a given set of
data P(G̃) is a constant, which can be ignored.

Using the principle of maximum entropy the prior probability is proportional
to exp(αS), where S is is the entropy, which is defined relative a default model
(positive definite function) m(ω) [147]

S =
∫

dω (A(ω)− m(ω)− A(ω)ln(A(ω)/m(ω)) . (1.48)

The likelihood function, which is related to the difference between the measured G̃
and the Matsubara Green’s function corresponding to A, can be determined using
the central limit theorem.

In this thesis we use Bryan’s algorithm [28] as implemented in Ref. [26]. I will not
go into the details of this algorithm here, but the reader is referred to the original
papers [28, 57] as well as the review in Ref. [83] for further details.
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2
The GW approximation

The interaction between an added negative test charge at point (r1,t1) with an
electron at point (r2,t2) in the solid is very different from the instantaneous bare
Coulomb interaction, v(1, 2) = 1/|r1 − r2|δ(t1 − t2), due to the response of
the surrounding electrons. The added test charge will repel the neighbouring elec-
trons creating screening holes around the test charge that effectively reduce the
interaction. If the self-energy is expressed in terms of the bare Coulomb inter-
action between the electrons the screening is taken into account through the dif-
ferent higher order diagrams in the self-energy expansion. An alternative route,
suggested by Hedin in 1965 [64] in the so called Hedin equations, is to express the
self-energy in terms of the screened Coulomb interactionW instead. The first or-
der self-energy diagram in the screened interaction will already contain an infinite
series of diagrams in the bare Coulomb interaction, therefore this formally exact
rewriting provides a convenient starting point for different approximations. Be-
fore deriving the Hedin equations using the functional derivative technique I will
begin by stating the Hedin equations one by one and briefly discuss them from a
physical point of view.

1 Conventions

In this chapter I will use the generalized notation introduced in Eqs. 1.20-1.21
with the additional convention that repeated spin indices are summed over. For
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the total density operator this implies the notation

ρ̂(1) =
∑
σ1

ψ̂†(r1, σ1, t1)ψ̂(r1, σ1, t1) = ψ̂†(r1, σ1, t1)ψ̂(r1, σ1, t1)︸ ︷︷ ︸
implicit sum

= ψ̂†(1)ψ̂(1) (2.1)

2 The Hedin equations

To understand the origin of the screened interaction we will consider what happens
when we apply an arbitrary external perturbation Vext(r, t) to the system. The
density ρind induced by the perturbation is, in linear response theory, given by

ρind(1) = −
∫

d 2χ(1, 2)Vext(2). (2.2)

Here χ is the density-density response function

χ(1, 2) = i⟨T̂
(
ρ̂′(1)ρ̂′(2)

)
⟩ (2.3)

and ρ̂′(1) = ψ̂†(1)ψ̂(1)− ⟨ψ̂†(1)ψ̂(1)⟩.

The potential generated by the induced density is

Vind(1) =
∫

d2v(1− 2)ρind(2) = −
∫

d(23)v(1, 2)χ(2, 3)Vext(3). (2.4)

The generated potential screens the external perturbation which yields the total
screened potential

Vscr(1) = Vext(1) + Vind(1)

= Vext(1)−
∫

d(23)v(1, 2)χ(2, 3)Vext(3). (2.5)

Now, to compute the effective Coulomb interaction between the electrons in the
solid we consider the bare, instantaneous Coulomb interaction v(1, 2) as the ex-
ternal perturbation. The screening is a dynamical and in general non-isotropic
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process and hence the effective interaction will be a time-dependent function of
two spacial coordinates [76, 64]

W(1, 2) = v(1, 2)−
∫

d(34)v(1, 3)χ(3, 4)v(4, 2). (2.6)

It should be noted that both the bare interaction v and the screened interactionW
are independent of spin.

Instead of working with the response function χ it is convenient to express W in
terms of the polarization Π:

W(1, 2) = v(1, 2) +
∫

d(34)v(1, 3)Π(3, 4)W(4, 2). (2.7)

The polarization can be expressed as a functional of the Green’s function where the
first order term is equivalent to the Random Phase Approximation (RPA) [126],

Π(1, 2) = −i
∫

d(34)G(1, 3)Γ(3, 4, 2)G(4, 1+)

= −iG(1, 2)G(2, 1+)︸ ︷︷ ︸
ΠRPA

+

∫
d(34)G(1, 3)G(4, 1)W(3, 4)G(2, 4)G(3, 2) + ...

(2.8)

The three-point vertex function Γ in Eq. 2.8 is defined as

Γ(1, 2, 3) = −δG
−1(1, 2)
δV(3)

= δ(1− 2)δ(2− 3) +
δΣ(1, 2)
δV(3)

= δ(1− 2)δ(2− 3) +
∫

d(4567)
δΣ(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ(6, 7, 3), (2.9)

where V is the total (external and Hartree) potential. Finally the exchange and
correlation part of the self-energy,Σxc = Σ−VH whereVH is theHartree potential,
can be written in terms of W and Γ as

Σxc(1, 2) = i
∫

d(34)G(1, 3+)W(1, 4)Γ(3, 2, 4). (2.10)

Together with the Dyson equation (Eq. 1.33) this set of coupled differential equa-
tions (Eqs. 2.7-2.10) are known as the Hedin equations. Although they are in
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principle exact they are iterative in nature and for practical calculations one has to
resort to different approximations. The suggestion by Hedin was to approximate
the vertex function by its first order term, Γ(1, 2, 3) ≈ δ(1− 2)δ(2− 3), which
yields the well known GW approximation for the self-energy:

Σxc
GW(1, 2) = iG(1, 2+)W(1, 2), (2.11)

and the RPA for the polarization

ΠRPA(1, 2) = −iG(1, 2)G(2, 1+). (2.12)

The self-energy diagram in Eq. 2.11 is similar in structure to the Fock exchange di-
agram but with the bare Coulomb interaction replaced by the screened interaction
W. Hence all correlation effects are contained in the screening of the Coulomb
interaction. To include the strong local correlations that e.g. drive the Mott Hub-
bard metal to insulator transition, one has to consider higher order self-energy
diagrams, as will be discussed in Chapter 4.

2.1 Derivation

In this section I will derive the Hedin equations using the functional derivative
technique following Refs. [8, 64, 10]. As a mathematical tool we will add a time
dependent field ϕ(r, t) to the Hamiltonian in Eq. 1.3; Hp = H + ϕ. In the
interaction picture the time-dependence of the field operators is the same as for
the Heisenberg operators in the unperturbed (ϕ = 0) case

ψ̂I(r, t) = eiĤ(t−t0)ψ̂(r, t0)e−iĤ(t−t0), (2.13)

and the time-evolution of the state kets are given by

|ψI(t)⟩ = T̂ exp

[
−i

∫ t

t0
dt′Φ̂(t′)

]
︸ ︷︷ ︸

Û(t,t0)

|ψI(t0)⟩ (2.14)

where

Φ̂(t) =
∫

drϕ(r, t)ψ̂†
I (r, t)ψ̂I(r, t). (2.15)
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The Green’s function is then given by

iG(1, 2) =
⟨ΨN

0 |T̂
[
Ŝψ̂I(1)ψ̂

†
I (2)

]
|ΨN

0 ⟩

⟨ΨN
0 |Ŝ|ΨN

0 ⟩
(2.16)

where

Ŝ = Û(∞,−∞). (2.17)

The beauty of using the interaction picture is that the all dependence on the ex-
ternal field in the Green’s function is contained in the operator Ŝ. Hence, using

δŜ
δϕ(1)

= −iT̂
[
Ŝ ψ̂†

I (1)ψ̂I(1)
]

(2.18)

the functional derivative of the Green’s function with respect to the external field
is given by

δG(1, 2)
δϕ(3)

= G2(1, 2, 3, 3+)− G(1, 2)G(3, 3+) (2.19)

where

G2(1, 2, 3, 4) = −
⟨ΨN

0 |T̂
[
Ŝ ψ̂I(1)ψ̂I(3)ψ̂

†
I (4)ψ̂

†
I (2)

]
|ΨN

0 ⟩

⟨ΨN
0 |Ŝ|ΨN

0 ⟩
. (2.20)

By comparing Eq. 2.19 with the equation for the self-energy (Eq. 1.29) and using
ρ(1) = −iG(1, 1+) one can identify∫

d1′Σ(1, 1′)G(1′, 2) =
∫

d3v(1− 3)ρ(3)︸ ︷︷ ︸
VH(1)

G(1, 2) + i
∫

d3v(1, 3)
δG(1, 2)
δϕ(3)

.

(2.21)

By evaluating δ
δϕ

(
G−1G

)
= 0 and reshuffling the terms, the functional derivative

of G with respect to the external field can be rewritten as

δG
δϕ

= −G
δG−1

δϕ
G. (2.22)
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By inserting this identity in Eq. 2.21 and using the definition of the exchange-
correlation self-energy Σxc = Σ− VH

Σxc(1, 2) = −i
∫

d3d4v(1, 4)G(1, 3)
δG−1(3, 2)
δϕ(4)

. (2.23)

The vertex function (defined in Eq. 2.9) can be extracted from the right hand side
by making use of the chain rule

v(1, 4)
δG−1(3, 2)
δϕ(4)

=

∫
d5v(1, 4)

δV(5)
δϕ(4)

δG−1(3, 2)
δV(5)︸ ︷︷ ︸
Γ(3,2,5)

. (2.24)

This yields the Hedin equation for the self-energy (Eq. 2.10) with

W(1, 2) =
∫

d3v(1, 3)
δV(2)
δϕ(3)︸ ︷︷ ︸
ϵ−1(2,3)

(2.25)

where we have defined the inverse dielectric function ϵ−1 as the change in the total
potential with respect to the applied external field.

What is left is to relate the expression in Eq. 2.25 for the screened interaction to the
corresponding Hedin equations forW andΠ (Eqs. 2.7 - 2.8). Using the definition
of V = ϕ+ VH the inverse dielectric function can be rewritten as

ϵ−1(1, 2) =
δV(1)
δϕ(2)

= δ(1− 2) +
∫

d3v(1− 3)
δρ(3)
δϕ(2)

= δ(1− 2) +
∫

d3d4v(1− 3)
δρ(3)
δV(4)

ϵ−1(4, 2). (2.26)

Defining the polarization as the change in the density with respect to the total
field, Π = δρ

δV , and using the identity in Eq. 2.22 with V instead of ϕ and ρ(1) =
−iG(1, 1+), the Hedin expression for the polarization (Eq. 2.8) is retrieved

Π(1, 2) =
δρ(1)
δV(2)

= −i
∫

d(34)G(1, 3)Γ(3, 4, 2)G(4, 1+). (2.27)

Finally the Hedin equation for the screened interaction (Eq. 2.7) is retrieved by
inserting Eqs. 2.27 and 2.26 into Eq. 2.25.
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Figure 2.1: Minimum bandgaps calculated with the GW approximation and LDA for some semiconductors and
insulators. The experimental data is taken from [69, 21, 190] and the GW and LDA data is taken from
(a) [195], (b) [129], (c) [192], (d) [56], (e) [132], f [139]. The figure is reproduced from Paper V.

3 Implementations

Although the GW-equations in principle should be solved self-consistently, fully
self-consistent calculations for real materials are rare. The reason for this is, partly
that self-consistency is computationally expensive, but more importantly Holm
and von Barth [73] showed that, for the electron gas, self-consistency yields a poor
spectral function: The plasmon pole in W is flushed out and the quasiparticle
peak is widened. The same failure was later observed for Aluminium [93]. For to-
tal energy calculations on the other hand self-consistency is essential [72, 93]. The
standard GW-scheme for solids is instead the one-shot or G 0W 0 approximation.
In this scheme the GW-self-energy is computed only once from the DFT (LDA)
Green’s function and used to obtain the spectral function. The G 0W 0 approxi-
mation has proved to be very successful for weakly correlated materials. A famous
example is that it almost entirely cures the famous bandgap underestimation of
the LDA for insulators and semiconductors with s or p valence electrons (Fig. 2.1)
[78, 56]. However, the G 0W 0 approximation cannot account for the strong local
correlations that e.g. drive the Mott-Hubbard metal to insulator transition and
therefore qualitatively fails to describe many transition metal compounds, such as
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the parent compounds of the cuprate superconductors. The G 0W 0 approxima-
tion also fails to describe the drastic reduction of quasiparticle weight in the Ce
α-γ phase transition [137].

Another drawback with one-shotGW is the ambiguity in the starting Green’s func-
tion. Different starting points will unavoidably give different results. To circum-
vent this problem, schemes based on quasiparticle self-consistency have recently
been developed and shown to improve the one-shot results for a wide range of
materials [33, 45, 34, 174, 35, 89] while it can also lead to an overestimation of the
bandgaps [27]. However, these calculations are computationally expensive and
still do not account for the strong local correlations present in many transition
metal and lanthanide compounds.

A proper implementation of a fully self-consistent scheme in the full Hilbert space
for real materials is a challenging and computationally demanding task. There are
reports that self-consistency improves the bandgaps for Si and Ge semiconductors
[92], although also contradictory results have been reported [140, 161]. However, as
mentioned above, numerical studies for the electron gas and Aluminium indicate
that self-consistency yields poor spectral functions. In Paper III and IV we show
that this is also the case for the more strongly correlated 3d perovskites, SrVO3 and
SrMoO3, with a self-consistent GW-implementation where the self-consistency is
restricted to the t2g-subspace [25, 122]. For molecules, on the other hand, self-
consistency generally improves total energies and yields ionization energies similar
to or better than non-self-consistent calculations [154, 155, 91, 109, 131, 30, 29] but
still gives worse spectra in many cases [109].

4 Matrix representation

With an appropriate choice of basis {φiq(r)} the GW-equations above can be
expressed as matrix equations which at finite temperature and with summation
over repeated indices are given by
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Σik(q, τ) = −
∑
k

Gjl(k, τ)Wijkl(q− k, τ), (2.28)

Gkl(q, iνm) = G0
kl(q, iνm) + G0

km(q, iνm)Σmn(q, iνm)Gnl(q, iνm), (2.29)

Πmm′nn′(q, τ) =
∑
k

Gmn(k, τ)Gn′m′(k− q,−τ), (2.30)

Wαβ(q, iωn) = vαβ(q, iωn) + vαγ(q, iωn)Πγη(q, iωn)Wηβ(q, iωn). (2.31)

where the product basis index α = {ij} and

Wijkl(q− k, τ) =

∫
d3rd3r′φ∗

iq(r)φjk(r)W(r, r′, τ)φkq(r
′)φ∗

lk(r
′). (2.32)

In practice the direct product basis is usually non-orthogonal and overcomplete
and it could be useful to introduce an optimized orthogonalized product basis
[9] as discussed in Ref. [48] for one of the implementations used in this work.
However, as we discuss in detail in Paper IV, the mapping above in general does
not require the use of an orthogonalized basis, and in certain cases it could be
convenient to keep the direct product basis.

5 The screened interaction and the self-energy

To understand how correlation effects enter the self-energy through the screening
it is instructive to have a closer look atW. In the G 0W 0 approximation it follows
from the spectral representations of G 0 and Σ that the imaginary part of the self-
energy is directly related to the imaginary part of W [8]

∣∣ImΣ(r, r′,E)
∣∣ ={∑occ

i ψi(r)ψ
∗
i (r

′)ImW(r, r′, ϵi − E)θ(ϵi − E), if E ≤ µ∑unocc
i ψi(r)ψ

∗
i (r

′)ImW(r, r′,E− ϵi)θ(E− ϵi), if E > µ
(2.33)

Hence, a peak in ImW at the energy E will produce a peak in ImΣ at the energy
ϵi − E for an occupied state and ϵi + E for an unoccupied state. The peak in ImΣ
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Figure 2.2: G 0W 0 self-energy for SrVO3 at the R-point. The exchange-correlation potential has been subtracted
from the real part. The peaks in the spectral function occurs at their crossings between ReΣ− Vxc and
the line ω − ϵnk when ImΣ is small. ϵnk is the LDA eigenvalue.

will produce a corresponding Kramer’s Kronig feature in ReΣ. Further on, still
considering a non-self-consistent calculation and assuming that the self-energy is
diagonal in the single particle eigenstates, the spectral function of G is related to
the self-energy as [64, 65]:

A(ω) =
1
π

∑
k

∑
n

|ImΣn(k, ω − Δ)|
(ω − ϵkn − ReΣn(k, ω − Δ) + V xc

n (k))
2 + (ImΣn(k, ω − Δ))2

(2.34)

The shift Δ = EF − ϵF where EF is the new Fermi energy and ϵF the Fermi energy
of G 0, assures that ImΣ evaluated at the new Fermi level is zero. In Figure 2.2
we show the G 0W 0 self-energy of an unoccupied t2g-state at the R-point for the
cubic perovskite SrVO3. Assuming Δ to be negligible in Eq. 2.34 the peak in the
spectral function will appear when ω − ϵkn crosses (ReΣn(k, ω) − V xc

n (k)) or
when the difference between the two quantities is small and at the same time ImΣ
is small. In Figure 2.2 the first crossing will produce the quasiparticle peak and
the third crossing will produce the satellite. The second crossing occurs roughly at
the energy where we would expect the formation of a plasmon satellite. However,
at this crossing the imaginary part of the self-energy is large and hence it will not
produce any pronounced peak in A(ω). This kind of reasoning provides important
insights about the GW approximation. Experimentally one can observe multiple
plasmon satellites with decreasing intensities at the energies ϵkn + mωp, where
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Figure 2.3: Left: The polarization for the non-interacting electron gas for two different q points. The real part is
shown with solid thick lines and the corresponding imaginary part with thin dashed lines. The Fermi
energy was chosen to get a filling of n = 1 electron. Vq is the bare Coulomb interaction (denoted
by v(q) in the text). Right: “Local” projection of W for the electron gas. The real part is shown with
solid thick lines and the corresponding imaginary part with thin dashed lines. The artificial unit cell was
defined to be cubic with the same volume as the bcc unit cell for Na. With these definitions the local
projection of W was defined as the q sum of Wq in the first Brillouin zone. The figures are adapted
from Paper IV.

ωp is the plasma frequency and m an integer. The GW approximation will only
yield a single satellite with an energy separation that is larger than ωp from the
quasiparticle peak. This deficiency with the GW approximation can be cured with
the so called cumulant expansion of the Green’s function [11, 60], but the exact
form of this expansion is outside the scope of this thesis.

To understand how the plasmon peaks appear in ImW it is instructive to consider
an electron-gas model. Eq. 2.31 can be rewritten as

W(q, ω) = ϵ(q, ω)−1v(q), (2.35)

where we have defined the dielectric function

ϵ(q, ω) = 1− v(q)Π(q, ω). (2.36)

Following the reasoning by Bohm and Pines [126] the poles ofW will appear at the
zeros of ϵ, that is when Π(q, ω) = 1/v(q). In Figure 2.3 the polarization for the
electron gas, calculated within the RPA, is shown together with the line 1/v(q).
The condition Π(q, ω) = 1/v(q) is fulfilled when the line 1/v(q) crosses ReΠ
and ImΠ is zero. For the given q-points 1/v(q) crosses ReΠ at two places. How-
ever, since ImΠ is large at the first crossing the plasmon pole will instead appear
at the energy of the second crossing. For q-points slightly larger than q/kF = 1
there will not be any crossing and hence W will only have weak features for large
q-values. In the right panel of the same figure the q-averagedW is shown. A clear
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Figure 2.4: The dispersion of the plasma frequency defined bymin{|Π(q, ω)−1/v(q)|} (the solid red line) shown
together with the imaginary part of the polarization for the noninteracting electron gas for different q
and ω values. The two vertical lines correspond to the two q-points considered in Fig. 2.3. The Figure
is similar to the one in Ref. [125] and is adapted from Paper IV.

plasmon peak is visible in ImW and a corresponding Kramer’s Kronig feature in
the real part. There are two important conclusions that can be drawn from these
considerations. First of all, since the small q contribution to the plasmon domi-
nates, plasmon excitations are highly nonlocal phenomena and cannot be captured
properly by purely local or onsite approximations, such as DMFT. Secondly and
related, the plasmon will have a dispersion. In Figure 2.4 the dispersion of the
plasmon is shown together with the imaginary part of the polarization. Here it is
evident that the plasmon will be damped for large q since the imaginary part of
Π is large for these q-points.
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3
The constrained Random-Phase

Approximation (cRPA)

1 Defining a low-energy model

A route to include correlations beyond the GW approximation is to downfold the
many-electron problem to a low-energy model that only includes the subspace in
which the strongly correlated electrons reside. For transition metal compounds
the low-energy model typically includes the 3d valence bands or a subset of these
and correspondingly for lanthanide compounds the low energy model is typically
spanned by the 4f valence states. Since the model includes much fewer bands than
the complete problem it is possible to solve the downfolded model with more
accurate methods.

In second quantized form the Hamiltonian in Eq. 1.3 can be expressed as:

Ĥ =

∫
dr ψ̂†(r)

HMF(r)︷ ︸︸ ︷(
−∇2

2
+ Vcrys(r) + VMF(r)

)
ψ̂(r)

+
1
2

∫
drdr′ψ̂†(r)ψ̂†(r′)

1
|r− r′|︸ ︷︷ ︸
v(r,r′)

ψ̂(r′)ψ̂(r)−
∫

dr ψ̂†(r)VMF(r)ψ̂(r).

(3.1)

In order to improve the single-particle starting point amean-field potentialVMF(r)
has been added to the one-particle part of the Hamiltonian and correspondingly
removed from the interaction part. If we now expand the field operators in the
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eigenbasis of HMF ({ϕi});

ψ̂†(r, σ) =
∑
i

ϕ∗i (r)â
†
iσ, (3.2)

where â†iσ creates an electron in state |ϕi⟩ with spin σ, the Hamiltonian becomes

Ĥ =
∑
ijσ

â†iσH
MF
ij âjσ +

1
2

∑
ijklσσ′

â†iσ â
†
jσ′vilkjâkσ′ âlσ −

∑
ijσ

â†iσV
MF
ij âjσ. (3.3)

The Coulomb integral is defined as,

vijkl =
∫

d 3rd 3r′ϕ∗i (r)ϕj(r)v(r, r
′)ϕk(r

′)ϕ∗l (r
′), (3.4)

and we have for simplicity assumed a spin-independent single-particle basis.

Now we will consider the specific case of a material with a set of strongly correlated
narrow bands around the Fermi energy, like many transition metal and lanthanide
compounds. It is convenient to start from a density functional theory calculation,
typically within the LDA, and choose VMF = V H+V xc, where V H is the Hartree
potential and V xc is the (converged) LDA exchange-correlation potential. Since
the LDA cannot treat the strong local Coulomb correlations within the narrow
bands these states are typically ill described by only the mean-field Hamiltonian
HMF. For the other states, on the other hand, the LDAworks relatively well which
implies that the double-counting term,

∑
ij â

†
i VMF

ij âj, in Eq. 3.3 almost entirely
cancels the contribution from the interaction term to the quasiparticle energies for
these states. Hence, we only need to consider the interaction term explicitly for a
low-energy model that includes the correlated orbitals, i.e

Ĥmodel =
∑

ij∈model
σ

â†iσH
MF
ij âjσ +

1
2

∑
ijkl∈model

σσ′

â†iσ â
†
jσ′Uilkjâkσ′ âlσ

−
∑

ij∈model
σ

â†iσH
DC
ij âjσ. (3.5)

There are two subtleties that makes a downfolding to the low-energy model highly
nontrivial:
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1. Screening from outside the correlated subspace will reduce the effective
Coulomb interaction within the subspace dramatically (U << v in Eqs.
3.3-3.5).

2. Since the LDA exchange correlation functional is nonlinear in the density
the double-counting term HDC cannot be written as the projection of the
mean-field potential on the correlated subspace and is in general ill-defined.

In this thesis we address both these issues. The constrained random-phase approx-
imation, described in the next section, is a way to computeU from the mean-field
bandstructure. The problem with the double-counting can be solved by chang-
ing the starting point from LDA to a Green’s function theory, such as the GW
approximation, which will be addressed in Chapter 5.

2 Keeping only the onsite interaction: TheHubbard model

In systems where the valence electrons are sufficiently localized the local, onsite
Coulomb interaction will be much larger than the offsite components. It can then
be justified to only treat the onsite Coulomb interaction explicitly in the model.
This is the idea behind the Hubbard model [77], where the Hamiltonian is divided
into a single electron hopping term and an onsite interaction term. In its simplest
form, with only one orbital in the low-energy model, it takes the form

H = −
∑

R̸=R′,σ

tR,R′ ĉ†Rσ ĉR′σ + U
∑
R

n̂R↑n̂R↓, (3.6)

where ĉ†Rσ creates an electron with spin σ on site R and n̂Rσ = ĉ†Rσ ĉRσ is the
number operator on site R.

However, in general we want to derive a Hubbard model for more than one band
and also derive the parameters of the model from first principles. For a given
model defined by an isolated set of bands, the hopping terms can be derived from
the LDA bandstructure by expanding the LDA eigenfunctions in a localized basis
(typically defined using maximally localized Wannier functions (MLWF:s) [110,
153, 136, 116] or linear muffin tin orbitals (LMTO:s) [5, 197]). In this work we use
MLWF:s which are defined from a subset of the Bloch-eigenstates of the mean-
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field (DFT) Hamiltonian (ϕαk(r)) as

wRα(r) =
V

(2π)3

∫
BZ

dke−ik·R
∑
β

Uk
αβϕβk(r). (3.7)

Here wRn(r) is a Wannier function centred atR, V is the volume of the unit cell
and the integral is over the first Brillouin zone. We have made the Bloch form of
the LDA eigenfunctions explicit by including wave-vector quantum numberk and
orbital quantum number α separately. The spin has been omitted for simplicity
and the orbital quantum number is assumed to span the range of correlated orbitals
only. Hence, the number of Wannier functions on each site will be the same as
the number of bands from which they are constructed. If the correlated bands are
entangled with other crossing bands the procedure in Ref. [153] has to be used.
The unitary transformation matrices Uk

mn are chosen to minimize the sum of the
quadratic spread of the Wannier functions in their home unit cell around their
centres (See Refs. [110, 153] for details). Eq. 3.7 can be inverted to yield the Bloch
eigenstates as a function of the Wannier functions

ϕαk(r) =
∑
β

(
Uk

)−1

αβ

∑
R

eik·RwβR(r). (3.8)

By inserting this definition into the definition of the field operators in Eq. 3.2 and
defining

ĉβRσ =
∑
αk

(
U k

)−1

αβ
eik·Râαkσ (3.9)

the Hamiltonian in Eq. 3.5 can be rewritten in a localized basis

Ĥmodel =
∑

αβRR′σ

ĉ†αRσ

(
HMF

αR;βR′ −HDC
αR;βR′

)
ĉβR′σ

+
1
2

∑
αα′ββ′

RαRα′RβRβ′
σσ′

ĉ†αRασ
ĉ†β′Rβ′σ

′U
RαRα′RβRβ′

αα′ββ′ ĉβRβσ′ ĉα′Rα′σ. (3.10)

The matrix elements of the interaction deserves a closer look. Similar to Eq. 3.4
we have

U
RαRα′RβRβ′

αα′ββ′ =

∫
d 3rd 3r′w∗

αRα
(r)wα′Rα′ (r)U(r, r

′)wβRβ
(r′)w∗

β′Rβ′
(r′).

(3.11)

36



If the basis functions are sufficiently localized the terms with Rα ̸= Rα′ as well
asRβ ̸= Rβ′ can be neglected since they contain products of Wannier functions
localized on different sites. If further on, we assume that the interaction is very
short-ranged one can neglect also the remaining intersite terms and keep only the
onsite term with Rα = Rα′ = Rβ = Rβ′ . This approximation yields the
multi-orbital Hubbard model:

ĤHubbard =
∑

αβRR′σ

ĉ†αRσ

(
HMF

αR;βR′ −HDC
αR;βR′

)
ĉβR′σ

+
1
2

∑
αα′ββ′

Rσσ′

ĉ†αRσ ĉ
†
β′Rσ′Uαα′ββ′ ĉβRσ′ ĉα′Rσ. (3.12)

While it is common practice to neglect the inter-site matrix elements of U this
approximation can be dubious and lead to the wrong conclusions, as we will show
in Chapter 5. The physical reason for this is that U in general does not contain
metallic screening and hence is long-ranged and scales as ∝ 1

r [46].

3 Effective Coulomb interaction

The constrained random-phase approximation (cRPA) [12] is a method to com-
pute the effective Coulomb matrix elements in Eqs. 3.5 and 3.12 from first prin-
ciples. The key idea behind the cRPA is to divide the polarization into the model
polarization Pmodel and the rest Prest,

P = Pmodel + Prest. (3.13)

In Fig. 3.1 we illustrate the meaning of the two terms, Pmodel contains all screening
from within the model subspace and Prest includes screening from outside the
model as well as screening involving transitions between the rest-subspace and the
model subspace. We then define U as the partially screened Coulomb interaction
(using matrix notation and omitting the k-index for simplicity)

U(ω) = (1− Prest(ω)v)−1 v. (3.14)

It can be readily shown that the fully screened interaction W is retrieved if U is
further screened by the model polarization

W(ω) = (1− Pmodel(ω)U(ω))−1U(ω). (3.15)
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Figure 3.1: Schematic figure of the cRPA approach. The polarization is divided into that of the model (Pmodel) and
the rest (Prest).

Eq. 3.15 allows us to interpret U(ω) as the effective Coulomb interaction in
the model subspace. The onsite component of U(ω) can thus be regarded as a
frequency-dependent generalization of the Hubbard U.

While the equations above are exact, in practice the polarization is calculated
within the random phase approximation, which for a given spin is given by

P(r, r′;ω) =
occ∑
kn

unocc∑
k′n′

ϕ∗kn(r)ϕk′n′(r)ϕ
∗
k′n′(r

′)ϕkn(r
′)

ω − ϵk′n′ + ϵkn + iδ

−
ϕkn(r)ϕ

∗
k′n′(r)ϕk′n′(r

′)ϕ∗kn(r
′)

ω + ϵk′n′ − ϵkn − iδ
. (3.16)

The total polarization is the sum over the spin channels and the single-particle
orbitals {ϕkn(r)} are usually taken from a DFT calculation within the LDA or
Generalized Gradient Approximation GGA. The model polarization is obtained
by restricting the sums in Eq. 3.16 to the model subspace.

4 cRPA for entangled bands

While for some materials it is possible to find an isolated set of bands that span the
correlated subspace, this is not always the case. For both the lanthanides that we
deal with in Paper I and the cuprates that we consider in Paper VI the correlated
bands are entangled with other crossing broad bands of s or p character that corre-
spond to extended states. These states are not necessary to include in the minimal
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correlated model and therefore it is necessary to employ a method that separates
the screening from within the correlated subspace and the rest. There are currently
two different, well established ways to achieve this separation.

In the disentanglement method [113], which is the method mainly used in this
thesis, the starting Hamiltonian is written on block diagonal form by simply ap-
proximating the hybridization between the model and the rest to be zero:

H̃ =

(
Hmodel 0

0 Hrest

)
.

TheWannier functions spanning the model subspace are then constructed to min-
imize the difference between H̃ and the original Hamiltonian H. In practice this
is achieved by choosing the parameters in the Wannier function construction so
that the disentangled bandstructure resembles the original band structure as close
as possible. Since the fully screened interaction can be computed for both the
original (Worig) and disentangled (Wdis) bandstructures a quantitative measure
of how well the disentanglement method works for a given set of parameters can
be obtained by comparing Wdis with Worig. Ideally the two quantities should be
identical.

Once H̃ is defined the cRPA procedure is identical to the case where the bands
are isolated. The main advantage with this approach is that it provides a consis-
tent description of the hopping terms and the interaction terms in Eqs. 3.5 and
3.12 since they are both derived from the same mean-field Hamiltonian H̃. Also
the disentanglement approach assures that all metallic screening from within the
correlated bands is removed. In the next section we will consider explicit exam-
ples of the cRPA using the disentanglement approach for the lanthanides and the
cuprates, however first we will briefly describe what we will call “the weighting
approach”, which is a complementary method to treat entangled bands [79].

The weighting approach allows for calculations of U without disentanglement by
defining Pmodel as

Pmodel(r, r
′;ω) =

occ∑
kn

unocc∑
k′n′

(ϕ∗kn(r)ϕk′n′(r)ϕ
∗
k′n′(r

′)ϕkn(r
′)

ω − ϵk′n′ + ϵkn + iδ

−
ϕkn(r)ϕ

∗
k′n′(r)ϕk′n′(r

′)ϕ∗kn(r
′)

ω + ϵk′n′ − ϵkn − iδ

)
PknPk′n′ . (3.17)
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where Pkn is the probability that the electron in state |ϕkn⟩ resides in the model
subspace. These probabilities can be calculated directly from the Wannier trans-
formation matrices. The advantage with the weighting approach is that it allows
for calculations of U without altering the original bandstructure. It also opens up
for the possibility of only including the interaction term in Eq. 3.12 for a subset of
the orbitals of the Hamiltonian. However, a disadvantage is that, in general, not
all metallic screening is removed from U which yields a smaller static value and
could lead to an underestimation of the local correlations.

5 Results from Paper I: cRPA for the early lanthanides

In this paper we investigated the screened Coulomb interactions (U and W ) for
the early lanthanides (Ce-Gd). The lanthanides crystallize in close-packed, fcc
or hcp structures. Apart for Eu and Gd, where the majority spin 4f-bands are
filled and minority spin bands are empty, all materials considered in this paper
exhibit a set of narrow, partially filled 4f bands in the LSDA bandstructure that
hybridize with crossing 6s and 5d bands. Due to the very localized nature of the
4f-states these materials exhibit strong electron correlation effects. A clear example
of this was provided in the last chapter, namely that the G 0W 0 approximation is
not sufficient to describe the Ce α-γ phase transition [137]. A route to treat the
strong correlations is to downfold the problem to a low-energy model using e.g.
the cRPA. However, due to the strong electron-electron correlation within the 4f-
orbitals density functional theory within the LDA provides a rather poor starting
point for these materials. On the other hand, in the cRPA the the screening from
within the 4f subspace is removed and thus as long as the LDA yields a good
description of the r-subspace states (all states except the 4f bands) the method
could provide reasonable estimates ofU for the lanthanides albeit the poor starting
point. Within the cRPA U depends on two factors:

1. The localization and shape of the Wannier basis functions.

2. The screening Prest. However if the model subspace is not isolated, Prest
also implicitly depends on the Wannier functions, since these define the
model subspace and hence also the the model polarization Pmodel.

The value of the bare Coulomb interaction, on the other hand, only depends on
the localization and shape of theWannier basis functions. More localizedWannier
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Figure 3.2: The static average direct diagonal matrix element of the fully screened interaction (W) and the partially
screened interaction (U) for the Lanthanides. W was calculated both from the original bandstructure
(Worig) and the disentangled bandstructure (Wdis). The experimental data are estimations of U from XPS
and BIS spectra. which is taken from ref. [70]. Karlsson et. al. calculated U using a cRPA based self
consistent LDA+U scheme [85]. The inset shows the average diagonal element of the bare interaction
across the series. This figure was taken from Paper I.

functions typically yield a larger bare interaction and thereby also a larger static
interaction U. If the model subspace is not isolated there exists a certain free-
dom in choosing the parameters for the Wannier function construction since, at
each k-point, it is not clear which states should be used to construct the Wannier
functions. The more states that are used in the Wannier function construction,
the larger the variational freedom and the more localized the Wannier functions.
Which states that are used to construct the Wannier functions are determined by
an energy window and a band-index range. Only states with an energy inside
the energy window and a band index inside the band-index range are used in the
Wannier function construction at each k-point. Typically the parameters for the
Wannier functions are chosen such that the disentangled bandstructure mimics
the starting bandstructure as closely as possible. A good measure of this is to com-
pare the fully screened interaction computed both for the original (Worig) and
disentangled bandstructures (Wdis).

To evaluate the accuracy of our cRPA+LDA calculations for these compounds
we compared our results with experimental estimates in Ref. [70], where U was
estimated fromXPS/BIS spectra. Formostmaterials considered in this workUwas
relatively insensitive to small variations in the parameters in the Wannier function
construction and the static U was close to the experimental estimations, although
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Figure 3.3: Frequency dependent U andW for the two phases of Ce. Wwas calculated using the disentangled band
structure. The figures are adapted from Paper I.

consistently slightly smaller (Fig 3.2). However, especially for Eu the result varied
substantially with respect to the energy window. A tight energy window in the
Wannier function construction yielded a disentangled bandstructure that was close
to the original one but a way too small value of U. On the other hand a large
energy window yielded a good estimation of U but a large difference between
Wdis and Worig. The reason for this is simply that the LDA is not a sufficiently
good starting point for Eu. In the LDA bandstructure the majority 4f bands are
filled but close to the Fermi energy which yields a large hybridization between the
4f bands and the crossing 6s and 5p bands. Due to the large hybridization the
Wannier functions become delocalized and the metallic screening is overestimated
in Prest, which yields a too small value of U. By the ad hoc choice of a large
energy window the hybridization is reduced and U is increased to a value close
to the experimental estimation. It is interesting to note the opposing trends in U
compared to the bare interaction (inset in Figure 3.2). While the bare interaction
increases monotonically throughout the series the static value decreases between
Nd and Sm. This indicates that the screening from Prest increases, due to the
filling of the 4f bands, and thereby compensates for the increased bare interaction.

In Figure 3.3 the full frequency dependent U is shown together with the fully
screened interactions for Ce-α and γ. Contrary to the electron gas, that only ex-
hibits a single plasmon peak in ImW, the screened interaction for the lanthanides
exhibits a rich frequency dependence with a number of subplasmons below and
above the main plasmon peak. There are four main features that can be identified
in U and W. First there is a low energy peak around 3-4 eV. In W this peak orig-
inates from low-energy transitions within the 4f-band as well as transitions from
the 4f band to the crossing bands around the Fermi energy. The difference be-
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Figure 3.4: LDA and Wannier interpolated bandstructures of YSr2Cu3O6 and LaBa2Cu3O6. Taken from Paper VI.

tween U and W illuminates the effect of the f → f screening that is excluded in
the former quantity. The next feature is a peak around 12 eV which corresponds
to the main collective plasmon in the system. The energy of this plasmon can be
estimated from an electron gas model as ωp =

√
4πρ where ρ is the valence elec-

tron density. This gives a value of approximately 13 eV for Ce in rough agreement
with the peaks in W and U. The two subsequent pronounced peaks around 20
and 35 eV respectively originate from transitions from the shallow 5s and 5p core
orbitals.

6 Results from Paper VI: cRPA for the cuprates

The crystal structure of all cuprates consist of the superconducting Cu-O layers
separated by spacer layers. In most cuprates the in-plane Cu ions are located in
an octahedral cage consisting of the four in-plane O ions as well as two apical O
below and above the CuO plane. The crystal field splits the Cu 3d orbitals into the
t2g and eg components, where the t2g are lower in energy. Furthermore, due to the
Jan-Teller distortion, the distance to the apical O is larger than the distance to the
in-plane O. This lifts the cubic symmetry and the the eg manifold is split into the
dz2 and dx2−y2 components. While the doped compounds are superconducting
the parent compounds are insulating due to the large onsite Coulomb repulsion
between the Cu 3d holes. However, since the LDA cannot capture the effect of
the strong onsite Coulomb interactions the LDA bandstucture for the parent com-
pound is metallic with a conduction band of dx2−y2 symmetry, which consists of
the antibonding combination of the Cu dx2−y2 and O px/y orbitals. The bonding
and nonbonding bands, of mainly O px/y-character are approximately 4-8 eV be-
low the Fermi energy. Theminimal low-energy model of the cuprates include only
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Figure 3.5: Top left: Static value of U in the one-band model for the parent compounds of hole-doped cuprates.
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Paper VI.

the antibonding conduction band (Fig. 3.4), and is therefore commonly referred
to as the one-band model.

In Paper VI we compute the effective Coulomb interaction in the one-band model
for the parent compounds of a number of hole-doped high-Tc cuprate supercon-
ductors using the cRPA. We consider the the well-studied La2CuO4 as well as
TlBa2CuO6, HgBa2CuO4 and the compounds R(Ba,Sr)2Cu3O6 (R=Y, Yb, Nd,
La). With the exception of La2CuO4 we find a trend between the maximum su-
perconducting transition temperature Tc max and the onsite Coulomb repulsion
U, as well as the ratio U/t where t is the nearest neighbour hopping (Fig. 3.5).
The trend suggests that superconductivity is favoured by a large onsite Coulomb
repulsion. However, that La2CuO4 does not follow the trend indicates that a large
Coulomb repulsion cannot be the only important parameter to achieve high-Tc
superconductivity, there are other mechanisms that hamper superconductivity in
this compound. In Fig. 3.5 we show both the effective screened Coulomb interac-
tion U and the corresponding matrix elements of the bare unscreened Coulomb
interaction v. While the value ofU depends both on the screening in the materials
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and the Wannier basis functions, the value of the bare interaction only depends
on the shape and extent of the Wannier basis functions. It is clear that v does not
show any clear correlation with Tc max and hence the trend is intimately related to
the screening in the compounds.

We also analyse the different screening channels in the compounds by considering
the full frequency dependent interaction U(ω) as well as by selectively removing
different screening channels. Through this analysis we conclude that all low-energy
screening channels collectively contribute to the trend. For La2CuO4 we show that
the peak in ImU(ω) associated with the screening from theOp orbitals to the con-
duction band (pd-screening) is at higher energy and also much more pronounced
than in the other compounds (Fig. 3.6). The position of the peak is related to the
distance between the Op bands and the conduction band. Since this distance is
larger in La2CuO4 than in the other compounds the pd-peak in ImU also appears
at higher energy.

To understand why La2CuO4 alludes the trend inU could yield important insights
in the origin of the pairing mechanism. In Ref. [181] it was shown that Tc max
shows an antilinear correlation with the charge-transfer energy ϵp− ϵd. This could
provide an explanation of why La2CuO4 alludes the trend since this compound
has an unusually large charge-transfer energy. Since both a large U and a small
charge-transfer gap will push the lower Hubbard band below the p-states, and
therefore support the charge-transfer rather than the Mott picture, we speculate
that superconductivitymay be favoured by having a pure charge-transfer insulating
parent compound.
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4
Dynamical Mean-Field Theory

1 Self-consistent Anderson impurity model

Dynamical mean-field theory (DMFT) [52, 53] may be thought of as a mapping
of the Hubbard model to an Anderson impurity model, that is an impurity model
coupled to a bath, with the hybridization between the impurity and the bath de-
termined self-consistently in such a way that the impurity Green’s function equals
the local (onsite) projection of the lattice Green’s function. The key observation
that makes this mapping possible is that the self-energy becomes local (onsite) in
the limit of infinite dimensions (Σ(k, ω) → Σ(ω)) [112, 118]. The infinite di-
mensional case with a local self-energy can then be used as an approximation for
solving the Hubbard model in finite dimensions.

For simplicity we will consider the single-band Hubbard model in Eq. 3.6. As-
suming an onsite self-energy this Hamiltonian can be mapped to an Anderson
impurity model

HAIM =
∑
kσ

ε̃kâ
†
kσ âkσ︸ ︷︷ ︸

bath

−µ
∑
σ

ĉ†0σ ĉ0σ + Un̂0↑n̂0↓︸ ︷︷ ︸
impurity

+
∑
kσ

(Vkσ â
†
kσ ĉ0σ + V∗

kσ ĉ
†
0σ âkσ)︸ ︷︷ ︸

coupling

.

(4.1)

The impurity Green’s function for the noninteracting Hamiltonian (i.e. withU =
0) is given by

G−1
0σ (iωn) = iωn + µ − Δσ(iωn). (4.2)
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Bath

Lattice
Impurity model

Figure 4.1: Schematic figure of the DMFT self-consistency loop. The effective impurity action in the figure is an
example for a single band Hubbard model with static interaction. The figure is reproduced from Paper
V.

The hybridization function, Δσ(iωn), is defined as

Δσ(iωn) =

∫ ∞

−∞
dω

Δ′
σ(ω)

iωn − ω
, (4.3)

where
Δ′
σ(ω) =

∑
k

|Vkσ|2δ(ω − ε̃k). (4.4)

The impurity Green’s function for the interacting Hamiltonian is entirely deter-
mined by Δ (or equivalently G), U and µ. In standard DMFT U is assumed
to be a fixed parameter and Δ (or equivalently G) is determined self-consistently
so that the impurity Green’s function equals the onsite projection of the lattice
Green’s function. The lattice Green’s function can be computed from the impurity
self-energy because of the assumption that the lattice self-energy is local. In that
sense dynamical mean field theory can be regarded as a self-consistent Anderson-
impurity model.

The full self-consistency cycle is depicted schematically in Fig 4.1 and takes the
form (the spin index is omitted for readability):

1. Start with an initial guess for Σimp.

2. According to the DMFT approximation Σk = Σimp.

3. Calculate G loc =
∑

k

(
G(0)
k

−1 − Σk

)−1
.
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4. The effective impurity problem is defined by the dynamical Weiss field G
which is calculated by inverting the Dyson equation.

G =

(
Σimp +

(
G loc

)−1
)−1

. (4.5)

5. Numerically solve the impurity problem to obtain G imp.

6. Use the current G to calculate Σimp = G−1 − G imp−1.

7. Check if the self-consistency condition G imp = G loc is fulfilled. If not go
back to step 2.

As discussed in Chapter 4.1 the hopping terms can be derived from the LDA band
structure. This provides a route to employ DMFT to realistic materials, the so-
called LDA+DMFT approach [6, 103, 90, 67].

From the cRPA we know that the effective impurity interaction U for a down-
folded model acquires a frequency dependence due to the dynamical screening
from the degrees of freedom not accounted for within the model. One way to
account for the frequency dependence is to introduce a continuum of additional
bosonic fields explicitly in the Hamiltonian. The frequency dependence of the in-
teraction is then represented by the coupling between the fermionic and bosonic
fields. For the case with a single bosonic mode this mapping corresponds to the
Hubbard-Holstein model [74, 77, 177].

Two approximate ways to solve the generalized Hubbard-Holstein model are the
so called dynamic atomic-limit approximation (DALA) [31], which is exact in
the limit of Δ → 0, and the Lang-Firsov approach. The Lang-Firsov approach
relies on a Lang-Firsov transformation [97] that eliminates the electron-boson
interaction in the Hubbard-Holstein Hamiltonian, however the solution of the
transformed Hamiltonian still requires approximations. One commonly used
is the Lang-Firsov approximation which is exact in the limit of infinite plasma
frequency [182, 32]. A major advance towards truly first-principle calculations
was made upon the introduction of the continuous time quantum Monte-Carlo
method (CT-QMC) [184, 185, 186, 188, 58, 182], which provides a numerically ex-
act solution of the impurity problem with a dynamical interaction. In this thesis
we have used the hybridization expansion continuous time Monte-Carlo method
(CT-hyb), which is a strong coupling approach that relies on an expansion in the
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hybridization. The CT-hyb algorithm was originally derived for the Hubbard-
Holstein model and then generalized to arbitrary U(ω), but in Ref. [13] it was
derived directly from the imaginary time effective impurity action, which for the
single orbital Hubbard model with dynamical interaction U(ω) is given by

Seff =
∑
σ

∫ β

0
dτdτ ′c†σ(τ)G−1

0 (τ − τ ′)cσ(τ ′)

+
1
2

∫ β

0
dτdτ ′n(τ)U(τ − τ ′)n(τ ′), (4.6)

where the fermionic degrees of freedom {cσ} are described by anticommuting
Grassman fields [120]. Solving the impurity problem then means computing the
impurity Green’s function for the action in Eq. 4.6.

LDA+DMFT has been very successful in describing strongly correlated materials.
A famous example is the α-γ isostructural phase-transition in Cerium at approx-
imately 600 K. While both phases have fcc structures the γ phase has a larger
volume than the α phase [4]. Experimentally a large reduction of the quasiparti-
cle weight at the Fermi energy is observed in going from the smaller α to the larger
γ phase. This reduction originates from an increase of the strong local correlations
which is correctly captured by LDA+DMFT [68, 196, 63, 23], but cannot be de-
scribed with the GW approximation or the LDA [137]. However, there are still a
number of problems with LDA+DMFT.

First of all the nonlocal correlations are completely omitted. However, it is not
clear for which materials this approximation is valid and for which materials the
nonlocal correlations matter. This could potentially lead tomisleading conclusions
as was shown in Paper III for the cubic perovskite SrVO3. It is also worth noting
that the frequency dependence of U and k-dependence of U and Σ have oppos-
ing effects. The frequency dependence of U can be incorporated in an effective
static value through a bandwidth renormalization. Hence the frequency depen-
dence tend to increase the degree of local correlations by effectively reducing the
bandwidth [32]. The k-dependence of U and Σ, on the other hand, have the
opposing effects. The k-dependence of Σ effectively widens the bandwidth and
consequently decrease the effective local correlations [114] and the nonlocal com-
ponents of U yields a reduction of the effective onsite impurity interaction [141].
Hence there is an uncontrolled cancellation between the frequency dependence of
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Figure 4.2: Spectral function of the 2D Hubbard model on a square lattice with nearest-neighbour hopping com-
puted with DMFT. The hopping was defined as t = 0.25, to give a half-bandwidth of 1, and the
calculations were performed for β = 10. The impurity problem was solved using the Alps CT-hyb im-
purity solver [3, 184, 185, 22, 61] and the analytic continuation was performed using the maximum
entropy method.

U and k-dependence of U and Σ. While for certain materials, such as La2CuO4,
the frequency dependent U is essential to get the correct gap in the spectral func-
tion, and therefore the cancellation by the k-dependence appears to be small (see
e.g. Paper II) in other materials the effect of the k-dependence could be large.
A proper treatment of both of these effects is therefore needed, which requires a
treatment of both the local and nonlocal interaction and self-energy in the self-
consistency cycle. Furthermore, as discussed in Chapter 3, the double-counting
term in LDA+DMFT is ill-defined. These issues can be solved by combining
DMFT with the GW approximation in the so called GW+EDMFT method [24]
discussed in the next chapter. First, however, we will discuss a few basic properties
of DMFT applied to simple models.

2 Hubbard bands: The physics of local correlations

2.1 Single-band Hubbard model

In Fig. 4.2 we show the spectral function for the one-band, half-filled, Hubbard
model on a square lattice with nearest-neighbour hopping, for different values of
the interaction, computed with DMFT.The bare dispersion of this model is given
by

ϵ(k) = 2t(cos(kx) + cos(ky)) (4.7)
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For U = 0 the spectra is the bare DOS with a bandwidth given by 8t. As U is
increased the quasiparticle bandwidth is decreased and satellite structures appear
above and below the quasiparticle peak, corresponding to the lower and upper
Hubbard bands. When U reaches a critical value U = Uc the quasiparticle disap-
pears and the system becomes insulating.

In Fermi liquid theory [95, 96] the interacting Green’s function for a state close to
the Fermi level is assumed to have the form

G(iνn,k) ≈
Zk

iνn − ϵk︸ ︷︷ ︸
coherent

+Gic(iνn,k)︸ ︷︷ ︸
incoherent

(4.8)

where the quasiparticle residue Zk ≤ 1. Particle conservation then implies that
the incoherent part is proportional to 1−Zk. Hence, from a Fermi-liquid theory
perspective, increasingU yields a spectral weight transfer from the coherent to the
incoherent part of the Green’s function. For a large enoughU the quasiparticle dis-
appears which corresponds to a complete spectral transfer to the incoherent part.
This metal-to-insulator transition, driven by the strong local Coulomb repulsion,
is known as the Mott-Hubbard or simply Mott-transition.

To understand the origin of the satellites we will first consider the half-filled single
Anderson impurity model in Eq. 4.1. Following the arguments in Ref. [44] we
will consider three cases; (A) U = 0 but with finite Δ, (B) Δ = 0 but with finite
U as well as (C ) the intermediate case with both quantities nonzero.

For both U = 0 and Δ = 0 the spectra consists solely of a delta peak at the Fermi
level corresponding to the impurity energy level. ForU = 0 but with finite Δ (case
A), the hybridization will give a Lorentzian broadening of width Δ of the impurity
level at the Fermi energy. In the atomic limit, for zero hybridization on the other
hand (case B), the spectra will have two delta-peaks separated byU, corresponding
to the energy cost of double occupation. In the intermediate case, with both Δ
and U nonzero both of these features will exist simultaneously, the quasiparticle
feature at zero frequency with a reduced width compared to the noninteracting
case and the two satellite features that are broadened by the hybridization. The
width of the middle peak, corresponding to the Kondo resonance of the impurity
model, will decrease as U increases. If the bare (U = 0) Green’s function of the
impurity model (G) is metallic the Kondo resonance of the Anderson impurity
model will be present for any finite value of U [119]. In DMFT, the hybridization
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is determined self-consistently. The effect of self-consistency is to push the metal-
to-insulator transition to a finite critical value of U = Uc.

It is interesting to note the different pictures that emerge depending on how the
problem is approached. When the problem is approached from the impurity point
of view the ”quasi-particle” peak at the Fermi level is interpreted as a Kondo-
resonance in between the upper and lower Hubbard band. This interpretation
appears as a physically reasonable interpretation in the large-U limit where the
majority of the spectral weight lies in the Hubbard bands. From a Fermi-liquid
perspective the quasiparticle peak is interpreted as the coherent part of the Green’s
function originating from the non-interacting band structure from a tight-binding
picture. This appears to be a physically reasonable interpretation in the small U
regime. The self-consistency in DMFT provides a bridge between these two inter-
pretations. By requiring that Gloc = Gimp the Kondo resonance of the impurity
problem is mapped to the k-integrated quasiparticle peak of the lattice problem.
In that sense the Kondo resonance can be interpreted as the quasiparticle of the
impurity problem.

2.2 Multi-orbital models

For models with more than one orbital the situation becomes more complicated.
To make a connection to our results for the cubic perovskites SrVO3 and SrMoO3
in paper III-IV we will consider a model with three equivalent orbitals and the
Kanamori interaction

HK =U
∑
a

n̂a↑n̂a↓ +
1
2

∑
a ̸=b

∑
σσ′

(U ′ − Jδσσ′)n̂aσn̂bσ′

−
∑
ab

J(̂c†a↑ĉa↓ĉ
†
b↓ĉb↑︸ ︷︷ ︸

spin−flip

+ ĉ†b↑ĉ
†
b↓ĉa↑ĉa↓︸ ︷︷ ︸

pair−hopping

), (4.9)

which is the form of the interaction for the low-energy t2g orbitals of these systems.
For a spherically symmetric system U ′ and the Hund’s coupling J are related as
U ′ = U − 2J. SrVO3 and SrMoO3 have cubic symmetry and therefore this
relation does not exactly hold. However, while the deviation is large for 5d orbitals
the deviation has been proven to be small for 3d orbitals [128] and therefore we will
assume the spherically symmetric form of the interaction in the following analysis.
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The gap in the spectral function, Eg, is given by the difference between the ion-
ization energy, EI = E0(N − 1) − E0(N) and electronic affinity, EA = E0(N) −
E0(N+ 1),

Eg = E0(N− 1) + E0(N+ 1)− 2E0(N), (4.10)

where E0(N) is the ground-state energy of theN-electron system. We will consider
two cases, J = 0 and J ̸= 0.

Case 1: J = 0

For the spherically symmetric parameters J = 0 also implies U ′ = U and hence
the intra- and inter-orbital interactions are the same. By considering the energy
states of an isolated impurity, i.e. solving HK|N⟩ = E0(N)|N⟩ where |N⟩ is one
of the degenerate ground states of the impurity occupied with N electrons, it is
straightforward to see that

E0(N) = U
N!

2(N− 2)!
=

U
2
N(N− 1). (4.11)

Inserting this into Eq. 4.10 for the gap yields Eg = U for all allowed occupations.
Hence, the atomic gap is independent on the occupation if J = 0. The critical
value Uc of the Mott-transition however will increase with the number of degen-
erate orbitals [59, 107] and the Hubbard bands will be broadened [62]. For a given
number of orbitals Uc is maximum at half-filling. This is, in the above mentioned
references, explained by an increase in the effective hopping through the orbital
degeneracy.

Case 2: Finite J

The case with a finite J was studied extensively in Ref. [39]. It was shown that the
Hund’s coupling have different effects on Uc depending on the filling. For half-
filled cases Hund’s coupling enhances the correlations and Uc decreases with J (in
agreement with the studies in Refs. [62, 86, 127, 187]) while at integer fillings away
from half-filling it pushes the boundary for the Mott-transition to much higher
values of U. Using similar arguments as in the J = 0 case above, although slightly
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more complicated due to the more complicated atomic spectrum, it was shown in
Ref. [39] that the gap for the isolated impurity with a finite value of J is given by:

Eg =

{
U− 3J, away from half filling
U+ (N− 1)J, at half-filling

(4.12)

where it is clear that at half filling J works to increase the gap and hence the degree
of correlation while away from half filling J has the opposite effect. It was also
found that, with weak orbital hybridization (i.e. tmm′

ij ̸= tmm′
ij δmm′ where m and

m′ are orbital indices) and in non-degenerate systems, J enforces a decoupling of
the bands. This yields a strong dependence on the details of the electronic structure
and filling of the individual bands and different bands can display different degrees
of electronic correlation.

3 Hubbard bands versus plasmons

Now we will return to the statement in Chapter 2, namely that theG 0W 0 approx-
imation cannot describe the Mott-metal to insulator transition. We will generalize
this statement slightly to; ’No first-order approximation in W to the self-energy
can yield a complete spectral weight transfer from the quasiparticle features to the
incoherent features, like in the Mott-Hubbard metal-to insulator transition.’ To
prove this we will again consider Eq. 2.34. In order to achieve a complete spectral
weight transfer for a state at the Fermi energy the imaginary part of the self-energy
has to diverge at the Fermi energy. If we now consider Eq. 2.33 this would mean
that ImW must have a pole at zero frequency. However, from the antisymmetry
of the spectral function of W it is evident that ImW(ω = 0) = 0 [8], and hence
the divergence in ImΣmust originate from higher order self-energy diagrams (See
Fig. 4.3), i.e. it cannot enter the first order self-energy diagram through W. This
reasoning is equivalent to the statement in Ref. [19] that the Mott-transition is
driven by the increase (and divergence) of the vertex-corrections.

Thus a practical way to distinguish between plasmons and Hubbard bands is that
plasmons are features that enters the self-energy through W(ω) and Hubbard
bands features that enter the self-energy through the higher order diagrams in W
(or equivalently through the vertex in the Hedin equations). This definition agrees
with the physical intuition that plasmons are long-ranged charge fluctuations, and
hence should have a clear dispersion, while Hubbard bands originate mainly from
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Figure 4.3: The first few diagrams of the self-energy expansion in W. The figure is reproduced from Ref. [64].

local correlations. In practice it means that satellites in the spectral function that
can be identified as originating from features in ImW can be identified as plasmons
while features that originate from the onsite static Coulomb repulsion U(ω = 0)
are identified as Hubbard bands.

4 Results from Paper II: LDA+DMFT for La2CuO4

A generic feature of the cuprate superconductors is that the crystal structure ex-
hibits Cu-O sheets in between spacer layers ofO and lanthanides (Fig. 4.4). While
the parent compounds of the cuprates are antiferromagnetic Mott insulators the
LDA-bandstructure is metallic with a conduction band of mainly dx2−y2 symme-
try. The most widely used low-energy models for these materials include the or-
bitals that span the CuO-planes, namely the Cu dx2−y2 and Opx/py orbitals. In the
LDA the conduction band corresponds to the anti-bonding combination of these
orbitals while the bonding and nonbonding combinations appear approximately
6 eV below the Fermi energy (right panel in Fig. 4.4).

In Paper II we computed the spectra of La2CuO4, the parent compound of the
prototypical high-Tc cuprate superconductor, using LDA+DMFT with ab-initio
interaction parameters from cRPA. We considered two different models, a one-
band model consisting only of the antibonding conduction band and a three band
model that included also the bonding and nonbonding combinations (right panel
in Fig. 4.4). In addition to the LDA and Wannier interpolated bandstructures in
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Figure 4.4: Reduced crystal structure (left) and LDA bandstructure (right) for La2CuO4. The disentangled band-
structure is superimposed on top of the LDA bandstructure and the colour coding corresponds to the
d-character of the bands which is defined by the projection on the d-like Wannier function. The left
panel is taken from Ref [146] and the right panel from Paper II

Fig. 4.4 the colour coding shows the symmetry of the bands, as defined by the
projection onto the corresponding Wannier functions. As can be seen, although
the conduction band looks similar in the two models, the definition of the dx2−y2

Wannier function is different. In the one-bandmodel it is derived entirely from the
conduction band while in the three band model it contains a small contribution
from the two bands below EF. Even though the main weight of the conduction
band comes from the dx2−y2 Wannier function the mixing yields a much more
localized dx2−y2 Wannier function in the three-band model.

While, in the one bandmodel the definition of Prest and henceU(ω) is unambigu-
ous, for the three band model which screening channels that should be removed in
Prest depends on how the model is solved. A solution of the complete three band
model would require us to consider a multi-site impurity problem with a dynam-
ical interaction, including both the Cu and O sites. Since performing DMFT for
such a problem was not possible at the time we only treated the d-d interactions
within DMFT and the p-p and p-d interactions at the Hartree level. This meant
that the p-d screening is not included in the solution of the model, and hence has
to be included in U(ω). Since, as discussed above, the main d-weight is in the
conduction band we simply removed the screening from within the conduction
band when calculating Prest. I will henceforth refer to this modified three-band
model as the d-dpmodel. With this definition the difference betweenU(ω) in the
one-band and d-dp models only comes from the Wannier basis functions. Since
the dx2−y2 Wannier function is more localized in the three-band case the corre-
sponding matrix element of U will be larger. In the upper panel of Fig. 4.5 the
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Figure 4.5: Top: Matrix elements of the dynamically screened Coulomb interaction for La2CuO4 in the d-dp model
computed using the cRPA. Bottom: Spectral function computed within LDA+DMFT with the dynamic
interaction U(ω) from the top panel and an additional Hartree treatment of the p-states (See text and
Paper II for details). UH is the upper Hubbard band, ZR the Zhang-Rice singlet, LH the lower Hubbard
band and S a plasmon satellite originating from the 9 eV peak in ImU(ω). The figures are taken from
from Paper II.

matrix elements of U(ω) in the d-dp model are shown. The static value of U is
approximately 7 eV, which is very much reduced compared to the bare interaction
due to the large screening. The prominent peak around 9 eV in ImU comes from
transitions between the bonding/nonbonding valence bands and the antibonding
conduction band. Since this peak only is present in Udd and not Upd or Upp it has
to be localized on the Cu site. This has later been confirmed by Sjöstrand et al. in
a real-space calculation of U [146].

Traditionally the parent compounds of the cuprate superconductors are thought
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Figure 4.6: The experimental PES-spectra for La1.8Sr0.2CuO4. The three features A B and D were deduced to be of
Cu:3d-character while the peak C is considered to be due to contamination. The data in the figure is
for the hole-doped case but a similar result is obtained for the undoped case. The figure is reproduced
from Ref. [143].

to be so called charge transfer insulators, with the occupied oxygen p-states in be-
tween the upper and lower Hubbard bands [42]. The charge transfer gap, i.e. the
gap between the occupied p orbitals and the upper Hubbard band, has experi-
mentally been estimated to around 2 eV using various techniques [55, 165, 41]. In
Fig. 4.6 the experimental PES-spectra for La2CuO4 is shown. The three features
A, B and D were in Ref. [143] deduced to be of Cu 3d-character. The peak C
is considered to be due to contamination and is also absent in more recent PES
data [80]. In Ref. [143] the peak labelled D was identified as corresponding to
the d 8 configuration and hence corresponding to the lower Hubbard band. This
interpretation agrees with the calculations in Ref. [40] using DMFT with a static
U = 9 eV but not with the LDA+DMFT calculations with a static U = 8 eV in
Ref. [180] that places the lower Hubbard band closer to the Oxygen p-states.

Contrary to the above mentioned references we solve the impurity problem with
a dynamic U computed from first principles within the cRPA. In order to under-
stand the role of the frequency dependence of the interaction we computed the
spectral function both with the static U(ω = 0) and the full dynamic U for both
models. We found that the frequency dependence was essential in order to open
up a gap in both cases. In the d-dpmodel (shown in the lower panel of Fig. 4.5) the
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gap in the spectral function compared well with experiment but in the one-band
case the gap was too small. This suggests that a pure one-band model might not
be sufficient to describe the cuprates. The main features in our calculated spectra
in Fig. 4.5 are:

• UH:The upper Hubbard band.

• ZR: A Zhang-Rice singlet of mixed p-d character corresponding to the d 8

ligand hole [193, 40].

• LH: A broad feature identified as the lower Hubbard band.

• S: A plasmon satellite shown to originate from the p-d peak in ImU(ω) at
approximately 9 eV.

The position of the peak S agrees with the peak D in the PES-spectra. Hence our
calculations yield a new interpretation of the electronic structure of La2CuO4 with
the lower Hubbard band in the same energy range as the p-states and the feature
below the p-states, found experimentally, explained as a plasmon satellite. The
position of the p-states is slightly too low compared to experiment which indicates
that the Hartree approximation employed for the p-d and p-p interactions might
not be sufficient.
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5
GW+EDMFT

As we discussed in the preceding chapters both theGW approximation and LDA+
DMFT are successful methods to describe the electronic structure ofmaterials with
different degrees of correlation, but both methods suffer from inherent problems.
The GW approximation breaks down for materials with strong local correlations
and further on self-consistency worsens the spectra. Dynamical mean-field theory
on the other hand captures the physics of strong local correlations but neglects the
long-range correlations and also has a problem with double-counting. The com-
bination of the GW approximation and dynamical mean-field theory, proposed
by Ref. [24] in 2003, provides a suitable path to solve the issues present in the two
methods separately, and thereby provides a path to a truly first-principle approach
for strongly correlated materials.

1 Basic theory

1.1 EDMFT

The combination of GW and dynamical mean-field theory requires the extension
of DMFT to an extended framework (EDMFT)[144, 152, 37, 159], where not only
the hybridization, but also the effective impurity interaction U is determined self-
consistently. This yields a set of equations for W, U and the impurity polariza-
tion Πimp that are analogous to those of G, G and Σimp with an additional self-
consistency condition,Wimp = Wloc, and an approximation that the polarization
is local. Hence EDMFT is a way to account for nonlocal interactions with the
approximation of a local polarization computed from the impurity problem. The

61



EDMFT self-consistency cycle takes the form:

1. Start with an initial guess for Σimp and Πimp.

2. Use these for the local quantitiesΣloc = Σimp andΠloc = Πimp (EDMFT
approximations) .

3. Use Σk = Σloc and Πk = Πloc.

4. Calculate G loc =
∑

k

(
G(0)
k

−1 − Σk

)−1
and

W loc =
∑

k (1−Πkvk)−1 vk,

5. Use G imp = G loc and W imp = W loc (EDMFT self-consistency condi-
tions).

6. Calculate the fermionic Weiss field

G =
(
Σimp +

(
G imp

)−1
)−1

(5.1)

and the effective impurity interaction

U = W imp
(
1+ΠimpW imp

)−1
. (5.2)

7. Numerically solve the impurity problem to obtain G imp and the impurity
charge susceptibility χimp.

8. Use the current G and U to calculate Σimp = G−1 −G imp−1 and Πimp =
χimp

(
Uχimp − 1

)−1. The fully screened interactionW imp = U−UχimpU
only enters the calculations through the self-consistency condition in step 5.

9. Go back to step 2.

1.2 GW+EDMFT

EDMFT treats the onsite correlations nonperturbatively to all orders but the non-
local correlations are omitted. Since the vertex function in the Hedin equations
(Eq. 2.9) can be separated into the sum of the trivial vertex function used in
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GW and the non-trivial vertex correction, the Hedin equations for the self-energy
(Eq. 2.10) and the polarization (Eq. 2.8) also separate into two components:

Σ = ΣGW +Σvc, (5.3)

Π = ΠGG +Πvc. (5.4)

In GW+EDMFT the offsite components of Σ and Π are computed within the
GW approximation and the local onsite components are computed to all orders
within EDMFT. This is equivalent to approximating Σvc and Πvc by their impu-
rity counterparts in Eq. 5.4. The double counting is then well defined as the local
projection of the GW self-energy and polarization,

ΣGW+EDMFT(k) = ΣGW(k) + ΣEDMFT −
∑
k

ΣGW(k), (5.5)

ΠGW+EDMFT(k) = ΠGG(k) + ΠEDMFT −
∑
k

ΠGG(k). (5.6)

The self-consistency cycle is equivalent to that of EDMFT but with Σ(k) and
Π(k) in step 3 replaced by the corresponding quantities defined in Eqs. 5.5-5.6.

1.3 GW+EDMFT in model calculations

The effect of the long-range exchange and correlations within GW+EDMFT for
model systems has been studied extensively in Refs. [19, 13, 75, 14, 15] for the one-
band Hubbard model on the 2D square lattice with onsite interaction U, nearest
neighbour interaction V and nearest neighbour hopping t. In Ref. [15] it was
found that, especially the nonlocal exchange term had a substantial effect on the
U-V phase-diagram, pushing the transition to the charge-ordered phase to smaller
values of V. This effect was explained by an effective band-widening effect due
to the nonlocal exchange term. If this term is neglected (which is the case in
Refs. [19, 13, 75], see Refs [14, 15] for details) the phase-diagram is very similar to
plain EDMFT. In the Mott-insulating phase the nonlocal screening was found to
introduce high-energy satellites in the spectrum [13].
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1.4 Functional derivation

The GW+EDMFT approach can, in its complete implementation, be derived
from the free energy functional Ψ [24, 2, 37]. In Paper IV we provide a detailed
derivation of the GW+EDMFT approach from a functional perspective following
Refs. [24, 37, 13, 130]. In this section I will sketch the most important steps and
discuss the physical consequences of the derivation. However, first I will discuss
the functional derivation of plain DMFT loosely following Refs. [99, 17].

DMFT: Functional derivation

Dynamical mean-field theory can be derived by considering the Baym-Kadanoff
functional of the Green’s function

Γ[G] = Tr[lnG]− Tr[(G−1
0 − G−1)G] + Φ[G]. (5.7)

The stationary point of Γ yields the exact Green’s function of the system. The
Φ-functional is the sum of all skeleton diagrams (closed, two-particle irreducible
Feynman diagrams) constructed from the Green’s function and bare Coulomb
interaction of the system and G0 is the noninteracting Green’s function of the sys-
tem. For the case of DMFT our system is represented by the generalized Hubbard
Hamiltonian in Eq. 3.12. Since DMFT uses the Hubbard model as a reference sys-
tem, in this case the interaction is restricted to onsite components. The functional
derivative of Φ with respect to the Green’s function yields the self-energy

δΦ

δG
= Σ. (5.8)

Dynamical mean-field theory can be derived by making a local (onsite) projection
of the Green’s function, that is by expanding the Green’s function in a localized
basis {|wi

R⟩}, whereR is a lattice vector and i an orbital index.

GRR ≡
∑
ij

|wi
R⟩⟨wi

R|G|w
j
R⟩⟨w

j
R| (5.9)

The DMFT Φ-functional is then defined as

ΦDMFT =
∑
R

Φ(GRR). (5.10)
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Figure 5.1: Diagrammatic representation of the first few terms in the GW+EDMFT approximation to the Ψ func-
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bution. Impurity indices for the higher order diagrams as well as combinatorial factors are omitted for
readability. The figure is reproduced from Paper IV.

Since the interaction is assumed to be local so is Φ(GRR) and thus also the self-
energy

ΣDMFT
RR′ =

δΦDMFT

δG
= ΣRR′δRR′ (5.11)

The lattice model is mapped to an impurity model in Eq. 4.6 with effective bare
propagator G which is determined by the self-consistency condition

Gimp = GRR. (5.12)

Eq. 5.12 implies that the Φ-functional of the impurity problem (Φimp) also fulfils

Φimp = Φ(GRR), (5.13)

which together with Eq. 5.11 implies that

ΣDMFT = Σimp. (5.14)

GW+EDMFT: Functional derivation

GW+EDMFT requires the generalized free energy functional [2, 37]

Γ [G,W] =Tr[ln(G)]− Tr[(G−1
H − G−1)G]− Tr[ln(W)]

2

+
Tr[(v−1 −W−1)W]

2
+Ψ[G,W], (5.15)
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which is a functional of both the Green’s function G and screened interaction W
of the solid. GH is the Hartree Green’s function of the solid and Ψ includes all
two-particle irreducible diagrams constructed with G andW.

The Dyson equations,

G−1 = G−1
H − δΨ

δG
, (5.16)

W−1 = v−1 + 2
δΨ

δW
, (5.17)

follow from requiring that Γ has a stationary point at the exact G and W. The
self-energy and the polarization can then be defined as

Σ =
δΨ

δG
, (5.18)

Π = −2
δΨ

δW
. (5.19)

Analogous to plain DMFT the EDMFT functional corresponds to making an
onsite approximation to G and W

ΨEDMFT = Ψ [GRR,WRRRR] . (5.20)

The GW approximation corresponds to keeping only the first-order contribution
to Ψ inW:

ΨGW = −1
2
Tr [GWG] . (5.21)

This yields the full GW+EDMFT functional (schematically shown in Fig. 5.1):

ΨGW+EDMFT[G,W] = ΨGW +ΨEDMFT − Tr [GRRWRRRRGRR] . (5.22)

The last term constitutes the double-counting term between theGW and EDMFT-
functionals.
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2 The multitier approach

In principle the GW+EDMFT equations should be solved self-consistently in the
entire Hilbert space. However, there are a number of practical problems with
this. First of all, it is computationally heavy. It is infeasible to solve a 200 orbital
impurity problem, and even if the impurity problem would be restricted to a low-
energy subspace (which in principle is allowed by the formalism by restricting
the sum over orbitals in Eq. 5.9 to a subspace) self-consistent GW alone for real
materials is computationally heavy. However, more importantly, as discussed in
Chapter 2 self-consistentGW alone without vertex corrections fromDMFT yields
a poor spectral function.

In this thesis we have developed a multitier approach where the complete Hilbert
space is divided into three subspaces, and each subspace is treated with an appropri-
ate level of approximation. Previous GW+EDMFT calculations for real materials
have been restricted to one-shot combinations, combining two separate GW and
DMFT calculations [163, 138, 167, 172, 173, 38], and fully self-consistent calcula-
tions have only been performed formodel systems [84, 13, 75, 171, 157, 15]. Themul-
titier approach developed in Paper III and IV effectively bridges the gap between
first-principle calculations and model calculations through a systematic down-
folding procedure, therefore allowing for the first ab initio fully self-consistent
GW+EDMFT calculations for real materials.

The idea behind the multitier approach is sketched in Figure 5.2. The aim with
our first-principles approach is accurate descriptions of materials with strong lo-
cal correlations but also non-negligible long-range correlations, with a reasonable
computational cost. Typical examples of such materials are transition metal com-
pounds such as transition metal oxides, transition metal based perovskites as well
as cuprate or iron-based high Tc superconductors. To achieve this we employ a
three-step procedure:

1. TIER III: First we perform a one-shot GW-calculation in the complete
Hilbert space yielding a self-energyΣG 0W 0 . We then define an intermediate
low-energy subspace, I, typically spanned by 3-10 bands around the Fermi
energy. The effective interaction, U, on the intermediate subspace is com-
puted using the cRPA. The G 0W 0 self-energy contribution from within
the intermediate subspace is removed from ΣG 0W 0 which yields an effec-
tive bare propagator on the intermediate subspace, G 0

k. The construction
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of G 0
k is a fermionic analogy of the cRPA construction of U.

2. TIER II: In the intermediate subspace the self-energy is calculated using a
self-consistent GW-implementation. A correlated subspace C, which can
be smaller or equal to the intermediate subspace, is defined. The local part
of the GW self-energy and polarization from within the correlated subspace
is subtracted.

3. TIER I: At each step of the self-consistency cycle local vertex corrections
to the self-energy and polarization are computed using DMFT. Local ver-
tex corrections are provided within the correlated subspace, which can be
smaller or equal to the intermediate subspace.

Within this formalism all double-countings between the tiers are well-defined and
the complete Green’s function is given by:

G−1
k =

TIER III, G 0
I,k

−1︷ ︸︸ ︷
iωn + µ − εLDA

k + VXC,k︸ ︷︷ ︸
G 0
Hartree,k

−1

−
(
ΣG 0W 0

k − ΣG 0W 0

k

∣∣
I

)
︸ ︷︷ ︸

−Σr,k

−
(
ΣGW
k

∣∣
I − ΣGW∣∣

C,loc + ΔVH|I
)

︸ ︷︷ ︸
TIER II

−ΣEDMFT
∣∣
C,loc︸ ︷︷ ︸

TIER I

. (5.23)

The self-energies are assumed to only contain the exchange and correlation parts
and ΔVH|I is the change of theHartree potential within the intermediate subspace.
A detailed account for how ΔVH|I is calculated is given in Paper IV. The notation
A
∣∣
I means that all internal sums when evaluating the quantity A are restricted to

the subspace I.

The corresponding equation for W is

W−1
q =

TIER III, U−1
I,q︷ ︸︸ ︷

v−1
q −

(
ΠG 0G 0

q −ΠG 0G 0

q

∣∣
I

)
︸ ︷︷ ︸

−Πr,q

−
(
ΠGG

q

∣∣
I −ΠGG∣∣

C,loc

)
︸ ︷︷ ︸

TIER II

−ΠEDMFT
∣∣
C,loc︸ ︷︷ ︸

TIER I

. (5.24)
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Figure 5.2: Top: A schematic illustration of the different tiers and their relation to the different subspaces, adapted
from Paper III. Bottom: A schematic illustration of the different subspaces using the bandstructure of
stretched sodium as an example (see section 4.2 for details). Tier III works on the full bands, TIER II on
the intermediate subspace and TIER I on the local part of the correlated subspace.

3 Implementation

In Fig. 5.3 the flow of the calculations in our implementation is illustrated. The first
step is a DFT calculation using the FLAPW-code FLEUR. [164]. From the DFT
bandstructure the low-energy model is defined using MLWF [110, 116, 47, 136].
The interaction on the intermediate subspace and the G 0W 0 self-energy is then
computed using the SPEX code [48, 164] which defines the bare propagators for
the intermediate subspace [G0

I,k
−1 and U−1

I,q in Eqs. 5.23-5.24]. Using the initial
assumptions

ΣEDMFT
∣∣
C,loc = ΣGW∣∣

C,loc, (5.25)

ΠEDMFT
∣∣
C,loc = ΠGG∣∣

C,loc, (5.26)

the Green’s function and screened interaction can be calculated with Eqs. 5.23-5.24.
Then the impurity self-energy (ΣEDMFT

∣∣
C,loc) and polarization (ΠEDMFT

∣∣
C,loc)

are computed using the Alps CT-Hyb impurity solver [3, 184, 185, 22, 58, 61] which
yields a newGreen’s function and screened interaction. The scheme is then iterated
until the self-consistency conditions are fulfilled. The self-consistency cycle on
TIERs II and I is implemented using the TRIQS framework [123] together with a
customized finite temperature GW-implementation.
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Figure 5.3: Schematic illustration of our implementation of the multitier self-consistent GW+EDMFT method,
adapted from Paper IV. The self-energies only include the exchange and correlation parts.

4 Real Materials: A discussion of Paper III-V

4.1 The cubic perovskites SrVO3 and SrMoO3

In Paper III we applied our method to the cubic perovskite SrVO3 and later in
Paper IV to the related perovskite SrMoO3. However, it should be noted that at
the time of writing Paper III, which only considers SrVO3, we had no knowledge
of the recent experimental and theoretical findings for SrMoO3 in Ref. [179] dis-
cussed below, and our conclusions for SrVO3 were reached independently from
SrMoO3. However, in this section I will take a bird’s eye perspective and compare
the two compounds directly, which I hope will provide a complementary angle to
the ones presented in Paper III and IV.

SrVO3 and SrMoO3 crystallize in cubic perovskite structure with the V(Mo) atom
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Figure 5.4: Left: Crystal structure (left) and LDA bandstructure (right) for SrVO3 and SrMoO3. The red bands are
the t2g like bands.

trapped in an octahedral cage of O atoms (left panel in Figure 5.4). The crystal
field splits the V (Mo) 3d (4d) states into the t2g and eg manifolds where the t2g
are lower in energy. The LDA bandstructure in both compounds exhibit partially
filled isolated t2g bands around the Fermi energy while the eg bands are empty
(right panel in Figure 5.4). The 3d orbitals in SrVO3 have a filling of 1 electron per
unit cell while the corresponding 4d orbitals of SrMoO3 have a filling of 2 electrons
per unit cell. Due to the more delocalized nature of the 4d orbitals compared to
3d orbitals the bandwidth of the t2g bands in SrMoO3 is larger than in SrVO3.

The experimental PES/IPES spectra of SrVO3 exhibits a renormalized quasiparti-
cle peak, a weak broad lower satellite feature at approximately −1.5 eV [115, 142,
160, 1, 20] and more pronounced upper satellite feature around 3 eV [115] (Figure
5.5). In the early studies the lower satellite feature was found to be more pro-
nounced. The first data was obtained with low photon energies and Sekiyama et
al. [142] showed that with higher photon energies the weight of the satellite de-
creases, indicating the importance of surface effects. Furthermore, the later studies
by Backes et al. in [20] showed that a large part of the intensity of the lower satel-
lite could be attributed to oxygen vacancies. The bottom of the t2g-band is located
around−0.7 eV [142, 20]. Compared to the LDA bandstructure this corresponds
to an effective mass enhancement of approximately 2 [191], a number that also
agrees with estimations from the specific heat coefficient [81].

While, to my knowledge, there is no IPES spectra for SrMoO3 the PES spec-
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Figure 5.5: Experimental PES spectra of SrVO3. The left panel is taken from Ref. [20] and the right panel from
[115].

tra exhibits a quasiparticle peak, only very slightly renormalized compared to the
LDA bandstructure, and a shoulder structure around −2.5 eV, which indicates
correlations effects beyond LDA [179].

Albeit the similarities between the two compounds the explanation of their elec-
tronic structure is traditionally different. For SrVO3 the satellites are traditionally
explained as Hubbard bands since they appear in LDA+DMFT calculations with
a static effective interaction U [124, 121, 98, 20]. LDA+DMFT studies with a dy-
namical U computed from the cRPA offers the same explanation of the satellites
but yields a too narrow quasiparticle band [138]. Furthermore all these studies
place the upper satellite too close to the quasiparticle peak. If the nonlocal self-
energy is included from a one-shotGW-calculation the quasiparticle band widens,
which improves the agreement with experiment, but depending on if the G 0W 0

self energy is added before [166, 167] or after [138] the DMFT self-consistency cy-
cle the upper satellite either merges with the quasiparticle peak or is placed at the
wrong energy. In order to explain the disappearance of the upper satellite feature
in Ref. [167] the upper satellite feature was instead reinterpreted as originating
from the eg states. In Paper V we provide a more detailed overview of different
simplified GW+DMFT implementations and their results for SrVO3.

A different complementary view on the satellites was offered by Gatti et al. using a
quasiparticle self-consistent GW approximation with the cumulant expansion for
the Green’s function [51]. While the quasiparticle renormalization in these calcu-
lations turned out to be too weak the position and weight of the satellites agrees
with the experimental spectra. However, contrary to the DMFT based studies
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Figure 5.6: Spectral function and screened interaction for SrVO3 (left) and SrMoO3 (right). The inset in the top right
figure shows the photoemission spectrum part of the GW+EDMFT spectral function and a Gaussian
filter has been applied to match the experimental resolution. The experimental data in the inset is taken
from from Ref. [179]. The figures are adapted from Paper III-IV.

the satellites cannot be interpreted as Hubbard bands, since the strong local cor-
relations that give rise to the formation of Hubbard bands are not accounted for
within the theory. The satellites are instead interpreted as plasmons originating
from long-ranged charge fluctuations. The DMFT based studies cited above do
not account for long-range charge fluctuations that gives rise to plasmons since
they lack a self-consistent feedback from the long-range screening to the effective
impurity interaction. Hence, methods that only account for the strong local cor-
relations yield an interpretation of the satellites as Hubbard bands while methods
that only account for long-range charge fluctuations yields an interpretation of
the satellites as plasmons. Since the multitier approach enables for a fully self-
consistent GW+EDMFT calculation within the t2g subspace it accounts for both
kinds of excitations, and therefore provides the ideal tool to distinguish Hubbard
bands from plasmons.

For SrMoO3, on the other hand, the satellite, or shoulder structure, cannot be
described within LDA+DMFT with any reasonable values of U [179]. Therefore,
the satellites for this compound are thought to be plasmons.
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Figure 5.7: k-resolved spectral function for SrVO3 in GW+EDMFT.

In Paper III and IV we show that self-consistent GW+EDMFT provides a co-
herent description of the satellite features as plasmons in both compounds. The
long-range screening in SrVO3 reduce the effective onsite Coulomb interaction
U and clear plasmonic modes appear in W for both compounds (Fig. 5.6). The
static U is too small in both compounds to account for the satellites as Hubbard
bands, but the plasmon energy agrees well with the position of the satellites in the
spectral function. Hence, our results suggest that the satellites should be interpreted
as plasmons in both SrVO3 and SrMoO3. Compared to G 0W 0 the satellites are
pulled closer to the quasiparticle peak, in agreement with experiment and with
the known overestimation of the plasmon binding energy in G 0W 0.

Although the description of the satellites compare very well with the experimental
spectra, for SrVO3 the quasiparticle bandwidth is slightly overestimated compared
to experiment. The GW+EDMFT quasiparticle band for this compound closely
resembles the G 0W 0 results and the bottom of the conduction band appears at
roughly -0.7eV (Figure 5.7). The overestimation of the bandwidth for SrVO3 can
be related to the lack of of nonlocal self-energy diagrams, beyond theGW-diagram.
In the supplemental material for Paper III we simulate the effect of nonlocal ver-
tex corrections by scaling the bandwidth, and show that our interpretation of the
satellite features is not sensitive to the details of the quasiparticle bandstructure.
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4.2 Sodium as a model

In order to investigate the performance of the GW+EDMFT method for realistic
systems with different degrees of correlation we applied it to stretched sodium in
Paper IV. Sodium is an electron-gas-like material with dominating long-ranged
plasmonic correlations and is relatively well described within the GW approxi-
mation with the cumulant expansion. In Paper IV we used sodium as a starting
point and successively increased the lattice constant and thereby effectively in-
creased the degree of local correlations. Albeit there is no experimental data to
compare to for the stretched systems, stretched sodium provides a convenient re-
alistic model. Sodium crystallizes in bcc structure and the occupied 3s states mix
with the unoccupied 3p states and form a broad conduction band. For these sim-
ulations we constructed the intermediate subspace from the 3s and and 3p orbitals
but restricted the correlated subspace to the s-like Wannier function, which is the
dominant contribution to the conduction band (Figure 5.8). This allowed us to
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compared to one-shot GW. The figures are taken from from Paper IV.

explore the full capability of the multitier approach with tier I and tier II working
on different subspaces. Our main findings in this investigation were:

1. The GW+EDMFT method breaks down for electron-gas like systems with weak
but long-range correlations. For elemental sodium with the experimental
lattice constant GW+EDMFT fails to describe the spectra (left panel in Fig.
5.9). Similar to scGW the quasiparticle peak is widened and the satellite is
almost flushed out and pushed to higher energies. This qualitative failure
of the method is related to the lack of nonlocal self-energy and polarization
diagrams beyond the first order diagrams included in GW. For systems
where the nonlocal corrections become significantGW+EDMFT will suffer
from the same flaws as scGW, and hence the method breaks down. In the
last section of Paper IV we analyse the effect of local approximations to the
polarization in detail for an electron gas model.

2. For moderately to strongly correlated compounds the method works well, and
it can capture the Mott-Hubbard metal to insulator transition. As the lattice
constant is increased the nonlocal vertex corrections are expected to dimin-
ish and a clear plasmon appears in the spectra (middle panel in Fig 5.9). It is
interesting to note that the satellite is pulled closer to the quasiparticle peak
in the GW+EDMFT results compared to G 0W 0. As discussed in Chapter
2 the G 0W 0 approximation overestimates the plasmon energy in the spec-
tral function since it only includes the first-order self-energy diagram inW.
GW+EDMFT includes all local self-energy diagrams and therefore does not
suffer from this deficiency. For a large enough lattice constant the strong lo-
cal correlations dominate and the system undergoes a Mott-Hubbard metal
to insulator transition (right panel in Fig. 5.9).
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3. The long-range screening is essential to produce the correct trend in the effec-
tive impurity interaction. In Fig. 5.10 the effective impurity interaction U is
compared to the cRPAU for the three different lattice constants. The cRPA
interaction is almost static, implying that the dominating screening chan-
nels are included within the intermediate subspace. U on the other hand
has a static value that is significantly reduced compared to the bare high fre-
quency limit due to the nonlocal screening. More importantly however is
that U and U follow opposing trends. While U decreases as the lattice con-
stant is increased U increases, reflecting the decreasing nonlocal screening in
the latter case.

5 Comparison with related methods

GW+EDMFT is not the only path to a description of the solid beyond the local
approximations in DMFT, even though it is the most tractable extension for real
multi-orbital materials in terms of the computational cost. In this section I will
compare GW+EDMFT with other methods to expand DMFT beyond a local
approximation. This section is meant as a very brief overview over related methods
and I refer to the relevant literature for more detailed descriptions.

There are (at least) two possible distinct paths to extend DMFT to effectively in-
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clude nonlocal self-energies:

1. Cluster extensions of DMFT: In these methods the lattice problem is mapped
onto a cluster of sites embedded in a dynamical bath. While correlations within
the cluster are treated unpeturbatively correlations between the clusters are ne-
glected and the exact solution is retrieved in the limit of infinite cluster size. How-
ever, the computational cost grows dramatically with increased cluster size and
therefore cluster DMFT calculations are restricted to relatively small clusters of
approximately 10×10 sites on a 2D lattice [130]. Cluster DMFT methods are re-
viewed in Ref. [108].

2. Diagrammatic extensions of DMFT: GW+EDMFT can be considered as a di-
agrammatic extension to DMFT, i.e. the local diagrams from DMFT are supple-
mented by a set of additional nonlocal diagrams which, in the particular case of
GW+EDMFT, are computed within the GW approximation. There are alterna-
tive routes to diagrammatic extensions, reviewed in Ref. [130]. In this section I
will very briefly describe some of these approaches and focus on their relation to
GW+EDMFT.

5.1 Vertex Approximations

The vertex function

Γ(1, 2, 3) = δ(1− 2)δ(2− 3) +
∫

d(4567)
δΣ(1, 2)
δG(4, 5)

G(4, 6)G(7, 5)Γ(6, 7, 3)

is a central object in the Hedin equations (Eqs. 2.7-2.7). The vertex function
can be divided into two parts, the trivial part δ(1 − 2)δ(2 − 3), which is kept
in the GW approximation, and the nontrivial remainder. In GW+EDMFT the
self-energy and polarization are divided as

Σ = ΣGW +Σvc

Π = ΠGG +Πvc

and the vertex corrections (vc), originating from the nontrivial part of the vertex
function, are approximated by their impurity counterparts. If we now consider
the self-energy term (the analogous argument can be made for the polarization),
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Figure 5.11: Definition of the generalized susceptibility χkk′q
σσ′ in terms of the two particle vertex function Fkk

′q
σσ′ . The

figure is adapted from Ref. [130].

the full expression for the self-energy is given by

Σ(1, 2) = iG(1, 2+)W(1, 2) + i
∫

d(34)G(1, 3+)W(1, 4)Γc(3, 2, 4) (5.27)

where Γc(1, 2, 3) = Γ(1, 2, 3)− δ(1− 2)δ(2− 3). Since the entire second term
in the self-energy is approximated by its impurity counterpart it means that, in
GW+EDMFT, the lattice G and W are used to compute the first part of the self-
energy, iG(1, 2+)W(1, 2), while the impurity G,W and Γ are used in the second
part, i

∫
d(34)G(1, 3+)W(1, 4)Γc(3, 2, 4). From a Hedin-equation perspective

it might seem more consistent to use the lattice G and W for both terms of the
self-energy and only approximate Γc by its impurity value (the trivial part of the
vertex is local by construction). Such an approximation would also include much
more nonlocal diagrams, beyond the GW approximation. This is exactly the ap-
proximation done in the so called Triply Irreducible Local Expansion (TRILEX)
scheme [16]. In a recent generalization of TRILEX and GW+EDMFT for the
2D Hubbard model to describe superconducting paramagnetic phases within the
Nambu formalism, both methods were shown to yield a superconducting dome
of dx2−y2 symmetry, in qualitative agreement with results of cluster DMFT calcu-
lations [178].

A more general scheme for vertex approximations is presented in the so called
Dynamical Vertex Approximation (DΓA) [168]. While DMFT assumes the lo-
cality of the self-energy, which is the one-particle irreducible vertex, in DΓA this
is generalized to the n-particle level; i.e. the fully n-particle irreducible n-particle
vertex (Λ) is assumed to be local. This yields the exact solution of a model with
local interaction (i.e. Hubbard model) in the limit n → ∞. However, for prac-
tical calculations one is restricted to n = 2, which is called Parquet DΓA since
it relies on the solution of the Parquet equations [168, 130]. QUADRILEX [17]
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provides an extension to the Parquet DΓA framework by requiring an additional
self-consistency for the two-particle vertex, and is thereby derivable from a free-
energy functional. Ladder DΓA is a simplification of DΓA which is necessary for
real material calculations (in so called ab initio DΓA).

To understand the difference between the different versions of DΓA it is necessary
to consider the decomposition of the generalized susceptibility into a disconnected
part that describes the free propagation of a particle-hole pair and a connected part
that includes all possible scattering processes between the electron and the hole

χ
kk′q
σσ′ = −βGkGk+qδkk′δσσ′ − GkGk+qF

kk′q
σσ′Gk′Gk′+q (5.28)

Here Fkk
′q

σσ′ is the two-particle vertex function, k = (ν,k) etc. and it was assumed
thatGk↑↑ = Gk↓↓ = Gk (time and lattice translational invariance SU(2) symmetric
and paramagnetic case). This decomposition is shown schematically in Fig. 5.11.
The two particle vertex function Fkk

′q
σσ′ can be further decomposed into a sum of

the set of diagrams which are two-particle fully irreducible Λkk′q
σσ′ and the set of

diagrams which are two particle reducible in a given channel Φl,kk′q
σσ′ , l is equal to

particle-hole (ph), vertical particle hole (ph) or particle-particle (pp) channel,

Fkk
′q

σσ′ = Λ
kk′q
σσ′ +Φ

ph,kk′q
σσ′ +Φ

ph,kk′q
σσ′ +Φ

pp,kk′q
σσ′ . (5.29)

This decomposition is shown in Fig. 5.12. By selecting a certain channel (l) all
diagrams that are irreducible in that channel can be grouped into the vertex Γl,kk′q

σσ′ ,
which gives the final decomposition of Fkk

′q
σσ′

Fkk
′q

σσ′ = Γ
l,kk′q
σσ′ +Φ

l,kk′q
σσ′ . (5.30)

Parquet DΓA only assumes the localityΛkk′q
σσ′ while ladder DΓA and ab initioDΓA

assumes the locality of Γkk′q
l,σσ′ . Typically the particle-particle reducible channel is

assumed to be local (i.e. l = ph+ph). In Fig. 5.13 the self-consistency cycle for the
different versions of DΓA are compared. It is noteworthy that, in ladder DΓA, first
a completeDMFT self-consistency cycle is performed and then theDMFTGreen’s
function and susceptibility is used as input for an additional post-processing step
that accounts for the nonlocal corrections through the ladder DΓA flow. Hence,
there is no feedback from the nonlocal vertex to the impurity problem.
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Figure 5.12: Division of Fkk
′q

σσ′ into into a sum of the set of diagrams which are two-particle fully irreducible Λ
kk′q
σσ′

and the set of diagrams which are two particle reducible in a given channel Φl,kk′q
σσ′ . The figure is

adapted from Ref. [130]

ab initio DΓA can be considered as an extension of ladder DΓA to multi-orbital
problems with nonlocal interactions. The nonlocal interaction is accounted for
by the approximation of Γ by the corresponding local vertex plus the nonlocal
Coulomb interaction.

ab initio DΓA is of particular interest to this thesis, since similar to our multitier
GW+EDMFT formulation it can be applied to real materials. In Ref. [49] the
method was applied to SrVO3 in a one-shot setup, with static onsite interaction
and no offsite interaction. Due to the lack of self-consistency and long-range in-
teractions these calculations do not include the plasmonic physics and therefore
cannot make any statement about the nature of the satellites. It was found that,
while the quasiparticle weight was essentially k-independent and only slightly en-
hanced compared to the DMFT results, a large orbital and k-dependence of the
real part of the self-energy yielded a substantial quasiparticle band widening, com-
pared to DMFT.

5.2 Dual expansions and Renormalization Group methods

Other ways to include diagrammatic extensions to DMFT include so called dual
expansions of the action (dual fermion and dual boson method) [133, 134, 156] as
well as renormalization group methods [111, 162]. Dual Fermion relies on a refor-
mulation of the lattice action of the Hubbard model in dual variables. In practice
dual fermion corresponds to a diagrammatic expansion around the DMFT and
recovers DMFT as a zeroth order approximation. Similarly dual boson relies on
the reformulation of the action of the extended Hubbard model with nonlocal in-
teraction. This requires the introduction of an additional dual bosonic field which
decouple the nonlocal interaction terms. The zeroth order approximation then
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Figure 5.13: Comparison between the self-consistency cycles in Parquet DΓA, QUADRILEX and Ladder DΓA. In all
figures four-vector notations were used, i.e. k = (ν,k). The figure is adapted from Ref. [130].

corresponds to EDMFT. Since none of these methods can be easily compared to
our multitier formulation I will not go into further details here.

5.3 Comparison in a multitier context

It is useful to consider the multitier formulation as a more general scheme for ab
initio calculations that is not restricted to the GW approximation for the nonlocal
terms. The multitier formulation can both be used to compare existing schemes
and as new methods are developed they can replace the corresponding approxima-
tions done on each tier in the multitier GW+EDMFT formulation. Table 5.1 lists
and compares different methods that can be cast on a multitier form.
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6
Summary and Outlook

The aim of this thesis is to provide accurate descriptions of strongly correlated
materials, such as transition metal and lanthanide compounds, from first princi-
ples. Due to the localized nature of the 3d or 4f valence states in these compounds
they exhibit strong electron-electron correlation effects. In practice this means
that the onsite Coulomb repulsion between two electrons on the same site be-
comes comparable or larger than the kinetic energy of the electrons. Due to the
strong onsite Coulomb interaction in these materials it is not clear that a mean-
field treatment, such as a bandstructure calculation using density functional theory
(DFT), or a perturbative treatment, such as the GW approximation, will work. In
fact, for some of these compounds DFT with the local density approximation
(LDA) and the GW approximation even gives qualitatively wrong results and pre-
dicts a metal when the actual system is insulating. Dynamical mean-field theory
(DMFT) offers a route to treat the strong onsite correlations in a non-perturbative
fashion but in turn neglects the correlation between electrons on different sites.
In LDA+DMFT the complete problem is downfolded to a low energy problem
that only includes the subspace where the strongly correlated electrons reside. The
hopping parameters for the low-energy model can be computed directly from the
LDA bandstructure and the interaction parameters can be computed using the
constrained random-phase approximation. However, LDA+DMFT suffers from
a double-counting problem, since it is not clear how to subtract the correlations
that are already included in the LDA. Furthermore, the offsite correlations are ne-
glected and it is not clear how these will influence the results. The combination of
GW and DMFT into so called GW+DMFT or GW+EDMFT provides a way to
include the nonlocal correlations perturbatively and also does not suffer from the
double counting problem.
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This thesis consists of two parts:

1. In Paper I and VI we use the cRPA to compute the effective Coulomb inter-
actionU(ω) for a number of lanthanide and cuprate compounds. U(ω) can
already tell us a lot about the materials, such as the degree of local correla-
tions, and from the frequency dependence we can predict plasmon satellites
in the spectral function. In Paper II we use the cRPAU in an LDA+DMFT
calculation for the parent compound of the high-Tc cuprate superconductor
La2CuO4 and show that a proper treatment of the frequency dependence is
essential in order to reproduce the experimental spectral function. Actually
the feature below the Oxygen p-states that is commonly interpreted as the
lower Hubbard band turns out to be a plasmon satellite entering the spec-
tral function through the frequency dependence of the effective Coulomb
interaction U(ω).

2. In Paper III-V we develop and employ a multitier combination of GW and
EDMFT (multitier GW+EDMFT). The multitier approach enables us to
perform first-principle, self-consistent GW+EDMFT calculations for real
materials. Our calculations are the first fully self-consistent GW+EDMFT
calculations for real materials. We show that the effect of self-consistency
can be large. The nonlocal screening effectively lowers the degree of local
correlations and introduces plasmon satellites in the spectral function. Us-
ing our approach we show that, for SrVO3, the satellites that have previously
been interpreted as Hubbard bands should in fact be interpreted as plas-
mons. For the related cubic perovskite SrMoO3 where LDA+DMFT qual-
itatively fails to describe the spectral function, we show that the additional
inclusion of the nonlocal correlations from GW improves the agreement
with experiment substantially and contrary to LDA+DMFT our approach
describes the experimentally observed satellites. We also investigate the
range of applicability of the GW+EDMFT method using stretched sodium
as a model system and discuss different technical aspects of the method in
Paper IV.

ThemultitierGW+EDMFT approach developed in this thesis works well and pro-
vides new insights on the electronic structure of the compounds considered in this
work. However, the method is still relatively untested and need to be applied to
more materials before we can make a final statement on the usefulness of the ap-
proach. To be able to compete with the standard approaches such as LDA+DMFT
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and apply it larger systems it would be good to improve the parallelization of the
code. At the moment the GW part is parallelized with OpenMP, and hence the
computations are restricted to single nodes with shared memory.

For SrVO3 in Paper III it was observed that GW+EDMFT overestimates the
quasiparticle bandwidth slightly due to the lack of nonlocal contributions beyond
GW. Diagrammatic extensions to DMFT that go beyond GW for the nonlocal
terms were briefly discussed in Chapter 5.6 and include Dynamical vertex approx-
imation, TRILEX, QUADRILEX and dual boson/fermion. These methods are
promising candidates for descriptions that go beyond GW for the nonlocal terms
but, due to the complexity of the problem, have not yet been implemented in a
self-consistent fashion for real materials. Cluster extensions to DMFT provides a
different path for a non-perturbative treatment of nonlocal correlations.
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Acronyms

DFT Density Functional Theory

LDA Local Density Approximation

DMFT Dynamical Mean Field Theory

PES Photo-Emission Spectroscopy

IPES Inverse Photo-Emission Spectroscopy

ARPES Angle-resolved PES

BIS Bremsstrahlung Isochromate Spectroscopy

CT-QMC Continous-time Quantum Monte-Carlo

CT-hyb Hybridization expansion continuous time Monte-Carlo
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