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Abstract 

A computational algorithm for the Full Information 
Hw control problem for multi-delayed LTI systems 
is derived. The algorithm is based on a new gen- 

The solution is based on the general approach pro- 
posed in [3]. Consider the standard Hm control prob- 
lem stated for the plant in the “behavioral” form 

R @ )  x ( t )  = 0 

where p = d / d t ,  x is the N-vector of manifest vari- 
ables, and R ( d / d t )  is the Fourier transform of a 
n x N generalized function. Assume that n < N and 
rankR(-) = n. 

era1 operator approach in spectral domain developed 
recently for finite-dimensional LTI plants. A sim- 
plicity of spectral operations and explicit formulas 
for computation make it possible to generalize it to 
infinite-dimensional plants. In this paper, a com- 
plete computational solution for such a plant with 
several delays in the output, control and disturbance 
is obtained and illustrated with a simple example. 

Keywords: linear systems, 9fm control prob- 
lem, multi-delayed systems, infinite-dimensional with the Fourier transform c ( p )  of a x N  gener- 
systems . alized function such that the closed loop system is 

stable and there exists E > 0 such that it holds 

Q(x( . ) )  = lm X ( ~ > ~ Q X ( ~ )  d t  I -4lxll; (1) 

for any function x ( . )  E L2(0, CO) which satisfies the 
plant and controller equations. Such the controllers 
will be called contractive. 

For the delayed scalar system under consideration it 

G~~~~ a square nonsingular N 
required to find a controller equation 

N-matrix Q it is 

C@) x ( t )  = 0 

1 Problem statement and basic assumptions 

In this paper, a numerical efficient approach is pro- 
posed for the standard Full Information Hm control 
problem for the multi-delayed plant 

~ o ( P ) Y ( ~ ) +  al@)y(t-r) + ... + am(p)y(t-mz) = 
= bo(p)u(t)  + bl(p)u(t-r)  + ... + bm(p)u(t-mr) + holds 

+ co(p)u(t)  + cl@)U(t-z) + ... + c,(p)u(t-mr) 

where p = d / d t  is the differentiation operator; a&(.), 
bk( - ) ,  ck(.)  are polynomials 0 5 K 5 m; z > 0 is a 
constant time delay; y ( t )  is the system output, u( t )  
is control and u ( t )  is the disturbance. Assume the 
degree n = degao is the highest among other poly- 
nomials in the plant equation. 

A stabilizing controller is to be designed to meet the 
specification 

F(Y(.), u ( . ) , v ( . ) )  = Im F ( y ( t ) ,  u( t ) ,  u ( t ) )  d t  < 0 
0 

with F ( y ,  U, U) = JyI2 + IuI2 - )uI2 for all U E L2(0, CO), 

U $ 0. 
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R(z )  = (a (2)  -b(z) - c ( z ) )  = 
m 

= 1 ( u ~ ( z )  -bk(z) - c k ( z ) )  e-krr 
k=O 

and Q = diag( 1,1, -.1). ‘ 

In Section 2 the main result is presented for a gen- 
eral control system and the numerical realization de- 
scribed in Section 3. For the general case, the matrix 
Q is an arbitrary self-adjoint constant nonsingular 
matrix, it is not assumed to be positive definite in the 
variables q = ( y , u ) .  Both the plant and controller 
equations define the sets of admissible trajectories 
of the manifest variables without any reference to 
the targets of control design. They represent the 



plant dynamics only and the matrix functions R(z )  
and C(z)  may have arbitrary structure (in particu- 
lar, polynomial degrees) of their entries. The "behav- 
ioral" analysis of the admissible trajectories does not 
need a transformation to the state space or to other 
mathematical standard forms [2]. 

2 Algebraic operator approach 

Denote by R the set of the Fourier transforms of 
all generalized functions. It contains the standard 
causal and anti-causal subsets: R- (respectively, 
R+) is the set of the Fourier transforms of all gen- 
eralized functions with support sets in [O,m) (in 
(-m,O], respectively). The sets !?(- and !?(+ are 
closed with respect to linear operations and to mul- 
tiplication. 

The corresponding projection operators from !?(to R+ 
is denoted by [ . I + ,  and from !?(to !?(- by [.I-. Thus, 
if F ,  F+ and F- are generalized functions with the 
Fourier transforms f ,  [ f ] +  and [ f ] - ,  respectively, 
then for any test function @ with the support set in 
[O,oo) it holds (F-,@) = (F,@), (F+,@) = 0; and for 
any test function @ with the support set in (-00, 01 
it holds (F+,@) = (I?,@), (F-,@) = 0. 

For any generalized function f denote f * ( z )  = 
f T ( - z )  where means the transposition. It follows 
from the definitions that r- = !?(+ and r+ = 9(,- 
(with the appropriate dimensions). The intersec- 
tion R- n !?(+ is the set of all polynomial func- 
tions of the chosen dimension. For any f E R the 
function [ f ] O  = [ f ] -  + [ f ] +  - f is polynomial be- 
cause it belongs to  !?(- n !?(+. Define the projections 
iflo+ = [ f l + - V l o  = f - i f ] -  and [f lo- = [ f I - - [ f l o  = 
f - [ f l + .  
Let 0 < m < N. For any constant N x m-matrix 
h and a N x m-matrix function X E define the 
matrix 

O(Z)  = h + Q - ' [ R * ( z ) X ( Z ) ] ~ - .  ( 2 )  

Consider the following equation which will be basic 
to our approach: 

R(z )@(z )  = 0, (3) 
that is, O(z )  is the Fourier transform of a solution 
to the plant equation. 

Lemma 1 Consider the equation (2) with the addi- 
' tional condition: the function [R*X]o-(z)  tends to 

zero as z + CO. 

1. For any solutions @1(z) and @2(z)  ofthe equa- 
tion (3) defined by the pairs ( h l , X l ( z ) )  and 

( h z , X z ( ~ ) )  it holds 

2. Assume m = N - n and there exists a solution 
@ ( z )  of (3) of the dimension N x m  such that 
the mxm-matrix hTQh is nonsingular. Then 
the set of all solutions x ( t )  to the plant equation 
can be parameterized by an arbitrary functions 
e(t)  in the following way: 

x ( t )  = @(p)(hTQh)-lC(t), (4) 
[( t )  = @ * ( ~ ) Q x ( t ) .  (5) 

The variable e( t )  is called latent in the system behav- 
ioral description [2] and the equation (4) is called the 
image representation of the plant. Given a solution 
x ( t )  to the plant equation the corresponding latent 
variable can be obtained from ( 5 ) .  The latent vari- 
able is an essential part of the contractive controller 
parameterization that will be clear below. 

Proofi 1. It follows from the definition (2) of @ ( z )  
that the functions 

'Pi(.) = @i(Z) - Q - l R * ( ~ ) X , ( ~ ) ,  i = 1,2, 

belong to R+. The equations R@, = 0 imply 

@;(z)  Q @ Z ( Z >  = @; (2) Q'I"Z(z) = y; (2) Q@z(z). 

The second term belongs to !?(+ while the third term 
is in R-. Hence, this function is polynomial. From 
the additional assumption G1(z)  - h, -+ 0 as z + 00 

it follows that this polynomial is constant and equals 
to hrQh2. 

2. .It can be directly verified that 

( :[i;Q)-' = (Q-lR*(z)P(z)-l,@(z)(hTQh)-l) 

where P(z )  = R(z)Q-lR* (2) is a nonsingular matrix. 
Therefore the system 

R(p)x ( t )  = 0, 
@*Cp)Qx(t) = [ ( t )  

is equivalent to the equation 

x ( t )  = @(p)(hTQh)-'e(t), 

that completes the proof of Lemma 1. 

The basic function O ( z )  defined in (2) can be mul- 
tiplied from the right by any nonsingular matrix S. 
Choose the matrix in such a way that SThTQhS be- 
comes diagonal and normalized. Assume this has 
been done, therefore, the new matrix h satisfies 
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Split the latent variable according to this partition: 

Denote the Fourier tran.forms of the corresponding 
functions by 5(z) ,  ?!(z), U ( z ) ,  V ( z )  provided they are 
in L2 (0, CO). It follows from Lemma 1 that 

fa(z)Q5(z) = O*(z )O(z )  - P ( z ) V ( z )  

for any complex z. This obviously implies that 

U ( t )  = 0 

is one of the contractive controllers and it solves 
the control problem if k = 1 and the closed loop 
system is stable. It can be shown that for LTI 
finite-dimensional plants this is the central con- 
troller in the Full Information Hw control prob- 
lem because spectral equations have state-space ana- 
logues through direct algebraic relations [ l]. The 
equation 

U ( t )  = D(P)V( t ) ,  IlDllH- < 1 9  

gives a parameterization of the class of all contrac- 
tive controllers. This is the complete solution to the 
problem stated in the “behavioral” language. 

Consider the LTI plant with the fixed output, con- 
trol and disturbance variables. Assume, respectively, 
that x = ( y ,  U, U) and n is the dimension of the output 
y .  Then the equation U ( t )  = 0 is implicit because 
the function U contains the disturbance U which is 
undesirable in a controller. The explicit equations 
can be obtained in the following way. Partition the 
matrix @ ( z )  according to the dimensions of y ,  U and 
U: 

The subscripts indicate the dimensions of the ma- 
trices. The image plant representation (4) with 
U ( t )  = 0 imply 

Y ( t )  = @yu(P)V(t), 
u ( t )  = @U”(P>V(t). 

This is an explicit representation of the central con- 
troller. The class of all contractive controllers can be 
described by the system 

{ y ( t )  = {@Y”(P)  + @ , u ( P ) D ( P ) )  V ( t> ,  
(6 )  u ( t )  = { @ U U ( P )  + @uu(P)D(P)l V ( t )  

with llDllw < 1. The number of scalar disturbances 
acting on the linear system can be reduced so that it 
does not exceed the number of equations or the num- 
ber of the controlled outputs which are usually the 

same. Therefore, the vector V ( t )  can be determined 
from the first equation in ( 6 )  and then substituted 
into the second equation. This results in the explicit 
controller transfer function from y to U. 

The standard Hw control problem includes a min- 
imization of the contraction level of the closed loop 
system. Assume the quadratic form Q depends on 
the level y:  

It is required to  minimize y for which the inequality 
(1) can be achieved by some stabilizing controller. 
The following assumptions are standard for the plant 
equation: 

Al.  The disturbance variable U in the behavior is 
free, that is, for any U E LZ (0, ca) there exists a func- 
tion q E Lz(O,CO) such that R ( p )  col(q(t),v(t)) = 0. 

A2. The form x*Qox with x = col(0,v) is negative 
definite in U. 

A3. For any w E (0, CO) and for any vector q E Cnq if 
R(io)col(q,O) = O  then (q*,O)Qocol(q,O) > 0. 

The previous analysis can be summarized in the fol- 
lowing statement. 

Theorem 1 ([31) Assume the Assumptions AI-A3 
hold and the open loop transfer functions from U 
to y and from U to y are strictly proper. Then 

The minimal value of y for which there exist a 
y-contractive stabilizing controller is equal to 
the maximal value of y for which the system 
(2), (3) has an N-vector solution @ ( z )  with h = 
0. Denote this value by yopt. 

Let y > yopt. Then the set of all stabiliz- 
ing y-contractive controllers is defined by the 
equation (6) ,with llDllw < 1. The function 
@ ( z )  is computed from (2), (3) under the con- 
dition hTQyh = J = diag{ZN+,-k, -Zk} with 
k = dimv; n is the number of equations and N 
is the sum of the dimensions of y ,  U, U. 

Assertion 1 is standard for all solutions to the HW 
control problem. Singularity of the linear equations 
system indicates that of the corresponding algebraic 
Riccati equation in the state-space approach [l]. 
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3 Delayed systems interval [-mz,mz].  Therefore n(z) is the Fourier 
transform of a generalized function @(t) with a sup- 
Port set in [o, mz1- The generalized function @(t> can 
be found in the form 

The scalar multi-delayed control system is described 
by 

R(z)  = ( a ( z )  -b(z) - c (z ) )  = 
m 

= (ak ( z )  -bk(z) -Ck(Z) e-krz 
k=O 

and Q = diag( 1,1, -1). 

The one-column function @ ( z )  in this case is 

@ ( z )  = h + Q - l [ R * ( ~ ) X ( ~ ) ] o -  = 

where the function X ( z )  = [ X ] O - ( Z )  and the vector 
h = ( h y ,  hU, h,)T are to be determined from the basic 
equation R(z)@(z)  = 0. This equation takes the form 

m m 

m 

@(t> = C S k ( P ) W  -. kz) + w(t )  (9) 
k=O 

where 6(t)  is the 6-function of Dirac; p = d / d t ;  gk(.) 
are polynomials, 0 5 k 5 m; and w( t )  is a function 
with the support set in [O,mz]. Denote by “(2) the 
Fourier transform of ~ ( t ) .  

A numerical technique for the parameter computa- 
tion was presented in [3] for the single-delayed sys- 
tem. However, the solution can be found for the gen- 
eral case following the same way which leads to the 
integral-differential quadratic equation on the inter- 
val [O,mz] with a complete set of boundary condi- 
tions. A numerical example is presented in the next 
section. Assume all the coefficients of gk, 0 5 k 5 m 
and the function y are computed. 

o = ak(z)ePz(hy  + 11 ak(-z )ekrz~(z ) lo-  - Consider the basic equation R(z )@(z )  = 0 with @ = 
h + Q-l[R* (z )X (.)lo-. It holds k=O k=O 

m m 

k=O 
In 

k=O 
m .._ 

- E ck(z)e-krz(hu + [E ck(-z)ekrz~(z) jo-  
k=O k=O 

The leading term in the right hand side of this equa- 
tion as z --f 00 is ao(z)h,. Therefore it holds h, = 0. 

In the sequel it will be shown that the function X ( z )  
can be found in the form 

(7) 

where the function r (z )  is the Fourier transforms of 
a generalized function p(t) which has the support set 
in the interval [O,mz]. The function n(z) is a result 
of the outer factorization of the function 

H ( z )  = +)a(-2) + b(z)b(-2) - c(z)c(-2) 

that is 

and all zeros of n(z) have negative real parts. 

Consider the last problem of factorization. If such 
a factor n(z) does not exist then H ( z )  has zeros on 
the imaginary axis. It is easy to prove with sinu- 
soidal input u ( t )  that in this case the standard gm 
control problem has no solutions. Therefore assume 
the factorization exists. 

n(-z)n(z) = H ( z )  (8 )  

0 = R(z)@(z)  = 
= R(z)h +R(z )Q- l (R*(z )X(z )  - [R*(z )X(z ) ]+ ) .  

Notice that R(z)Q-lR*(z)  = n*(z)n(z) and the func- 
tion [R*(z)X(z) ]+  is the Fourier transform of a gen- 
eralized function with a support set in [-mz,O]. 
Therefore, the support set of the inverse Fourier 
transform < ( t )  of the function 

n * ( ~ ) n ( z ) X ( z )  = -R(z)h + R(z )Q-~[R*(z )X(Z) ]+  

is included in [-mz, mz]. 

Consider the function r ( z )  = l l ( z ) X ( z )  and its in- 
verse Fourier transform p(t). The function p(t) sat- 
isfies the equation 

n(--d/dt)P(t) = C ( t >  

and [ ( t )  = 0 for t > mz. All roots of the function 
n(-z) have positive real parts by the definition of 
the spectral factor n(z). Therefore p(t) = 0 for t > 
mz. 

Thus, the inverse Fourier transform ( ( t )  of the func- 
tion X ( z )  satisfies 

n ( d / d t ) { ( t )  = 0, t > mz. (10) 

The function ( ( t )  is determined from this equation 
whenever it is computed on the interval [0, mz]. The 
Fourier transform of ( is X ( z )  = r ( z ) / n ( z ) .  

According to the Wiener-Paley theorem for general- 
ized functions the function H ( z )  is the Fourier trans- 
form of a function which has a support set in the 

The inverse Fourier transform of the basic equa- 
tion R(z)@(z)  = 0 gives a linear system of integral- 
differential equations on the interval [0, mzJ. 
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All above can be summarized as follows. 

0 To solve the problem it is sufEcient to find the 
function X or, equivalently, the functions r and 
Il in (7). 

0 The function ll is a result of the spectral fac- 
torization (8). It is determined by the polyno- 
mials gk and the function w in (9). They can 
be found from an integral-differential quadratic 
equation (8) on [O,mz]. 

0 The inverse Fourier transform 5 ( t )  of the func- 
tion X on [0, mz] can be found from the linear 
integral-differential equation R(z)cP(z) = 0. 

0 The function { ( t )  on [mz,+oo) can be found 
from (10). 

4 Numerical example 

The plant is described by the equation 

?(t)  + Aoy(t)  + Aly(t-2)  + Azy(t-22) + A3y(t-32) = 
= Bou(t) + BlU(t - 2 )  + c o u ( t )  + C,U(t - 2 ) .  

The quadratic form in the Hcu control problem is 
F ( y ,  U, U) = lyI2+ luI2 - )uI2. The results of numerical 
computations will be illustrated for the values A0 = 
0.5, A1 = 0.6, A2 = 0.2, A3 = 0.3, Bo = 0.8, B1 = 0.9, 

= 0.1, C1 = 0.4, z = 0.4. 

In this case 

a(.) = 
b(z) = BO + Ble-", 
C ( Z )  = + Cle-'". 

z + A0 + Aleprz + A2e-2rz + A3e-3rz, 

The computations consist of a factorization followed 
by a solution to the linear system. 

Factorization: The factor n(z) is sought in the form 

n(z) = z + po +pie-" + p2e-2fZ + p3ev3" + ' ~ ( 2 )  

where W(z) is the Fourier transform of w(t )  and the 
support set of this function is in [0 ,3z] .  The vector 
function 

F ( t )  = ( $L)) = ( F & ) ) ,  FO (0 O l t  < 2 ,  

w(t+22) F2 ( t )  

satisfies the quadratic equation 

F ( t )  = 

Figure 1: The function ~ ( t ) ,  0 5 t 5 32. 

The boundary conditions give p1 = A I ,  p2 = A2, 
p3 = A3 and the equations for the limit boundary 
conditions: 

It is easy to see from these equations that the func- 
tion w(t )  has jumps in the points t = 2 and t = 22. 

The result of simulation is given on Fig. 1. 

Linear equation: The basic linear equation 
R(z )@(z )  = 0 is transformed to the linear integral- 
differential equation for the function ( ( t )  on the in- 
terval [0,3.r]. It is the second-order differential equa- 
tion with convolution and with mixed boundary con- 
ditions with values in the points t = 0, t = 2, t = 22 
and t = 32. The function { ( t )  is continuous but can 
have jumps of the derivative. 

Let { ( t )  be the inverse Fourier transform of the func- 
tion X ( z )  and denote 

5 ( t )  ZO(t) 
q t )  = ( 5 ( t + 2 2 J  ( ( t + z )  = (3:;) 7 0 5 t L 2 *  

Then the basic equation can be written in the form 

2(t) = MI&@) + MZS(t) + Z:p(Z)F(Z - t)- 
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ing contracting controllers can be obtained by Theo- 
rem 1. 

6 Conclusions 

Figure 2: The function { ( t ) ,  0 5 t 5 32. 

The result of simulation for the case h = (0, -l,O)T 
is given on Fig. 2. 

In this paper, it has been shown that the solution to 
Hw control problem for a linear system with multi- 
ple delays can be obtained through a spectral fac- 
torization (or quadratic integral-differential equa- 
tion) followed by solving a linear integral-differential 
equation. Both equations can be solved numerically. 
The approach is based on the explicit operator rep- 
resentation of the solution (2) and has been already 
applied to single delay systems in [3]. However, in 
multiple delay case we must assume more general 
structure of the function @ in (9) that might have 
jumps at the delay time instants. The solution ob- 
tained is explicit and complete. 
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