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{fredrikr, anderson}@it.lth.se

ABSTRACT
In earlier work we have extended Mazo’s concept of faster-
than-Nyquist signaling to pulse trains that modulate adja-
cent subcarriers, a method we called two dimensional Mazo
signaling. The signal processing is similar to orthogonal fre-
quency division multiplex (OFDM) transmission. Despite
pulses that are faster than the Nyquist limit and subcarri-
ers that significantly overlap, the transmission achieves the
isolated pulse error performance. In this paper we review
the method and test a receiver based on successive interfer-
ence cancellation. It virtually achieves the matched filter
bound.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Error control
codes

General Terms
Communication theory

1. INTRODUCTION AND SYSTEM MODEL
In this paper we present an improved receiver structure

for a recently proposed OFDM-like coded modulation. The
coded modulation is called multistream faster-than-Nyquist
signaling (MFTN). This scheme was presented in [4] and
is a generalization of the standard FTN signaling proposed
by Mazo [1]. Decoding for the scheme is challenging; a full
Maximum likelihood sequence estimation (MLSE) is far too
complex. Simplifications exist, however, and this paper fo-
cuses on one with near-optimal error performance. Since the
signaling method is new, we will devote the first part of the
paper to a review of it.
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Consider baseband signals of the following form

s(t) =
N�

n=1

anh(t − nT ), (1)

in which an are data values over an M -ary alphabet and
h(t) is a unit-energy baseband pulse. This simple form un-
derlies QAM, TCM, and the subcarriers in OFDM, as well
as many other transmission systems. Most often, h(t) is
a T -orthogonal pulse, meaning that the correlation

�
h(t −

nT )h∗(t − mT )dt is zero, m �= n. Many signals of type (1)
can be stacked in frequency through modulation by a set of
subcarriers {fk} to form the inphase and quadrature (I/Q)
complex baseband signal

s(t) =

K�
k=1

N�
n=1

[aI
k,n + jaQ

k,n]h(t − nT )ej2πfkt

=
K�

k=1

N�
n=1

ak,nh(t − nT )ej2πfkt (2)

This is a generalization to a superposition of 2K linear mod-
ulations, and it carries 2NK data values. The K×N matrix
A = {ak,n} is called the data matrix and consists of all the
complex data values. The K rows in this matrix correspond
to K subcarriers, and the N columns to “time carriers”.
If fk = f0 + kf∆, k = 1, 2, . . ., and f∆ is equal twice the
single-sided bandwidth B of h(t), the 2K signals are mutu-
ally orthogonal. In OFDM signals, both conditions hold at
least approximately: h(t) is orthogonal to its own T -shifts
and f∆ is twice the bandwidth of h(t).

The signal design in that case is based on orthogonality.
According to classical results, there exist about 2Wτ or-
thogonal signals in W positive Hertz and τ seconds. By
means of filters matched to each one, data values that modu-
late the amplitude of each can be maximum-likelihood (ML)
detected independently, and therefore about 2Wτ symbols
can be transmitted. If h in (2) is set to

�
1/T sinc(t/T )

and f∆ = 1/T , the product 2Wτ is 2(K/T )(NT ) = 2KN ;
this shows that Eq. (2) carries as many data values as any
scheme based on orthogonality can carry.

For a given number of symbols carried by (2), T may be
varied, which trades off W against τ . N may also be traded
against K. Only the time–bandwidth product matters, and
(2) always carries about twice Wτ symbols. In fact there
is no need for subcarriers since (1) alone achieves 2Wτ by
taking T = 1/2W , K = 1 and N ≈ τ/T symbols.

If the aim is to achieve the error rate of a stacked orthogonal-
signal system (2), without necessarily using orthogonal sig-



nals, the story is more interesting, and that is our subject
in this paper.

We need to be precise about the measurement of error
and bandwidth. For (1), the ML-receiver error probability
depends on h: As the signal-to-noise ratio Eb/N0 grows, the
probability of incorrect detection of an an in additive white
Gaussian noise (AWGN) with density N0/2 is asymptoti-

cally Pe ∼ Q(
�

d2
minEb/N0), where dmin is the minimum

distance of the signal set and dmin ≤ dMF. Here Eb is the
bit energy Es/ log2 M and dMF is the matched-filter bound.
It measures the performance of orthogonal-pulse signaling
with the same alphabet: The error rate is Q(

�
d2
MFEb/N0).

The paper will concentrate on the binary case, for which
d2
MF = 2, so the orthogonal-pulse error rate is Q(

�
2Eb/N0).

If the K signal pairs in (2) do not overlap in frequency, the
same asymptotic error rate applies there.

As for signal bandwidth, with uncorrelated data symbols
the power spectral density Sk(f) of the kth subcarrier is
proportional to |H(f − kf∆ − f0)|2 + |H(f + kf∆ + f0)|2.
The normalized bandwidth (NBW) is measured by

NBW � W

R
Hz/bit/s, (3)

where W is a measure of the positive frequency bandwidth of
the entire transmission (2) (such as 99% power bandwidth)
and R = 2K/T is the data rate of each subcarrier in bit/s.
For Eq. (1), W is taken as the positive baseband bandwidth
and K is 1.

The idea that more throughput can somehow be achieved
with (1) at the same error probability was proposed by Mazo
[1] in 1975. In a method he called faster-than-Nyquist sig-
naling, binary-modulated sinc(t/T ) pulses with bandwidth
1/2T Hz appear once each T∆ seconds, where T∆ < T ;
this is faster-than-1/T , the Nyquist limit to the rate of or-
thogonal pulse trains with that bandwidth. The signals are
no longer orthogonal and full ML sequence detection is re-
quired, which compares all N-symbol signals to the full noisy
received signal. By finding the minimum distance dmin of
this signal set, one can estimate the asymptotic symbol Pe as
∼ Q(

�
d2
minEb/N0). Mazo and later papers showed the sur-

prising result that d2
min is in fact d2

MF = 2 for T∆/T > .802;
that is, nothing is lost asymptotically by increasing the sym-
bol rate 24.7% above the Nyquist limit.

The reason for this can be seen by analyzing the error
events that can occur. As the pulse rate grows another er-
ror event eventually has a distance less than the d2 = 2
antipodal event that leads to dMF. But this does not occur
immediately as 1/T∆ grows. A similar phenomenon occurs
with other orthogonal h(t) than the sinc pulse; see [2] for
the root RC pulse. Moreover, it often appears with coded
modulations, both linear and nonlinear; see [3] (for h(t) a
Butterworth filter response) and [6], Chapter 6 (for CPM
coded modulation). All these cases can be summed up as
follows: the wideband error performance is unchanged under
filtering until a surprisingly narrow bandwidth, after which
it suddenly drops. This threshold bandwidth is the Mazo
limit. Its significance is that it is pointless to transmit in a
wider bandwidth in a linear channel with AWGN, if suffi-
cient receiver processing is available.

Mazo signaled extra fast in time, but in a subcarrier sys-
tem one can also space the subcarriers too narrowly in fre-
quency. Now the signal is (2) but the subcarriers cannot
be separated by filtering because they overlap in frequency.

Still, one can hope that Pe remains ∼ Q(
�

2Eb/N0), as it did
in Mazo’s signaling. We have introduced this idea in [4]. It
was called two-dimensional Mazo signaling because the sym-
bols can be associated with points in a lattice spaced every
f∆ and T∆. This is illustrated in Fig. 1. Ref. [4] shows that

f

t� �� �
T∆

f∆

�

Figure 1: Two dimensional Mazo signaling, in time
and frequency. Dots represent symbols separated by
f∆ and T∆.

simultaneous frequency and time squeezing indeed increases
the symbols transmitted in a given time–bandwidth at the
same Pe. Neither compression alone can achieve the same
increase.

When f∆ is less than the subcarrier bandwidth, Eq. (2)
is not linear modulation. The signal interrelations that pro-
duce dmin work in new ways when both f∆ and T∆ can be
varied independently. Finding dmin in this new situation is
a challenge. Error events encompass both the I and Q sig-
nals, and the distance depends on the time the event starts.
There are very many events. A branch and bound search
among events is needed, and deciding where the search can
be pruned is a subtle problem. Nonetheless, dmin can be
estimated and it closely predicts the behavior of practical
receivers. Some of the details appear in [4].

It is useful to normalize the quantities f∆ and T∆ to the
orthogonal modulation symbol time T . Define

T ′
∆ � T∆

T
f ′
∆ � f∆T (4)

The orthogonal sinc pulse case has f∆ = 1/T , T∆ = T ,
f ′
∆ = T ′

∆ = 1, and the f∆T∆ product equals 1. This provides
a useful benchmark. The product f∆T∆ = f ′

∆T ′
∆ Hz-s/bit

for a scheme is a measure of bandwidth consumption relative
to the sinc benchmark, in the limit of N and K. Distance
studies with various pulses h(t) show that d2

min = 2 can
occur at less than 0.5 Hz-s/bit, i.e., less than 50% of the sinc
benchmark. In what follows h(t) is a 30% excess bandwidth
root RC pulse. Note that for this, f ′

∆ = 1.3 is required for
independence of the subcarriers, and a consumption close to
0.5 is even more dramatic.

2. DECODING
Decoding of this type of coded modulation is complex.

Full sequence estimation grows exponentionally with the
number of subcarriers K, so MLSE decoding is ruled out.
We have two desires for the decoder. The first is that it
should perform close to the MLSE error performance; the
second is that it should be relatively simple. Such a decod-
ing algorithm is the M -algorithm [6]. This was tested in [4],
but it only worked well for 2–4 subcarriers, since otherwise it
was not clear in what order the symbols should be decoded.



Decoding and equalization of two dimensional ISI signals
is a well known problem, especially in the magnetics liter-
ature, [7]– [9]. But the ISI pattern is almost always much
simpler than here; it is usually limited to only three inter-
fering taps and binary data is used. In some work the ISI
pattern is assumed to be separable, which is not the case
here. The standard approach in the literature seems to be
some form of interference cancellation, as here. But perhaps
the most significant difference is that we intentionally added
the ISI to save bandwidth; in order to exploit that saving we
must be able to have performance near MLSE. This is gen-
erally not needed for unintentional ISI where the objective
is to get reasonable performance at low complexity.

In [5] the receiver structure was based on successive in-
terference cancellation. This receiver works quite well for
time–bandwidth products above f ′

∆T ′
∆ ≥ .7, especially if f ′

∆

is large, i.e. close to 1. But for smaller products and prod-
ucts where f ′

∆ is small, that method does not work at all.
The reason is that the decoder is based on a BCJR algorithm
in the time direction, and it only considers a single subcar-
rier. Here we will extend the idea to BCJR algorithms in
the frequency direction and also use multidimensional algo-
rithms. But such decoder alone is not capable of resolving
all the intersymbol and interchannel interference; therefore
we will cascade a second stage decoder after the first. The
errors in the output from the first stage appear in bursts, so
called error events. By using the second stage decoder we
dramatically improve performance.

We briefly describe the overall plan for the total decoder.
As mentioned, the decoder consists of two parts. The task
of the first part is to produce an estimation of A, which is
allowed to contain many isolated error events, and which is
fed to the second stage decoder. The internal structure of
this first decoder will be based on iterative soft interference
cancellation. In this paper the first decoder will pass a hard
output to the second decoder. It is well established in the
literature that stagewise decoding works better if the mes-
sage passing is soft, but our hard message approach works
surprisingly well. The second decoder will now try to im-
prove the output of the first decoder. This is accomplished
by additional decodings and by comparing these new esti-
mations with the output of the first decoder. Its success
relies on the fact that a small region of errors can easily be
removed.

We start by describing the first stage decoder. It encoun-
ters a noisy complex baseband signal r(t) where r(t) =
s(t) + n(t), and n(t) is Gaussian noise. The signal s(t)
is the data carrying signal formed by (2). The first step
in the receiver is to project r(t) onto the basis functions
h(t − nT∆)ej2πtfk , i.e. to compute

Rk,n =

� ∞

−∞
r(t)h∗(t − nT∆)e−j2πtfkdt. (5)

The matrix R represents the received signal. Since

s(t) =
�

n

�
k

ak,nh(t − nT∆)ej2πtfk , (6)

β

α

R
BCJR

SIC
Ŝ(Aint)

Lext(Adec

∣
∣R̂(Adec))

R̂(Adec)

Figure 2: System model for the first stage decoder.
The block SIC produces a signal based on estimates
of all symbols in Aint. The block BCJR is a BCJR
algorithm for the symbols in Adec.

we have that the signal part S of R equals

Sk,n =

� ∞

−∞

�
m,l

al,mh(t − mT∆)ej2πt(l−k)f∆h∗(t − nT∆)dt

=

� ∞

−∞

�
m,l

al,mλ′[m, n, l, k]dt

=

� ∞

−∞

�
m,l

al,mλ[m, n, l − k]dt. (7)

and the noise part N is given by

Nk,n =

� ∞

−∞
n(t)h∗(t − nT∆)e−j2πtfkdt. (8)

Then R can be written as R = S + N. The last equal-
ity of (7) holds since the system is time variant (that is
λ′[m, n, l, k] depends on both m and n and not only on
m − n), but frequency invariant.

The first decoder will be an iterative one. Although its
task is to output hard estimates to the second decoder, it
will internally work with soft values and try to maximize
the a posteriori probability (APP) of an individual bit, i.e.

â
I/Q
k,n = arg max

a∈{−1,1}
Pr(â

I/Q
k,n = a |R). (9)

Here and throughout, superscript I/Q means “I respectively
Q”. When this superscript is omitted we intend a complex
a. Instead of working with probabilities it is convenient to
work with log-likelihood ratios (LLRs)

L(a
I/Q
k,n ) = log

Pr{aI/Q
k,n = 1}

Pr{aI/Q
k,n = −1}

(10)

Since the data symbols are independent we can as usual

express the conditional LLR L(a
I/Q
k,n |R) as

L(a
I/Q
k,n |R) = Lext(a

I/Q
k,n |R) + L(a

I/Q
k,n ) (11)

where Lext(a
I/Q
k,n |R) denotes the extrinsic information about

a
I/Q
k,n contained in R.
The true APPs of the data bits can be found by a multi-

dimensional BCJR algorithm, but as with MLSE, the com-
plexity grows exponentially with K, and the APPs have to
be approximated by simpler means. One way is by an itera-
tive method, and we use successive interference cancellation.
A system model is shown in figure 2.



The symbols {ak,n} are grouped into two sets: Adec and
Aint; the symbols in set Adec are symbols that we try to de-
code at the moment and the symbols in set Aint are treated
as interference. The transmitted signal s(t) can be expressed
as s(t) = sdec(t) + sint(t), where sdec(t) and sint(t) are the
contributions from symbols in Adec and Aint, respectively.
In each iteration of the decoding process a soft estimate
ŝint(t) of sint(t) is formed based on soft information about
all symbols in Aint:

ŝint(t) =
�
B

b
I/Q
k,n h(t − nT∆)ej2πtfk , (12)

where

B = {(k, n) : ak,n ∈ Aint} (13)

and b
I/Q
k,n are the soft estimates of a

I/Q
k,n , defined by

b
I/Q
k,n = P{aI/Q

k,n = 1} − P{aI/Q
k,n = −1}

= tanh(βLext(a
I/Q
k,n |R)/2)

Then ŝint(t) is projected onto the basis functions, and the

projection is denoted Ŝ(Aint). Finally, the tentative received
signal when decoding symbols in Adec is formed as

R̂(Adec) = R − Ŝ(Aint). (14)

Together with the extrinsic information about the symbols

a
I/Q
k,n ∈ Adec, Lext(a

I/Q
k,n |R̂(Adec)), the signal R̂(Adec) is

fed to a further decoding algorithm. Observe that in each
iteration, many “subiterations” have to be done in order
that all symbols appear in some Adec.

In [5] the particular choice Adec = {aKi,n,∀n} was used,
where Ki is a fixed value for every subiteration; this corre-
sponds to row i in the data matrix A and will be referred
to as rowwise decoding. If f ′

∆ is small, the interference from
{aKi−1,n, ∀n} and {aKi+1,n,∀n} grows large which limits the
performance. To avoid this we will here consider different
partitions of A; essentially, we will consider the partition

Adec = {ak,Ni , . . . , ak,Ni+L−1 , ∀k} (15)

for subiteration i. This corresponds to L adjacent columns
in the data matrix and is refered to as columnwise decoding.

The decoding algorithm that will be used to decode the
signal R̂(Adec) in (14) is non trivial. First, we do not as-
sume the Forney model for the ISI, but instead consider
the Ungerboeck model. This results in colored noise and a
non causal ISI response, which prohibits the standard BCJR
algorithm. However, in [10] a BCJR type algorithm was de-
rived for the Ungerboeck model, and this algorithm will be
modified to a multi-dimensional form.

The probability of receiving R̂(Adec) given {ak,n} is sent
becomes (apart from a constant of proportionality)

Pr(R̂(Adec)|{ak,n}) ∼ exp{ 1

4N0
J({ak,n})}, (16)

where

J({ak,n}) = 2Re

	

�

k,n

a∗
k,nR̂(Adec)k,n

�
�

−
�
k,l

�
m,n

a∗
k,nam,lλ[m, n, l − k] (17)

It is possible to compute J({ak,n}) in a recursive man-
ner. If we consider the partition given in (15), and let
āk = {ak,1, . . . , ak,L} and column Ni = 1 we get

J({ā1 . . . ās}) = J({ā1 . . . ās−1})

+ 2Re



L�

j=1

a∗
s,jR̂(Adec)s,j

�

− 2Re



L�

t=1

a∗
s,t

�
r<s

L�
p=1

ar,pλ[t, p, r − s]

�

− Re



L�

t=1

a∗
s,t

L�
p=1

as,pλ[t, p, r − s]

�
(18)

By observing that λ[x, x, y] = 0 if |y| > 1, the third term of
(18) simplifies into

−2Re



L�

t=1

a∗
s,t

L�
p=1

as−1,pλ[t, p, r − s]

�
(19)

Based on this metric computation, the algorithm in [10] can
be used as decoding method. Note that the extrinsic infor-
mation fed to the SIC and to the decoder is first attenuated
by coefficients α and β. The values for α and β were deter-
mined by simulation. We have used slowly increasing values
over the iterations for both α and β. A particular choice of
the coefficients is given in section 3.

The decoder requires the noise variance as input. Since
there is noise both from the AWGN process as well as from
symbols belonging to the set Aint this variance has to be
estimated for every iteration [11].

Finally, as indicated in figure 2 the output from the de-
coding block is Lext(Adec

��R̂(Adec)), which hopefully equals

Lext(Adec

��R) after the final iteration. Let Â1 denote the
hard output from this first stage decoder.

As already mentioned, the output of first stage decoder
is not good enough, and the BER lies in general far away
from the MLSE performance. We will now describe the sec-
ond stage decoder. This decoder was first tested in [12], we
extend it somewhat here. The main idea goes as follows.
Assume that the difference between A and Â1 is limited to
two carriers only, say carrier k and k +1. The other carriers
are error-free, and their interference can be removed from k
and k+1. It has been demonstrated [4] that decoding of two
carriers alone can be done via the M -algorithm with virtu-
ally MLSE performance. Therefore we can assume that the
error event will be eliminated when the signal is decoded.

Denote the output of this decoding as Âk. In fact, in an
actual decoding the above procedure must be repeated for
all pairs {k, k + 1}, k = 1, . . . , K − 1, since we do not know
where the error event is located in advance. This gives us
K − 1 additional data matrices to choose from.

A final output from the second stage decoder could be se-

lected from the candidate set C � {Â1, Â1, . . . , ÂK−1}, but
then only error events in two carriers could be corrected and
the above procedure has to be repeated many times if there
are many error events in Â1. Instead, we try to combine the
data matrices in the best possible way when constructing the
final output. First, since symbols separated by many sym-
bol intervals have very small crosscorrelation, it follows that
these can be independently corrected; in fact, since there
is only overlap between adjacent carriers it is enough if the



error events are separated by only a single carrier in order
to make the error events perfectly independent.

Now, find time and frequency indexes in C such that for
these indexes there is more than one alternative for that
symbol in C, i.e. find positions where two or more of the

Âl have different symbol values. Then, as described above,
form different regions of differences that can be indepen-
dently considered. In our example error event above, this
region will definitely involve carrier k and k + 1 and pos-
sibly also k − 2, k − 1, k + 2 and k + 3 depending on the
outcome of the decodings. On each of these carriers we have
maximum three different suggestions (on carrier k, we can

have different opinions in Âk−1, Âk and Â1) for the data
symbols; on each carrier each of the suggestions is consid-
ered as a supersymbol. One supersymbol consists of several
symbols. As output in this region we take the combination
of supersymbols, i.e. rows of symbols, that minimizes the
ML metric � ∞

−∞
|r(t) − s(t)|2dt (20)

Since only adjacent carriers overlap, the memory in the fre-
quency direction equals one; finding the best combination
can therefore be done with a Viterbi algorithm with three
states. Of course, when minimizing (20) all K ×N symbols
are needed to form a tentative signal s(t), but since only
symbols close to the ambiguity area in C will affect the re-
sult, and all these symbols are constant (there is only one
opinion for them in C), the calculation does not have to in-
volve all symbols but ony a few around the ambiguity area
in C.

The procedure summarized above works very well when
the errors from the first decoder are limited to only two
subcarriers, as in [12]. But in cases where error events affect
many carriers but only a few symbol intervals, it is better
to use columnwise decoding. This means that in what is
described above, k and k + 1 denotes columns instead of
subcarriers. In fact, when doing columnwise decoding we
will consider up to four columns at once. In our receiver
tests presented in the next section we try several types of
rowwise and columnwise decoding.

3. NUMERICAL RESULTS
Here we present some receiver tests. Throughout the tests

we have used K = 20 subcarriers. Different receiver solu-
tions are needed in the different parts of the (f∆, T∆) plane.
In figure 3 the so called Mazo limit for 30% root raised co-
sine pulses is shown. The circles indicate the systems that
will be tested; note that one setup violates the Mazo limit.

We start with the two simulations for the case f ′
∆ = .7. By

inspection it was seen that the interference from Aint is large
if Adec is taken as one row in the data matrix. However, it
is even larger if we take Adec as a few columns. Therefore,
we alternate between rowwise and columnwise decoding in
the first decoder; every third decoding is a columnwise one.
In the columnwise decodings we have used L = 3 columns,
i.e.

Adec = {ak,N1 , ak,N1+1, ak,N1+2,∀k} (21)

Since every symbol is a QPSK symbol and λ[x, x, y] = 0 if
|y| > 1, the number of states is 43 = 64. Since every state
can reach every other state in the trellis the branching factor
of the trellis also becomes 64. Moreover, in the different
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Figure 3: The Mazo limit for 30% root raised cosine
pulses. Below the bold line d2

min falls below 2. The
thin line shows a constant product of T ′

∆f ′
∆ = .6. The

circles show points that have been decoded.

iterations the value N1 is selected differently. Let i denote
the i-th columnwise iteration and p the p-th subiteration
within this i-th columnwise iteration; then N1 in (21) is
selected as

N1 = (p − 1)L + (i mod L) + 1 (22)

The feedback values α and β are chosen as α = min(1, 0.1i)
and β = min(1, 0.15i); we believe that much better tunings
are possible, but it is time consuming to find them. In to-
tal we performed 9 iterations in the first decoder. For the
second stage decoder we also lternate between rowwise and
columnwise decodings. For the rowwise decoding we used
an M -algorithm that considers two rows at once [4]. We
performed two columnwise decodings, one with L = 3 and
one with L = 4. When L = 4 the number of states becomes
256, but we used the M -algorithm with M = 64 to limit the
state complexity of all used decoders.

The receiver tests are shown in figure 4. The receiver per-
formance is very close to the reference curve, Q(

�
2Eb/N0),

which is a rather tight lower bound to the MLSE perfor-
mance for high Eb/N0. The dashed line is a receiver test for
(T ′

∆, f ′
∆) = (.7, .9) taken from [12]; the decoder used was the

same as we used, but only rowwise decoders were applied.
The error floor is then present since there is a probability
that error events from the first decoder are such that row-
wise decoders alone cannot eliminate them.

We strongly suspect that our decoder also suffers from an
error floor, but at a much lower BER. The reason is that if
error events from the first decoder involve too many subcar-
riers and span many symbol intervals, the second decoder
will fail.

The next receiver test is for the case f ′
∆ = T ′

∆ = .8.
Now we alternate between rowwise and columnwise decod-
ings both in the first and in the second decoder. In the first
decoder we set L = 2 and in the second we start by L = 3
but increase to L = 4 (and use the M -algorithm) in the final
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Figure 4: Receiver tests; circles mark (T ′
∆, f ′

∆) =
(.7, .9), asterixes mark (.7, .87) and squares mark
(.8, .8). The unmarked solid line is the basic refer-

ence Q(
�

2Eb/N0). The dashed curve is a receiver
test for (T ′

∆, f ′
∆) = (.7, .9) taken from [12].

iteration. For the rowwise decoding in the second decoder
we again used an M -algorithm applied to two rows at once
and M = 64. The test is shown in figure 4.

The final tests are the three cases where T ′
∆ ≥ .9. Unlike

T ′
∆ = .7, now every third decoding in the first decoder is a

rowwise decoding. In the second decoder three columnwise
decodings with L = 2, L = 3 and L = 4 are performed, and
this is followed by one rowwise decoding. The results are
given in figure 5. It is seen that the second decoder has a
dramatic effect on the BER; in one case there is a 1000-fold
reduction. The improvement is less dramatic for the receiver
tests in figure 4.

This decoding method is without doubt complex; we have
in total performed between 10 and 15 iterations in the tests,
and in each iteration decoders with up to 64 states are used.
Further research could look into reduced complexity decod-
ing algorithms such as the T–BCJR [13] or the recently pro-
posed M∗–BCJR [14]. Especially the latter seems promising.

4. CONCLUSIONS
A two-stage decoder based on soft intererence cancellation

has been proposed for a multicarrier faster-than-Nyquist
coded modulation scheme. The decoder has a performance
close to the theoretical limit, but complexity is rather high.
Several systems around the Mazo limit have been tested.
The decoder can in general be used for an arbitrary multi-
carrier modulation scheme suffering from both intersymbol
and interchannel interference.
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