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Introduction

1 Motivation

The theory of random graphs has a wide range of applications in real life networks. It is
a useful tool when studying the world wide web, neuron networks or social networks. To
explain what a graph is, we can take a basic example of a social network like affinities in
a class. We model each student as a vertex and if the students are friends then there is an
edge between the two vertices assigned to the students to show the connection. When
studying such a graph, questions arise like:
Are there any isolated student?
Are they all connected to anyone else through a path of friends or are there disconnected
groups?
Who’s the most popular student?
Is there a big group of friends that outnumber other groups?

These questions are part of the study of the structure of the graph. They all seem very
simple but become much more complicated when one deals with large networks such as
internet where there are billions of web pages linked in a large network. These questions
can even become crucial in epidemiology studies, for example if one wants to know how
to contain the spread of a virus with a limited stock of vaccine. Who should we vaccinate
to stop the contamination?

2 Definition and terminology

Let us introduce some notations to study the structure of the graphs rigorously. We
emphasise each definition with an example in real life networks to avoid a heavy accumu-
lation of concepts without explanation of their purpose and illustrate definitions in figure
1.

Definition 1. A graph G is an ordered pair of disjoint sets G = (V , L) such that L, the set
of edges is a subset of the set V 2 = V × V of unordered pairs of the set of vertices V .

In the modelling of a network, the vertices often represent the entity and the edges
are the connections or acquaintances if one thinks about a social network.

If u and v are two vertices of the graph then we denote the edge between these two
vertices by (u, v). If (u, v) ∈ L (i.e. we have an edge between the vertices u and v) then
we say that the vertices u and v are connected through the edge (u, v). If a vertex w is
connected to no other vertex, that is

w ∈ V ,∀v ∈ V , v 6= w, (w, v) /∈ L

then it is isolated.
In modelling a network of acquaintance by a random graph as above, we assume that

the fact to know someone is mutual. This assumption is not always true. One example is
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3. The degree sequence

the graph of the streets of a city. Some streets are two ways which corresponds to an edge
and some are only one way. Therefore we must introduce the notion of orientation in a
graph.

If the graph is directed (i.e. the edges are directed) then the pair (−→u, v) denotes that
there is an edge from the vertex u to the vertex v.

Consider that two vertices are connected through an edge if the persons modelled by
those vertices are close enough to exchange germs. Someone ill might give the sickness
to anyone with which it is connected. This person might in turn give the infection
to its contacts and so on. If a virus appears in a very dense place then it’s more likely
to spread than in a scarcely inhabited one. This example allows us to introduce two
important notions: the connected component and the degree of a vertex.We define the
connected components as the sets of vertices linked by a chain of edges. An isolated vertex
is the smallest possible component. The largest connected component is denoted C1. If you
are in a component disconnected from the original place of the infection then you can’t
be infected.

In a graph, the vertices can be linked to several other vertices. The vertices which are
linked to u are called the neighbours of u and their set is denoted G (u). The number of
edges to which u is an endpoint is the degree of the vertex u which we denote

d (u) =
∣∣∣{(u, v), v ∈ V }

∣∣∣.
In a densely populated city you encounter more people and exchange more germs than in
a unpopulated countryside. You are connected to more people which translates in terms
of graphs as a vertex with a high degree.

In the case of directed graphs, we make a distinction between edges (−→v, u) and (−→u, v).
Thus we make the same distinction by considering the in-degree din(u) and the out-degree
dout (u) of the vertex where the in-degree is the number of incoming edges

din(u) =
∣∣∣{(−→v, u), v ∈ V }

∣∣∣
and the out-degree is the number of out-coming edges. We define the degree of a vertex
u as

d (u) = din(u) + dout (u)

In the figure 1 we consider an example of a non-directed graph to visualise the notions
introduced in this section. Circles represent vertices

(
V = {1, 2, ..., 10} and the couple

(u, v) where u, v ∈ V indicates the edge connecting vertices u and v.

3 The degree sequence

The study of the degree sequence gives indications on the homogeneity of the graph. If
the degrees are concentrated around a certain value then we can consider that the vertices
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(1,2)

(1,3)

(1,4)

(3,10)

(4,7)

(4,8)

(6,9)

(7,8)

(9,9)

The neighbourhood of the vertex 1 is G (1) = {2, 3, 4}.
The degree of the vertex 1 is 3, d (1) = 3.
The vertex 5 is isolated.
There’s a loop on vertex 9.
The vertices {1, 2, 3, 4, 7, 8, 10} form a connected component.

Figure 1: An example of a graph.
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3. The degree sequence

are hardly distinguishable. If instead we have a very wide range of degrees then we will
have highly connected vertices and not highly connected ones.

3.1 The degree sequence in classical random graph

The results given in this introduction about classical random graphs are taken from the
book Random Graphs by Janson, Łuczak and Ruciński (2000) (? ) and from the book
with the same name by Bollobás (1985) (? ).

The classical model of random graph denoted Gn,p was introduced by Gilbert (1959)
in (? ) but it is commonly called Erdös-Rényi random graph since they first set the basis
of the probabilistic treatment of Gn,p in a series of papers in the 60’s (see (? )).

Definition 2. The model Gn,p consists of all graphs with vertex set V = {1, ..., n} in which
all possible edges are chosen independently and with a probability p where p ∈ [0, 1].

Consider a vertex vi which is connected to any vertex independently from the other
connections with probability p. Let ki denote the degree of the vertex vi, the probability
that the vertex vi has degree k in the graph Gn,p is binomial (n− 1, p)

P{ki = k} =
(

n− 1
k

)
pk(1− p)n−1−k (3.1)

where pk is the probability that the vertex has k edges,
(1− p)n−1−k is the probability of absence of further edges
and

(n−1
k

)
is the number of ways of selecting the neighbouring of vi.

The events {ki = k} and {kj = l} are not independent. It is for example impossi-
ble that a vertex has a strictly positive degree while the others have degree 0. Thus the
distribution of the number of vertices with degree k doesn’t follow straightforward from
(3.1).

Let Xk be the number of vertices of degree k in the graph then for a large range of
probability p we have the following.

Theorem 3.1 (see (? )). Let e > 0 be fixed and let en−
3
2 ≤ p = p(n) ≤ 1 − en−

3
2 . Let

lk = n
(n−1

k

)
pk(1− p)n−1−k then Xk has asymptotically a Poisson distribution with mean lk

P{Xk = r} ∼ e−lk
lr

k

r!
(3.2)

for every fixed r, where ∼ means asymptotically distributed.

However, in real life networks we see a totally different type of behaviour. It has been
found over the last decade that many different networks such as the citation patterns
where each manuscript is a vertex and edges represent citations (i.e. there exists and
edge directed from u to v if the manuscript u cites the manuscript v) have a power law
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distribution of the degrees. In the real life networks, the proportion of vertices with degree
k is best described as a power law:

P(k) ∼ k−g. (3.3)

Redner (1998) (? ) showed that g = 3 for the network of citations. In the internet where
a vertex represents a web page and the edges are links pointing from one page to another,
the proportion of vertices with degree k follows a power law with g = 2, 1± 0, 1 (? ).

3.2 Preferential attachment model

Recently, many new models of random graphs have been introduced motivated by the
power law sequence explained above. Barabási and Albert (1999) (? ) introduced the
preferential attachment model based on two observations:

1. Most real world networks are open and continuously incorporate new vertices to
the system. Think for example about internet and the new pages appearing on the
web everyday.

2. Attachment is not uniform but is preferentially to vertices that already have a
large number of connections. In the citation network mentioned above, a new
manuscript is more likely to cite a well known and thus much cited paper. As an
example, have a look at the bibliography of the introduction.

In this model, at each time step t a new vertex vt is introduced with m edges linking vt

to the previous vertices with probabilities proportional to their degrees or attractiveness.
Note that the same principle has been previously introduced in the little cited paper by
Szymański (1987) (? ).

Start with G1, the graph with one vertex and one loop. Given G t−1 we form G t

by adding a vertex t together with a single edge
(−−−→
t, g(t)

)
, where g(t) is a random vertex

chosen as follows. Let Di(t) denote the degree of vertex i at time t.

P
(

g(t) = i|Di(t − 1) = di

)
=

{
di

2t−1 , if 1 ≤ i ≤ t − 1 ,
1

2t−1 , if i = t .

Barabási, Albert and Jeong (1999) (? ) showed by heuristic arguments supported by
simulations that the degree distribution is proportional to d−3. Rigorous proof of the
power law distribution of degrees was given in (? ). Here we give the Theorem where the
number of edges introduced at each step is 1.

Theorem 3.2 (Bollobás, Riordan, Spencer, Tusnády (2001)). Let ]n(d ) denote the number
of vertices with in-degree equal to d (i.e. with total degree d + 1). Let

a(d ) =
4

(d + 1)(d + 2)(d + 3)

6



3. The degree sequence

and let e > 0 be fixed. Then with probability tending to 1 as n →∞ we have

(1− e)a(d ) ≤ ]n(d )
n

≤ (1 + e)a(d )

for every d in the range 0 ≤ d ≤ n
1

15

By construction vertices with a high degree attract more edges and therefore become
even more attractive. This phenomenom leads to a graph which accumulates most of the
edges on the first vertices. The expected degree at time t of the vertex i introduced at time
i is given by

E
(
Di(t)

)
=

t∏
j=i

2j
2j − 1

∼
√

t/i.

This leads to a graph where the first vertices maintain the structure of the graph. Thus
the model is robust against random deletion of vertices and edges but is vulnerable to an
attack on the first vertices. This is explained by Bollobás and Riordan (2003) in (? ).
The introduction of the deletion has another purpose but just checking the strength of
the network. In the preferential attachment model, vertices and edges are added at each
time step but never deleted. However replacement is a natural rule in a network. A social
network increases by the introduction of new arrivals but also evolves in a manner that
connections can disappear. Using this premise, we consider the graph where an edge is
deleted a time D after its introduction. We prove in paper A that for any fixed time D the
expected degree is uniformly bounded by a constant e

1
2 . This shows a phase transition at

D = ∞ and proves that the preferential attachment is not robust against the ageing of
edges. Moreover we prove that for any fixed D, the degree of any vertex goes to 0 with
time.

Similar deletion was studied by Turova in (? ), (? ), (? ) and (? ). Moreover, there the
life time D of any edge is exponentially distributed. We consider in paper A a life time of
any edge to be a constant just for mathematical tractability. However, it is clear that our
model admits generalisations. Allowing some freedom on the deletion of edges would
be a closer fit to reality. If for example, the deletion happens randomly on an interval
of a fixed length d centred on D, then our results are still valid. Consider now a few
examples of real-world networks which topological or dynamical properties are similar to
our model.

Biological networks
Our model fits the description of evolution where each vertex is a species and the in-degree
quantifies the influence of the species in nature. Each species rise up to a climax and fi-
nally fade away until extinction. The growth phase refers to the period after each great
extinction event when there’s little or no competition between species until new species
evolve better adaptations increasing come. Our model fulfils conditions of an evolution
model stated by Newman (1996) in (? ). “Constant change is a natural feature of evolu-
tion, on a sufficiently large scale in time, there’s nothing remotely stable about evolution.”
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It is also noted that “one billion species have inhabited the planet since Cambrian (∼ -500
millions years), only a few million are still living and most species become extinct about
10 millions years after their first appearance.” Our model is in good agreement with that
observation. It is also assumed (? ) that “the number of species the ecosystem can sustain
is roughly constant over time” which is verified in our model where the number of acti-
vated vertices for m = 1 is between 3

2D and 2D (making the natural assumption that old
vertices are connected by only one edge).

Neural networks
We may say that the vertex “dies” as soon as its degree becomes zero, and the entire graph
is being renewed and evolves over time. Hence our model is also in good agreement with
the models of neural networks (see, Iglesias et al. (2005) (? ) for a relevant description and
citations). Roughly, it is often assumed that the synaptic connection is lost if it was not
activated by an impulse for some time. Also, in a neural network a new edge (impulse)
from some vertex is created if this vertex receives enough energy from other vertices. This
resembles a preferential attachment: a probability of sending out a new edge is increasing
with in-degree.

Social Networks
Jin, Girvan and Newman (2001) (? ) consider a model of social networks where acquain-
tances between pairs of individuals who rarely meet decay over time. They find an upper
limit on the number of friendships (links) an individual can maintain. Our model agrees
with this result: the links are deleted after a while and any vertex can maintain only a
finite number of connections.

Our model can be applied to other networks evolving in time in which competition
occurs. The same analysis can be also done for the model of Antal and Krapivsky (2005)
(? ) where edges carry a weight and the vertices’ weight is the sum of the weight of
the adjacent edges. Assigning the same weight to every edge, we recover the Preferential
Attachment model. If we introduce deletion in this model, one can show that with time
the weight and therefore the degree converges to 0 when time goes to infinity. If the
weight assigned to newly introduced edges converges with time to a constant different
from 0 then the degree is also uniformly bounded in D.

In the Growing Network by Copying model of Krapivsky and Redner (2005) (? ),
every new vertex attaches uniformly to a previously attached one and to those, the “target
vertex” already points to. If one introduces deletion then the vertices incorporated before
t − D have out-degree 0. The probability that the new vertex is connected to a vertex
with out-degree 0 goes to one when t goes to infinity and the expected number of links
goes to D. This incites us to add the condition that the target vertex has a strictly positive
out-degree (which is not a condition with the inner model since all the vertices have out-
degree strictly positive). With this assumption, the total number of links is increasing and
is concentrated on the D last vertices. Hence, the maximal expected degree increases too
in this model.

8



4. The largest connected component

4 The largest connected component

The size of the largest connected component is a major study in the theory of random
graphs. A simple application is to know whether or not a virus might spread to a large part
of the population. Since the celebrated paper by Erdös and Rényi (1960) (? ) the size of
the largest connected component is well known in the classical random graph according
to the probability p. We are mainly interested in the range when the size of the largest
connected component abruptly jumps from a size of order log n to a positive part of the
graph (order n).

4.1 The largest connected component in classical random graph

Consider a graph Gn,p. When p = 0 then with probability 1 there is no edge. The
graph is totally disconnected and consists of isolated vertices. Conversely, if p = 1 then
with a probability 1 any vertex is connected to all other vertices and the graph is fully
connected. In the intermediary cases, we have very different structures depending on the
value of p. In the study of random graphs, we consider p as a function of the number
of vertices p = p(n). When we increase p, the properties of the random graph change as
the graph becomes denser in the sense that we have more edges. It is striking to see that
the changing are sudden. The probability that a property holds can rapidly change from
0 to 1 as we increase p(n). The range of the probability where this occurs is called the
threshold function.

Definition 3. (see (? )) We define the threshold function f (n) of a property P by

P(P) =

{
0 if p(n)

f (n) → 0 as n →∞
1 if p(n)

f (n) →∞ as n →∞

A monotone increasing property is a property that still holds by addition of new
edges.

For every monotone property, the threshold function exists. As an example, the prop-
erty that the graph is connected is an increasing property since addition of new edges
cannot disconnect the graph. The size of the largest connected component can only in-
crease by addition of new edges. Moreover, the addition of new edges can merge together
two components into one big component. The increase of p implies the introduction of
new edges which are more likely to link large components together than small ones. That
way, the largest connected components increase their size. For p(n) sufficiently large, the
largest connected components merge into a giant component. This phase is called phase
transition. The threshold function for the property that the largest connected compo-
nent contains a positive part of the graph which corresponds to the phase transition is
f (n) = 1

n . This result has been proved in a Theorem by Erdös and Rényi (1960)

Theorem 4.1 (Erdös, Rényi (1960)). Let p(n) = c
n , where c > 0 is a constant.
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• If c < 1 then

lim
n→∞

P
{
|C1| ≤

1
1− c − log c

log n
}

= 1.

• If c > 1, let b(c) ∈ (0, 1) be uniquely defined by the equation

b(c) + e−cb(c) = 1. (4.4)

Then for any e > 0

lim
n→∞

P
{∣∣∣∣ |C1|

n
− b(c)

∣∣∣∣ > e
}

= 0.

See (? ) for a proof of the supercritical case using a branching process argument.

4.2 Infinite component in percolation

The results from this section can be found in the book Percolation (1999) (? ) by G.
Grimmett. Conversely to the classical random graph, in percolation theory, the graph has
a geometric structure. In bond percolation theory, the vertices are located on a square lattice
and there is an open edge with the nearest neighbours with a probability p. In dimension
1 the vertices are ordered on a line and can have a link with the previous and the next
vertices. In dimension d the neighbourhood is composed of the 2d vertices surrounding
the vertex. To give an example in nature of an environment that can be nicely modelled by
percolation, consider a volcanic stone that you immerge into water. Water goes through
the holes modelled by open edges. Will the water reach the centre of the stone? We
can consider the problem the other way around. We start from the centre and want to
know with which probability there is a path of open edges to the borders. Considering
an infinite lattice the question comes down to ask if with a positive probability there is
an infinite connected cluster of open edges. In dimension 1, the critical probability above
which there exists an infinite connected cluster is obviously pc = 1 because if p < 1
then the probability that the cluster has a size larger than k decreases exponentially fast
to 0. This problem is for higher dimension as simple to state as it is complex to study.
Actually, only the critical probability in dimension 2 is exactly known pc(2) = 1

2 while for
higher dimension, we can approximate the value of pc(d ) through algorithm supported by
computers. Denote the lattice in dimension d by Zd , we can restate the previous remark.

Theorem 4.2. (see (? ))
The critical probability of bond percolation on Z2 equals 1

2 :

pc(2) =
1
2

10



4. The largest connected component

If p < pc(2) = 1
2 then the lattice is composed by finite open clusters separated by an

infinite closed cluster.
For p = 1

2 then the probability of having an open and a closed edge is equal. The graph
is composed of finite open and closed clusters.
If p > 1

2 then conversely to the first case there is a infinite open cluster. Moreover, this
cluster is with probability 1 unique.

Theorem 4.3. (see (? ))
If p > pc , then

Pp(there exists exactly one infinite open cluster) = 1.

The percolation transition is markedly similar to the phase transition in random
graph. They both show a phase transition where the size of the largest connected compo-
nent suddenly increases from something negligible with respect to the whole graph to a
unique giant connected component which contains a positive part of the graph.

However, the models are very different in nature since there is no distance between
the vertices in the classical random graph model while the geometry is fundamental in
percolation. By not incorporating distance between vertices, the classical model misses
properties of real world networks. On the other hand, the restriction to the nearest
neighbours in percolation is not in agreement with observations. In a social networks for
instance we are more likely to have acquaintance with neighbours or colleagues but we
do not restrict our relations to such a narrow selection. A model that would capture the
feature of both classical random graph model and percolation model would better model
the connections in networks.

4.3 A model merging classical random graph and percolation

The model introduced in the paper B incorporates the classical model of random graphs
and percolation. It is highly motivated by the model designed to study biological neural
networks and introduced by Turova and Villa (2007) in (? ) where vertices correspond to
neurons which are connected by axons represented by edges. In papers B and C, we do not
concentrate on the spread of the activation in the neuron networks but on the structure
of the networks and more precisely on the phase transition. The exact formulation of the
model is as follows.

We consider a graph on the set of vertices V d
N := {1, . . . , N}d in Zd , where the edges

between any two different vertices i and j are presented independently with probabilities

pij =
{

p, if |i − j| = 1,
c/N d , if |i − j| > 1,

where 0 ≤ p ≤ 1 and 0 < c < N are constants. This graph, call it Gd
N (p, c) is a mixture

of percolation model, where each pair of neighbours in Zd is connected with probability

11
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p, and a random graph model, where each vertex is connected to any other vertex with
probability c

|N d | .

This model can be seen as an attempt to generalise classical models into a single
model. A generalisation of the classical random graph into an inhomogeneous random
graph for which the classical model is a special case has been introduced and studied by
Söderberg (2002) in (? ), (? ) and (? ). It was later extended in the manuscript by
Bollobás, Janson and Riordan (2007) (? ).

We prove in paper B that in the case when the dimension of the lattice is 1 there is a
phase transition along both parameters c related to the classical random graph model and
p for the percolation model. Suppose that 0 ≤ p ≤ 1 is fixed then there exists a critical c
denoted by

ccr(p) =
1− p
1 + p

.

such that if c < ccr(p), we are in the subcritical case when the largest connected com-
ponent denoted by C1

(
G

)
has a size of order log N with a probability tending to 1 as

N → ∞. If c > ccr(p) then we are in the supercritical case when C1
(
G

)
spans over a

positive part of the graph and

|C1
(
GN (p, c)

)
|

N
P→ b

as N →∞, with b = b(q, c) defined as the maximal solution to

b = 1− 1
EX

E
{

Xe−cX b
}

. (4.5)

In paper C, we extend the results above to any dimension d . Let C denote an open
cluster containing the origin of Zd in the bond percolation model and B(N ) be the box
of length N then

ccr(p) =
1

E|C |
.

If c < ccr(p) then with a probability tending to 1 as n → ∞ we have |C1
(
G

)
| ≤

a log |B(N )| with a given in paper C.
If c ≥ ccr(p) then

|C1
(
GN (p, c)

)
|

|B(N )|
P→ b

as N →∞, with b = b(p, c) defined as the maximal solution to

b = 1− E
{

e−c b |C|
}

. (4.6)

12
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p

c

ccr = 1−p
1+p

|C1| = bn

|C1| = a log n

0

1

1

Figure 2: Phase diagram in dimension 1.

Even if given in terms of ccr for p fixed, it is possible to state the same result for pcr

with a fixed c. The phase transition happens along both parameters. The duality of the
parameter p and c is manifest in dimension 1(see figure 2), where

ccr(p) =
1− p
1 + p

and pcr(c) =
1− c
1 + c

.

Notice that if we choose p = 0 then we do not have anymore influence from the
percolation model and the model is equivalent to a classical random graph then equations
(4.6) and (4.5) become (4.4).

This model is the combination of two homogeneous random graph models in the
sense that the probability law of connection is the same for any vertex. It is itself an
homogeneous random graph model. However, we use the theory of inhomogeneous
random graph developed in (? ) to tackle this problem. We consider the clusters formed
by percolation (we know that for p < pc their size is finite) and consider each cluster as
a macro-vertex. We build a graph on macro-vertices where each macro-vertex is of type
k if the cluster contains k vertices and clusters are connected if there exists at least one
edge between two vertices belonging to each macro-vertex. We derive the size of the giant
connected component in equations (4.5) and (4.6) directly from (? ) while the subcritical
case requires an entire treatment.
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5 Process of activation in random graphs

The last manuscript (paper D) of this thesis is dedicated to the spread of activation on
a classical random graph. In the paper B and C, we studied the structure of the graph
proposed in (? ) to model neuron connections. Here we focus on the activation aspect and
study the conditions under which the activation starting from a random set of activated
vertices An(0) at time 0 on a graph of n vertices spreads through the graph. In terms of
biological network, it corresponds to an information that spreads in the neural network.
It is known that a neuron needs several excitory impulses to become in turn excited. In
paper D, we consider a simple process of activation where any vertex becomes activated
if it has a link with at least two activated vertices. This model resembles a contact process
and fits definition of a probabilistic cellular automata given in (? ).

Definition 4. Let A be a finite set of state. A probabilistic cellular automaton on Zd is a
stochastic process giving rise to a sequence of configurations

Ft : Zd → A

where the state Ft (x) of x ∈ Zd at time t is determined randomly with probabilities dependent
on the states of the points of the neighbourhood of x at time t − 1.

In our model, the neighbourhood as stated in the definition 4 is the entire set of
vertices which can take two different states, activated or non-activated. A vertex changes
from non-activated to activated with a probability depending on the probability of con-
nection p of the vertices and the number of activated vertices.

We show that if the probability of connections is p(n) = c
n where c is some constant

and n is the number of vertices then the activation can’t spread from a negligible part
of the graph to a positive part of the graph. Taking p(n) to be larger, we exhibit two
different phases depending on the size of the original set of activated vertices |An(0)|.
With probability tending to 1 as n →∞ we have the following

• If |An(0)| = o( 1
np2(n) ) then the activation doesn’t spread and the limiting set of

activation has a size negligible with respect to n

• If for any n > 0, we have |An(0)| > 1+n
np2(n) then the activation spreads through the

entire graph.

Both the connections and the size of the inner set of activated vertices play a role in the
transition.

This phenomenon is very natural. For instance, either you manage to contain virus
or the infection expands faster and faster as the number of infected people increases. If
the disease spreads to a positive part of the population, it is more likely that almost all the
population will be infected leaving a few healthy people. This picture is fully described
in the model of paper D. We summarise the results in the figure 3. This gives the size of
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Figure 3: The results are given with a probability tending to 1 as n → ∞ except for the
case marked with a ∗ where the event happens with a positive probability. In the cases
marked with † we already have |A0(n)| > en for some e > 0. The case marked with

√

have no sense since either |A0(n)| = o(1) or |A0(n)| > n.

the limiting set of activated vertices An(n) with respect to the probability of connections
p(n) and the size of the inner set of activated vertices An(0).

Notice that in the two cases marked with a †, we may have |An(0)| > n depending on
the constant c.

5.1 Further research

The properties of the model for |An(0)| = 1−n
np2(n) (1 + o(1)) with 0 ≤ n < 1 are not yet

known. This implies a lack of knowledge on the type of phase transition. The analysis
of the model can be extended to the case when the vertices need k ≥ 2 connections with
already activated vertices to become activated. From that, it would be possible to consider
a model closer to the one exposed in (? ).

Each vertex is given a random potential Xv(0) ∈ [0, 1]. A vertex is activated if its
potential is 1. Start with a set of activated An(0), each activated vertex sends a potential w
through the edges to its neighbours. This increases the potential of the targeted vertex

Xv(t) = min{1, Xv(0) + kw}

where k is the number of activated vertices at time t − 1 which share an edge with the
vertex v. The vertex v in turn becomes activated if its potential reaches 1. The study of
such a process would be of great interest in modelisation of neuron networks.
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