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Abstract

In this paper an algorithm to optimize switching
sequences for a class of switched linear problems is
presented. The algorithm searches for solutions which
are arbitrarily close to optimal — finding the optimal
solution does often require a much larger search. Both
deterministic and stochastic problems are considered.

1. Introduction

This paper considers a class of control problems where
there is a need to find switching-sequences between
different linear systems, as well as linear control laws,
to minimize some quadratic cost function. Often, this
kind of problems occur in implementation of digital
controllers, where issues of sharing CPU power or
network bandwidth have to be dealt with. These
sharing or scheduling problems can be modeled as
control problems where the controller not only has
to control a plant, but also choose between discrete
actions (“use network to send this or that right
now?”).

Similar problems has been studied by a number of
groups before, in e.g. [1, 2, 4, 5, 6]. These papers,
though, do not present any efficient optimization
methods for finding switching sequences. In [3], we
presented a optimization method which could find the
optimal solution to some of these problems. In this
paper, a new result will be presented, where we search
for solutions which are not optimal, but a-optimal.
An a-optimal solution, in this case, means that the
resulting cost is at most « times the optimal cost. In
problems where many sequences give similar results,
an «a slightly larger than 1 increases optimization
speed significantly, and we can solve larger problems.
It also enables us to optimize deterministic switching
problems, without state noise.

2. Problem Formulation

Consider the following problem: Given a standard

0-7803-7061-9/01/$10.00 © 2001 IEEE

discrete-time linear system
x(n+1) = ®(n)x(n) + I'(n)u(n) + G(n)v(n). (1)

where x is the state space vector, u the control signals,
and v standard Gaussian, independent, disturbances
with zero mean and unit covariance. The system
matrices ®(n), I'(n) and G(n) can be chosen by the
controller in each step from a small set of M systems
{(®:T:,G)},i=1,...,M.

The problem is to find the linear feedback law
u(n) = —L(n)x(n) and the sequence K(0,N) =
{k(0), k(1), k(2), ..., k(N)} corresponding to choos-
ing ®(n) = Qp(n), ['(n) = Ti(a)y G(n) = Gi(ny, and
Q(n) = Qi) that minimizes the cost

V(P(0),L(-),K(0,N)) =
= rx(m))T x(n
?{Z[u(n)] oo (5

n=0

i)

where E{x(0)} = 0 and E{x(0)x(0)T} = P(0). Thus,
the sequence K(0,N) is to be optimized off-line,
minimizing the expected cost.

2.1 Equivalent deterministic problem
Consider this equivalent problem: Let P(n) (the x

variance) be the new state. Its dynamics can be
written

P(n+1) =

((D(n) - l"(n)L(n))TP(n) (o(m)- r(n)L(n))
+R(n)

where R(n) = E{G(n)v(n)v(n)TG(n)T}. The cost is
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now
V(P(0),L("),K(0,N)) =
plsss I I T
;tr( [ —L(n)) Pln) [—L(n)] Qk(n)) =

N-1

S o(P(n).n k(n)). (2)
n=0

This problem is deterministic with linear dynamics
and linear cost. The state-space is the cone of positive
matrices. ’

2.2 Optimal Cost

Let V*(P(n),n) denote the optimal cost starting with
state P at time n. Then V* satisfies

V(P(n)n) =, min {o(P(n),n, k(n))+
V*(P(n+1),n + 1)} (3)

Thus the optimal sequence step % at time n can be
written as the state feedback

k(n) = F(P(n),n) =
arg:nin{(p(P(n),n,k(n)) + V*(P(n+1),n + 1)}.
(4)
In fact, as the problem is deterministic, the full

sequence of K(n,N) can be determined from P(n).

Now consider a non-optimal cost-function V' which
satisfies

V(P(n),n) < - @(P(n),n, k(n))+
V(P(n+1),n+1) VP(n), n (5)

where a € R, > 1. Then

V(P(0),0) - V(P(N),N) = V(P(0),0) =
N-1
> V(P(n),n)~V(P(n+1),n+1)

n=0

N-1
<Y ap(P(n).n), (6)

so V is a lower bound on the optimal cost scaled by
a.

In this paper, we use & to be able to find a solution
(K(0,N) and L(:)) with a cost which is at most «
times the optimal cost. The idea is, for some o
find a V which satisfies (5), and an actual solution

(S"“‘],C“ W T
(Smep)

(312.11.0[2,11) X

(SpaCnz) :
(S@Cr

(Sp2Cpa) \

Solution backwards

Figure 1: The control sequence tree for M = 2 when
expanding all possibilities from N — 3 to N.

(K(0,N) and L(-)) which gives exactly V(P(n),n).
Then the solution is an upper bound on V*, and also
a lower bound on & - V* so

V*(P(0),0) < V(P(0),L(),K(0,N)) < aV*(P(0),0)
(M
Let us denote this solution a-optimal.

3. Finding an c-optimal solution

We want to find a sequence K (0,N) and correspond-
ing feedback gains L(n) which satisfies (7). This prob-
lem is hard (probably NP-hard), and therefore we do
not expect an algorithm that works for all problems.

In order to simplify this section, we will here only
consider problems where I" = 0, i.e. there is no control
signal u. Thus, we are only interested in the switching
sequence K (0,N).

The problem will be solved by expanding a sequence
tree, starting at time N (see Figure 1). The idea is
that we can remove branches from (prune) the tree
without violating (5).

For some time n, let
V(P(n+1),n+1)=
P(n + 1)SK(n+l,N)) + CK(n+1.N)»
(8)

where Sk is a positive symmetric matrix (state cost),
and cx is a constant (noise cost). Each pair (Sg,cx)
corresponds to choosing sequence K from n + 1 to
N. k(n + 1,N) is a set of possible sequences (not
necessarily all).

min tr(
K(n+1,N)ex(n+1N)

Expanding the tree backwards to time n by forming
K'(n,N) = {1,2,...,M} x x(n + 1,N) (making all
possible sequence choices for time n), the cost for each
sequence is calculated as

Sk(nN) = Phin)SK(n1.8) Phin) + Qk(n) (9)
and

CK(n,N) = CK(n+1,N) + tr(Gan)SK(rwl,N) Gk(n))- (10)
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These form a cost function V/(P(n),n) of the same
form as (8). Note that V' satisfies (5) for any o > 1.
We want to remove some K (n,N) from x'(n,N) to
reduce the size of k, while still satisfying (5).

Now form

Sg Ny = D3y SK(n+1.N) Pi(n) + A Q(n)s (11)

and cfé(n,N) = cg(n,N)- The corresponding cost function
V¢ also satisfies (5), but now with a tight bound. Any
cost function V' with

V(P(n),n) < V(P(n),n) (12)

would still satisfy (5). V/(P(n),n) is one such func-
tion, but it consists of M times more sequences than
V(P(n+1),n +1). We now simply remove sequences
from x’(n,N) as long as (12) holds.

PROCEDURE 1—TREE PRUNING
Let x(n,N) := «’'(n,N).
For all Kyeep € k:

For all Kyrune € k with ¢k, > CKy.,

If S;‘;pm > Sk, then remove Kprune
from x(n,N)

The remaining &(n, N) with corresponding set of
(Sk,ck) forms the new V(P(n),n). 0

THEOREM 1—q-OPTIMALITY OF V/

The V(P(n),n) obtained from Procedure 1 satisfies

(5), and the solutions in x(n,N) are thus a-optimal.
O

Proof: By construction of Procedure 1 it holds that

V(P(n),n) < V¥(P(n),n)
< a-@(P(n),n, k(n))+V(P(n+1),n+1) (18)

for any P(n).

8.1 The Solution

To find the full a-optimal solution from time 0 to IV,
repeat the procedure from n = N with k(N, N) = end,
Song = 0 and ¢eng = 0 and expand backwards until
n = 0. Note that this solution method does not at all
rely on noise, but can equally well solve the problem
in the noise free case (with only initial variance).

The algorithm works well for many problems, in that
it can return an a-optimal solution with a reasonable
search tree size. For problems with many sequences

giving approximately the same cost, o can often be
set to e.g 1.001 to find a solution which is very close
to the optimal. The algorithm in [3] would have a very
hard time trying to find the optimal solution to such
a problem.

3.2 Optimizing with Control Signal

The above method was described with ' = 0 to make
the idea clearer. With I’ # 0, the same ideas hold,
but the calculations of Sx (9) and (11) change to the
standard LQ-iteration.

Sk(n.N) =
T
(q)k(n) — Tpm)Lr () (n)) Sk (n+1,8) Pr(n) X
(‘Pk(n) — Ty LNy (n)) + Quny (14)

where
Lgnny(n) = Fllé'zn,N)_lFIx('En,N)T (15)
and
Fgnn) | FR(nn
Frny = [ uin. ) |FmE’ L=
K(n,N) K(n,N)

T
Qr(n) + (‘Pk Fk] Sk(n+1.V) (‘Pk Fk) (18)
4. Improving Search

An «-optimal cost-function found by using the al-
gorithm in Section 3 contains a solution for all
P(0), including very degenerate ones. A P(0) such as
diag([101%° 0]) would e.g. force the optimizer to ignore
state 2, and “normal-sized” state noise would make no
difference at all.

In this section, we will present an addition to Pro-
cedure 1, which excludes sequences which would re-
quire very large or skewed P(n) to ever be chosen in
a minimization. This addition will often decrease the
size of x a lot, but it requires the input of a problem-
dependent parameter R to the optimizer. The idea be-
hind this additional pruning is to remove sequences
which have a very bad noise cost compared to other
sequences, but where the S (cost) matrix is a bit bet-
ter in some direction. This means that it may take a
very large P for this sequence to come into question.
Consider two sequences at time n: Kieep(n,N) and
Kprune(n, N) (where the names reflect possible ac-
tions). Their corresponding costs are parameterized
bY (SKiep>CRisep) 804 (SKyrune s CRorne ) aNd We assume
that ¢k, e = CEigep-

prune —

4.1 Minimum Cost Calculation

We want to calculate the smallest possible cost Cpin of
Korune(n, N) so that it is lower than Kyeep(n, N), i-e.

tr(PSKm"e) F Ry St (PSKW) teg., (17)
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or written as

6 (P(Skuuy — Skpum)) 2

AS Ac

cKpmne - cheep . (18)
N e’

Ac > 0 is given. Thus, if AS < 0 then (17) cannot hold
for any P, and Kiyeep is better than Krune for all P.
This case is already handled by Procedure 1.

We can formulate the problem as

Cuin = 1},1>i%1 tr(PSKypme ) + CHyune S-t- tr(PAS) > Ac =

min ngg{tr(PsKm ) + €k + A(Ac — tr(PAS)) }
(19)

From the general inequality
maxmin F(x,y) < minmax F(x, y) (20)
we obtain
Coin 2 max A0 {tr(PSKymmn) + Chiset

Az

A(Ac — tr(PAS))} (21)

which is actually an equality, but there is no need to
prove it here. Rewriting it as

Coin > matx. min{tr(P(Sky, — 2AS)) + AAc ek,

(22)
it can be seen that the minimization will return —oo
if Sk, — AAS < 0. Since Sg,,,, >0, A = 0 gives a
positive matrix. Thus the maximizing A . Will be the
smallest non-negative A which solves

det(sKm - /lAs) =0, (23)

i.e. the smallest positive generalized eigenvalue. Fi-
nally, we obtain

Cuin = AmaxAc + CKyrune (24)

For Kyeep(n,N) to be worse than Kprune(n, N), cost
Ve (1, N) from time n to N has to satisfy

Ve (7 N) > Cryin. (25)

4.2 Pruning

If Cin is large, then for the optimizer to choose Kpryne
instead of Kyeep in the best sequence, the cost from n
to N has to be large (> Cmin). A simple pruning rule
is then to remove K yne if it is much worse than the

best solution V(n,N) from n to N (using the initial
variance P(0) for P(n)).

PROCEDURE 2—AGGRESSIVE TREE PRUNING
Choose a constant R. Let x(n,N) := k’(n,N).
For all Kyeep € K

For all Kyrune € K with ¢k, > Ckieep

If Sﬁmm > Sk, then remove Kjryne
from x(n,N)

If Con(Kprwne) = R + V(n,N)
then move Kprune from x(n,N) to

Kprune (72, N).
O

Thus, a small R will give aggressive pruning of the
search tree, but at the risk of not being able to find an
a-optimal solution for our P(0). As R — oo, Procedure
2 will approach Procedure 1.

4.3 Proving a-optimality

In this section, we will show how to prove a-
optimality of the found solution even when the more
aggressive pruning rule is used. The resulting test has
to be performed each iteration of the search, and if it
fails, B must be increased and the search restarted.
Let V} denote the optimal cost when the switching
sequence K(0,N) can only be chosen from the set
k. (For example Vi »(P(0),0) means that only
sequences which uses one of the sequences in x(n, N)
for steps n to N are considered.) Then

aViny(P(0),0) >

208 0m tr (P (O)SK(O,N)) +ckon). (26)

Since all sequences K(0,N) must either go through
k(n,N) or Kprune(n,N), the optimal cost V*(P(0),0)
satisfies

aV*(P(0),0) = K%ig) aVi o) (P(0),0) >
. { Vi(n.vy(P(0),0)
l ——
VKpmne(”vN) (P(O)’ 0)
K(oﬁ?ei?(o,m tl‘(P(O)SK(O,N)) + cx(o,N) ‘
V(0,n)+R+V(n,N)

min

(27)

The last inequality needs some explanation: In Sec-
tion 4.1, we showed that if Kyrune(n, N) is better than
Kyeep(n, N), the cost Vi, (nn)(0,N) > R + V(n,N).
This means, we can disregard V. ...(n.5)(P(0),0) in
the minimization, unless its cost from n to N is

2066



greater than R + V(n,N). In this case the total cost
Vorune(0, V) from 0 to N must satisfy

AViune(0, N) >
n—1

min > o(P(m),m.k(m)) + R+ V(n,N) =
m=0

K(0,n—~

V(©,n)+R+V(n,N), (28)

where V(0,n) is an a-optimal solution to the length-
n-problem. Also note that we know V(0,n) as we
expand the tree one time-slot at a time, and thus solve
all problems from length-0 to length-N.

Our cost function from 0 to N is thus

V(O,N) =
| x0B8B0m t"(P (O)Sx(o,zv)) + cxo.N)
min (29)
mnin{V(O,n) +R+V(n,N)}.

If then
mnin{V(O, n)+ V(n,N) + R} >

K(o,)\rl?gcl(o,N) tr(P(O)SK(o,N)) + CK(0.N)» (30)

the minimizing K(0,N) € (0, N) is -optimal, and
the cost V (0, N) is actually achievable.

5. Examples

In this section, some example problems which can be
solved using the algorithm are presented.

5.1 Example 1 - Scheduling with noise
Given three different stable, linear systems with

®; =09 Iy =1 G =1
1 01 0 0
CI)2=[—0.2 o.s] FZ=[1] G2=[1]
0 0

o ~{ 1 0.1]
= -05 09

@1 =diag(10 1]
Q2=diag(10 1 1]
Q3=diag[1 1 1),

and zero initial variance. Only one plant can be
accessed each time-slot, so the problem is to find

Process to control in each time step

TITnnmTnnnT

2.5T

15

60 70 80 90
Time step

Figure 2: The resulting a-optimal sequence for Example

1.
Size of search tree for o € {1.01, 1.1, 1.5}
250 — r r
== a=1.01 W
—a=11 \
200} [-- @=158 i

150

AARRESNNARA SN AL B ARNS RS AN
i VAARRELY A A ANkt YAkt
U Y Y Y

% 50 100 150 200

Figure 3: Size of the search tree: Number of candidates
kept after each time step in the searches in
Example 1. Note that the first step is at 200,
as the tree is expanded backwards.

a switching sequence and feedback laws which give
reasonable performance of all systems.

To show the effects of different choices of &, the prob-
lem was solved three times with o = {1.01, 1.1, 1.5}
(i.e. for 1%, 10%, and 50% slack, respectively). Ag-
gressive pruning was used with B = 80. The three
found sequences are equal, showing that the algo-
rithm with & = 1.5 in this case really finds a solution
which is 1.01-optimal. The found a-optimal switching
sequence can be seen in Figure 2, and the search tree
sizes in Figure 3.

As can be seen the search tree size seems to stabilize
after a while, and in practice this problem can be
solved for any time horizon. The problem is not
very dependent on the initial variance, as the state
noise gives most of the cost. Therefore the aggressive
pruning works well to remove unlikely sequences —
see Figure 4. In the next section, we present an
example problem which lacks state noise.
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Relative pt ge of a- and ive pruning

1
R Pruned by o-pruning
0.9] ] Pruned by aggressive pruning

081

o T

0.6|

0.5r
0.4
0.3r

0.2r
0.1
0 A

1

2
a=101, =11, a=15

Figure 4: Relative usage of ¢— and aggressive pruning
in Example 1. The aggressive pruning is only
tried for a sequence if the a-pruning fails. With
a larger o, more sequences can be a-pruned.

5.2 Example 2 - Scheduling without noise

Assume we have three equivalent inverted-pendulum
processes, each with four states

x=(6 0 ¢ (b],

where 8 and ¢ are the angles of the pendulum and the

rotating base, respectively. The continuous dynamics

are described by

0 100 0
, 313 0 0 0 712
=1 0o o0 1|[*t| o |*
0588 0 0 0 191

Again, the problem is to find a static access schedule
for the controller, as it can only access one plant each
time-slot. The time slot is 15 ms. In this example,
there is no state noise, which means that the problem
is deterministic, and the cost to go from 0 to N
depends only on the initial state x(0) (or P(0)). With

Q=Q=Q=diag(1 111 1],

the problem is easily solved for o = 1.1. Actually, the
algorithm only has to keep the six permutations of
the repeating sequence [1 2 3] as candidates, so the
problem can be solved for any time horizon.

In practice, it means that for this problem, for any
initial state x(0) there is a round-robin scheduling
which is at most 10% worse than any other schedul-
ing. As ¢ — 1, the tree size will grow and approach
the full exponential size. This is due to the fact that
for almost any sequence, there will be an initial state
for which this sequence is optimal. Therefore, the «
factor (slack) is essential in the noise-free case.

6. Conclusions

We have presented a method which efficiently
searches for an «-optimal solution to a switched
linear system problem. The algorithm can often solve
the problem with reasonable effort, both in the deter-
ministic and stochastic case. '
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