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1. Introduction 

Biotechnology represents a number of versatile and environmentally 

friendly technologies for delivering industrially clean products and 

processes. Recently assembled evidence also indicates that biotechnology is 

competitive in terms of cost and risks and is not limited by scale of 

operation [1] thus having a major impact in the establishment of 

industrially “green” processes. A central pursuit of the modern 

biotechnology industry during this paradigm shift towards clean technology 

has been to increase efficiency in the area of enzyme production. This 

thesis focuses on the expression of genes encoding industrially important 

enzymes as well as the ability to produce these enzymes employing bench 

scale fermentation processes. 

Enzymes are remarkable catalysts and have a long established role in 

mankind’s attempts to utilise biological systems for a variety of purposes. 

Enzymes are routinely utilised at present for diverse applications ranging 

from the manufacture of various industrial commodities, to diagnostics and 

therapeutics. The primary sources of these enzymes today are from 

mesophilic microorganisms and the applications of these enzymes are 

hence restricted due to their limited stability under adverse conditions, e.g. 

extreme pH and temperature. Extremophiles are a source of extremozymes 

(i.e. enzymes functional under more extreme conditions) which offers new 

opportunities for biocatalysis and biotransformations as a result of their 

extreme stability [2]. Extremophilic microorganisms are adapted to survive 

in ecological niches such as high temperatures, extremes of pH, high salt 

concentrations and pressure thus producing unique biocatalysts that 

function under extreme conditions in many cases comparable to those 

prevailing in various industrial processes [3].  
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 The advent of recombinant DNA technology has further boosted the 

industrial production of useful enzymes and many enzymes are now being 

produced by recombinant microorganisms, animals and plant cells [4]. 

Moreover, developments in genetic and protein engineering have improved 

the stability, economy, specificity and overall application potential of 

industrial enzymes. Thus, it is not surprising that together with the 

increasing number of biotechnological endeavours the industrial market 

continues to grow rapidly and has an ever increasing demand for additional 

biocatalysts. 

 Protein expression technology plays a major role in harnessing novel 

proteins and developing high-production expression systems among which 

bacterial and yeast expression systems are the most commonly used. In the 

context of this thesis, Escherichia coli and Pichia pastoris based expression 

systems were investigated. Regarding the former, E. coli still remains one of 

the most commonly used hosts for the production of heterologous 

proteins due to it being a well characterised system [5]. However, in spite of 

the vast array of knowledge that exists on the genetics and molecular 

biology of E. coli, not every gene can be efficiently expressed in this 

microorganism. The major drawbacks of E. coli based expression systems 

include the inability to perform many post-translational modifications, the 

lack of a secretion mechanism, limited ability to facilitate extensive disulfide 

bond formation and the formation of insoluble aggregates (inclusion 

bodies) [6]. Due to intracellular accumulation of heterologous protein in E. 

coli-based expression systems productivity is proportional to the final cell 

density. Thus, the primary goal in process technology has focused on high 

cell density cultivations (HCDC) to maximise product yields [7] exploiting 

the fed-batch mode of cultivation [8-9]. Although, the developments in 

HCDC-techniques for E. coli has led to successful production of various 
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heterologous proteins, these techniques have several drawbacks such as 

substrate inhibition, limited oxygen transfer capacity, the formation of 

inhibitory by-products, and limited heat dissipation[10-17]. 

  Process optimisation in E. coli based expression systems is often 

extended further to include the genetic-based solutions, traditionally 

employing strong expression systems to gain maximum heterologous 

protein yields [18]. However, such systems often override host cell 

metabolism [19] and an efficient or optimal process requires the 

synchronisation of gene expression rates and host cell’s metabolic 

capabilities. Therefore, establishing equilibrium between heterologous and 

cellular protein biosynthesis is the key for ensuring stable and prolonged 

heterologous protein production levels due to the host cell being 

responsible for providing the protein synthesis machinery, building blocks 

and energy for the production of heterologous proteins. Attempts made in 

this thesis to investigate and establish the equilibrium between 

heterologous and cellular protein biosynthesis has ensured the successful 

production of heterologous proteins at higher titers than previously 

reported. 

   As an alternative to E. coli based expression systems, the 

methylotrophic yeast Pichia pastoris has developed into a successful system 

for the production of a variety of heterologous proteins [20].  Exploiting 

the Pichia based expression system offers the opportunity of extracellular 

protein accumulation thus directly facilitating easy down-stream processing. 

Furthermore, the capability of performing complex post-translational 

modifications and the commercial availability of Pichia pastoris based 

expression systems has significantly increased its popularity for the 

production of heterologous proteins [21]. Similarly, in this work a lipolytic 

enzyme was efficiently produced exploiting the P. pastoris based expression 
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system due to previous attempts using an E. coli based expression system 

being unsuccessful. 

     Finally, it should be noted that choosing an expression system for high 

level heterologous protein production depends on several factors and no 

universal expression system exists. Fortunately, some empirical “rules” are 

in place to guide and design expression systems for heterologous protein 

production. In addition, the selection of an appropriate expression system 

requires evaluating its merits in terms of process, design and economics 

(especially for large scale) during high level heterologous protein 

production. 

 

1.1 Scope of the Thesis 

The research work presented in this thesis involves enzymes from 

extremophiles (Papers I-VI). These so-called “extremozymes” have 

received considerable attentions due to their applicability in industrial 

processes. However, only a limited number of enzymes are produced at 

industrial scale and before any scale-up can be considered, expression of 

the gene encoding the target protein using a relevant expression system 

must be made. One of the major bottlenecks is attaining optimum 

heterologous expression levels of the desired protein using available 

expression systems. The choice of an expression system for the high-level 

production of heterologous proteins depends on many factors including 

commercial availability, process design, and scale. 

 In this thesis the focus has been on two alternative expression hosts: 

E. coli and P. pastoris for which commercial expression vectors are available. 

Efforts have been made to optimise enzyme production, using the selected 

systems at “bench-scale” (2-5 L). E. coli based expression systems are 

commonly used for intracellular expression and an integrated approach has 
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been applied which includes aspects of host metabolism and process 

engineering, to ensure maximum heterologous protein yields. The key to 

maximum cellular capability has been on determining the highest ratio 

between cellular and heterologous gene expression (Papers II, III, IV). 

The other approach taken was expressing the enzymes extracellularly using 

the Pichia pastoris based expression system. This not only has a significant 

impact on DSP costs but also allowed successful production of enzymes 

that previously could not be expressed in active form using E. coli based 

expression systems. (Papers V, VI).   
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2. Impact of Gene Technology on Enzyme Production 

Protein over-expression refers to the directed synthesis of large 

amounts of desired proteins [22]. The process requires the consideration of 

2 key issues. Firstly, the introduction of foreign DNA into the host cell 

with the major focus on selection and construction of the vector carrying 

the foreign gene. Secondly, expression control and factors affecting the 

expression of the protein in the chosen expression system. With regards to 

the former there is an array of vectors available to initiate DNA transfer in 

and out of the cell (plasmids, lambda phage, cosmids, phagemids, artificial 

chromosomes from yeasts and bacteria) and can either be integrated into 

the host’s genome or remain independent. Genetic elements for expression 

control are in most cases included in these vectors, while many other 

factors need investigation during the optimisation of cultivation 

parameters.  

 The rapid expansion in the area of gene technology has had a direct 

impact on the increased number of recombinant enzymes available today. 

Also, advances in gene cloning have led to rapid re-examination of known 

potential enzymes which were previously looked upon as economically 

unfavourable to produce. A classic example is cyclodextrin glycosyl 

transferase (CGTase) produced by Thermoanaerobacter, which proved 

difficult to cultivate at large scale at 95°C and also showed a low enzyme 

yield, but where heterologous production using Bacillus macerans enabled 

successful expression of CGTase in yields suitable for large scale 

production [23]. Likewise, very low xylanase yields were obtained during 

the cultivation of the thermophilic bacterium Rhodothermus marinus (Paper 

I) however, heterologous production of xylanase using both E. coli (Papers 

II, II, IV) and P. pastoris (Paper V) based expression systems enabled 

significant improvements in enzyme production yields. In general, the 
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benefits of genetic engineering for the production of industrial enzymes 

can be summarised as follows: (1) naturally occurring enzymes present in 

minute concentrations and in microorganisms often difficult to cultivate 

may be produced by genetically modified host microorganisms cultivated 

on cheap raw material substrates, (2) efficient gene construction and 

selection allows increased productivity, (3) improvements in enzyme 

stability, activity and specificity can be obtained by genetic engineering. 

  

Table 1. Some applicable host-vector systems according to Australian 
regulation (www.ogtr.gov.au)  
Microorganism Host Vector 

 
Escherichia coli K12 /B 1. Non-conjugative plasmids

2. Bacteriophage 
 

Bacillus subtilis 
B. licheniformis 

Host range does not include 
B. cereus, B. anthracis 

Pseudomonas putida KT 2440 pKT 262, 263, 264 

Bacteria 
 
 
 
 
 

Streptomyces  coelicolor 
Streptomyces lividans 
Streptomyces parvulus 
Streptomyces griseus 

Certified plasmids: SCP2, 
SLP1,2 PIJ101 and 
derivatives 
 

   
Pichia pastoris All vectors 
Saccharomyces cerevisiae All vectors 
Schizosaccharomyces pombe All vectors 
Kluyveromyces lactis All vectors 

Yeast and  
Fungi 
 
 
 
 
 

Trichoderma reesei All vectors 

 

However, many guidelines and restrictions surround the expression 

and production of heterologous proteins. Specifically, with regards to host 

vector systems, regulations govern not only the host but also the vector 

itself. A list of some acceptable bacterial and yeast host vector systems are 

presented in Table 1, however, it should be noted that the list is subject to 
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change depending on the regulations concerning the use of genetically 

modified microorganism in a specific country.  

 

2.1 Enzyme Requirements for Industrial Application 

Presently, only a limited number of all known enzymes are 

commercially available. With regards to the use of industrial enzymes the 

major markets currently are detergent enzymes and food and feed 

processing [24], but there is also a rapidly growing market demand for 

industrial enzymes in the textile, pulp, paper and leather industries. A 

summary of the enzymes predominantly focused on for large-scale 

production and application is shown in Figure 1, with carbohydrases and 

proteases dominating the world-wide enzyme sale markets due to their 

widespread use in many industries.  

 Several factors influence the selection of an enzyme destined for 

industrial production such as specificity, reaction rate, pH, temperature 

optima, stability and substrate affinity. The safety of consumers using 

enzyme-based products and the safety of personnel during the production 

process are also factors that need to be considered. Efficient use of an 

enzyme in a process can be looked at simply as adding the enzyme to the 

reactant stream to obtain the desired catalytic reaction/s, after which the 

enzyme is gradually inactivated by the process. Enzymes, however, are 

susceptible to harsh denaturing conditions that are typically found in the 

chemical processing industry which impair their catalytic rates and 

functioning [24]. Two key parameters ensuring catalytic versatility of 

enzymes in industrial applications are hence pH and thermostability. Thus, 

there is an on-going search for improved biocatalysts which extends to the 

discovery of natural enzymes from extreme environments, the so-called 

extremozymes. A broad pH range provides an increased operating margin 
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in a process while on the other hand a narrow pH range (but maybe at an 

extreme pH) is useful in specific reactions. Enzymes from alkaliphiles 

(Paper VI), offers the possibility of functioning at high pH under alkaline 

conditions. Thermostable extremozyme variants are favoured in industrial 

processes requiring an elevated operating temperature and in this thesis, 

enzymes from the glycoside hydrolase family are investigated (Papers I, II, 

III, IV, V).     

   

 

 

 

 

 

 

 

ISOMERASES 
Glucose Isomerase 

TRANSFERASES
Cyclodextrinase 
Glycosyltranferase

Figure 1. Major groups of enzymes identified as industrially important  

CARBOHYDRASES
Alpha-Amylases 
Beta-Amylase 
Cellulase 
Dextranase 
Alpha-Glucosidase 
Alpha-Galactosidase 
Glucoamylase 
Xylanase 
Invertase 
Lactase 
Naringanase 
Pectinase 
Pullulanase 

PROTEASES 
Protease 
Bromelain 
Ficin  
Papain 
Pepsin 
Peptidases 
Chymosin  
Subtilisin  
Thermolysin 
Trypsin 

LYASES 
Decarboxylase 
Fumarase 
Histadase 

LIPASES 
AND 

ESTERASES 
Triglyceridases 
Phospholipases 
Pregastric 
Esterases 
Phosphatases 
Phytase 
Amidases 
Aminoacylase 
Glutaminase 
Lysozyme 

OXIDO-
REDUCTASES 

Catalase 
Chloroperoxidase 
Glucose Oxidase 
Hydroxysteroid- 
dehydrogenase 
Peroxidase 

Important Industrial Enzymes 
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2.2 Designing an Enzyme Production Process 

The selection of an enzyme and the development of the enzyme 

production process is complicated because each phase of the process needs 

to be defined in sequential order. Procedures and guidelines put in place 

early in the sequence ultimately influence later steps such as DSP, which 

ultimately influence the reproducibility of the process and quality of the 

enzyme (Figure 2). In order to utilise and develop biocatalysts for applied 

purposes rational approaches need to be considered. Primarily the starting 

point is a product which can be produced by one or more biocatalytic 

reactions during which the conversion of suitable substrates to the desired 

product occurs. Therefore, the goals are centred on finding and producing 

the best biocatalyst for the given task.  

 The enzyme production process can be broken down into several 

phases (Figure 2).  The process generally begins with screening and 

identification of the target enzyme in the native microorganism. Early in 

the development stages, limiting aspects/properties of the desired 

biocatalyst may be engineered, gradually leading to an economically feasible 

industrial process. Improvements in key technologies such as protein 

engineering and molecular evolution [25-26] have directly influenced and 

led to rapid growth in biocatalysis for applied purposes.  A good example is 

directed evolution were notable improvements in enzyme properties may 

be obtained when several generations of random mutagenesis, 

recombination and screening have been deployed [27-28]. Another 

approach is the use of site-directed mutagenesis to obtain enzymes with 

altered properties [29-30] which may render the enzyme capable of more or 

new reactions thus increasing its scope of application. Also, entirely new 

processes may be developed by exploiting the extreme characteristics that 

these enzymes posses. 
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 Several factors need to be considered when choosing a suitable 

production host. One of these is the scale of production. Ideally for large 

scale, extracellular production is favoured as it simplifies the recovery and 

purification process as compared to intracellularly produced enzymes. The 

production host should ideally also posses a GRAS-status (Generally 

Regarded As Safe) especially if the intended enzyme is to be used in food 

and pharmaceutical processes. In addition, the production host should be 

adequately capable of producing large amounts of desired enzyme.  

After the selected production host has been genetically modified to 

overproduce the enzyme of interest, an economically suitable fermentation 

process needs to be developed, optimised and scaled-up. Most large-

volume industrial enzymes are produced in 50-500 m3 fermenters. The final 

scale of the production and processing an enzyme is subjected to is largely 

dependent on its intended application. The present work however focuses 

on the “bench-scale production” of enzymes and in the following chapters 

the choice of the biocatalyst (Chapter 3), host-vector systems (Chapter 4), 

and process technologies (Chapter 5) for enzyme production are 

discussed.   
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3. Biocatalysts from Extremophiles   

3.1 Extremophiles 

Extremophilic microorganisms have adapted to survive in a range of 

hostile natural habitats. The discovery of extremophiles (particularly those 

that inhabit high temperature environments) stimulated attempts to define 

the most extreme conditions that remain compatible with the existence of 

life [31]. Currently, microorganisms with the highest growth temperatures 

(103-110 °C) are members of the genera Pyrobaculum [3]. Extremophiles 

have been detected in a wide range of environments as can be seen in 

Figure 3. Although, the majority of extremophiles are members of the 

domain Archaea [32], large numbers of extremophilic bacteria have also 

been identified. Many of theses species are classified to genera located close 

to the root of the universal phylogenetic tree (e.g. Thermotoga, Thermus) [2], 

while a few (e.g. Rhodothermus) may have acquired these properties later in 

evolution.  

 

3.2 Extremozymes and Industry 

There is an increasing interest in extremophiles (Thermophiles, 

Psychrophiles, Alkaliphiles and Acidophiles) both as whole cells and as a 

source of enzymes (extremozymes). Microorganisms from these habitats 

can have several interesting properties. Acidophiles for example, typically 

share other extremophilic habitat properties such as thermophilicity, 

halophilicity or heavy-metal resistance, and are hence considered for the 

bioprocessing of minerals [33]. The enzymes from extremophiles also have 

properties adapted for function in their natural habitat which can 

significantly increased the range of conditions where biocatalysis is an 

option. A few of these extremozymes and their potential applications are 

presented in Table 2.  
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Polymer degrading enzymes such as amylases, pullulanases, xylanases 

and cellulases have potential roles in the food, chemical and 

pharmaceutical, feed, paper, pulp and waste-treatment industries. Proteases, 

lipases and cellulases from alkaliphiles has had a huge impact on detergent 

 

 
Typical genera 

Thermophilic  
(55-80°C) 

Hyperthermophilic  
(80-113°C) 

Psychrophilic
(-2-20°C) 

 

Rhodothermus, 
Anoxybacillus, Thermus, 

Methanobacterium, 

Aquifex, 
Hydrogenobacter, 

Thermotoga  

Archaeoglobus, Methanothermus, 
Pyrococcus, Pyrodictium, 

Pyrolobus, Sulfolobus, 
Thermococcus, Thermoproteus 

Alteromonas, 
Psychrobacter 

 

Haloarcula, Haloferax, 
Halorubrum

 

Acidophilic 
(pH<4)        Thiobacillus 

Acidianus, Desulfurolobus, 
Sulfolobus

 Alkaliphilic 
(pH>9)   Bacillus  

 

Natronobacterium, 
Natronococcus 

Figure 3. Extremophiles and their environments 

Bacillus  

Domain Archaea

Halophilic 
(2-5M NaCl) 

Domain Bacteria
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formulation, also low molecular weight metabolites from these 

microorganisms can be of industrial interest e.g. cyclodextrins, compatible 

solutes and industrial lipids [34-35]. 

 

Table 2. Industrial applications of extremozymes  
Extremophile Extremozymes Application and 

products 
Reference 

 
Amylase  Food Industry 
Xylanase  Paper bleaching 

 
[36-38] 

Lipase Waste water treatment, 
detergent  

[39] 

Protease Baking, brewing, 
detergents 

[2, 40-41] 

Thermophiles 
 
 
 

DNA 
polymerase 

Genetic engineering [40-42] 

    
Amylase, 
protease, lipase 

Polymer degradation in 
detergents 

Psychrophiles 
 

Dehydrogenase Biosensors 

 
[2, 43] 

    
Cellulase, 
protease 

Detergents [2, 34] Alkaliphiles 

Amylase, lipase Food additives [34, 44] 
    
Acidophiles Sulphur 

oxidation  
Desulphurisation of coal [45] 

 

3.3 Glycoside Hydrolases from Thermophiles 

The majority of carbohydrate materials predominant in nature are in 

the form of polysaccharides (sugar residues linked by glycosidic bonds) of 

varying lengths and of complex composition. Furthermore, they can display 

diverse conformation due to branching in different ways. Similarly, 

enzymes responsible for the degradation of polysaccharides display diverse 

modes of hydrolysis [46]. Glycoside hydrolases are a widespread group of 

enzymes that hydrolyse the glycosidic bond between two or more 

carbohydrates, or between a carbohydrate and a non-carbohydrate moiety 
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[47-48]. A classification system [49] based on sequence similarity, has led to 

the establishment of 97 different families (GHF) [CAZy web site 

(CArbohydrate-Active enZymes)].  

The interest in glycoside hydrolases is largely due to their application 

potential in various industrial processes and as a result of their potential use 

in the conversion of natural polysaccharides. Due to the low solubility of 

polymeric substrates such as starch, cellulose and hemicellulose, processes 

are carried out at elevated temperatures. The elevated temperature has a 

significant influence on bioavailability and solubility as well as an 

accompanied decrease in viscosity of the substrates. Thermostable 

enzymes, which have been isolated from thermophilic microorganisms 

from different exotic ecological zones of the earth, display an inherent 

catalytic stability at elevated temperatures.  

The thermophilic microorganism Rhodothermus marinus secretes several 

hydrolytic enzymes including a xylanase (Paper I) and a cellulase [50]. The 

microorganism which was first isolated from a shallow water marine hot-

spring off the Icelandic coast is an aerobic bacterium, slightly halophilic 

that displays an optimum growth temperature of 65 °C in a neutral to 

slightly alkaline pH [51]. The moderately thermophilic bacterium 

Anoxybacillus flavithermus was isolated from geothermal sites growing 

optimally at 60 °C [52-53] and encodes a multi-domained 

cyclomaltodextrinase (α-amylase family) from glycoside hydrolase family 13 

[54]. These thermostable glycoside hydrolases were produced in this 

investigation i.e. xylanase (Papers I, II, III, IV, V), cellulase (Paper II) 

and cyclomaltodextrinase (Paper IV); using different induction and process 

strategies to evaluate their production potential in the selected host-vector 

systems.   
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3.3.1 Xylanase  

Xylans are major constituents of plant cell walls and the most abundant 

hemicellulose displaying great variability depending on the biological role 

and cytological localisation [55]. Xylanase enzyme systems are responsible 

for the degradation of xylan and can be divided into main-chain degrading 

enzymes and accessory enzymes responsible for the hydrolysis of side-

chain constituents. The most studied are main-chain degrading endo-1,4-β-

xylanases (EC 3.2.1.8), which are commonly referred to as xylanases and 

1,4-β-xylosidases (EC 3.2.1.37) [56-57] with the former being the largest, 

containing 178 members classified into the two families, 10 and 11. 

Although both families (GHF 10 and GHF 11) hydrolyse similar substrates 

the GHF 10 xylanases exhibit substantial differences from GHF 11. Early 

characterisation suggested that the former were typically acidic with low 

isoelectric point (pI) values with higher molecular mass catalytic modules 

(~40kDa), in contrast to the GHF 11 members having basic pI values and 

low molecular masses (<30kDa) [57]. Furthermore, approximately 40% of 

the GHF 10 members display modular architecture [58].  

 The thermostable xylanase (GHF 10) originating from R. marinus is 

modular consisting of 5 modules/domains [59] individually connected by a 

recognisable linker sequence (Figure 4). The linker regions are often rich in 

proline or hydroxy-amino acids with varying lengths and they are 

susceptible to proteolytic cleavage [60]. The catalytic module has a relatively 

high molecular weight (~40kDa) [61-62] (Papers II, III, V) and typically 

displays a TIM-barrel fold (cylindrical 8-fold α/β-barrel structure (Figure 

4). The two N-terminally repeated carbohydrate-binding modules (CBM4-1 

and CBM4-2) encoded by the xyn10A gene have affinity for both insoluble 
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xylan and amorphous cellulose and although they show an 88% sequence 

identity they differ in their substrate affinities and stabilities [63-64].  

 

 

  Furthermore, the structure of the CBM4-2 (Figure 4) has been resolved 

which has a β-jelly roll structure formed by 11 strands, and contains a 

prominent cleft [65]. The third (D3) and fifth domain (D5) encoded by the 

xyn10A gene from R. marinus has previously been reported as being with 

D5 CBM4 CBM4 D3 Xylanase Catalytic 

Paper 
I 

Figure 4. Schematic representation of the modular Xyn10 gene from R. 
marinus. (Left)  Ribbon model depicting type B Xyn10 CBM4-2. The two 
aromatic residues using the xylan binding cleft are indicated. (Right) 
Side view of a homologue to the Xyn10A catalytic module. The ribbon 
model shows the two side-chains of the catalytic residues in space-fill.  
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unknown function. However, with regards to the latter this domain 

represents a novel type of module that mediates cell attachment in proteins 

originating from members of the phylum Bacteroidetes (Paper I). 

Xylanases exhibit a number of potential industrial applications. 

Currently, the most effective use of xylanase is in the prebleaching of kraft 

pulp to minimise the use of harsh chemicals in the subsequent treatment 

stages of kraft pulp [66-68]. However, the applications of xylanase further 

extends to the food, feed and agricultural industries [57, 69-71]. 

 

3.3.2 Cellulase 

Cellulose mainly exists as a structural component in cell walls of higher 

plants making up around 30% of dry mass in grasses and cereals and 

between 40-50% of wood [72]. Efficient depolymerisation of the polymer 

is brought about by cellulases with the ability to hydrolyse β-1,4 glucosidic 

bonds. It should be noted that cellulases and xylanases sometimes display 

overlapping specificities and modes of action [73]. Cellulases fall into three 

major groups depending on their mode of attack: (1) endoglucanases (EC 

3.2.1.4) which carry out random cleavage of internal bonds in the 

amorphous or less ordered region of cellulose as well as cleavage in a 

variety of other soluble glucan polymers containing β-1,4 linked D-glucose; 

(2) exoglucanases (EC 3.2.1.91) which function in a processive manner on 

the reducing or non-reducing ends of the cellulose chain releasing 

cellobiose as their main product; (3) β-glucosidases (EC 3.2.1.21) which are 

involved in the hydrolysis of cellobiose to glucose [74].  

 The extremely thermostable endoglucanase, Cel12A form R. marinus 

[75] belong to the family 12 glycoside hydrolases. Generally members of 

the GHF 12 display a high catalytic activity on mixed linkage glucans such 
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as β-glucan and lichenan, while their activities on both amorphous and 

crystalline cellulose are exceedingly low [76]. The three-dimensional 

structure of the catalytic module displays a β-jellyroll fold (Figure 5) very 

similar to that of family 11 xylanase [77].  Applications of cellulases extend 

from use in drainage, deinking and fiber modification in the pulp and paper 

industry to food, feed and agricultural industries [78].  

 

  

3.3.3 Cyclomaltodextrinase  

The α-amylase family (GHF 13) is one (and the largest) of five 

structural families of starch-modifying enzymes, specifically acting on the 

α-1,4- and α-1,6-O-glycosidic linkages of starch and starch like polymers 

[79]. Substrate specificity revealed that the family 13 also includes 

Figure 5. Ribbon model of the R. marinus Cel 12A  from a side-view 
with the side-chains of the two catalytic residues shown in space-fill. 
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cyclomaltodextrinases (CDases; EC 3.2.1.54), maltogenic amylases 

(MAases; EC 3.2.1.133), and neopullulanases (NPases; EC 3.2.1.135) which 

readily hydrolyse cyclodextrins, pullulan and starch [80]. These enzymes are 

distinguished from typical α-amylases by containing a novel N-terminal 

domain and exhibiting preferential substrate specificities for 

cyclomaltodextrins (CDs) over starch. CDases hydrolyse CDs much faster 

than starch [81-82] and do not produce CDs from starch in contrast with 

cyclodextrin glucanosyltransferase (CGTase; EC 2.4.1.19) that forms CDs 

from starch and has hydrolytic activity towards CDs [83].  

Since the first reported CDase from Bacillus macerans [84] there has been 

an increasing number of reports on CDases [85-89]. Recently a multi-

domain CDase from the thermophilic bacterium Anoxybacillus flavithermus 

has been cloned and expressed in E. coli [54]. Although the α-amylase 

family display large variation in domain number and structure [90-91], the 

CDases are generally composed of four domains termed N, A, B and C 

(Figure 6). In paper IV a temperature-limited fed-batch (TLFB) was 

performed in order to improve production yields as the α-amylase family 

enzymes has proven to be difficult to express in an active form.   
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3.4 Phospholipase from an Alkaliphile 

Alkaliphiles are defined as microorganism displaying optimum growth 

at least two pH units above neutrality. Soda lakes and soda deserts are the 

most naturally occurring alkaline habitats where large amounts of carbonate 

minerals results in the establishment of pH values around 11.5 and above 

as a result of geological, geographical and climate conditions [92-93].  

These environments allow the dense populations of aerobic organotrophic 

and alkaliphilic bacteria, which are potential sources of alkali-stable 

enzymes, to proliferate [94-95]. Among the alkaliphilic bacteria the genus 

Bacillus produces extracellular, alkaline active enzymes which has had 

Figure 6. Ribbon models of Anoxybacillus flavithermus CDase13 in its 
monomeric (A) and its native dimeric (B) state.  

A B

C-domain

B-domain

N-domainA-domain
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considerable impact on industrial processes requiring alkaline conditions. A 

number of alkaline active enzymes such as amylases, xylanases, proteases, 

galactosidases, pectinases and pullulanases have been reported from B. 

halodurans [44, 96-98]. Furthermore, B. halodurans C-125 has been 

biochemically and genetically characterised [99].  

Recently, lipolytic enzymes have been reported in B. halodurans from 

samples originating from a Kenyan alkaline soda lake [100]. Microbial lipase 

displays a wide range of industrial applications and is also an interesting 

catalyst in organic media [101]. Although many new bacterial lipolytic 

enzymes have been studied only a few reports have attempted to organise 

information such as biochemical properties, for comparative purposes 

[102-105]. Usually, lipolytic enzymes are characterised by their ability to 

catalyse a broad range of reactions. However, the wide diversity of methods 

used for lipase assays (such as the hydrolysis of p-nitrophenyl esters, the 

pH-stat method and the monolayer technique) prevents a direct 

comparison of results on substrate specificity [103, 106].  

In the present investigation (Paper VI), a gene encoding lipase 

identical to BH3288, deposited in the NCBI database 

[http://www.ncbi.nlm.nih.gov] has been amplified from the strain of B. 

halodurans isolated in the Kenyan alkaline soda lake mentioned above [100] 

and was successfully cloned and expressed using a Pichia pastoris host-vector 

system. This enzyme was found to display phospholipase activity which is 

an essential property in applications for baking, degumming of vegetable 

oils and as emulsifiers in mayonnaise industry. Although lipases belong to 

many different sub-families with low sequence similarities, they have the 

same overall architecture, the α/β-hydrolase fold (Figure 7) and the true 

lipases display a conserved active site signature, the GXSXG-motif [107], 

which was also found in the B. halodurans sequence.  
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Figure 7. A representation of the α/β-hydrolase fold conserved 
among lipases. The side-chains shown are the conserved catalytic triad 
[S, H, D], with the serine being part of the GXSXG-motif. 
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4. Prokaryotic and Eukaryotic Expression Systems 

Prokaryotic and eukaryotic systems are the two general categories of 

expression systems. Prokaryotic systems are generally easier to handle and 

are satisfactory for most expression purposes. However, there are serious 

limitations in using prokaryotic cells for the production of eukaryotic 

proteins which undergo a variety of post-translational modifications e.g. 

glycosylation, and phosphorylation. All expression systems pose advantages 

and disadvantages that one should be aware of and selection involves 

evaluating the possibilities to obtain good yields, proper glycosylation and 

folding, prior to considering scale up. The production trials and 

optimisation work reported in this thesis focuses on two hosts: E. coli 

(Papers II, III, IV) and P. pastoris (Papers V, VI) and as a starting point 

Table 3 outlines some important characteristics of these host’s which 

influences their selection as an appropriate host vector system.      

  

Table 3. Comparison of host characteristics 
 E. coli P. pastoris 
Complexity of growth medium Minimum Minimum 
Cost of growth medium Low Low 
Expression level High Low - high 
Extracellular expression secretion to 

periplasm 
secretion to 
medium 

 
Post-translational modifications 

Protein folding usually required may be required 
N-linked glycosylation No Yes 
O-linked glycosylation No Yes 
Phosphorylation No Yes 
Acetylation No Yes 
Acylation No Yes 
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Among prokaryotic host expression systems, E. coli is a widely 

employed host due to the vast body of knowledge that exists about its 

genetics and physiology, including its complete genome sequence and a 

number of available vectors which greatly facilitates gene cloning [108-109]. 

As alternative hosts, yeasts (mainly the genus Saccharomyces and Pichia both 

being classified as GRAS) are favoured for the expression of proteins 

destined for use in medical, food and pharmaceutical industries [110-111]. 

  

4.1 Optimising Heterologous Gene Expression in E. coli  

As previously mentioned the gram-negative bacterium E. coli remains 

one of the most attractive host for the production of heterologous 

proteins. A wide range of advantages possessed by E. coli ensures that it 

remains a valuable microorganism for high-level protein production [6, 

108, 112-113]. Although there are no guarantees that the desired 

heterologous protein will accumulate to high levels in a fully biological 

active form in E. coli, a considerable amount of effort has been directed 

towards improving the performance and versatility of this host for 

heterologous gene expression. Below, a few key features of E. coli-based 

expression systems are examined and strategies employed to overcome 

limitations are also addressed. 

 

4.1.1 Transcriptional Regulation of Expression 

 The suitability of promoters for high-level gene expression is governed 

by several criteria [114]. Firstly, the promoter must be strong, capable of 

protein production in excess (at least 10-30% of the total cellular protein). 

Secondly, the promoter should exhibit a minimal level of basal 

transcription. Thirdly, promoters should be capable of induction in a 

simple and cost-effective manner [115]. For many years the E. coli lac 
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operon has served as one of the paradigms of prokaryotic regulations. 

Thus, many promoters used to control transcription of heterologous 

proteins have been constructed from lac-derived regulatory elements [116-

117]. 

Over the years, the pET vectors (Novogen, Madison, WI) have gained 

increasing popularity. In this system, target genes are positioned 

downstream of the bacteriophage T7 promoter or a T7/lac-promotor 

fusion on medium copy number plasmids. The highly processive T7 RNA 

polymerase is encoded in the production host via insertion of a prophage 

(λDE3) encoding the enzyme under control of the IPTG (isopropyl-β-D-

thiogalactopyranoside)-inducible lacUV5 promoter [118]. Using this system 

up to 40-50% of the total cellular protein could be heterologous and 

transcription is tightly controlled. It is often argued that the cost and 

toxicity of IPTG limits the usefulness of these promoters. However, these 

drawbacks may be overcome by cultivation techniques that allow use of 

lactose as an inducer instead of IPTG (Paper III).  Other interesting 

reports have demonstrated useful protein expression systems for different 

applications via the araE, rhaBAD, and nar promoters, which uses 

arabinose, rhamnose and microaerobic conditions, respectively to induce 

heterologous gene expression [119-121]. 

 

4.1.2 Factors Affecting Production Yields 

There has been considerable research effort over the years to 

overcome the limitations in protein expression in E. coli (Table 4). 

Although, there is the flexibility of selecting the target destination 

(periplasm, cytoplasm) for the accumulation of the desired protein there are 

a number of advantages and disadvantages that need to be taken into 

account. The periplasm provides a more oxidised environment for protein 
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folding than the cytoplasm but incomplete in vivo signal peptide cleavage 

may pose a problem. In the cytoplasm, proteolysis and the formation of 

inclusion bodies are seen as major bottle-necks affecting the production of 

heterologous proteins and are discussed below.     

 

Table 4. Potential strategies to resolve protein production problems 
Problems Strategy for resolution Reference 

 
Low growth temperature [122] 
Amino acid substitution [123-125] 
Coexpression of molecular 
chaperons  

[123, 126-127] 

Fusion partners [128-130] 
Rich growth media [131] 
Sucrose/raffinose in growth 
media 

[132] 

Mutagenesis of cleavage sites [133-135] 
Fermentation conditions [118, 133, 136-137] 
Altered pH [138] 

Inclusion bodies, 
Proteolysis,  
[protein insolubility, 
refolding to gain 
activity] 
 
 
 
 
 
   
 Protease deficient strains [139] 
   

Coexpression-signal peptidase I [140] 
Coexpression of sec genes [126] 

Signal peptide does 
not always facilitate 
transport, signal  
peptide cleavage 

Fusion proteins [141] 

   
Amino acid substitutions  [142] Reduced folding 
Coexpression of disulfide 
isomerase 

[143-144] 

 

 

Proteolytic degradation 

Proteolysis is a selective, highly regulated process that plays an 

important role in cellular physiology [145-146] such as removal of 

abnormal and incorrectly folded proteins. A large number of protease are 

present in E. coli and are localised in the cytoplasm, periplasm and inner 

and outer membranes (Table 5). Strategies for minimising proteolysis of 
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heterologous proteins in E.  coli include among others, targeting proteins 

to the periplasm, using protease deficient strains, cultivation at low 

temperature, construction of N- and/or C-terminal fusion proteins and 

replacing protease cleavage sites [6, 125]. Also, in the present study it was 

shown that the presence of protease is dependent on the induction time in 

relation to the cell density obtained as well as nutrient composition during 

cultivation and type of inducer employed during heterologous protein 

production (Papers II & III).  

 

 

Table 5. Examples of Proteases present in E. coli 
Protease Location Comments Reference 

 
 Cytoplasm   

Lon (La) Degrades abnormal proteins [147-151] 
Do  Serine protease [152] 
Protease II Serine active site [152-155] 
Ci Metalloprotease [156] 
Fa Endoprotease [157] 
Rec A Recombinant functions [158-161] 
So Serine protease [162-163] 
Clp 

 
 
 

Degrades abnormal proteins  [164] 
 
Deg P 
Pi 
Mi 
Peri 7 
Peri8 
 

Periplasm 
 
 
 

 
 
Necessary for high temperature 
growth 
 
Cleavage between tyr-leu and 
phe-tyr 

 
 
 
[165-167] 

 Cell 
membrane

  

Protease IV Prefers hydrophobic amino acids [168-169] 
OmpT Cuts at paired residues [170-172] 
Protease VI 

 

Membrane associated [173] 
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Formation of Inclusion bodies 

Overproduction of heterologous proteins intracellularly in E. coli is 

often accompanied by their misfolding and segregation into insoluble 

aggregates known as inclusion bodies. A number of environmental 

conditions such as pH and temperature are reported to influence the 

formation of inclusion bodies [17-175].  Formation of inclusion bodies may 

be advantageous in rendering protection of heterologous proteins against 

proteases and simplifying protein purification. However, there are no 

guarantees that in vitro refolding will yield large amounts of active 

heterologous protein.  

Thus, greater effort has been focused on attaining high yields of 

soluble active protein through fermentation engineering (Paper IV). The 

data obtained showed that the generally accepted decrease of temperature 

is not always successful but may also require modification of the process-

strategy to yield improvements. Other approaches include co-expression of 

molecular chaperons [176] and the fusion of the desired protein to highly 

soluble proteins [54] such as the E. coli Nus A protein [177]. Fusion 

proteins offer other advantages, such as improving folding characteristics, 

increased solubility or specific affinity sites thus limiting proteolysis and 

providing generic protein purification schemes respectively [178-179]. 

However, the main disadvantages of protein fusion technologies are that 

liberation of the target or passenger protein requires additional steps which 

may include expensive proteases (e.g. Factor Xa or enterokinase) and a 

reduction in yield due to incomplete cleavage. 

 

4.2 Heterologous Gene Expression in Pichia pastoris  

Initially the ability of Pichia pastoris to metabolise methanol as a sole 

carbon source prompted immediate attention in its use as a potential 
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source of single-cell proteins (SCP). Over the years researchers have 

developed the methylotrophic yeast Pichia pastoris into a highly successful 

system for the production of a variety of heterologous proteins [20]. 

Several factors have attributed to the increasing popularity of this 

expression system such as: (1) molecular and genetic manipulation of P. 

pastoris (similar to Saccharomyces cerevisiae), which makes it a well-characterised 

system; (2) high yields of heterologous protein attainable either 

intracellularly or extracellularly; and (3) its capability of performing post-

translational modifications such as glycosylation, disulphide bond 

formation and proteolytic processing.  

 

4.2.1 Methanol Metabolism and the AOX1 Promoter 

Only a limited number of species belonging to the genera Hansenula, 

Candida, Torulopsis and Pichia are capable of growth on methanol as a sole 

carbon source [180-182]. In the P. pastoris expression system the conceptual 

basis stems from the observation that some enzymes required for methanol 

metabolism are present in substantial amounts only when cells are grown 

on methanol [183-184]. Methanol utilisation requires a unique metabolic 

pathway involving several unique enzymes [185] with the enzyme alcohol 

oxidase (AOX) catalysing the first step: the oxidation of methanol to 

formaldehyde and hydrogen peroxide. The hydrogen peroxide is degraded 

to oxygen and water by catalase which, together with AOX is sequestered 

in peroxisomes. A portion of the formaldehyde leaves the peroxisomes and 

is further oxidised to provide a source of energy for the cells growing on 

methanol (Figure 8). 

Alcohol oxidases are present at high levels in cells grown on methanol 

as a sole carbon source but not when most other carbon sources (e.g. 

glucose or glycerol) are present. P. pastoris cells grown in fermentation 
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cultures were methanol is fed as a growth limiting substrate have shown an 

accumulation of AOX >30% of the total soluble protein [186-187]. 

 

 

 
 

 

Although two genes encode alcohol oxidase in P. pastoris: AOX1 and 

AOX2, the AOX1 is responsible for the vast majority of the alcohol 

oxidase activity and hence expression systems have been developed 

utilising the promoter of the AOX1 gene. [188]. Regulation of the AOX1 

gene is a mechanism resembling that of the GAL1 gene of Saccharomyces 

cerevisiae involving an induction/derepression as well as induction 

mechanism. However, unlike GAL1 regulation, where the absence of a 

carbon source such as glucose in the medium results in transcription, the 

lack of a carbon source does not result in substantial AOX1 transcription. 

The presence of methanol is hence essential to induce high level 

transcription of alcohol oxidase via this promoter [188].  

Peroxisome 
CH3OH 

HCOH 

GAP DHA 

Alcohol oxidase 
(AOX) 

O2 

H2O2 

Figure 8. The methanol utilisation pathway in P. pastoris 

Pichia  pastoris 

Cell 
constituent
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4.2.2 Host Strains and Vector Design 

The most commonly utilised promoter for heterologous protein 

production in P. pastoris is the AOX1 promoter described above which is 

commercially available (Invitrogen, Carlsbad, CA). A number of 

heterologous proteins from bacterial origin have been produced using this 

promoter and with the results gained in this thesis using the AOX1 

promoter the list of enzymes (Table 6) can now be extended with 

representatives of extremophilic origin; including extracellularly produced 

thermostable family 10 bacterial xylanase (Paper V) and a phospholipase 

originating from an alkaliphilic strain of B. halodurans (Paper VI). Other 

alternate promoters to the AOX1 promoter are P. pastoris GAP 

(glyceraldehyde 3-phasphate gene), FLD1 (glutathione-dependent 

formaldehyde gene), PEX8 (genes for peroxisomal matrix proteins) and 

YPT1 (gene for GTPase involved in secretion) promoters. 

Most P. pastoris host strains grow on methanol at the wild-type rate 

(Mut+, methanol utilisation plus phenotype). However, other mutant host 

strains are available which vary with regards to methanol metabolism due 

to deletion of one or both AOX genes and some reports have shown better 

production of heterologous proteins in these modified strains [194-196]. 

Also, several protease deficient strains have been shown to reduce 

degradation of heterologous proteins [197-198].  

Vectors for generating heterologous methylotrophy are capable of 

integration into the genome of the host either by random or homologous 

recombination and expression-vectors have been designed as E. coli/P. 

pastoris shuttle vectors. In addition, to facilitate secretion of the desired 

heterologous protein, vectors are available where, in-frame fusion of the 

foreign protein and a secretion signal of P. pastoris such as acid phosphatase 

(PHO1) or S. cerevisiae α-factor can be generated. The latter was used in the 
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present investigation (Papers V, VI), which yielded efficient secretion of 

the target proteins in the protease deficient P. pastoris strain (SMD 1168H) 

that was selected as the host. 

 

Table 6. Bacterial proteins produced in P. pastoris 
Bacterial Source Protein Comment Reference

 
B. licheniformis α-amylase E (2.5 g/L) [189] 
B. stearothermophilus Carboxypeptidase E (100 mg/L) [190] 
Escherichia  coli Acid phytases  E (29 U/mg) [191] 
Escherichia  coli β-galactosidase I (2×103 U/mg) [20] 
Staphylococcus aureus Staphylokinase E (50 mg/L) [192] 
Streptococcus equisimilis Streptokinase I (77 mg/L) [193] 
R. marinus Xylanase E (~2 g/L) Paper V 
B. halodurans Phospholipase E (~1 g/L) Paper VI 
E (Extracellular) I (Intracellular) 

 

4.2.3 Post-translational Modifications 

P. pastoris is capable of adding both N- and O-linked carbohydrates to 

secreted proteins. However, the capability is limited to the addition of 

mannose only to the N-glycosylation core and in the case of O-

glycosylation; the oligosaccharides are composed solely of mannose (Man) 

residues [199-200]. P. pastoris appears to exhibit an advantage over S. 

cerevisiae in that the tendency towards overglycosylation of heterologous 

proteins is less pronounced when using P. pastoris as an expression host.  

In paper V, a 200-fold increase in heterologous xylanase activity was 

observed after partial unfolding and refolding of the protein and it should 

be mentioned that the reasons behind the reactivation need of the enzyme 

could be due to O-glycosylation, which is more difficult to monitor than N-

glycosylation. Although glycosylation has not been reported for R. marinus, 

O-glycosylated P. pastoris produced heterologous proteins have been 

reported in some cases [201-202].  
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5. Bioprocess Technology 

 

5.1 Fermentation Technology employing Extremophiles 

The primary objective of fermentation technology in research and 

industry is attaining optimum productivity (g L-1 h-1), i.e. obtaining the 

highest amount of product in a volume within a certain time. High-cell-

density (HCD) is thus a prerequisite for high productivity when product 

accumulation is proportional to cell mass concentration. There are several 

reported high-cell-density-cultivation (HCDC) strategies for bacteria, 

archaea and yeast (Table 7) however; microorganisms with modified 

metabolism and specialised additional biosynthetic capacities provide new 

challenges to bioengineers. The main problems associated with HCDC are 

substrate solubility, limitation and/or inhibition of substrates with respect 

to growth, instability and volatility of substrates and products, product or 

by-product accumulation to a growth-inhibitory level, degradation of 

products, high evolution rates of CO2 and heat, high oxygen demand as 

well as the increasing viscosity of the medium as the cultivation progresses 

[203].  

Additional problems arise with HCDC of extremophiles due to their 

need for extreme conditions for optimal growth.  These problems are 

mainly related to different physicochemical aspects of their fermentation 

and may require adaptations/design of the bioreactor; nevertheless 

considerable effort has gone into the development of fermentation 

strategies [203-204]. In the context of this thesis R. marinus (Paper I) was 

successfully cultivated in batch fermentation resulting in a final cell dry 

weight of approximately 4 g/L with the goal not focused on high 

productivity but in order to obtain samples for enzyme characterisation. 
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Table 7. Various microorganisms grown to cell densities higher than 100 
grams cell dry weight per litre of culture volume.   
Microorganism Characteristics CDW  

(g L-1) 
Pr  

(g L-1 h-1) 
Reference 

 
 

Bacteria 

Mesophile 190 1.04 [205] 
 180 1.08 [205] 
 148 3.36 [206] 

E. coli 

 145 4.53 [207] 
B. subtilis  184 6.57 [208] 
S. laurentii  157 0.71 [209] 
P. putida  100 3.33 [210] 
M. extorquens  233 1.37 [211] 

Archaea 
Marinococcus M52 Halophile 132 N.A [203] 
Sulfolobus shibatae Thermoacidophile 114 0.04 [203] 

Eukarya 
C. brassicae 268 9.57 [212] 
S. cerevisiae 235 1.07 [213] 
P. pastoris 

Mesophile 
Mesophile 
Mesophile 
 

100 0.78 [199] 

CDW = maximum cell dry weight Pr = overall biomass productivity 

  

  

5.2 Fed-batch Process employing E. coli for Enzyme Production  

As mentioned previously E. coli has emerged as the pioneer 

microorganism with respect to molecular strategies for the production of 

heterologous proteins. Due to product accumulation occurring 

intracellularly considerable effort has been placed in conjunction with 

fermentation technology to develop HCD fed-batch strategies ensuring 

efficient heterologous protein titres. The fed-batch cultivation process is 

performed without any outflow of the culture medium but with a 

continuous inflow of a growth-limiting substrate. The process typically 

starts as a pure batch culture prior to the growth limited fed-batch phase. 
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Since high amounts of substrates are needed to reach a high concentration 

of biomass, these substrates must be fed in a controlled manner in order to 

overcome metabolic and engineering limitations during the establishment 

of high cell densities. Exploiting substrate control ensured the successful 

establishment of HCD in the present investigation (Papers II, III, IV).  

A fed-batch process requiring an induction step to initiate heterologous 

protein synthesis is typically divided into pre- and post-induction phases. 

During the pre-induction phase the focus is centred on directing the host 

cell metabolism solely towards cell mass production and limiting by-

product formation while in the post-induction phase the goal is to attain 

maximum product accumulation without degradation of the desired 

protein. However, as stated above the attainment of high cell densities is a 

prerequisite in order to obtain maximum product concentrations and both 

the pre- and post-induction phase needs consideration with respect to host 

cell-metabolism.  

 

5.2.1 Cellular Responses during Cultivation 

A major limiting factor during the cultivation of E. coli is the 

production of acidic by-products such as acetate which reduces growth 

rate, biomass yields, and maximum attainable cell densities [14, 214-215]. 

More importantly, acetate accumulation has been reported to have a 

detrimental effect on recombinant cells concomitantly reducing 

heterologous protein production levels [216-218]. Acetate is produced 

when the carbon flux into the central metabolic pathway exceeds the 

biosynthetic demands and the capacity for energy generation within the cell 

[219-221], adding to saturation of the tricarboxylic acid (TCA) cycle and/or 

the electron transport chain [14, 219].  
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Acetate production usually occurs when E. coli is grown under 

anaerobic or oxygen limiting conditions; however, acetate is also produced 

under aerobic conditions in the presence of excess glucose and is termed 

overflow metabolism [17, 222].  This occurs when the specific glucose 

uptake rate (qg) exceeds a critical value (qg
crit) [14]. Also, the onset of acetate 

formation has been observed when the specific oxygen uptake rate (qo), 

which normally increases with qg, reaches an apparent maximum (qo
max) 

[223-226].  

A number of strategies have been developed to limit acetate 

accumulation [5]. Alterations in media composition such as the use of 

glycerol as a carbon source reduced acetate formation [206, 220]. Also, by 

the addition of certain amino acids the harmful effects of acetate can be 

alleviated thus resulting in an increase in growth rate and heterologous 

protein production [13]. Manipulating process variables such as cultivation 

at lower temperature to lower nutrient uptake and growth [12, 227-229] or 

increasing the dissolved oxygen concentration (pO2) by pure oxygen 

sparging [175, 230] has been beneficial in lowering acetate levels. 

Furthermore, acetate production is highly strain dependent but by 

exploiting the tools of metabolic engineering to manipulate/redirect 

metabolic pathways it is possible to acquire E. coli strains with lower acetate 

production capabilities. Some examples include a reduction in glucose 

uptake [231], improving oxygen uptake [232], and blocking acetate 

excretion [233].  

However, it should be noted that one of the most routinely used 

method to avoid overflow metabolism is by manipulation of the glucose 

feed rate during fed-batch cultivation (Papers II, III, IV) and this is 

discussed in more detail under the process control section.   
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5.2.2 Cellular Response during Protein Over-expression   

The determining factor in the yield of heterologous proteins is the 

mutual interplay between the strength of the genetic system and the host-

cell’s metabolic capacity. Therefore, efficiency of bioprocesses for 

heterologous protein production relies upon understanding the relationship 

between expression of heterologous-protein encoding genes and host-cell 

metabolism. Often the use of too strong expression systems leads to rapid 

loss in host-cell metabolic activity due to the redirection of cellular 

metabolism [234] towards heterologous-protein production, thus over 

utilising the shared protein synthesis machinery, precursors and energy 

resources during the post induction phase.  

Determination of the metabolic load imposed during heterologous 

protein synthesis is hence a key issue for process optimisation. The 

development of a “metabolic load sensor” based on the stringent-response 

network appears as one possibility to monitor this load [235]. In the 

stringent response, the synthesis of ribosomal and transfer RNAs is 

inhibited when protein synthesis is blocked by amino acid starvation. 

During amino acid starvation a regulatory nucleotide, guanosine 

tetraphosphate (ppGpp), accumulates and inhibits rRNA and tRNA 

synthesis [236]. However, this triggers host-cell proteases to degrade 

abnormal proteins in order to replenish amino acid resources and redirect 

free amino acids for incorporation into essential growth associated proteins 

[237].   

Also, optimisation of the post induction phase by incorporation of 

certain key metabolites and precursors, during this phase of the cultivation 

has rendered significant improvements in target protein yields as well as 

lowering cell associated factors such as in vivo proteolysis (Papers II, III). 

Furthermore, heterologous protein production rates may be adapted for 
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optimal exploitation of the host-cell’s biosynthetic capacity. Reducing the 

promoter strength by feeding limiting quantities of the inducer or using 

alternative inducers eventually with lower affinity for the specific repressor 

molecule is an effective way of tuning the expression rate (Paper III). 

 

5.2.3 Process Control  

The mode of feeding influences E. coli fed-batch cultivations by 

defining the growth rate and the effectiveness of the carbon cycle for 

product formation and minimisation of acetate formation. By controlling 

the glucose feed rate it is possible to avoid overflow metabolism and 

oxygen limiting conditions. There are a number of feeding strategies 

available to reduce or avoid acetate accumulation. The nutrient feed mode 

can be defined based on an open-loop, if an exact mathematical model is at 

disposal or a feedback control example pH (pH-stat) or dissolved oxygen 

(DO-stat) [5, 238-239].  

In the present investigation (Papers II, III, IV) glucose limited E. coli 

fed-batch cultivations were performed based on on-line detection of 

acetate formation using dissolved oxygen responses [240]. Under glucose-

limited conditions pulses superimposed to the glucose feed rate gave rise to 

changes in the glucose uptake that can be seen in the dissolved oxygen 

(pO2) measurements [241], which in turn was used as a feedback control to 

adjust the nutrient feed rate [242]. By exploiting this nutrient feed strategy, 

overflow metabolism was avoided and very low acetate levels were 

obtained.   

It has been shown that performing E. coli fed batch cultivations under 

glucose limitation is successful for attaining high cell densities and reduced 

acetate levels however; the effect on heterologous protein production levels 

also needs evaluation. In the current investigation (Paper II) heterologous 
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cellulase production levels proceeded normally irrespective of the cell mass 

concentration at the time of induction. On the other hand, heterologous 

xylanase production levels were dependent on the cell mass concentration 

at the point of induction as well as the nutrient feed composition (Papers 

II and III). Thus, in some instances glucose-limitation may not be 

beneficial during the post induction phase and the nutrient feed 

composition should be optimised to avoid cellular stress responses such as 

degradation of the heterologous protein. This substrate-limited fed-batch 

(SLFB) strategy still supplies glucose at limiting levels but also provides 

other essential metabolites or precursors during the post-induction phase. 

Furthermore, cultivation under glucose limitation allows lactose to be 

immediately metabolised when it is supplied in excess as an inducer (Paper 

III).      

In some reports [243] however, performing E. coli substrate limited 

fed-batch cultivation resulted in the release of higher amounts of 

lipopolysaccharide (LPS) outer membrane (OM) components called 

endotoxins. The levels of endotoxin was reduced by employing a 

temperature-limited fed-batch (TLFB) technique in which the dissolved 

oxygen concentration was regulated by temperature while all substrate 

components were fed uncontrolled as glucose limitation was the cause of 

excessive endotoxin release. In this thesis evaluation of heterologous 

protein production levels between two glycoside hydrolases using the SLFB 

and TLFB techniques were performed. Using the TLFB strategy seems to 

be beneficial to heterologous protein production during a longer post-

induction phase but with the parameters used here, endotoxin release was 

not significantly affected (Paper IV). 
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5.3 Fermentation Technology employing P. pastoris 

Although E. coli has been the "factory" of choice for the expression 

and production of many proteins the inherent problems of intracellular 

accumulation, endotoxin production and the fact that some proteins are 

produced in a non-functional, unfinished form due to the lack of certain 

post-translational modifications has resulted in the development of 

alternate expression systems.  Pichia pastoris has been developed to be an 

outstanding host for the production of foreign proteins since its alcohol 

oxidase promoter was isolated and cloned [197, 244]. 

Pichia pastoris offers the advantage of good growth and cell mass 

accumulation in a shake flask. However, cultivation in shake flasks can 

pose an array of problems, including pH control, oxygen limitation, 

nutrient limitation and temperature fluctuation. Moreover, researchers 

found that cultivation in a fermenter has resulted in an increase in 

heterologous protein production levels of over 140% [245]. A substrate 

limited fed-batch mode of operation has been utilised by several researches 

in order to achieve maximum heterologous protein production levels [246-

249]. Although, the produced protein can be obtained extracellularly, high 

cell density cultivations are often performed in the pre-induction phase 

using glycerol as a carbon source. This is due to high levels of methanol, 

which is used in the post-induction phase, being toxic to the cells. 

Therefore, the transition from using glycerol as a growth limiting substrate 

to methanol as well as the residual concentration of methanol in the 

fermenter requires subtle feeding control. Furthermore, growth on 

methanol is slow and results in extended fermentation time thus ultimately 

relating to total productivity.  

In this thesis an alternate screening and production strategy termed 

“Batch Induced Cultivation” is presented (Papers V, VI). This involves 
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performing batch cultivations with complex growth media and the 

inclusion of methanol as the sole carbon source. As a prerequisite AOX1 

transcription is initiated during the inoculum stage prior to transfer into the 

fermenter. This strategy enabled production of heterologous xylanase 

(Paper V) and phospholipase (Paper VI) to proceed approximately 4-10 

hours after fermentation start thus reducing production time to 60 hrs as 

opposed to extended fermentations using the fed-batch strategy [244, 250-

251]. 
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6. Summary of the Present Investigation 

The studies conducted during the course of this thesis has included 

four enzymes namely, xylanase and cellulase from R. marinus, 

cyclomaltodextrinase from Anoxybacillus flavithermus and a phospholipase 

from Bacillus halodurans. In figure 9, the general overview as well as the 

breakdown into the individual papers in which the relevant enzymes were 

investigated is mapped. The first part of the work probes the modular 

architecture of the family 10 xylanase (RmXyn10A). Paper I deals with 

elucidating/assigning characteristics to the previously undefined domain 

(D5) of the full-length xylanase which was produced by batch cultivation of 

the thermophile. The results suggest that this domain represents a novel 

type of module that mediates cell attachment in proteins originating from 

members of the phylum Bacteroidetes.  

In Paper II the production of the individual catalytic modules of the 

cellulase and xylanase, both originating from R. marinus were evaluated in 

an E. coli based expression system. Induction with IPTG using the strong 

T7/lac promoter showed significant difference in the production patterns 

of both theses enzymes. While the specific cellulase activity was 

predominately lower compared to the xylanase there was an incremental 

increase in heterologous cellulase yield in contrast to the xylanase which 

showed a decreasing production level 2 hours after induction at a high cell 

mass concentrations. Using the cellulase production trend as a model, the 

aim was focused on optimisation of the post induction phase for xylanase 

production. Results indicated that heterologous xylanase production at a 

high cell mass concentration was largely dependent on the post-induction 

nutrient feed composition. In Paper III, a further investigation into the 

metabolic stress imposed during heterologous xylanase production was 

carried out. The effect of some selected nutrient feed additives [TCA-
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intermediates] as a strategy to relieve the metabolic burden imposed during 

heterologous xylanase production showed promising results. The presence 

of either succinic acid or malic acid as feed-additives resulted in an increase 

in production of approximately 40% of the heterologous thermostable 

xylanase. Furthermore, use of lactose as an alternative inducer of the 

T7/lac-promoter, was also proven to be a suitable strategy that significantly 

prolonged the heterologous protein production phase as compared to 

induction with IPTG. These results gave new complementary information 

regarding the protein-synthesising machinery of the cell, during 

heterologous protein-production. 

In Paper IV processes control strategies are exploited for E. coli based 

expression systems in order to attain maximum heterologous protein yields. 

The enzymes selected were two glycoside hydrolases: cyclomaltodextrinase 

and the full-length modular thermostable xylanase. A comparison and 

evaluation of both substrate and temperature limited fed-batch strategies 

were carried out and this paper describes the production profiles of the 

respective enzymes and the amount of released endotoxins using the 

described feeding strategies. 

Extracellular heterologous protein production was also evaluated using 

a Pichia pastoris based expression system. In Paper V the catalytic module of 

the family 10 xylanase originating from Rhodothermus marinus was cloned and 

expressed in the methylotrophic yeast Pichia pastoris. This is the first 

reported thermostable gram-negative bacterial xylanase efficiently secreted 

by P. pastoris. Furthermore, this host-vector system seems promising for the 

development of high cell density fed-batch processes for the production of 

thermostable xylanase of bacterial origin for applied purposes.  Also, in 

Paper VI, the Pichia system was used for the expression of phospholipase 

from alkaliphilic Bacillus halodurans. Previous attempts to produce this 
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enzyme using the E. coli based expression system resulted in the formation 

insoluble aggregates (inclusion bodies). 
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