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Pooled Unit Root Tests in Panels with a
Common Factor

Joakim Westerlund*

January 26, 2005

Abstract

This paper proposes new pooled panel unit root tests that are appro-
priate when the data exhibit cross-sectional dependence that is generated
by a single common factor. Using sequential limit arguments, we show
that the tests have a limiting normal distribution that is free of nuisance
parameters and that they are unbiased against heterogenous local alter-
natives. Our Monte Carlo results indicate that the tests perform well in
comparison to other popular tests that also presumes a common factor
structure for the cross-sectional dependence.

JEL Classification: C12; C31; C33.
Keywords: Pooled Unit Root Tests; Panel Data; Common Factor; Cross-
Sectional Dependence; Monte Carlo Simulation.

1 Introduction

During the last few years there has been an immense proliferation of research
concerned with the problem of testing for unit roots in panel data. Some of the
most influential contributions within this field include Choi (2001), Im et al.
(2003), Levin et al. (2002), and Harris and Tzavalis (1999). A common feature
of these studies is that they all assume that the individual time series of the
panel are independent of each other. Under this assumption, various central
limit theorems can be applied to obtain test statistics that achieve asymptotic
normality. Although it has been widely recognized that cross-sectional inde-
pendence may be an overly restrictive assumption, is has long been thought
that subtracting the cross-sectional average from the data before application
of the panel unit root test could be employed to, at least partially, deal with
this problem. Recently, however, it has become increasingly clear that cross-
sectional demeaning of this sort may not work in general as it cannot be used

*Department of Economics, Lund University, P. O. Box 7082, S-220 07 Lund, Sweden. Tele-
phone: 446 46 222 4970; Fax: +46 46 222 4118; E-mail address: joakim.westerlund@nek.lu.se.



to accommodate correlations that differ between pairs of individual time series,
which seem like a more realistic assumption in many empirical applications such
as macroeconomics and international finance. For instance, O’Connell (1998)
argues that real exchange rates should be highly correlated across countries
due to the strong links between financial markets and because of the use of a
numeraire country in constructing real rates.

Recognizing this deficiency, several new panel data unit root tests have
been proposed in the recent literature. These tests are distinct in that they
make explicit assumptions regarding the structure of the cross-sectional corre-
lation. Chang (2004), Maddala and Wu (1999), and Smith et al. (2003) avoid
the restrictive nature of the cross-sectional demeaning by employing bootstrap
techniques, which make the unit root test valid under quite general forms of
cross-sectional dependence. Other tests that allow for general correlation struc-
tures include those of Chang (2002), O’Connell (1998) and Jénsson (2004). To
eliminate the cross-sectional dependence, Chang (2002) proposes a nonlinear in-
strumental variables estimator, while O’Connell (1998) suggests estimation by
generalized least squares. The test of Jonsson (2004) relies on a robust estima-
tor of the standard errors to handle the impact of cross-sectional dependence.
The tests proposed by Ng and Bai (2004), and Moon and Perron (2004) also
allow for more general forms of cross-sectional dependence by assuming that the
correlation can be modelled using a generalized common factor structure. These
studies recognize that the common factors are likely to have differential effects
on different cross-sectional units by allowing for the possibility of heterogeneous
factor loadings. This avenue is potentially very fruitful as it takes an important
step in the direction of reducing the dimension of the cross-sectional correlation
and it shall therefore be employed in this paper.

The suggestions of Ng and Bai (2004), and Moon and Perron (2004) are
very similar in that they both allow for a very general factor structure with an
unknown number of factors. Moon and Perron (2004) proposes several pooled
panel unit root test statistics based on defactored data and suggest estimating
the unknown factor loadings using the method of principal components. Using
joint limit arguments, Moon and Perron (2004) derive the asymptotic distri-
bution of their statistics under both the null and local alternative hypotheses.
Monte Carlo results, suggestive of good small-sample properties, are also pro-
vided. The setup of Ng and Bai (2004) is even more general in sofar they allow
for the possibility of unit roots and cointegration among the common factors.
In so doing, however, they face the problem of how to estimate the integrated
factors. Their solution involves first estimating the factors using the differenti-
ated data by principal components and then to apply the unit root test onto the
recumulated and defactored data. As in Moon and Perron (2004), Ng and Bai
(2004) uses joint limits to derive the limiting distribution of their heterogeneous
test statistics. Their Monte Carlo results suggest that the tests perform well
even in very small samples.



In this paper, we follow Ng and Bai (2004), and Moon and Perron (2004)
and assume a common factor structure for the cross-sectional dependence. In
contrast to these authors, however, we make the simplifying assumption of a
single common factor, which may have disparate effects on the different indi-
vidual time series of the panel. Due to their extensive use in the empirical
literature, and due to their increased availability through various econometric
software packages, we propose two new tests based on the pooled Dickey-Fuller
type tests developed by Levin et al. (2002), and Harris and Tzavalis (1999).
In order to defactor the data, we propose using a version of the procedure re-
cently developed by Phillips and Sul (2003), which is based on estimating the
factor loadings by iterated method of moments. In contrast to the principal
components method used by Ng and Bai (2004), and Moon and Perron (2004),
the consistency of this procedure only requires passing the number of time se-
ries observations to infinity, whereby lending itself to simple sequential limit
asymptotics. The asymptotic results reveal that the tests reach a limiting nor-
mal distribution under the null hypothesis and that they are unbiased against
the heterogeneous local alternative hypothesis. In our Monte Carlo study, we
demonstrate that the tests have good size properties and reasonable power. We
also find that the proposed tests compares favorably to a number of different
tests that also presumes a common factor structure for the cross-sectional de-
pendence.

The paper proceeds as follows. Section 2 provides a brief presentation of the
model that we use. Section 3 introduces the unit root test statistics, whereas
Section 4 is concerned with their asymptotic properties. Sections 5 then present
our Monte Carlo study. Section 6 concludes the paper. For notational conve-
nience, the Bownian motion B(r) defined on the unit interval 0 < r < 1 will be
written as only B and integrals such as fol W (r)dr will be written fol W and

fol W (r)dW (r) as fol WdAW. The symbols = and = will be used to signify weak
convergence and convergence in probability, respectively.

2 Model and assumptions

Let y;; be a vector of observed data on individual ¢ = 1,..., N and time series
t=1,...,T. The data is assumed to be generated by

Y, = Xy + pYi_1 + Ey, (1)

where Y = (yit, .., yne)’s Er = (e, ...,ent)’ and p = diag(ps,...,pn)". For
notational simplicity, we use X; to indicate the vector of deterministic compo-
nents and [ is used to indicate the corresponding vector of parameters. We
shall distinguish between three different deterministic specifications. In Model
1, X¢ = {@}, which correspond to a model with no deterministic components.
In Model 2, X; = 1 so the deterministic component comprises an individual



specific constant term. In Model 3, X; = (1,t), which is the most general spec-
ification with both individual specific constants and linear time trends. For
the present, Y; is assumed to evolve according to Model 1. Generalizations to
Models 2 and 3 are straightforward and will be discussed when appropriate.
The focus of interest in this paper is the problem of testing for the presence of
a common unit root in the error process Y; against the following local alternative

0
pi:]N—W- (2)

In this paper, we model the individual local-to-unity parameters 6; comprised
of § = diag(fy,...,0n) as a sequence of non-negative i.i.d. random variables.
The hypothesis tested may be stated as Hy : 6; = 0 for all individuals i versus
Hy : 0; > 0 for some i. A special case of interest for the alternative hypothesis
is when 6; = 6 > 0 for all 7. In this case, the local-to-unity parameters take on
a common value 6 > 0 for all ¢ and each of the individual error processes Y; is
therefore locally stationary. Now, consider the following assumption regarding
the local-to-unity parameters 6;.

Assumption 1. (Local-to-unity parametrization.) The random variable 6; is
i.i.d. with expected value pg and support on [0, M].

Under Assumption 1, the null hypothesis of no cointegration is equivalent
to the statement that pg > 0. Thus, we may express the null and alternative
hypotheses in the following equivalent fashion

Hy : pg =0 versus Hy : pg > 0.

To model the cross-sectional correlation, we follow Phillips and Sul (2003), and
assume that the error process v, is generated by the following single factor model

Et = AFt + V¢, (3)

where F} is a scalar unobservable random factor, A = (A1, ..., \x)’ is a nonran-
dom vector of factor loading parameters and v; = (vi¢,...,un¢)’ is a vector of
idiosyncratic disturbances. For convenience in deriving the asymptotic theory,
we assume that the vector vy follow a general linear process whose parameters
satisfy the summability conditions of the following assumption.

Assumption 2. (Error process.) The vector vy is i.i.d. cross-sectionally such
that v, = C(L)u;, where L is the lag operator, C(L) = 72 C;L7, C; =
diag(C1j, ..., Cny), O(1) # 0, 3272 5°C;C; < 00 and uy is a vector white noise
sequence. The long-run covariance matrix of v, is given by ¥ = C(1)C(1).

The factor model in (3) is introduced to model the cross-sectional dependence
between e;; and e;;. To this end, we make the following assumption.



Assumption 3. (Factor model.) (i) The common factor F; is such that Fy =
D(L)z;, where D(L) = >272( D;L7, D(1) # 0, 3272, 5°D3 < oo and 2 is a
white noise sequence. (ii) We normalize 02 = D(1)? = 1. (iii) The processes
ut, z¢ and A are mutually independent.

Assumption 2 ensures that a functional central limit theorem holds individu-
ally for each cross-section as T increases. Specifically, Assumption 2 implies the
following weak convergence result 7~1/2 gq] vy = By, = XV2W as T — oo,
where B, = (Biy,..., Bny)’ is a vector Brownian motion that is conformable
with v;. The process W = (Wq,..., W)’ is referred to as a vector standard
Brownian motion. Because the covariance matrix of W equals identity by def-
inition, this implies that W; and W; are mutually independent if ¢ # j. The
assumed independence of the individual cross-sections is tantamount to requir-
ing that the parameter vector C'(L) is block-diagonal, which implies that ¥ too
is block-diagonal. Also, because C(1) # 0, each element along the main diagonal
of ¥ is nonzero. Similarly, Assumption 3 (i) ensures that 7~1/2 qu] Iy = Bp
as T — oo, where Bp is a scalar Brownian motion. This assumption implies
that F; is stationary and that the only source of nonstationarity in (1) is Y;
itself. As required by Assumption 3 (ii), the covariance of Bp is normalized to
unity, which entails no loss of generality. Assumption 3 (iii) requires u¢, z; and
A to be mutually independent.

The linear process assumption on v; and F; facilitates a straightforward
analysis by application of the methods developed by Phillips and Solo (1992).
Similar results could be obtained under the strong mixing conditions of Phillips
and Perron (1988), which also ensure that a functional central limit theorem
holds for each cross-section as T" grows large. Notice that the asymptotic analysis
of linear processes holds under a variety of conditions, and that the limiting
result of our tests therefore can be generalized to different classes of time series
innovations. In particular, with a strengthening of Assumption 2 and 3, our
result can be generalized to panels with i.i.d. disturbances.

Most unit root tests in panel data requires that the process Y; is indepen-
dent cross-sectionally (see, e.g., Im et al., 2003; Levin et al., 2002; Harris and
Tzavalis, 1999). This assumption is very strong and it is therefore unlikely to
hold in many empirical applications. When the structure of the dependence
is completely unknown, it is generally infeasible to deal with the unrestricted
correlation structure because of the degree of freedom constraint. Therefore, in
order to reduce the dimensionality of the covariance structure of the errors, it is
common to make at least some simplifying assumption. The most common way
to achieve this is to include a common time effect in the process driving Z;. The
justification for doing so is that certain co-movements of multidimensional time
series may be due to a common factor. For instance, in international macroeco-
nomics it might be argued that the common time effect represents some global
shock, such as an oil price shock.

The model we use in this paper allows for a common time effect that may



affect the individual time series differently. The extent of the cross-sectional
correlation is determined by the loading parameters \;, which are such that

E(eirejr) = MiAj for i # j.

It follows that there is no cross-sectional correlation when A; = 0 for all i and
there is identical correlation when A; = A; for all 7 # j. The model we use is the
same single factor model studied by Phillips and Sul (2003), which considers the
problem of dynamic panel data estimation and homogeneity testing when the
data is correlated cross-sectionally. Note that this model is inherently distinct
from the simple factor model in which the dependence is such that it may be
removed by simply subtracting the cross-sectional average from each observa-
tion. This transformation of the data is equivalent to including a full set of time
specific constants in (1), which is appropriate under the assumption of a single
common factor that has an identical impact on all the individuals of the panel.
Our model also presumes a single common factor but it is less restrictive since
it allows the factor to impact the individuals of the panel differently.

3 Pooled unit root tests

In this section, we develop the pooled unit root tests. In doing so, we will make
frequent use of the results given in Phillips and Sul (2003). As pointed out
in the previous section, Assumption 1 and 2 are relatively weak and allow for
quite general forms of error dynamics. In order to facilitate the construction
of tests with simple enough structure, however, in this section we shall initially
make some simplifying assumptions, which will subsequently be disregarded.
Specifically, we strengthen Assumption 2 and 3 to the following set of conditions.

Assumption 4. The processes v;, Fy and A are mutually uncorrelated white
noise sequences.

Essentially, Assumption 4 allows us to focus on the cross-sectional properties
of the data without simultaneously having to deal with any temporal dependen-
cies. Specifically, it will allow us to write the covariance of E; as

V = B(E,E]) =\ + 3. (4)

Notice that ¥ = E(v,v;) under Assumption 4. Making use of (4), under the
unit root hypothesis, it is possible to show that in Model 1 with no determinis-
tic components, T~Y/2Y[p, = T~/ Zig} E; = B=LW as T — oo, where
B = (By,...,By)’ is an N dimensional vector Brownian motion and V = L'L.
This implies that Y; is unsuitable for unit root testing purposes since its limit dis-
tribution depend on the nuisance parameters associated with the cross-sectional
dependencies of the data as captured by the off-diagonal elements in V. Note,

however, that B may be decomposed as

B = \ABr + B,. (5)



If we let \* be the N x (N — 1) matrix that spans the orthogonal complement
of the vector A, then we may define

Fy= (AEA) 7120, (6)

Making use of (5) and (6), since A* X = 0 by definition, we may deduce that
T’1/2F,\Y[T,n] = F\B = F\B, =W*asT — oo, where W* = (W7, ..., Wx_,)
is a NV — 1 dimensional vector standard Brownian motion. Since the covariance
matrix of B, is given by X, it is easy to verify that the covariance of F)B, is
indeed the identity matrix. Note also that the pre-multiplication of F reduces
the dimension of W* from N to N — 1.

This discussion suggests that Y; may be employed to test the unit root hy-
pothesis after pre-multiplying it by F. Obviously, since A* and X% generally
are unknown, this means that F) is unobservable and that it needs to be con-
sistently estimated. Denote this estimator by Fy. Making use of F, we shall
consider the following two panel statistics that may be used to test the null
hypothesis of a unit root.

Definition 1. (Pooled defactored panel unit root statistics.) Let Y; = Y; — BX,
and Y;* = F)\Y;, where 3 is the least squares estimate of 8. The defactored panel
unit root statistics are defined as follows

T -1 7
(Z 1@’:’9@:) S AV, (7)

Zp =
t=2 t=2
T -1/2 p

Z, = (me&) S AV 8)
t=2 t=2

The above statistics are nothing but simple modifications of the pooled nor-
malized bias and t-ratio statistics studied earlier in the literature by Harris and
Tzavalis (1999), and Levin et al. (2002) using the defactored data. Note the
particularly simple form of the Z; statistic as it does not require any estima-
tion of the error variance in the denominator, which is standard in the earlier
literature. This is a direct consequence of the defactoring procedure that we
use, which makes the asymptotic covariance matrix of 7~/ 2F>\Y[T,n] equal to
the identity matrix.

For the estimation of the transformation matrix F), we propose using a
version of the moment based procedure discussed in Phillips and Sul (2003).
The purpose of this procedure is to retrieve ;\, the vector of estimated loading
parameters, together with f], the estimated covariance of v;, as the minimiz-
ers of the sum of squared errors of A and ¥ from V = T Zthz E,E!, where
E, =Y, - BXt — pY;_1 and p is the least squares estimator of p. This is
different from the procedure employed by Phillips and Sul (2003), which uses
V=r" Zthz AE;AE] to estimate V. This estimator is, however, only con-
sistent as T — oo under the null hypothesis suggesting that there should be



some merit in using V, which is consistent under the null as well as under the
alternative hypothesis. Indeed, since V is consistent for V under both the null
and alternative, this indicates that the minimization of the sum of squared er-
rors may be carried out with respect to only A and 3. The implication is that
Aand & may be obtained as

(A $) = arg min tx ((f/ SR MWV - M’)’) . 9)

The solution of this problem satisfies the two equations A = (MA)~H(VA — £A)
and 3 = diag(V — AN ). Obviously, since there exist no closed form solutions
for A and ¥, the minimization of (9) cannot be done directly but needs to be
carried out iteratively. To this end, we engage in an recursive procedure using
the following updating scheme

o= (T (VX"—l—Z’“—lA’“—l),

Z’I‘

diag (V - Aw’) .

The procedure is initiated by choosing a vector A° of starting values for A,
which is used to compute X0 = V — A0\ The updating then continues un-
til convergence or until the number of iterations reaches some predetermined
upper boundary. Once A and ¥ has been obtained, a consistent estimator
of A* may be constructed by taking the eigenvectors of the projection matrix
Q= Iy — 5\(5\’5\)*15\' that correspond to unit eigenvalues. If we denote the
resulting estimator by A*, then F may be constructed as Fy = (A¥SA*)~1/2)*
Using F, we may then transform the data as in (7) and (8) giving Y;* = F7\Y;.
Since this transformation asymptotically removes the cross-sectional dependence
of the data, Y;* is asymptotically independent cross-sectionally as T — 0.
Hence, the transformed data may be used to test the unit root hypothesis.

As will be shown in Section 4, the limiting distributions of the above statistics
are free of nuisance parameters associated with the underlying data generating
process (DGP). Once we allow for the possibility of nonzero constants and time
trends in (1), however, the distributions of the statistics will no longer be be
invariant with respect to these nuisance parameters. Therefore, in order to
obtain statistics that are asymptotically similar in Model 2, the data should
be demeaned prior to using the formulas in (7) and (8). For Model 3, the
data should be both demeaned and detrended to account for the linear trend
appearing in (1). Thus, as in the case of a single time series, if a deterministic
element is present but not accounted for when constructing the test statistics,
the ensuing unit root test will be inconsistent. Therefore, in order to obtain
tests that are asymptotically similar, we use Y; and not Y; when constructing
the statistics.

Similarly, when Assumption 4 is relaxed, the statistics in (7) and (8) are
no longer asymptotically similar and needs to be modified to account for the



temporal dependence in the DGP. Under Assumptions 2 and 3, this may be
accomplished by simply augmenting the right-hand side of (1) with lagged values
of AY;. In so doing, it is necessary that the lag order K, say, is chosen sufficiently
large to whiten the errors. This suggests that in order to obtain similar test
statistics, we should replace Y; in (7) and (8) with the projection errors of Y;
from K lags of AY;. Thatis, ¥; = Y, — ﬁXt should be replaced with Y, =
Y, — BXt — Zszl $rAY; . The defactored data Y;* may then be computed as
before by pre-multiplying the projection errors Y; by Fy.

4 Asymptotic distribution

In this section, we characterized the asymptotic distribution of the proposed
unit root test statistics. In so doing, we shall exploit the fact that the orthog-
onalization procedure applied here is consistent passing T° — oo for a fixed
N. This means that the limiting distribution of the tests may be derived in a
relatively straightforward fashion using the simple sequential limit theory de-
veloped by Phillips and Moon (1999). It will be shown that both statistics
require standardization based on the first two moments of the following vector
Brownian motion functional

1 1 4
Ki = (K»L‘l,K»L‘Q)/ = <A Wi*z,/o W:dW:) 5 (10)

where L

1 1 -
Wi =W} - ( / W,L.*X’) ( / XX’) X.
0 0

The vector functional K; takes the scalar Browninan motion W;* as its only
argument. This scalar is the Hilbert projection of W;* onto the space orthogonal
to the vector X, which is the limiting trend function. Specifically, let Dy =
diag(1,T) denote a matrix of normalizing orders that is conformable with X; =
(1,t), then D' X(p,) = X = (1,7) as T —> oo. In Model 1, X; = {@}
so W} reduces to W;. In Model 2, X; = 1 in which case W, represents the
demeaned standard Brownian motion W — fol W, Similarly, in Model 3, X; =
(1,¢) so W is the demeaned and detrended standard Brownian motion W3 +

(6r —4) fol WF + (6 — 12r) fol rWi. All moments of K; exist. In particular,
we shall posit © = (01,02) and ¥ to be, respectively, the mean and the
variance of K;. Tt will also be useful to define ¢ = (—020;2,07") and ¢ =
(—2’1@2@1_3/2, @1_1/2)’. With these definitions in hand, we are now ready to

state our first main result.

Theorem 1. (Asymptotic distribution.) Under Assumption 1 through 3, as
T — oo followed by N — oo

TN'?Z, - N'?0,0;" = N(-ug, ¢'S9), (11)



Z,— N'Y20,0;'% = N(—pe0l/? ¢'So). (12)

The proof of Theorem 1 is outlined in the appendix. It proceeds by showing
that the intermediate limiting distributions passing 7" — oo of the unit root
statistics can be written entirely in terms of the elements of the vector Brown-
ian motion functional K;. Therefore, by virtue of cross-sectional independence
of the defactored data, the limiting distribution of the test statistic can be de-
scribed in terms of differentiable functions of i.i.d. random variables to which
the Delta method is applicable. Hence, by subsequently passing N — oo, we
obtain a limiting normal distribution for the test statistic, which depend only
on the first two moments of K.

Notice the difference between this result and the asymptotic theory for
univariate time series, which typically involves moments of diffusion processes
rather than standard Brownian motions. In particular, Theorem 1 shows that
the statistics are asymptotically normal under both the null and alternative
hypotheses. Under the null, gy = 0 in which case Theorem 1 shows that the
distributions are mean zero and and only depend on the moments of the Brow-
nian motion functional K;. When puy > 0, however, although they are still
asymptotically normal and similar with respect to the variance of the error pro-
cess, the distributions depend on the nuisance parameter pg. Theorem 2 shows
that this dependency causes a miscentering of the limiting distributions of the
test statistics. The expected value of these distributions are negative, which
imply that they will tend to shift leftwards as we move away from the null
hypothesis. This means that the tests are unbiased and that their asymptotic
local powers therefore are greater than their size. The drift of the distributions
depend on the average of the deviations ;. Thus, the statistics will tend to
diverge towards negative infinity as 6; grows arbitrarily large for at least some
i. For a given value # > 0, optimal power is obtained when 6; = 6 for all ¢,
which is not unexpected given our pooling approach.

Under a fixed specification of the alternative hypothesis, the value taken by
the autoregressive parameters do not depend on N or 7. In this case, the prob-
ability that the statistics take on a more negative value than the critical value
provided by the standard normal distribution approaches one asymptotically
as T — oo followed by N — oo. Apparently, in spite of the fact that the
statistics are pooled, they may be used to construct consistent tests against the
heterogenous type of alternative considered here.

Theorem 1 indicate that each of the standardized statistics converges to a
normal distribution whose moments depend on the underlying vector Brownian
motion functional K;. As we have seen, since it is a relatively straightforward
matter to adjust the formulaes in (7) and (8) to account for the effects of weakly
dependent disturbances, the results of Theorem 1 are quite general and they
apply regardless of the deterministic specification of (1). If the test statistics
are based on (1) with no deterministic terms, then X is the empty set and the
results of Theorem 1 apply directly to the standard Brownian motion W;*. If

10



(1) is fitted with a constant, then the limiting distributions of Z, and Z; still
have the same form as in (11) and (12) but now the moments are based on the
demeaned standard Brownian motion W} — fol W, Analogously, if (1) involves
fitted constant and trend terms, then the limiting distributions in (11) and (12)
retain their stated forms but involve moments of the demeaned and detrended
standard Brownian motion W} + (67 — 4) fol Wi+ (6 —12r) fol rWr.

The appropriate moments needed for computing the standardized test statis-
tics are presented in Table 1. They have been obtained by direct calculation
using the properties of Brownian motion. The implication of this is that we
can use the results of Theorem 1 to compute standardized test statistics, which
only depend on the estimated values of Z, and Z;, and their moments. Since
these moments are available from Table 1, the standardized statistics can be
readily computed and used for statistical inference on the unit root hypothesis.
As suggested by Theorem 1, it is possible to construct the tests as one-sided
using only the left tail of the normal distribution to reject the null hypothesis.

5 Monte Carlo simulations

In this section, we compare and evaluate the small-sample properties of the
proposed test statistics relative to that of some competing tests that build on
the work of Levin et al. (2002), and Harris and Tzavalis (1999), Bai and Ng
(2004), and Moon and Perron (2004). For this purpose, a small set of Monte
Carlo experiment were conducted using the following DGP

Yyit = o+ Bit + piyis—1 + 2, (13)
Zit = TNFY A+ v, (14)

where y;0 = 0 and (\;, F},v;r) ~ N(0,1I3). For each experiment, we gener-
ate 1,000 panels with N € {10,20} individual and T' € {100,200} time series
observations. The DGP is parameterized as follows. For the deterministic com-
ponent, we have three different configurations, each of which correspond to one
of our three model specifications. Specifically, o; = 3; = 0 in Model 1, o; = 0
and §; ~ N(0,1) in Model 2, and («;, 8;)" ~ N(0,I3) in Model 3. Each model
is taken as a separate experiment.

For each model, we consider a small set of separate experiments, which
corresponds to different parameterizations of p; and 7. For the autoregressive
parameter p;, we have two cases. Under the null hypothesis, we have p; = 1
for all i. Under the alternative hypothesis, we shall consider several different
autoregressive parameterizations. In particular, to be able to infer the increased
power that derives from increasing the size of the panel, we shall consider a fixed
alternative hypothesis, which is independent of N and T.

The parameter 7 € {0, 1,2} controls the relative importance of the common
and idiosyncratic disturbances. A larger value of T represents a greater weight

11



being attached to the common disturbances relative to the idiosyncratic ones.
When 7 = 0, then there is no common factor and the individuals of the panel are
therefore independent. Conversely, when 7 # 0, then there is a common factor
present, which induces the cross-sectional correlation among the individuals.
Specifically, while 7 = 1 correspond to a situation in which the common and
idiosyncratic disturbances have equal weight, 7 = 2 represent a situation when
the common disturbances are twice as important as those emanating from the
idiosyncratic error term.

For the estimation of the loading parameters, we use the iterated method of
moments procedure laid out in Section 3. Towards this end, we set the maxi-
mum number of iterations to 50 and the convergence criterion for the loading
parameters is set to 0.0001. Moreover, to be able to evaluate the comparative
merit of the proposed tests, we compute six alternative tests. The first two are
constructed under the assumption of no cross-sectional dependence. They are
the pooled Dickey-Fuller type t-ratio and normalized bias statistics proposed by
Levin et al. (2002), and Harris and Tzavalis (1999). The ¢-ratio and normalized
bias statistics will henceforth be denoted by DF; and DF),, respectively. The
second pair of statistics, abbreviated M P, and M P,, correspond to employing
the DF, and DF, statistics to the defactored data when the factor has been
removed using the method suggested by Moon and Perron (2004). Essentially,
what Moon and Perron (2004) proposes is to first estimate the factor loadings
using principal components and then to defactor the data using the projection
matrix spanning the orthogonal space of the loadings, which is similar to the
procedure used here.

The third pair of statistics is also based on using DF; and DF), on defac-
tored data but now with the factors being removed using the method of Bai
and Ng (2004). The idea put forth by Bai and Ng (2004) is to eliminate the
cross-sectional dependence under the null by projecting the data onto the non-
stationary factor f; = Z;Zl F;. In doing so, one needs to obtain consistent
estimates of f;. Bai and Ng (2004) show that this can be accomplished by first
estimating F; by principal components on differentiated data and then to con-
struct f; = Z;Zl Fj. To have an intuition on this, consider the DGP described
by (13) and (14) under the null when 7 =1 and o; = 8; = 0 as in Model 1. In
this case, the nonstationary data may be written as y;; = A f; + Z§:1 V45, which
suggests that Ay;; = AF; + v is stationary and that estimation by principal
components is feasible. Thus, since ft is consistent for f;, E, = Yit — A ft will
be cross-sectionally independent and therefore suitable for testing the unit root
hypothesis. The resulting ¢-ratio and normalized bias statistics will be denoted
by BN; and BN,, respectively.

All statistics except BN; and BN, have the same critical values as the
proposed statistics. The asymptotic distribution of the BN, and BN, statistics
are not available for the model with a linear time trend but may be derived using
the results of Theorem 3 in Bai and Ng (2004). The mean and the variance of the
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statistics are then obtained by means of Monte Carlo simulation. To this effect,
we make 100, 000 replications of a single random walk of length 7" = 10, 000 with
standard normal innovations. The simulated mean and variance are —1.2255
and 0.3017 for the BN, statistic and —3.0039 and 7.2496 for the BN, statistic.
All tests are carried out on the five percent level and all powers are adjusted for
size so that each test has the same rejection frequency of five percent when the
null hypothesis is true. All computational work is performed in GAUSS.

Consider first the empirical size of the tests presented in Table 2. All tests
should have a rejection rate of five percent when 7 = 0. In agreement with
this, Table 2 illustrates that the empirical size of the t-ratio tests generally
lies very close to the nominal level in most panels. The corresponding results
for the normalized bias statistics suggest that there is an overall tendency for
these tests to over-reject the null hypothesis when it is true. When 7 > 0,
we expect the DF; and DF), tests to suffer from size distortions as they do
not account for the presence of cross-sectional correlation. This is confirmed
by Table 1, which indicates that the size may be seriously distorted when the
errors admit a common factor structure. In particular, the table suggests that
the size distortions are substantial and that they tend to get larger and becomes
very serious as N increases. As expected, the distortions increase as the degree
of cross-sectional correlation increases. The results for the other tests are much
more encouraging with only small size distortions in most cases. The results
for the proposed tests are particularly good. In fact, size accuracy appear to
be almost perfect in most panels and it generally improves as both N and T
increases.

Next, we continue to the results on the size-adjusted power of the tests
presented in Tables 3 through 5. In this case, the results suggest that the DF;
and DF,, tests enjoy augmented power when 7 = 0 and there is no cross-sectional
correlation. As expected, the power is higher the larger is the deviation from
the null hypothesis. When p; ~ U(0.9,1), we see that the power is generally
very good and that it approaches one as N and T increases. Interestingly, the
power of the tests in Model 1 with no deterministic components appears to be
higher than that for Model 2 with a fitted intercept, which, in turn, appears to
be higher than that for Model 3 with fitted intercept and trend terms. Of cause,
this is not unexpected given the well known incidental trends problem (see, e.g.,
Moon and Perron, 2004). Furthermore, as predicted by asymptotic theory, we
see that the power of the tests generally falls as the support of p; gets narrower.

When 7 > 0 and the data is correlated cross-sectionally, the power of the
DF; and DF), tests fall relative to the power of the other tests. In fact, the
tables suggest that the power of DF; and DF), falls strictly below that of the
other tests. In this case, the simulations suggest that the BN, and BN, tests
generally perform best with the power of the proposed tests being only slightly
lower. In addition, and in agreement with the simulation results presented by
Moon and Perron (4004), we see that the power of all tests decline significantly
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Figure 1: Local power when 7 = 0.
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as the value of 7 increases. In particular, the results suggest that the power
may be very poor, and practically nonexisting in some cases, when the tests
are fitted with both an intercept and a linear time trend. The power usually
improves, however, as the size of the panel increases, especially along the time
series dimension.

Theorem 2 reveal that the tests have different drift terms under the local
alternative hypothesis, which means that they have different local power func-
tions. To study the local power of the tests, we make the simplifying assumption
that the autoregressive parameters take on a common value p; = p for all i.. We
then simulate size-adjusted powers for different autoregressive parameterizations
as we move away from the null. The results for the leading case when 7' = 100
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Figure 2: Local power when 7 = 1.
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and N = 10 are presented in Figures 1 through 3.! The figures suggest that
the Z, test is most powerful in the vicinity of the null. In addition to this, the
figures suggest that the tests based on demeaned and detrended data are least
powerful while those based on raw data are most powerful.

In summary, we find that the DF} and DF), tests generally suffer from serious

size distortions in the presence of cross-sectional dependence. In contrast, we
find that the proposed tests tend to display smaller size distortions than the
other tests considered and, at the same time, maintain reasonable power in

small samples.

n Figures 1 through 3, the curves representing the local power of the test statistics have
been smoothed by means of a least squares spline of neighboring points.
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Figure 3: Local power when 7 = 2.
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6 Conclusions

During the last few years there has been an immense proliferation of research
concerned with the problem of testing for unit roots in panel data. Most of
these studies assume that the individuals of the panel are independent. For
many empirical applications, however, cross-sectional independence seem like a
very restrictive assumption. Recognizing this shortcoming, this proposes two
panel unit root tests that may be used when the cross-sectional dependence can
be described by a single common factor that may exert disparate effects on the
different individual time series of the panel. In order to defactor the data, we
propose using a version of the procedure recently developed by Phillips and Sul
(2003), which is based on estimating the factor loadings by iterated method of
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moments. Sequential limit arguments reveal that the tests reach a limiting nor-
mal distribution under the null hypothesis and that they are unbiased against
the heterogeneous local alternative hypothesis. In our Monte Carlo study, we
demonstrate that the tests have good size properties and reasonable power. We
also find that the proposed tests compares favorably to a number of different
tests that also presumes a common factor structure for the cross-sectional de-
pendence.
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Appendix A Mathematical proofs

In this appendix, we derive the limiting distributions of the pooled unit root
test statistics. Unless otherwise stated, the limit arguments are taken passing
T — oo with N held fixed.

Proof of Theorem 1. In order to derive the asymptotic distributions, we
multiply the test statistics by T' in which case (7) and (8) can be rewritten as

T -1 T
TZ, = <T2 > Y,-I'_lY{{_1> Ty Vi AY, (A1)
t=2

t=2

Zy

T —1/2 T
(T_2 > Yi?/1Yi?1> Ty Y AY (A2)

t=2 t=2

Under Assumption 1 through 3, we have p; = Iy — T-'N~1/20, which imply
that AY;; in (A1) and (A2) can be written as
AYi = (p—INYia,+7Z;
N=Y2r=leyy |+ 77, (A3)
Let us define Qq = T2,V Vi |, Qo= T~ 'Y,V | Z5 and Q3 =
T2, V' |6V, By Theorem 4.4 of Hansen (1992), it is possible to show

that T*I/QFAY[TT] = F\J =J as T — oo, where J = (Jy,...,Jy_1) is a
N — 1 dimensional diffusion process such that

J, = /T eei(rfs)N_l/QdWi — W, + N71/20i /T eei(rfs)N_l/QWi' (A4)
0 0

This implies that we have the following limits as T" — oo
1 N-1 .1
o = / J =y / 72, (A5)
0 = Jo
1 N-1
Q = / JAWT =Y / JrAW;, (A6)
0 - Jo

1 N-1 1
o > [ror=So[ an
0 =1 0

Now, since W* is i.i.d. over the cross-section, (A4) implies that J* must be
so too. Thus, the limiting distributions of @1, @2 and Q3 passing T' — oo
is i.i.d. over the cross-section. Another implication of (A4) is that J; = W;
as N — oo and that J; = W; if §; = 0 for a fixed N. Hence, the lim-
iting process passing T — oo and then N — o0 is the same under both
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the null and the local alternative hypothesis. One implication of this is that
limy—— oo N1E(Q1,Q2) = O = (01,05)". Also, from Levin et al. (2002), the
variance of K; is given by ¥ = diag(X11,Y92) for all . To derive the limit-
ing distributions of the test statistic, we shall make use of the Delta method,
which provides the limiting distribution for continuously differentiable transfor-
mations of i.i.d. vector sequences. In so doing, we substitute AY;; from (A3),
which means that (Al) and (A2) can be rewritten as

TZ, = Q' (Q2—N72Qa), (A8)
Zi = Q7 (Q- NTV2Qs). (A9)
The statistics in (A8) and (A9) may be rewritten as
TNY2Z,+ pg — N'20,07 = g+ NY2(NT1Qy — ©,) (N_1Q1)71
T+ ONYV2e, (Vi) - ert)
- (Nlel)_lelQ?,, (A10)
Zi+ 1g@Y? = NV20,07% = 1,017 £ NV2(NT1Qy — 0,) (N7'Qy)

+ NV, (V@) -6t
— (NT1Qy) VA NTIQs. (A11)

The terms appearing in (A10) and (A11) with normalizing order N~! converge
in probability to the means of the corresponding random variables by virtue of
a law of large numbers as T — oo and then N — oo. Hence, N~1Q; 2 e,
and N~1Q, & 0,. In addition, by Corollary 1 of Phillips and Moon (1999),
N-1Q; 5 1e®1 as T — oo prior to N. Moreover, by the Lindberg-Lévy
central limit theorem, N1/2 (N_lQQ — @2) = N(0,X22). The remaining ex-
pressions involve continuously differentiable transformations of i.i.d. random
variables. Thus, by the Delta method, as T' — oo prior to N

NYV2((NTIQ) T - ert) = N(0,67' %), (A12)
N1/2 ((N_lQl)_1/2 . @1—1/2> = N(0’4—19I3211). (A13)

Together, these results imply that the expressions appearing on the right hand
side of equations (A10) and (A11) are mean zero with variance ©7*03%; +
@szgg and 4’1(9;363211 +@f1222, respectively. This establishes the required
results. |
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Appendix B Tables

Table 1: Asymptotic moments

Model 0,07} P'Yp 0,0, 'S
1. No constant or trend terms 0 2 0 1
2. Individual specific constants -3 51/5 —/3/2 8/10
3. Individual specific constants and trends ~ —15/2 2895/112 —,/15/4 277/448
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Table 2: Empirical size

Model 7 T N DF, DF, Z Z, MP, MP, BN, BN,
1 0 100 10 0.079 0.121 0.073 0.140 0.091 0.154 0.085 0.147
1 0 200 10 0.082 0.139 0085 0.148 0.098 0.156 0.090 0.155
1 0 100 20 0.065 0.093 0062 0096 0.063 0.099 0.065 0.095
1 0 200 20 0.065 0.088 0056 0093 0.065 0.099 0.059 0.093
2 0 100 10 0059 0.093 0.077 0.135 0.153 0.189 0.084 0.149
2 0 200 10 0088 0.114 0.076 0.125 0.130 0.174 0.087 0.155
2 0 100 20 0066 0081 0.164 0.202 0.205 0.230 0.069 0.112
2 0 200 20 0064 0077 0107 0128 0.127 0.149 0.064 0.088
3 0 100 10 0086 0078 0.099 0.122 0226 0212 0.119 0.121
3 0 200 10 0075 0.082 0.049 0.093 0.156 0.159 0.101 0.108
3 0 100 20 0102 0076 0.177 0.248 0.370 0.298 0.089 0.080
3 0 200 20 0081 0077 0117 0.153 0.198 0.206 0.086 0.091
1 1 100 10 0.197 0277 0.062 0.115 0.074 0.132 0.077 0.128
1 1 200 10 0.199 0289 0.081 0.137 0.092 0.146 0.093 0.144
1 1 100 20 0299 0346 0.061 0.098 0.067 0.097 0.064 0.102
1 1 200 20 0303 0351 0.064 0.098 0.067 0.102 0.070 0.102
2 1 100 10 0.191 0235 0.057 0.083 0.093 0.119 0.085 0.132
2 1 200 10 0.180 0.213 0.050 0.080 0.085 0.103 0.078 0.135
2 1 100 20 0268 0296 0.072 0.114 0.098 0.123 0.084 0.116
2 1 200 20 0238 0301 0.059 0.082 0.076 0.093 0.076 0.101
3 1 100 10 0242 0.226 0062 0081 0.120 0.115 0.121 0.125
3 1 200 10 0.187 0.207 0.029 0.056 0.077 0.095 0.103 0.117
3 1 100 20 0318 0281 0.096 0.088 0.153 0.112 0.115 0.103
3 1 200 20 0307 0291 0.057 0.074 0.097 0.090 0.090 0.096
1 2 100 10 0.387 0.443 0060 0.127 0.070 0.121 0.075 0.129
1 2200 10 0370 0419 0079 0.136 0.096 0.151 0.089 0.143
1 2100 20 0500 0.515 0.072 0.113 0.065 0.103 0.070 0.113
1 2200 20 0496 0.511 0.063 0.102 0065 0.109 0.066 0.104
2 2 100 10 0341 0.385 0.064 0.099 0.102 0.122 0.072 0.132
2 2 200 10 0372 0406 0.052 0.089 0.090 0.118 0.063 0.124
2 2 100 20 0468 0491 0.078 0.117 0.08 0.117 0.071 0.113
2 2 200 20 0429 0473 0.055 0.076 0.072 0.086 0.067 0.100
3 2 100 10 0353 0353 0.053 0.067 0.125 0.100 0.119 0.121
3 2 200 10 0318 0319 0.037 0.071 0.090 0.108 0.107 0.118
3 2 100 20 0467 0449 0.100 0.095 0.139 0.108 0.109 0.104
3 2 200 20 0429 0423 0.040 0.049 0.071 0.070 0.089 0.091
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