

LUND UNIVERSITY

Dimensioneringsmetod för brandgasventilation av hisschakt

Jensen, Lars

2007

Link to publication

Citation for published version (APA): Jensen, L. (2007). Dimensioneringsmetod för brandgasventilation av hisschakt. (TVIT; Vol. TVIT-7017). Avd Installationsteknik, LTH, Lunds universitet.

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or recorder.

or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Dimensioneringsmetod för brandgasventilation av hisschakt

Lars Jensen

Avdelningen för installationsteknik Institutionen för bygg- och miljöteknologi Lunds tekniska högskola Lunds universitet, 2007 Rapport TVIT--07/7017

Lunds Universitet

Lunds Universitet, med nio fakulteter samt ett antal forskningscentra och specialhögskolor, är Skandinaviens största enhet för forskning och högre utbildning. Huvuddelen av universitetet ligger i Lund, som har 100 400 invånare. En del forsknings- och utbildningsinstitutioner är dock belägna i Malmö, Helsingborg och Ljungbyhed. Lunds Universitet grundades 1666 och har idag totalt 6 000 anställda och 41 000 studerande som deltar i ett 90-tal utbildningsprogram och ca 1000 fristående kurser erbjudna av 88 institutioner.

Avdelningen för installationsteknik

Avdelningen för Installationsteknik tillhör institutionen för Bygg- och miljöteknologi på Lunds Tekniska Högskola, som utgör den tekniska fakulteten vid Lunds Universitet. Installationsteknik omfattar installationernas funktion vid påverkan av människor, verksamhet, byggnad och klimat. Forskningen har en systemanalytisk och metodutvecklande inriktning med syfte att utforma energieffektiva och funktionssäkra installationssystem och byggnader som ger bra inneklimat.

Nuvarande forskning innefattar bl a utveckling av metoder för utveckling av beräkningsmetoder för godtyckliga flödessystem, konvertering av direktelvärmda hus till alternativa värmesystem, vädring och ventilation i skolor, system för brandsäkerhet, alternativa sätt att förhindra rökspridning vid brand, installationernas belastning på yttre miljön, att betrakta byggnad och installationer som ett byggnadstekniskt system, analysera och beräkna inneklimatet i olika typer av byggnader, effekter av brukarnas beteende för energianvändning, reglering av golvvärmesystem, bestämning av luftflöden i byggnader med hjälp av spårgasmetod. Vi utvecklar även användbara projekteringsverktyg för energi och inomhusklimat, system för individuell energimätning i flerbostadshus samt olika analysverktyg för optimering av ventilationsanläggningar hos industrin.

Dimensioneringsmetod för brandgasventilation av hisschakt

Lars Jensen

© Lars Jensen, 2007

ISRN LUTVDG/TVIT--07/7017--SE(58)

Avdelningen för installationsteknik Institutionen för bygg- och miljöteknologi Lunds tekniska högskola Lunds universitet Box 118 22100 LUND

Innehållsförteckning

1	Inledning och problemställning	5
	Rapportens uppläggning	5
	Kalla fallet utan brand	6
	Varma fallet med brand	0
	Dian dain a suid in ataämmin a	8
	Biandning vid instromning	8
	Diandning vid instabil skilttning	10
	Biandining vid histaon skikuning	11
2	Modell med fullständig omblandning	13
	Omräkningsformler	14
	Omräkning av läckageareor	15
	Beräkning av tryckskillnad	17
	Temperaturberäkning med värmeförlust	17
	Temperaturberäkning utan värmeförlust	17
	Beräkning av flöden	17
	Godtyckligt brandplan	18
	Godtycklig spaltvidd	18
3	Parameterkänslighet för sexton fall	19
	Omräkning av begränsat brandgaslager	36
4	Fördjupning fall 13	41
5	Generell modell och beräkningsmetod	45
	Tvåzonsmodell	45
	Spaltmodell	45
	Beräkning av temperatur och utflöde	46
	Tretton modellfall och åtta testfall	46
6	Jämförelse med PFS	51
-	Hisschakt	52
	Testfall	52
	PFS-modell 1 med en enda cirkulation	52
	PFS-modell 2 med våningsvis cirkulation	52
7	Sammanfattning och slutsatser	57
	Inverkan av hisschaktshöid z_b	57
	Inverkan av hisschaktshöid T_b	57
	Inverkan av värmeövergångstal h	57
	Inverkan av spaltvidd d	57
	Inverkan av utetemperatur T_{μ}	58
	Inverkan av brandtryck p_h	58
	Generell modell och beräkningsmetod	58
	Sammanfattande slutsats	58

1 Inledning och problemställning

Brandgasspridning mellan brandceller skall förhindras. Detta gäller även mellan olika våningsplan via hisschakt. Brandgasspridning kan förhindras genom att hålla undertryck i hela hisschaktet. Neutrallagret måste därför ligga över översta våningsplan. Syftet med denna rapport är att undersöka hur det nödvändiga utflödet måste dimensioneras för att säkerställa undertryck i hela hisschaktet för ett statiskt fall.

Rapportens uppläggning

Denna rapport skulle egentligen inte ha skrivits, eftersom den inte var planerad. Det fanns inga direkta anslag för uppgiften. Arbetet har genomförts på kort tid under två veckor. Rapporten har växt fram mer eller mindre avsnitt för avsnitt i kronologisk ordning. Användbarheten för vissa delar kan variera, men heller redovisa allt än redigera om, skriva om och ändra stora delar av materialet. Några ord om dispositionen ges nedan.

Den här redovisade beräkningsmetoden bygger på att det råder fullständig vertikal omblandning i ett hisschakt mellan inträngande brandgaser och övrig inträngande luft. Vilka luftströmningar och luftrörelse som kan komma i fråga i ett hisschakt gås igenom redan i denna inledning. Slutsatsen är att brandgaser och övrig luft i hisschaktet blandas mer eller mindre. Det går inte att ha varmare luft i nedre delar och kallare luft i övre delar av ett hisschakt.

En principmodell för att beräkna nödvändigt utflöde och hisschaktstemperatur redovisas i avsnitt 2. Modellen förutsätter endast tre läckage i form av en spalt över brandplan, en spalt för brandplan och en spalt under brandplan. Denna enkla modell och beräkningsmetod är något överspelad och skall ersättas av en mera generell modell och beräkningsmetod som redovisas i avsnitt 5. Teori och beräkningsresultatet för de två modellerna och metoderna är givetvis identiska.

Principmodellen från avsnitt 2 beräknas igenom i avsnitt 3 för sexton fall med olika spaltvidd, utetemperatur, brandtryck och värmeförlust. Både utflöde och hisschaktstemperatur redovisas med isodiagram med hisschaktshöjd som x-axel och brandtemperatur som y-axel.

En fördjupning görs i avsnitt 4 för det värsta fallet med låg utetemperatur, högt brandtryck och ingen värmeförlust. Redovisningen omfattar undertryck, termisk gradient, inträngande brandeffekt och olika kvoter för volymflöde, massflöde och densitet mellan inträngande brandgaser och övrig luft.

En reviderad beräkningsmodell för nödvändigt utflöde och hisschakttemperatur för ett hisschakt med ett godtyckligt antal godtyckliga spalter redovisas i avsnitt 5. Samma beräkningsmodell tillämpas för tretton olika modellfall och åtta olika testfall med olika betingelser. Modellfallen är valda för att kunna jämföra olika parametrars betydelse med hjälp av en utgångsmodell, vilken är den första modellen.

Kalla fallet utan brand

Ett dimensioneringskrav är att det kalla fallet utan någon brand måste klaras av. Tryckskillnaden över hissdörrarna ökar med avståndet till neutrallagret. Om neutrallagret ligger i överkant av översta våningsplan och läckaget förenklas till en spalt med vidden d över hela hisschaktets höjd z fås följande uttryck för det nödvändiga utflödet q med medelhastigheten vöver läckarean d z:

$$q = d z v \tag{(m3/s)} (1.1)$$

$$v = 2 \left(2(\rho_u - \rho_i) g z / \rho_i \right)^{0.5} / 3$$
 (m/s) (1.2)

En kommentar till (1.2) är att medelhastigheten för en spalt med en från noll linjärt ökande tryckskillnad är lika med 2/3 av den maximala strömningshastigheten i spalten. Kvadratroten i (1.2) är strömningshastigheten för den största tryckskillnaden.

Uteluftens och inneluftens densitet ges av ρ_u respektive ρ_i och parametern g är jordaccelerationen. Ett exempel med neutrallagret överst för ett hisschakt med höjden 60 m och en termisk gradient på 1 Pa/m visar hur tryckskillnaden och hastigheten varierar med nivå i Figur 1.1 respektive 1.2. Medelhastigheten enligt (1.2) redovisas också i Figur 1.2. Det nödvändiga utflödet är proportionellt mot på kvadratroten för den termiska gradienten. Några siffror för det relativa utflödet redovisas nedan som funktion av utetemperaturen för utgångsfallet med innetemperatur 20 °C och utetemperatur på -20 °C.

utetemperatur °C	-20	-15	-10	-5	0	5	10	15
termisk gradient Pa/m	1.861	1.597	1.343	1.098	0.862	0.635	0.416	0.204
relativt utflöde -	1.000	0.926	0.849	0.768	0.681	0.584	0.473	0.331

Varma fallet med brand

Om brandgaser tränger in i hisschaktet ökar det hisschaktluftens temperatur, vilket i sin tur ökar den termiska gradienten, tryckskillnaden och alla inflöden. Några siffervärden redovisas i sammanställningen nedan på hur det nödvändiga utflödet beror på hisschaktluftens temperatur relativt ett basfall med innetemperatur 20 °C och en utetemperatur på -22.5 °C, vilket ger en termisk gradient lika med ($\rho_u - \rho_i$) g på 2 Pa/m.

Siffrorna i sammanställning nedan visar att det nödvändiga utflödet ökar betydligt med ökande hisschakttemperatur. Ett fördubblat utflöde krävs när hisschakttemperaturen är 325 °C jämfört med det kalla fallet med innetemperaturen 20 °C och utetemperaturen -22.5 °C.

hisschakttemperatur °C	20	50	100	150	200	250	325
relativt utflöde -	1.000	1.244	1.504	1.676	1.800	1.894	2.000

Den termiska gradienten begränsas upp till grovt 12 Pa/m, vilket innebär att utflödet kan bli högst en faktor $6^{0.5} \approx 2.6$ större än det kalla utgångsfallet med gradienten 2 Pa/m. Detta är ett akademiskt exempel med oändlig temperatur och noll densitet för hisschaktluften.

Figur 1.1 Samband mellan tryckskillnad och nivå med neutrallager överst och termisk gradient 1 Pa/m för hisschakt med höjden 60 m.

Figur 1.2 Samband mellan inströmningshastighet och nivå för tryckskillnad enligt Figur 1.1.

Luftströmning i hisschakt

Hisschaktluftens temperatur bestäms av inflödenas temperatur och storlek, väggytornas värmeupptagning och strömningsförhållande i hisschaktet. De avkylande väggarna medför att det finns nedåtgående luftflöden längs väggarna. Hur stora dessa luftflöden kan bli redovisas som funktion av vägghöjd i Figur 1.3 för 8 m hissväggsbredd och olika temperaturskillnad (enligt Danvak grundbok (7.43)). En vägghöjd på 10 m och en temperaturskillnad på 100 °C ger ett neråtflöde på över 2 m³/s.

Inträngande brandflöde kan tolkas som ett plymflöde, vilket kommer att öka i flöde och utbredning uppåt och samtidigt minska i temperatur. Exempel på plymflöden redovisas i Figur 1.4 för olika effekter (enligt Danvak grundbok (7.33)) och med temperaturkurvor.

En plyms ökande flöde beror inblandning av omgivande kallare luft. En plyms utbredning i sidled är ganska stor, vilket innebär att plymens stighöjd kommer att begränsas i ett hisschakt. Utbredningsvinkel är omkring 25 ° och för en plymhöjd på 5 m är utbredningen 2.2 m, vilket motsvarar större delen av ett hisschakts tvärsnitt.

Större delen av ett plymflöde är inblandning. Detta inblandningsflöde kan i stort sett bara tas från hisschaktet högre upp. Plymflödet går uppåt och inblandningsflödet går neråt. Detta innebär att plymens utbredning inte kan ta hela hisschaktets tvärsnitt i anspråk. Om medelhastigheten är den samma uppåt och neråt kommer plymen bara att kunna täcka halva tvärsnittet. Det framgår för samma temperaturskillnad att plymflödet är betydligt större än motsvarande väggflöde. Slutsatsen är trots allt att plymflödet kommer att begränsas och att mer eller mindre fullständig omblandning sker i hisschaktet.

Blandning vid inströmning

Undertrycket i ett trapphus kan skapa betydande inströmningshastigheter. Höga inströmningshastigheter medför i sin tur att särskilt inträngande brandgaser blandas väl med hisschaktsluften. De inträngande brandgaserna hinner inte formera en brandplym förrän brandgaserna är betydligt utblandade.

En måttlig tryckskillnad på 60 Pa ger för luft med temperaturen 20 °C en hastighet på 10 m/s. En halverad tryckskillnad 30 Pa, en fördubblad temperatur 313 °C (densitet 0.6 kg/m³) ger samma hastighet 10 m/s. Samma temperatur 313 °C och tryckskillnaden 120 Pa ger hastigheten 20 m/s. Läckareornas hela geometri har givetvis också stor betydelse för hur bra blandningen kan bli.

Figur 1.3 Väggflöde för 8 m vägg som funktion av höjd och för olika temperaturskillnader.

Figur 1.4 Plymflöde som funktion av stighöjd och för olika effekter och temperaturskillnad.

Bubbelströmning

En möjlig strömningsform kan vara att när en plym täcker halva hisschaktets tvärsnitt övergår strömningen i bubbelform. De varmare bubblorna stiger uppåt kyls av och minskar i storlek och samtidigt värms den omgivande luften i hisschaktet. Stighastigheten är en funktion av bubbelradien R och densitetsskillnaden $d\rho$ på formen (1.3) nedan där omgivande lufts densitet ges av ρ och jordaccelerationen av g.

$$v = [2d\rho g R / 3 \rho]^{0.5}$$
(m/s) (1.3)

En fri bubblas stighastighet redovisas i Figur 1.5 som funktion av bubbelradie och olika temperaturskillnad mellan bubbla och omgivning. Stighastigheten kommer grovt att halveras för ett fall där en bubbla upptar halva tvärsnittet, eftersom luft strömmar neråt med samma hastighet som en bubbla rör sig uppåt för att flytta luft in bakom bubblan och samtidigt för att flytta undan luft ovanför bubblan. Detta innebär att en bubbla relativt omgivande luft rör sig med stighastigheten enligt (1.3), vilket innebär att den verkliga stighastigheten halveras.

Figur 1.5 Stighastigheten för en fri bubbla och för olika temperaturskillnader.

Blandning av instabil skiktning

Varmare luft strävar uppåt och kallare luft neråt. Hur snabbt omblandning sker, kan undersökas för en enkel dynamisk modell för en liggande cylindrisk luftmassa med massan moch obalansen mellan två halvor på dm. Cylindern delas av ett plan som går genom centrumaxeln för cylindern. Det två halvorna antas ha olika temperatur och därmed olika densitet och massa. Luften betraktas som en stel kropp. Antag vidare att hela massan ligger på ett avstånd r från ett rotationscentrum. Detta avstånd r motsvarar en cylinderradie på $2^{0.5}r$. Obalansens läge i förhållande till ett labilt läge anges med vinkel v i radianer. Modellens geometri och parametrar redovisas i Figur 1.6.

Det vridande momentet *M* kan skrivas som:

$$M = dm \ r \ g \ sin(v) \tag{Nm} \tag{1.4}$$

Tröghetsmomentet ges av:

$$J = m r^2 \tag{kg/m^2} \tag{1.5}$$

Rotationsrörelsen kan beskrivas med sambandet:

$$J \, dv/dt^2 = M \tag{Nm} \tag{1.6}$$

Figur 1.6 Antagen modell för beräkning av stel rotation

Sambandet (1.6) kan förenklas till följande allmänna samband:

$$T^2 dv/dt^2 = sin(v) \tag{Nm}$$
(1.7)

där en karakteristisk tid Tingår och kan anges som:

$$T = (m r / dm g)^{0.5}$$
 (s) (1.8)

Simulering från olika startvinklar med utan någon rörelse redovisas i Figur 1.7 för startvinklarna 1, 2, 5, 10, 20, 30, 60 och 90 °. Kurvorna visar att startvinklarna 1, 10 och 90 ° kräver omkring *6T*, *4T* respektive *2T* för att nå bottenläget med vinkeln 180 °. Notera att en vertikal gräns mellan två olika tempererade luftvolymer motsvarar startvinkeln 90 °. Startvinkeln 0 ° är labilt fall som endast kräver en liten störning för att starta rotationen. Modellen (1.6) har ingen bromsande friktion därför blir rörelsen pendlande.

Vilka värden på den karakteristiska tiden *T* som kan förekomma kan bedömas för ett enkelt exempel med r=1 m, något avrundat g=10 m/s² och obalanskvoten dm/m=0.1 ger T=1 s. Den antagna obalanskvoten kan grovt anses motsvara en temperaturskillnad på 30 K mot den absoluta på 300 K. En mycket mindre temperaturskillnad på endast 0.3 K ger en karateristisk tid T=10 s. Om avståndet r=0.01 och dmg/m=1 blir den karakteristiska tiden T=0.1 s. Detta visar att temperaturskillnader jämnas ut ytterst snabbt inom små avstånd. Slutsatsen är att omblandningsförloppet är snabbt för större temperaturskillnader över på 30 K mellan olika volymer i hisschaktet.

Figur 1.7 Lägesvinkel v enligt (1.6) som funktion av relativ tid t/T för olika startvinklar.

2 Modell med fullständig omblandning

Om antaganden om fullständig omblandning och om ett givet neutrallager görs, går det att ganska enkelt att beräkna temperaturen i hisschaktet och alla inflöden under neutrallagret och flödet uppåt och förbi neutrallagret. Problemet har en obekant temperatur eller densitet för den omblandade hisschaktsluften som skall lösas ut.

Ett andra förenklande antagande är att läckaget till hisschaktet beskrivs med en effektiv vertikal spaltöppning i hela hisschaktets höjd. Varje hissdörrs läckage fördelas jämnt över varje våningshöjd som en enda vertikal spalt. Inför följande beteckningar som även till en del anges i Figur 2.1:

Т	lufttemperatur för hisschakt, °C
T_o	lufttemperatur för utomhus, °C
T_i	lufttemperatur för inomhus, °C
T_s	yttemperatur för hisschakt, °C
T_b	temperatur för brandgas, °C
ρ	densitet för hisschaktluft, kg/m ³
$ ho_o$	densitet för utomhusluft, kg/m ³
$ ho_i$	densitet för inomhusluft, kg/m ³
$ ho_b$	densitet för brandgas, kg/m ³
Z	avstånd till neutrallager, m
Z_t	övre kant hisschakt, m
z_b	undre kant hisschakt, m
Z_g	övre kant brandplan hisschakt, m
d	hissdörrarnas effektiva spaltvidd, m
0	hisschaktets omkrets, m
h	konvektivt värmeövergångstal, W/m ² K
С	specifikt värme för luft, J/kgK
g	jordgravitationen, m/s ²
A_b	omräknad läckagearea till nivån z_b för brandplan, m ²
A_i	omräknad läckagearea till nivån z_b för övriga plan, m ²
∆p	undertryck i hisschakt på nivån z_b , Pa
p_b	brandtryck utanför hisschakt på nivån z_b , Pa
P	utflödeseffekt, W
P_i	inflödeseffekt övriga våningsplan, W
P_s	ytkyleffekt, W
P_b	inflödeseffekt från brandplan, W
v_b	strömningshastighet genom arean A_b på nivån z_b , m/s
v_i	strömningshastighet genom arean A_i på nivån z_b , m/s

Figur 2.1 Hisschaktmodell med beteckningar

Omräkningsformler

Brandplanets och övriga våningsplans spaltläckor räknas om till ekvivalenta läckareor på nivån z_b underkant brandplanet. Omräkningen sker med viktning av nivåskillnaden till neutrallagret med kvadratroten ur den samma eftersom inflödet och tillhörande hastighet är proportionella mot kvadratroten ur tryckskillnaden som i sin tur är direkt proportionell mot nivåskillnaden under neutrallagret eller skrivet som:

$$q \sim v \sim \Delta p^{0.5} \sim z^{0.5}$$

Hela läckagearean placeras på den viktade nivåskillnaden. Den framräknade nivåskillnaden kan omräknas till en godtycklig nivåskillnad varvid läckagearean också omräknas.

Det allmänna uttrycket för viktning över intervallet (z_1, z_2) kan skrivas som:

$$z_{12} = \left[2(z_2^{1.5} - z_1^{1.5})/3(z_2 - z_1)\right]^2$$
(m) (2.1)

Förflyttning av en läckagearea från en nivå z_3 till en annan nivå z_4 görs genom att räkna om läckagearean A_3 som följer till A_4 :

$$A_4 = (z_3/z_4)^{0.5} A_3 \tag{(m2)}$$

Omräkning av läckageareor

De två viktade nivåskillnaderna till neutrallagret för övriga våningsplan och brandplanet beräknas som:

$$z_{tg} = \left[2(z_g^{1.5} - z_t^{1.5})/3(z_g - z_t)\right]^2$$
(m) (2.3)

$$z_{gb} = \left[2(z_b^{1.5} - z_g^{1.5})/3(z_b - z_g)\right]^2$$
(m) (2.4)

Det två omräknade läckageareorna A_i och A_b till nivåskillnaden z_b med omräkningsfaktorerna a_i och a_b för övriga våningsplan respektive brandplanet fås som:

$$A_{i} = a_{i} d (z_{g} - z_{t}) = (z_{tg}/z_{b})^{0.5} d (z_{g} - z_{t})$$
(m²) (2.5)

$$A_b = a_b d (z_b - z_g) = (z_{gb}/z_b)^{0.5} d (z_b - z_g)$$
 (m²) (2.6)

Vad (2.3) och (2.5) innebär kan undersökas för ett fall med $z_t=0$, vilket ger $z_{tg}=2z_g/3$. Omflyttning till nivån z_g innebär att läckagearean skall minskas med en faktor 4/9 enligt (2.5). Areafaktorn för övriga våningsplan i Figur 2.2 visar att den ligger nära den förväntade på 2/3 särskilt när neutrallagret flyttas upp 3 m. Notera dock att siffervärdet 2/3 avser omräkning till den undre gränsen och inte som här ytterligare 3 m ner till brandplanets undre gräns. Areafaktorn för brandplan i Figur 2.3 skall vara mindre än ett, eftersom omräkning sker till den undre gränsen. Kurvorna i Figur 2.4 visar att kvoten A_b/A_i kan skattas bra med förenklingen 1.5 multiplicerat med den geometriska areakvoten.

Figur 2.2 Areafaktor för övriga våningsplan a_i som funktion av z för $z_t = 0$ och 3 m.

Figur 2.3 Areafaktor för brandplan a_b som funktion av z.

Figur 2.4 Kvoten A_b/A_i och den geometriska $a=3/(z_b-3)$ som funktion av z för $z_t = 0$ och 3 m.

Beräkning av tryckskillnad

Tryckskillnaden över de omräknade läckorna Δp på nivån z_b beräknas som:

$$\Delta p = (\rho_o - \rho) g z_b \tag{Pa}$$

Inströmningshastigheterna för luft från övriga plan och brandgas beräknas som:

$$v_i = (2\Delta p / \rho_i)^{0.5}$$
 (m/s) (2.8)

$$v_b = (2(\Delta p + p_b) / \rho_b)^{0.5}$$
 (m/s) (2.9)

Temperaturberäkning med värmeförlust

Värmebalansen för hisschaktet beskrivs med tre termer, värmeutbyte med hisschaktytor, genomflöde övrig luft och genomflöde brandgas, som följer:

$$0 = O z_b h (T_s - T) + \rho_i A_i v_i c (T_i - T) + \rho_b A_b v_b c (T_b - T) (W)$$
(2.10)

Hisschaktstemperaturen T kan beräknas med (2.10) som följer:

$$T = [O z_b h T_s + \rho_i A_i v_i c T_i + \rho_b A_b v_b c T_b] / [O z_b h + \rho_i A_i v_i c + \rho_b A_b v_b c]$$
(°C) (2.11)

Ovanstående ekvationer (2.7,8,9,11) och hisschaktluftens densitet ρ kan beräknas iterativt med hisschaktstemperaturen *T* som en fri variabel. Konvergens fås efter ett fåtal steg.

Temperaturberäkning utan värmeförlust

Om värmeutbytet och brandtrycket försummas, kan hisschakttemperaturen beräknas direkt med (2.11) utan någon iteration. Båda genomflödestermerna har samma faktor $c(2\Delta p)^{0.5}$, vilken kan förkortas bort med slutresultatet nedan med alla parametrar givna i högerledet:

$$T = \left[\rho_i^{0.5} A_i T_i + \rho_b^{0.5} A_b T_b \right] / \left[\rho_i^{0.5} A_i + \rho_b^{0.5} A_b \right] \quad (^{\circ}\text{C})$$
(2.12)

Detta uttryck ger en övre gräns för hisschakttemperaturen och kan användas som ett startvärde för den iterativa beräkningen när värmeutbytet och brandtryck inte försummas.

Beräkning av flöden

Det sökta utflödet q kan beräknas med massflödet och hisschaktluftens densitet ρ som följer:

$$q = (\rho_i A_i v_i + \rho_b A_b v_b)/\rho$$
 (m³/s) (2.13)

Notera att inflödet eller summan av de två inflödena $A_i v_i$ och $A_b v_b$ är större än utflödet, när det finns en värmeförlust till hisschaktets ytor. Det fiktiva avkylningsflöde kan skrivas som:

$$q_s = q - A_i v_i - A_b v_b < 0$$
 (m³/s) (2.14)

Skillnaden mellan inflöde och utflöde kan också beräknas med hjälp av kyleffekten P_s (negativ) som:

$$q_s = R P_s / p c M$$
 < 0 (m³/s) (2.15)

där R, p, c och M är den allmänna gaskonstanten, det absoluta trycket, specifikt värme för luft vid konstant tryck respektive molvikt för luft. Kyleffekten P_s beräknas som:

$$P_s = O z_b h (T_s - T) < 0$$
 (W) (2.16)

Godtyckligt brandplan

Dimensionerande fall för samma brand är nedersta våningsplan. Om bränderna skiljer sig åt för olika våningsplan måste alla fall beräknas. De underliggande våningsplanens läckage från z_b till z_n med motsvarande undertryck från Δp till $\Delta p + (\rho_o - \rho_i)g(z_n-z_b)$ kan beräknas genom att införa ett fiktivt neutrallager s_b som passar ihop ovanstående två punkter enligt:

$$s_b = z_b \Delta p / (\rho_o - \rho_i) g \qquad (m) \qquad (2.17)$$

Den undre gränsen den underliggande delen för detta fiktiv neutrallager s_n beräknas som:

$$s_n = s_b + z_n - z_b \tag{m} \tag{2.18}$$

Den viktade nivå s_{bn} och den omräknade läckarean A_n beräknas enligt (2.1) och (2.2) som:

$$s_{bn} = \left[2(s_n^{1.5} - s_b^{1.5})/3(s_n - s_b) \right]^2$$
(m) (2.19)

$$A_n = (s_{bn}/s_b)^{0.5} d(z_n - z_b)$$
(m²) (2.20)

Godtycklig spaltvidd

Spaltvidden har antagits vara konstant och oberoende av våningsplan. Detta behöver inte vara fallet. Spaltvidden för brandplanet kan tänkas vara större på grund av temperaturpåverkan. Något som påverkar den antagna spaltvidden för alla plan är att det kan finnas stängda dörrar mot hisshall med bättre täthet än hissdörrarna. Brandplanet förutsätter kanske öppna dörrar till samma våningsplan, medan övriga plan har stängda dörrar. Hissdörrar av skjuttyp har grovt en läcklängd på minst 8 m och en läckvidd på minst 3 mm. Detta kan jämföras med slagdörrar i stål med läcklängd 6 m och läckvidd 1 mm. Omräkning till ett våningsplan med höjden 3 m ger spaltvidd 8 mm för skjutdörren och 2 mm för slagdörren. Hissdörrens läckage är alltså minst fyra gånger större än en slagdörrs läckarea. Seriekoppling av två läckor ger en läcka som är mindre än den minsta av de två läckorna. Siffervärden 2 mm kombinerat med 8, 6, 4 och 2 mm ger resultat 1.940, 1.897, 1.789 respektive 1.414 mm.

3 Parameterkänslighet för sexton fall

Ett antal fall har beräknats med alla kombinationer för fyra variabler för två siffervärden vardera, vilket ger sexton fall enligt Tabell 3.1 och 3.2. Två variabler, hisschaktshöjd z_b till neutrallagret och brandtemperatur T_b , har varierats som x-axel (10,100) m respektive som y-axel(100,1000) °C för ett isodiagram för hisschaktstemperatur T eller hisschaktsutflöde q. Hisschaktets omkrets O har varit 10 m. Våningshöjden har varit 3 m. Inne- och yttemperatur är 20 °C. Neutrallagret har lagts i överkant översta våningsplan, vilket innebär att $z_t = 0$. Detta ger en undre gräns för nödvändigt brandventilationsflöde. Den andra gränsen z_g blir med våningshöjden 3 m z_b -3.

variabel	beteckning	sort	siffervärde ₁	siffervärde ₂
värmeövergångstal	h	W/m ² K	0	10
spaltvidd	d	m	0.010	0.020
utetemperatur	T_o	°C	20	-20
brandtryck	p_b	Pa	0	1000

Alla sexton fall redovisas med hisschakttemperatur och utflöde vid neutrallagret med två figurer per sida. Översta varieras först och därefter följer de i ordning neråt enligt sammanställningen i Tabell 3.2. Varje figurs variabelkombination anges över varje isodiagram. Redovisningen sker också uppslagsvis utan och med värmeutbyte på en vänstersida respektive motstående högersida.

Tuotin 5.2 Dilliun				
Figur	$h \text{ W/m}^2\text{K}$	d m	<i>T</i> ^{<i>o</i> °C}	p _b Pa
3.1ab	0	0.010	20	0
3.2ab	10	0.010	20	0
3.3ab	0	0.020	20	0
3.4ab	10	0.020	20	0
3.5ab	0	0.010	-20	0
3.6ab	10	0.010	-20	0
3.7ab	0	0.020	-20	0
3.8ab	10	0.020	-20	0
3.9ab	0	0.010	20	1000
3.10ab	10	0.010	20	1000
3.11ab	0	0.020	20	1000
3.12ab	10	0.020	20	1000
3.13ab	0	0.010	-20	1000
3.14ab	10	0.010	-20	1000
3.15ab	0	0.020	-20	1000
3.16ab	10	0.020	-20	1000

Tabell 3.2 Simuleringsfall

Figur 3.1a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 1.

Figur 3.1b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 1.

Figur 3.2a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 2.

Figur 3.2b Hisschaktutflöde q m³/s som isokurvor med x-axel z_b och y-axel T_b för fall 2.

Figur 3.3a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 3.

Figur 3.3b Hisschaktutflöde q m³/s som isokurvor med x-axel z_b och y-axel T_b för fall 3.

Figur 3.4a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 4.

Figur 3.4b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 4.

Figur 3.5a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 5.

Figur 3.5b Hisschaktutflöde q m³/s som isokurvor med x-axel z_b och y-axel T_b för fall 5.

Figur 3.6a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 6.

Figur 3.6b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 6.

Figur 3.7a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 7.

Figur 3.7b Hisschaktutflöde q m³/s som isokurvor med x-axel z_b och y-axel T_b för fall 7.

Figur 3.8a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 8.

Figur 3.8b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 8.

Figur 3.9a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 9.

Figur 3.9b Hisschaktutflöde q m³/s som isokurvor med x-axel z_b och y-axel T_b för fall 9.

Figur 3.10a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 10.

Figur 3.10b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 10.

Figur 3.11a Hisschakttemperatur T $^{\circ}$ C som isokurvor med x-axel z_b och y-axel T_b för fall 11.

Figur 3.11b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 11.

Figur 3.12a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 12.

Figur 3.12b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 12.

Figur 3.13a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 13.

Figur 3.13b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 13.

Figur 3.14a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 14.

Figur 3.14b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 14.

Figur 3.15a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 15.

Figur 3.15b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 15.

Figur 3.16a Hisschakttemperatur T °C som isokurvor med x-axel z_b och y-axel T_b för fall 16.

Figur 3.16b Hisschaktutflöde $q \text{ m}^3$ /s som isokurvor med x-axel z_b och y-axel T_b för fall 16.

Omräkning av begränsat brandgaslager

De här redovisade beräkningarna i detta avsnitt har ett brandgaslager som täcker hela våningshöjden om 3 m. En naturlig frågeställning är följande: Går det att räkna om ett fall med ett övre brandgaslager och nedre lokalluftlager till ett ekvivalent brandgaslager för hela våningshöjden med samma spaltvidd. Svaret är att det inte går, eftersom både massflödesbalans och effektbalans måste uppfyllas. Effektbalans blir efter en mindre förenkling lika med volymflödesbalans. Det gäller att effekt ~ ρvT ~ v~ volymflöde, eftersom ρT är konstant.

Följande proportionaliteter gäller för en spalt med en given tryckskillnad för massflöde ~ ρv , för volymflöde ~ v och för hastighet $v \sim \rho^{-0.5}$. Detta ger sammantaget att massflöde ~ $\rho^{0.5}$ och volymflöde ~ $\rho^{-0.5}$.

Om bara ett krav skall uppfyllas bör volymkravet (effektkravet vara det viktigaste). Förutom dessa två krav finns det två andra beräkningssätt, nämligen medelvärde för temperatur och densitet. Alla dessa fyra beräkningssätt kan tillämpas på densiteten och kan skrivas som följer för de fyra kraven med relativ lagerdelning x för lager 1 och (1-x) för lager 2 och olika parameter n enligt nedan:

$$\rho_b^n = x \rho_l^n + (l - x) \rho_2^n \qquad (\text{principkrav}) \qquad (3.1)$$

För parametern *n* skall följande värden tillämpas:

1	medelvärde för densitet för två lika stora volymer
0.5	massflödeskrav
-0.5	volymflödeskrav (effektkrav)
-1	medelvärde för temperatur för två lika stora massor

Omskrivning av (3.1) ger sökt densitet som:

$$\rho_b = [x \rho_1^n + (1 - x) \rho_2^n]^{1/n}$$
(kg/m³) (3.2)

Vad de fyra beräkningsprinciperna innebär för den beräknade densiteten ρ_b redovisas som isokurvor i Figur 3.17-20a med parametern x som x-axel och densiteten ρ_2 som y-axel.

Vad de fyra beräkningsprinciperna innebär för den beräknade temperaturen T_b redovisas som isokurvor i Figur 3.17-20b med parametern x som x-axel och temperaturen T_2 som y-axel.

Några slutsatser från redovisade kurvorna är att skillnaderna mellan olika omräkningsätt är liten för små *x* och omvänt stor för stora värden på *x*.

Några siffervärden är ett utgångsfall med x=0.5, $T_1=20$ °C och $T_2=600$ °C. De fyra omräkningsätten ger temperaturen 166, 197, 271 och 310 °C. Spridningen är påtaglig. Slutsatsen är att omräkning skall undvikas. Det är bättre att dela upp brandplanets spalt i delspalter med olika nivå och temperatur, men med samma tryck.

Figur 3.17a Isodiagram för ρ_b enligt (3.2) för n=1.0 med x-axel x och y-axel ρ_2 .

Figur 3.17b Isodiagram för T_b enligt (3.2) för n=1.0 med x-axel x och y-axel T_2 .

Figur 3.18a Isodiagram för ρ_b enligt (3.2) för n=0.5 med x-axel x och y-axel ρ_2 .

Figur 3.18b Isodiagram för T_b enligt (3.2) för n=0.5 med x-axel x och y-axel T_2 .

Figur 3.19a Isodiagram för ρ_b enligt (3.2) för *n*=-0.5 med x-axel x och y-axel ρ_2 .

Figur 3.19b Isodiagram för T_b enligt (3.2) för n=-0.5 med x-axel x och y-axel T_2 .

Figur 3.20a Isodiagram för ρ_b enligt (3.2) för *n*=-1.0 med x-axel x och y-axel ρ_2 .

Figur 3.20b Isodiagram för T_b enligt (3.2) för n=-1.0 med x-axel x och y-axel T_2 .

4 Fördjupning av fall 13

Fall 13 innebär inget värmeutbyte, låg utetemperatur -20 °C och högt brandtryck 1000 Pa. Några variabler, som inte redovisats tidigare, redovisas här i Figur 4.1-6 och de är undertrycket Δp , den termiska gradienten $\Delta p/z_b = (\rho_o - \rho)g$, tillförd brandeffekt P_b och tre kvoter mellan brandplanets inflöde och övriga våningsplans inflöde för variablerna volymflöde, massflöde och densitet.

Temperaturskillnaden inne-ute ger en termisk gradient på 1.86 Pa/m. Undertrycket blir därför minst 186 Pa för ett hisschakt med höjden 100 m, vilket framgår av Figur 4.1.

Höga undertryck medför att brandtrycket för mindre betydelse och omvänt.

Den termiska gradienten redovisas i Figur 4.2 och den ligger givetvis över grundvärdet på 1.86 Pa/m. Höga termiska gradienter innebär höga hisschakttemperaturer, vilket redovisats tidigare i Figur 3.13a. Den inträngande brandeffekten enligt Figur 4.3 ökar något avtagande med brandtemperaturen. En fördubblad brandtemperatur innebär en fördubblad brandeffekt vis samma flöde.

Volymflödeskvoten i Figur 4.4 mellan brandgas och övrig luft är hög för lägre hisschakt, eftersom brandplanets läcka är konstant och övrig lufts läcka beror på höjden. Brandtemperaturen påverkar volymkvoten något.

Massflödeskvoten i Figur 4.5 mellan brandgas och övrig luft avtar starkt med ökande schakthöjd och brandtemperatur. Högre temperatur medför lägre densitet. Samma tryckskillnad ger ett lägre massflöde, eftersom tryckskillnad ~ ρv^2 och en konstant tryckskillnad innebär att $v \sim \rho^{-0.5}$ och därmed blir massflödet ~ $\rho^{0.5}$.

Densitetskvoten i Figur 4.6 mellan brandgas och övrig luft är givetvis endast beroende av brandtemperaturen.

Figur 4.2 Termisk gradient $\Delta p/z_b$ Pa/m som isokurvor med x-axel z_b och y-axel T_b för fall 13.

Figur 4.3 Brandeffekt P_b MW som isokurvor med x-axel z_b och y-axel T_b för fall 13.

Figur 4.4 Volymflödeskvot q_b/q_i - som isokurvor med x-axel z_b och y-axel T_b för fall 13.

Figur 4.5 Massflödekvot m_b/m_i -som isokurvor med x-axel z_b och y-axel T_b för fall 13.

Figur 4.6 Densitetskvot ρ_b/ρ_i - som isokurvor med x-axel z_b och y-axel T_b för fall 13.

5 Generell modell och beräkningsmetod

Den tidigare redovisade beräkningen omfattande sambanden (2.3-20) kan revideras för passa ett mera allmänt fall med ett färre antal beräkningsuttryck. Spalten kan vara uppdelad med olika spaltvidd och spaltlängd i höjdled och på olika nivå med olika omgivande temperatur och tryck. Spalten behöver inte vara sammanhängande och det kan finnas flera i höjdled överlappande spalter.

Tvåzonsmodell

Hisschaktet delas upp i två zoner av nivån z_s . Denna gräns kan ses som den undre nivån för brandplanet, vilket ger en överskattning av utflöde och temperatur. Inträngande brandgaser bildar troligen en plym som efter några meter högre upp täcker hela hisschaktets tvärsnitt. Den övre omblandande zonen anges med en beräknad temperatur *T* och densitet ρ och den nedre med en given temperatur T_s och densiteten ρ_s . Det finns motsvarande termiska gradienter, vilka beräknas som:

$$R = (\rho_o - \rho) g \tag{Pa/m} \tag{5.1}$$

$$R_s = (\rho_o - \rho_s) g \qquad (Pa/m) \qquad (5.2)$$

Värmeöverföringsförmågan för den övre zonen anges med parametern Q_s på formen:

$$Q_s = O h_s h \tag{W/K} \tag{5.3}$$

där

0	hisschaktets omkrets, m
h_s	hisschaktets höjd för den övre zonen, m
h	hisschaktsytornas värmeövergångstal, W/m ² K

Spaltmodell

För en spaltdel med index *i* finns följande parametrar och variabler:

d_i	spaltvidd, m
h_i	spalthöjd, m
Z_i	nedre spaltnivå under neutrallagret, m
T_i	temperatur i hisshall, °C
p_i	tryck i hisshall, Pa
v_i	inströmningshastighet, m/s
q_i	inflöde, m ³ /s
Z_{im}	beräknad medelnivå under neutrallagret, m
Q_i	inflödets värmeöverföringsförmåga, W/K

Den viktade medelnivån för spalter under neutrallagret i den övre zonen beräknas enligt:

$$z_{im} = \left(2\left(z_i^{1.5} - (z_i - h_i)^{1.5}\right) / 3 h_i\right)^2 \tag{m}$$
(5.4)

Godtyckliga nivåer och därmed också den viktade medelnivån för spalter under nivån z_s måste räknas om hjälp av en faktor *s* enligt uttrycken (5.5-7) nedan. Detta görs för att passa den termiska gradienten i den övre zonen. Startberäkning sker med $R=R_s$ och s = 1 som för ett kallt fall. Om $R_s=0$ görs en startansats med $R_s>0$. Spalternas area skall dock inte räknas om.

$$s = R_s / R \qquad \qquad z_i > z_s \qquad \qquad (-) \qquad (5.5)$$

$$z_{is} = z_s + s (z_i - z_s)$$
 (m) (5.6)

$$z_{im} = (2 (z_{is}^{1.5} - (z_{is} - s h_i)^{1.5}) / 3 s h_i)^2$$
(m) (5.7)

För alla spalter beräknas inströmningshastighet, inflöde och inflödets värmeöverföringsförmåga enligt (5.8-10) nedan. Trycket p_i är konstant för varje spalt i höjdled och termiska tryckgradienter utanför hisschaktet försummas.

$$v_i = (2 (R z_{im} + p_i) / \rho_i)^{0.5}$$
(m/s) (5.8)

$$q_i = d_i h_i v_i$$
 (m³/s) (5.9)

$$Q_i = \rho_i c q_i \tag{W/K} \tag{5.10}$$

Beräkning av temperatur och utflöde

Den övre zonens temperatur *T* beräknas som tidigare något reviderat enligt:

$$T = (Q_1T_1 + Q_2T_2 + ... + Q_nT_n + Q_sT_s) /(Q_1 + Q_2 + ... + Q_n + Q_s)$$
 (°C) (5.11)

En iterativ beräkning sker därefter med de av beräkningsuttrycken (5.1-12) som ändras. Det går att minska antalet beräkningsuttryck, men resultatet blir svårare att tolka och kontrollera. Endast en genomräkning krävs för att beräkna temperaturen *T* om alla tryck $p_i = 0$ Pa, ingen värmeförlust h = 0 W/m²K och hela hisschaktet är en omblandad zon. Ytterliggare en genomräkning krävs för att flödet skall blir rätt, eftersom första beräkningen sker med $R=R_s$.

Det sökta nödvändiga utflödet q kan beräknas genom att utnyttja att $\rho_i q_i = Q_i / c$, vilket ger:

$$q = (Q_1 + Q_2 + ... + Q_n) / c \rho \qquad (m^3/s) \qquad (5.12)$$

Tretton modellfall och åtta testfall

Tretton olika modellfall enligt Tabell 5.1 har kombinerats med åtta testfall enligt Tabell 5.2. Både hisschaktsutflöde och hisschaktstemperatur redovisas absolut och relativt i Tabell 5.3-6.

Tretton olika hisschaktsmodeller har testats med samma spaltvidd om 0.010 m och en innetemperatur 20 °C. Modellfall 1 kan användas som ett utgångsfall för att jämföra med andra modellfall absolut eller relativt.

Blandningszonen ligger i underkant brandplanet utom för modell 2, 3 och 4 med en förskjutning på 3, 6 respektive 9 m uppåt. En anmärkning är att blandningszonens nedre gräns borde vara brandplanets övre gräns. Neutrallagret ligger i överkant hisschakt utom för modell 5 och 6, där nivån ligger 3 respektive 6 m högre. Modell 7 är som modell 1 med 12 m extra hisschakt under brandplanet. Modell 8 och 9 är som modell 1 med höjd 36 respektive 72 m.

Brandplanet för modell 1-9 delas upp i en övre del om 1.5 m 600 °C och i en nedre del om 1.5 m 20 °C. Brandplanet för modell 10-13 omfattar 3 m med temperaturerna 166, 197, 271 respektive 310 °C. Dessa temperaturer är olika omräkningar enligt (3.2) med parametern n =1, 0.5, -0.5 respektive -1 för att motsvarar olika krav för det delade brandplanet.

Tabell 5	.1 Tretton mode	llfall		
modell	schakthöjd, m	neutrallager, m	blandningzon, m	brandplan
1	18	0	18	1.5/1.5 m 600/20 °C
2	18	0	15	1.5/1.5 m 600/20 °C
3	18	0	12	1.5/1.5 m 600/20 °C
4	18	0	9	1.5/1.5 m 600/20 °C
5	18	3	18	1.5/1.5 m 600/20 °C
6	18	6	18	1.5/1.5 m 600/20 °C
7	30	0	18	1.5/1.5 m 600/20 °C
8	36	0	36	1.5/1.5 m 600/20 °C
9	72	0	72	1.5/1.5 m 600/20 °C
10	18	0	18	3 m 166 °C
11	18	0	18	3 m 197 °C
12	18	0	18	3 m 297 °C
13	18	0	18	3 m 310 °C

T 1 11 5 1 T 1 110 11

Åtta olika testfall har räknats igenom med alla är kombinationer för två värden för värmeövergångstal, utetemperatur och brandtryck enligt Tabell 5.2.

Tabell 5.2 Åtta testfall									
	testfall	1	2р	3 –T-	4 -Tp	5 h	6 h-p	7 hT-	8 hTp
h T _o p _b	W/m ² K °C Pa	0 20 0	0 20 1000	0 -20 0	0 -20 1000	10 20 0	10 20 1000	10 -20 0	10 -20 1000

Några kommentarer till värden i Tabell 5.3-6 för hisschaktsutflöde och hisschaktstemperatur görs inte utan överlåts till läsaren.

test	1	2p	3 –T-	4 -Tp	5 h	6 h-p	7 hT-	8 hTp
modell								
1	860	2613	1298	2839	352	2096	1040	2396
2	846	2610	1290	2836	389	2152	1057	2443
3	881	2845	1388	3051	481	2456	1169	2707
4	775	2712	1306	2934	471	2401	1144	2665
5	1199	3503	2319	4115	646	2975	2140	3730
6	978	2787	1511	3067	439	2263	1248	2628
7	1077	2922	1686	3245	516	2392	1418	2810
8	1717	4088	3156	4889	738	3189	2807	4259
9	3426	7151	8094	10022	1511	5490	7653	9200
10	722	2332	1189	2577	268	1916	993	2237
11	786	2437	1236	2672	306	1975	1010	2285
12	912	2654	1335	2873	383	2094	1049	2386
13	968	2754	1381	2967	418	2147	1067	2434

Tabell 5.3 Hisschaktsutflöde i l/s för tretton modellfall och åtta testfall

Tabell 5.4 Relativt hisschaktsutflöde mot modell 1 för tretton modellfall och åtta testfall

test	1	2p	3 –T-	4 -Tp	5 h	6 h-p	7 hT-	8 hTp
modell								
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0.9832	0.9988	0.9937	0.9989	1.1049	1.0267	1.0167	1.0198
3	1.0243	1.0887	1.0690	1.0746	1.3661	1.1713	1.1242	1.1302
4	0.9008	1.0376	1.0056	1.0334	1.3386	1.1454	1.0996	1.1123
5	1.3935	1.3405	1.7861	1.4491	1.8359	1.4192	2.0577	1.5572
6	1.1367	1.0666	1.1636	1.0802	1.2492	1.0797	1.2000	1.0970
7	1.2519	1.1179	1.2985	1.1430	1.4676	1.1412	1.3635	1.1729
8	1.9961	1.5644	2.4301	1.7220	2.0979	1.5211	2.6991	1.7778
9	3.9832	2.7362	6.2337	3.5298	4.2946	2.6186	7.3581	3.8404
10	0.8400	0.8924	0.9159	0.9076	0.7631	0.9141	0.9548	0.9340
11	0.9136	0.9326	0.9517	0.9411	0.8703	0.9422	0.9714	0.9538
12	1.0601	1.0154	1.0278	1.0117	1.0882	0.9987	1.0083	0.9960
13	1.1259	1.0537	1.0636	1.0450	1.1870	1.0243	1.0263	1.0160

test	1	2p	3 –T-	4 -Tp	5 h	6 h-p	7 hT-	8 hTp
modell								
1	61	131	61	121	28	85	36	81
2	61	131	61	121	29	90	38	85
3	50	118	55	111	30	90	39	86
4	50	124	56	116	32	99	42	93
5	40	95	39	83	26	72	31	65
6	50	100	50	110	•	0.0	27	70
6	58	122	58	112	28	82	37	/8
7	56	117	56	106	29	80	37	75
Q	41	82	/1	72	24	56	20	52
8	41	83	41	73	24	30	30	52
9	30	53	30	44	22	39	26	35
10	50	102	50	93	24	67	32	64
11	55	115	55	106	26	75	34	71
12	67	145	67	133	29	92	39	88
13	73	159	73	147	31	101	41	96
15	15	157	15	17/	51	101	11	70

Tabell 5.5 Hisschakttemperatur i °C för tretton modellfall och åtta testfall

Tabell 5.6 Relativ hisschakttemperatur mot modell 1 för tretton modellfall och åtta testfall

test	1	2p	3 –T-	4 -Tp	5 h	6 h-p	7 hT-	8 hTp
modell								
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0.9914	1.0002	0.9960	1.0001	1.0644	1.0587	1.0515	1.0547
3	0.8124	0.9002	0.8961	0.9173	1.0816	1.0574	1.0752	1.0617
4	0.8161	0.9463	0.9087	0.9534	1.1501	1.1610	1.1462	1.1525
5	0.6509	0.7244	0.6368	0.6811	0.9308	0.8439	0.8510	0.7989
6	0.9402	0.9316	0.9402	0.9236	1.0239	0.9674	1.0058	0.9601
7	0.9101	0.8870	0.9101	0.8743	1.0462	0.9445	1.0144	0.9324
8	0.6664	0.6341	0.6664	0.5993	0.8695	0.6583	0.8223	0.6376
9	0.4969	0.4061	0.4969	0.3654	0.7980	0.4573	0.7097	0.4340
10	0.8129	0.7747	0.8129	0.7699	0.8839	0.7873	0.8690	0.7859
11	0.9004	0.8769	0.9004	0.8737	0.9344	0.8809	0.9287	0.8799
12	1.0939	1.1007	1.0939	1.1017	1.0595	1.0853	1.0630	1.0860
13	1.1885	1.2095	1.1885	1.2127	1.1262	1.1842	1.1297	1.1860

6 Jämförelse med PFS

En beräkning har skett med både PFS och enligt (5.1-12). Principen för två olika PFSmodeller redovisas i Figur 6.1 inom samma begin-end-block nedan. Modell 1, den vänstra, i Figur 6.1 har en cirkulationsmöjlighet mellan neutrallagret och brandplan. Modell 2, den högra, i Figur 6.1 har våningsvis cirkulation. Cirkulationen har varit både nedåtriktad och uppåtriktad.

Temperaturberäkningen kräver att de cirkulerande flödena beräknas som obekanta och inte som slaskvariabler som endast följer med flödet. Antalet äkta temperaturer deklareras med styrvariablen atel. Brandtryck, brandtemperatur uteluftens densitet och cirkulationsflödet ges av yttre programvariabler benämnda pb, Tb, dz respektive qx.

begin flow	/ s	
control set	dencase=1 denz=dz spalt=t,0.6,30:qT Tn=T,20:<	a t e l = 1 / 6 T b = T , T b : < T x = T ? 1 0 0 : w m i x = h ? q x
com	modell 1	modell 2
	-T,20:qTow -s,-2500	-T,20:qTow -s,-5000
-T x -m i x	-z,-3 spalt Tn	Tx mix z,-3 spalt Tn
	z,-3 spalt Tn	Tx mix z,-3 spalt Tn
	z,-3 spalt Tn	-Tx mix -z,-3 spalt Tn
	-z,-3 spalt Tn	-Tx mix -z,-3 spalt Tn
	-z,-3 spalt Tn	-Tx mix -z,-3 spalt Tn
	z,-3 spalth,-pb TI	b spalt h,-pb Tb

e n d

Figur 6.1 Principen för två PFS-modeller med olika cirkulation i ett hisschakt.

Hisschakt

Hisschaktet har höjden 18 m och en genomgående 10 mm spalt. Våningshöjden är 3 m och neutrallager 1.5 m över överst våningsplan. Spaltläckan förenklas till en punktformig läcka i PFS med tryckfall 0.6 Pa vid flödet 30 l/s. Avståndet mellan neutralplan och översta läcka är 3 m, eftersom PFS-modellen har punktformiga läckor och inte 3 m höga läckor som för modellen enligt (5.1-12) med avstånd från 1.5 till 4.5 m för översta läcka till neutrallagret.

Testfall

Den påtvingade cirkulationen enligt PFS har varit både nedåtriktad och uppåtriktad med siffervärden 0.1, 1 och 10 m³/s, vilket motsvarar för ett hisschakt med ett tvärsnitt på 10 m² medellufthastigheter på 0.01, 0.1 respektive 1 m/s över hela tvärsnittet. Ordningsföljden för cirkulationsflöden har varit mot stigande absoluta värden 0, 0.1, -0.1, 1, -1, 10 och -10 m³/s.

Innetemperaturen är 20 °C i samtliga fall. Utetemperaturen är 20 och -20 °C. Brandtemperatur och brandtryck har varit 100, 200 och 500 °C respektive 0 och 1000 Pa och avser hela brandplanets höjd om 3 m. Detta ger tolv olika fall och kombinerat med de sju cirkulationsflöden fås totalt 84 fall.

De fyra yttre variablerna cirkulationsflöde qx, brandtemperatur Tb, uteluftens temperatur To (i PFS angiven som densitet dz) och brandtrycket pb redovisas i Figur 6.2-5 som funktion av fall nummer.

PFS-modell 1 med en enda cirkulation

Resultatet för PFS-modell 1 med ett cirkulationsflöde redovisas med utflöde och uttemperatur i Figur 6.6 respektive 6.7. Resultat för beräkning enligt (5.1-12) med fullständig omblandning redovisas också med en stegvis konstant kurva eftersom det finns endast tolv fall och cirkulationsflödet har ingen betydelse, eftersom det är oändligt för beräkning enligt (5.1-12)

Både utflödet och uttemperaturen sammanfaller med den stegvisa kurva för beräkning enligt (5.1-12) och fullständig omblandning för fall med hög cirkulation, vilket är i slutet på varje steg (högra delen). Notera att utflödet enligt PFS för fallet utan cirkulation (första eller vänstra värdet för varje steg) är något högre än beräkning enligt (5.1-12) särskilt för fall utan något brandtryck.

PFS-modell 2 med våningsvis cirkulation

Resultatet för PFS-modell 2 med våningsvis cirkulation redovisas på samma sätt med utflöde och uttemperatur i Figur 6.8 respektive 6.9, vilka sammanfaller med den stegvisa kurva för beräkning enligt (5.1-12) för fall med hög cirkulation, vilket är i slutet på varje steg (högra delen). Utflödet enligt PFS och utan cirkulation är också här något högre än beräkning enligt (5.1-12) särskilt för fall utan något brandtryck.

Figur 6.2 Cirkulationsflöde m³/s som funktion av fall nummer.

Figur 6.3 Brandtemperatur °C som funktion av fall nummer.

Figur 6.4 Utetemperatur °C som funktion av fall nummer.

Figur 6.5 Brandtryck Pa som funktion av fall nummer.

Figur 6.6 Utflöde m³/s enligt (5.12) och PFS-modell 1 för olika fall.

Figur 6.7 Uteflödestemperatur °C enligt (5.12) och PFS-modell 1 för olika fall.

Figur 6.8 Utflöde m³/s enligt (5.12) och PFS-modell 2 för olika fall.

Figur 6.9 Uteflödestemperatur °C enligt (5.12) och PFS-modell 2 för olika fall.

7 Sammanfattning och slutsatser

Parameterkänsligheten hos hisschakttemperatur T och hisschaktutflöde q, vilka tidigare har redovisats i Figur 3.1-16a respektive 3.1-16b. Här görs en sammanfattning med de sex primära variablerna.

Inverkan av hisschakthöjd z_b

Ökande hisschaktshöjd z_b medför alltid minskande hisschaktstemperatur T och ökande hisschaktsutflöde q. Förklaringen är att inflödet från övriga våningsplan ökar, vilket minskar temperaturen och ökar utflödet.

Inverkan av brandtemperatur T_b

Ökande brandtemperatur T_b medför alltid ökande hisschaktstemperatur T och ökande hisschaktsutflöde q. Förklaringen är att undertrycket ökar och därmed inflödet från övriga våningsplan ökar något och inflödet från brandplan ökar ännu mer på grund av den lägre densiteten.

Inverkan av värmeövergångstal h

Jämförelse Figur 3.1 mot 3.2 o s v.

Fallen utan och med värmeutbyte ges av parametervärden 0 respektive 10 W/m²K. Både hisschaktstemperatur *T* och hisschaktsutflöde *q* avtar som väntat med ökande värmeutbyte.

Inverkan av spaltvidd d

Jämförelse Figur 3.1 mot 3.3 o s v.

En fördubbling av spaltvidden d för fallet utan värmeutbyte medför att hisschakttemperaturen T är den samma, medan utflödet q fördubblas.

En fördubbling av spaltvidden d för fallet med värmeutbyte medför att hisschakttemperaturen T ökar något eftersom avkylningsförmågan är oförändrad. Ökande temperatur och fördubblad spaltvidd medför utflödet q mer än fördubblas.

Inverkan av utetemperatur T_u

Jämförelse Figur 3.1 mot 3.5 o s v.

Hisschakttemperaturen T påverkas inte för fallet utan värmeutbyte. En lägre utetemperatur ökar undertrycket och därmed ökar alla flöden proportionellt, men temperaturen är konstant.

Hisschakttemperaturen T ökar för fallet med värmeutbyte. En lägre utetemperatur ökar undertrycket och därmed ökar flöden betydligt och värmeutbytet är begränsat.

Inverkan av brandtryck p_b

Jämförelse Figur 3.1 mot 3.8 o s v.

Både hisschakttemperaturen T och hisschaktutflöde q ökar med ökande brandtryck p_b . Brandinflödet ökar i förhållande till övriga våningsplans inflöde och därmed temperaturen. En ökad temperatur ökar i sin tur undertrycket och därmed alla inflöden.

Generell modell och beräkningsmetod

Den framtagna och redovisade beräkningsmetoden enligt (5.1-12) kan beräkna hisschaktstemperatur och nödvändigt utflöde för ett godtyckligt antal godtyckliga läckor i form av spalter med godtyckliga förutsättningar. Neutrallagret antas ligga över översta läcka till hisschaktet eller högre. Hisschaktet delas upp i en övre omblandad varm zon och en nedre kall zon, som ligger under brandplanet. Enskilda rektangulära hål kan behandlas som spalter och spaltvidden förutsätts vara den effektiva med hänsyn till kontraktion.

Hisschakttemperaturen itereras fram och konvergensen är god.

En viktig synpunkt är att själva hisschaktets förhållandevis stora läckareor inte behöver vara bestämmande utan det kan vara dörrar in mot en hisshall, vars läckareor kan var betydligt mindre.

Sammanfattande slutsats

Fallet utan värmeutbyte ger alltid högre hisschakttemperatur och hisschaktutflöde och kan användas som ett fall med en viss säkerhetsmarginal. Hisschakt kan vara isolerade. Lägsta utetemperatur och högsta brandtryck skall också användas enligt Figur 3.13. En fördubblad spaltvidd ger enligt Figur 3.15 samma temperatur, men fördubblat flöde. Utflödet för andra spaltvidder kan därför beräknas genom omskalning. Notera att beräkningens neutrallager inte har någon säkerhetsmarginal, eftersom det ligger i överkant på översta våningsplan. Hisschaktets läckareor behöver inte vara bestämmande utan till hisshall anslutande dörrar kan vara det.

PFS-beräkning utan cirkulation ger högre utflöde än enligt (5.1-12).