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Samples when Disturbances are Serially Correlated
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Abstract

In this paper, we study the size distortions of the KPSS test for stationarity
when serial correlation is present and samples are small and medium-sized. It is
argued that two distinct sources of the size distortions can be identified. The first
source is the finite-sample distribution of the long-run variance estimator used in the
KPSS test, while the second source of the size distortions is the serial correlation
not captured by the long-run variance estimator due to a too narrow choice of
truncation lag parameter. When the relative importance of the two sources is
studied, it is found that the size of the KPSS test can be reasonably well controlled
if the finite-sample distribution of the KPSS test statistic, conditional on the time-
series dimension and the truncation lag parameter, is used. Hence, finite-sample
critical values, that can be applied in order to reduce the size distortions of the
KPSS test, are supplied. When the power of the test is studied, it is found that
the price paid for the increased size control is a lower raw power against a non-
stationary alternative hypothesis.
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1 Introduction

During the last three decades, one of the most investigated branches of econometrics

in general, and time-series econometrics in particular, is that of unit root, stationarity

and cointegration testing. The seminal contributions of Dickey and Fuller (1979), Engle

and Granger (1987) and Kwiatkowski et al. (1992) have all made their mark on applied

economics and are used as central tools for investigating various economic questions.

When using the test of Kwiatkowski et al. (1992), the so-called KPSS test, to test if

a series is stationary, I(0), against the alternative that the series contains a unit root,

is I(1), several implementations of the test, all with attractive asymptotic behavior, are

available.1 The implementations differ (most commonly) in their estimation of the so-

called long-run variance. The alternatives available involve the use of various kernels to

estimate the long-run variance under the null hypothesis (see e.g. Hobijn et al., 2004), the

use of automatic procedures for the selection of the truncation lag or bandwidth parameter

(see e.g. Hobijn et al., 2004; Carrion-i-Silvestre and Sansó, 2006) and the application

of a prewhitening filter in the long-run variance estimation (see e.g. Sul et al., 2005;

Carrion-i-Silvestre and Sansó, 2006). Given that the choices made fulfill certain regularity

conditions, the asymptotic distribution of the KPSS test statistic is the same regardless of

what choices that are made. The appropriateness of the various implementations depends

on how well the asymptotic approximation works for the specific sample size at hand.

In empirical applications, where it can be of interest to employ the KPSS test, sample

sizes are always limited and in addition often small. This applies especially when post-war

macroeconomic time series are investigated. Hence, when applied to investigate economic

questions, the performance of the KPSS test relies to a large extent on how well the

finite-sample distribution of the test statistic corresponds to the asymptotic distribution.

Unfortunately, when serial dependence is present under the null hypothesis of stationarity,

the asymptotic approximation can be poor, which causes problems relating to the size

and power of the KPSS test (see e.g. Lee, 1996; Caner and Kilian, 2001; Hobijn et al.,

2004; Müller, 2005). Methods to mitigate the size distortions within the framework

of Kwiatkowski et al. (1992) have been suggested by Hobijn et al. (2004), Sul et al.

(2005) and Carrion-i-Silvestre and Sansó (2006). However, a common feature among

these suggestions is that their performance is investigated for rather large samples sizes,

and that the suggested remedies may be inappropriate in small-sample situations (see e.g.

Jönsson, 2006). Hence, the performance of the KPSS test in small samples, when serial

1By having the hypothesis that a time series is I(0) as the null hypothesis, the KPSS test differs from

e.g. the Dickey and Fuller (1979) test which has as null hypothesis that the series under consideration is

I(1). Hence, the KPSS test and the Dickey and Fuller (1979) tests can be considered as being complements

to each other.
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dependency is allowed for, is still largely unknown and possibly open for improvement.

In this paper, it is shown that the KPSS test for stationarity can be grossly oversized

in small samples when serial correlation is allowed for. When the sources of these size

distortions are studied, it is found that the long-run variance estimator is the main reason

for the size distortion, while the actual serial correlation of the data series exerts little

influence on the test once the truncation lag has been accounted for. A natural suggestion

is then to proceed along the lines of Cheung et al. (1995) and Hornok and Larsson (2000)

and supply finite-sample critical values for the KPSS test.

Within the unit root testing framework of Dickey and Fuller (1979) and Said and

Dickey (1984), the use of small-sample critical values is well-established. In order to

control the size of the so-called augmented Dickey-Fuller (ADF) test, Cheung and Lai

(1995) suggest that critical values should be obtained from simulating time series that

are generated as pure random walks, i.e. unit root processes with serially independent

disturbances, and applying the ADF test to these time series. The authors argue that

obtaining critical values for the ADF test under the assumption that errors are serially

independent introduces nuisance parameters into the distribution of the test statistic

when this assumption is violated and disturbances display serial dependence. However, it

is also argued that the size distortions arising from these additional nuisance parameters

are relatively small, and hence that the performance of the test can be improved by

obtaining critical values under the simplifying assumption of serial independence. A

similar line of reasoning is adopted in the current paper. The critical values supplied

here are obtained by conditioning on the truncation lag and the sample size. Critical

values are obtained for a wide range of truncation lags and sample sizes and are easily

calculated from a supplied set of response surface parameters. When it is studied whether

the size properties of the KPSS test are improved by using the supplied critical values, it

is found that large size improvements become feasible by conditioning the critical values

on the sample size and the truncation lag. However, the price that is paid for better

size properties is a lower power against a non-stationary alternative hypothesis. In the

smallest samples considered here, this loss of power can cause the test to be biased, i.e.

make the test have a power that falls below the size. The bias indicates that caution

should be taken whenever drawing conclusions based on the KPSS test applied to small

samples. We also supply an empirical illustration that emphasizes the need to account

for both the size of the sample and the truncation lag when performing the KPSS test

for stationarity.

The rest of this paper is organized as follows. In Section 2, the stationarity test of

Kwiatkowski et al. (1992) is presented. The properties of this test are, in Section 3,

investigated when samples are small and when serial correlation is allowed for. In Section

4, it is studied what role the truncation lag, in the long-run variance estimator, plays
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for the finite-sample distribution of the KPSS test. Section 5 offers a suggestion of how

to improve the finite-sample properties of the KPSS test, while the performance of this

suggestion is studied in Section 6. The empirical illustration is supplied in Section 7.

Finally, Section 8 presents some concluding remarks.

2 The stationarity test

The current paper is concerned with the stationarity properties of a time series yt. The

series yt is assumed to consist of deterministic components, a potentially non-stationary

component and a stationary disturbance term as in (1).

yt = δ0 + δ1t + ξt + εt (1)

In (1), δ0 and δ1t are the deterministic components taking the form of an intercept

and a time trend. The non-stationary component is described by ξt = ξt−1 + νt, where

νt is i.i.d. with zero mean and variance σ2
ν , while ξ0 = 0.2 Finally, εt is the stationary

disturbance term that fulfills e.g. the linear process assumptions of Phillips and Solo

(1992), i.e. εt = Ψ(L)ηt =
∑∞

i=0 ψiηt−i, where ηt is i.i.d. with zero mean and variance σ2
η,

while it is assumed that
∑∞

i=0 i|ψi| < ∞.3

To test for stationarity of the series yt, Kwiatkowski et al. (1992) suggest that one

should test the null hypothesis that H0: σ2
ν = 0 against the alternative hypothesis

H1: σ2
ν > 0. The test statistic suggested by the authors is given in (2).

LM =
T−2

∑T
t=1 S2

t

s2(l)
(2)

In (2), St is the partial sum process, i.e. St =
∑t

i=1 ei, where ei is the least squares

residual obtained after detrending yt, while s2(l) is a variance estimator. The variance

occurs in the denominator of (2) in order to relieve the asymptotic distribution of the

test statistic from nuisance parameters.

To illustrate the role of the variance estimator, first consider the case where εt is

distributed i.i.d. with mean and variance equal to (0, σ2
ε). For ease of exposition, assume

that there are no deterministic terms, i.e. et = εt. Under this assumption, the numer-

ator of the test statistic in (2) converges in distribution to σ2
ε

∫ 1

0
W (r)2dr as T → ∞.

2As long as we allow for an intercept in the series yt, the assumption ξ0 = 0 can be made without

loss of generality.
3It can be noted that the asymptotics of the KPSS test also can be obtained under the strong-mixing

conditions of Phillips and Perron (1988). However, since the current paper is concentrated on the case

where disturbances may display serial correlation, we assume that the linear process assumption holds.
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Hence, if s2(l) is equal to T−1
∑T

t=1 e2
t , an asymptotically pivotal test statistic is ob-

tained from (2) since T−1
∑T

t=1 e2
t

p→ σ2
ε as T → ∞. However, the same variance es-

timator is not suitable when the i.i.d. assumption for εt is abandoned. To see this, let

εt =
∑∞

i=0 ψiηt−i, with ηt being i.i.d. with mean and variance (0, σ2
η) and

∑∞
i=0 i|ψi| < ∞.

Under these assumptions, the numerator of (2) converges in distribution to σ2
∫ 1

0
W (r)2dr

as T → ∞, where σ2 = (Ψ(1)ση)
2. But s2(l) = T−1

∑T
t=1 e2

t now converges in proba-

bility to σ2
ε =

∑∞
i=0 ψ2

i σ
2
η as T → ∞, and it becomes evident that this naive form of

the variance estimator now fails to capture the correlation present between et and et−i

for i 6= 0. The consequence will be that the LM statistic in (2) converges in distribu-

tion to (
∑∞

i=0 ψ2
i σ

2
η)
−1(Ψ(1)ση)

2
∫ 1

0
W (r)2dr, which clearly depends on nuisance parame-

ters, related to the intertemporal dependence present in the disturbance process, even as

T →∞. The solution that Kwiatkowski et al. (1992) suggested, to remedy this problem,

is to employ the variance estimator of Newey and West (1987). This estimator consis-

tently estimates the long-run variance limT→∞T−1E(
∑T

t=1 St)
2 = (Ψ(1)ση)

2 as T →∞.4

The variance estimator suggested by Newey and West (1987) is given in (3)-(4).

s2(l) = T−1

T∑
t=1

e2
t + 2T−1

l∑
s=1

w(s, l)
T∑

t=s+1

etet−s (3)

w(s, l) = 1− s

l + 1
(4)

By the virtue of the second term on the righthand side of (3), this variance estimator

captures the non-contemporaneous correlation in et, i.e. the correlation between et and

et−i for i 6= 0. However, in order to take the non-contemporaneous components into

account, a truncation lag, l, has to be chosen in such a way that l →∞ as T →∞, while

l = o(T 0.5). Kwiatkowski et al. (1992) suggest, following Schwert (1989), that l could

be chosen according to l = [k(T/100)0.25], where k ∈ {4, 12} is a truncation lag scaling

parameter.

In the next section, we go on by investigating the properties of the KPSS test when

samples are small. More specifically, we will look into the size and power properties of

the test when serially correlated disturbances are allowed for.

3 Properties of the KPSS test

Suppose that a researcher is interested in investigating the mean-reverting properties of

annual post-war private consumption. The outcome of a stationarity test applied to such

4Müller (2005), footnote 1, p. 198, discusses the notation and description of the long-run variance.

In the current paper, we stick to the notation of Kwiatkowski et al. (1992), while recognizing the point

made by the former author.
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a series is crucial for the conclusion drawn regarding the way private consumption is

determined. If the consumption series follows a random walk, possibly with a drift, the

permanent income hypothesis can be considered as a reasonable model for consumption

determination (see e.g. Hall, 1978). However, this is not the case if stationarity applies

and consumption is found to be mean-reverting. Under such circumstances, consumption

could instead be determined as stated by the Keynesian consumption function with in-

come being trend stationary. In order to gain knowledge about the empirical relevance of

the permanent income hypothesis, the researcher collects somewhat over 50 time-series

observations for private consumption, reflecting the amount of data commonly found in

empirical applications, and applies the KPSS test for stationarity. To account for the

deterministic components, the series is detrended, either by using an intercept only or

by using both an intercept and a time trend.5 Furthermore, in order to allow for serial

correlation in the detrended series, the variance estimator in (3)-(4) is used in the KPSS

test statistic in (2). Given the test result that is obtained, conclusions regarding private

consumption behavior can be drawn, but how certain can we be that a good conclusion

has been reached? In general, what is the probability that the KPSS test will reject

the null hypothesis of stationarity given that the true data generating process (DGP)

is mean-reverting? Furthermore, what is the probability that the KPSS test will fail

to reject the null of stationarity given that the true DGP is non-stationary? Stated in

another way, what are the size and the power properties of the KPSS test?

The size and power properties of the KPSS test obviously depend an several factors

in finite samples. First and foremost, given that suitable deterministic components have

been specified, it can be suspected that the size of the stationarity test is affected by

some sort of distance between the DGP and the non-stationarity case, i.e. by the per-

sistence of the series under the null hypothesis. Second, the choice of truncation lag can

very well affect the test statistic under the null hypothesis, at least when samples are

small. Finally, the rejection frequency under the alternative hypothesis is, in addition to

just-mentioned factors, likely to depend on the relative variance of the permanent and

transitory components ηt and εt.

Let us first consider the size of the KPSS test. In order to distinguish between

the size effects caused by the DGP and the effects caused by altering the bandwidth

parameter, Monte Carlo simulations based on various parameter setups can be used. To

this end, data is generated according to yt = α0 + α1t + ut. When only an intercept is

considered, α0 is set such that α0 ∈ U [0, 10], while in addition α1 ∈ U [0, 2] when both

5In the specific case of consumption, an intercept together with a time trend should be used since

consumption is a trending variable.
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an intercept and a time trend are considered.6 Furthermore, ut is generated by either

an AR(1) process or a MA(1) process with the AR and MA parameter space given by

{0.0, 0.2, . . . , 0.8}. In both cases, the disturbance driving the AR or MA process is set to

be normally, independently and identically distributed with zero mean and unit variance,

i.i.d. N(0, 1). Given this DGP, it can be investigated how many times the null hypothesis

is (incorrectly) rejected on a given significance level, i.e. it is possible to investigate the

size of the test. Furthermore, by considering the case where either the MA and AR

parameter is equal to 0.0, it is possible to trace central determinants affecting the size

of the test. The sample sizes considered are T ∈ {20, 30, 40, 50, 75, 100}, where in all

cases T+100 time-series observations are generated for the AR and MA processes, while

the first 100 of these are discarded in order to reduce the effects of the initial condition

u1 = 0. The size is calculated based on 5,000 replications for each parameter setup.

In Table 1, the size of the KPSS test, on the 10% significance level, is presented for

the case where only an intercept is present.7 Besides the different choices of AR and MA

parameters, the size is investigated for various choices of truncation lag, more specifically

truncation lags calculated using k = {4, 8, 12}.
The first thing that can be noticed in the table is that the test performs almost perfect

when there is no serial correlation in the disturbance ut. The exception is a slight upward

size distortion when k=12 and T=20. As one moves down in Table 1, the performance

of the test deteriorates. This applies especially for the case with AR(1) disturbances.

However, it can be noticed that the larger the truncation lag, the more robust is the test

to the increased serial correlation. The intuition behind this is that non-negligible higher-

order autocorrelations are better taken into account by the long-run variance estimator

in (3) and (4) when a larger truncation lag is employed. From Table 1 it can also be seen

that, regardless of the choice of k, the test performs better as T increases. This is what

we expect to see since the long-run variance is consistently estimated regardless of the

choice of k. The overall conclusion, from having studied Table 1, is that the small-sample

size distortions to the KPSS test, when allowing for an intercept only, are relatively small

and mainly caused by failure to account for the serial correlation in the disturbances.

However, when attention is turned to the case where both an intercept and a time

trend are allowed for, the picture becomes very different. In Table 2, the size for this case

is presented. The first thing that stands out in comparison to the results in Table 1 is the

poor performance that occurs when disturbances are set to be i.i.d.. More specifically,

consider the case where there is no serial correlation in ut, i.e. the cases when ρ = 0 and

θ = 0. Contrary to the results obtained from Table 1, the size of the KPSS test is heavily

6Here and in the rest of this paper, U [a, b] denotes the uniform distribution on the interval [a, b].
7The size is calculated using the asymptotic critical value supplied by Kwiatkowski et al. (1992).
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affected by the choice of k even when no serial correlation is present. Stated differently,

the choice of k will affect the distribution of the KPSS statistic, not only because of the

capability of the long-run variance estimator to capture the serial correlation in ut, but

also because the small-sample distribution of the test depends to a large extent on k even

in absence of serial correlation. If the true DGP is characterized by an intercept, a time

trend and white noise disturbances, the KPSS test will over-reject the null hypothesis if

k is large relative to T . If we consider the case where ut is i.i.d., while k=12 and T=50,

it can be seen that the test rejects the null hypothesis 25% of the time even though the

null hypothesis is correct. The size distortion becomes even worse when T < 50 and the

size is 100% on the 10% significance level when T=20 and k=12.

One obvious solution to the size problems encountered in the upper-most panels of

Table 2 is to choose k in such a way that the truncation lag remains small. However,

as the results in the four lower panels of Table 2 indicate, the solution to stick with a

low value of k is not a viable way to proceed since this can cause large size distortions

due to failure to account sufficiently well for the serial correlation when it is present.

That is, choosing a low truncation lag makes the estimator in (3) and (4) incapable of

capturing significant higher-order serial correlation and hence introduces a size distortion

due to neglected autocorrelation. A better way to proceed would be to find a method

that allows for a large value of k, i.e. k ∈ {8, 12}, without introducing size distortions

when disturbances are serially independent. This solution will be explored later on in the

current paper.

Besides the fact that k influences the distribution of the test statistic, the overall

pattern, evident in Table 1, emerges also in Table 2. That is, more pronounced serial

correlation increases the size distortions of the test for fixed T and k, while a wider

truncation lag and a larger time-series dimension work in the opposite direction and

reduces the size distortions for a given autoregressive parameter, ρ, or moving average

parameter, θ.

The results presented in Table 1 and Table 2 extend beyond the choices of k, and the

implied choices of l, considered here. If a researcher was to choose a truncation lag based

on any other criterion, such as a data-dependent criterion, the pattern emerging from the

tables is still likely to be present. A wider bandwidth will distort the size of the KPSS

test regardless of whether or not serial correlation is present in the DGP. This applies in

particular when a linear trend is allowed for.

Turning back to the researcher that wishes to investigate the empirical relevance of

the permanent income hypothesis, we see that he or she should not be overly optimistic

about properties of the KPSS test, and hence not put too much faith into the test results.

Considering the possible linear trend in the natural logarithm of private consumption,

there is a rather large probability that the null hypothesis is rejected even though private
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consumption can be described as a mean-reverting time-series process.

To be able to come to terms with the size distortions that arise in the KPSS test,

it is important to find the source of the distortions. Since the results presented in this

section indicate that the performance of the test depends on the truncation lag parameter,

regardless of the degree of serial correlation that is present, it seems important to study

the behavior of the long-run variance estimator, and the role that it plays for the behavior

of the KPSS test statistic. This is done in the next subsection.

However, before possible solutions to the problem regarding the size distortions are

investigated, the power of the KPSS test should be studied. In order to do this, data

is generated as above, with the only difference that the series yt now contains a random

walk component, ζt = ζt−1 + ηt, where ηt is i.i.d. N(0, 1). Under this data generating

process, the null hypothesis is clearly false. In Table 3 and Table 4, the power of the

KPSS test is presented when the test is performed on the 10% significance level.8

As seen in Table 3, the power of the KPSS test is satisfactory when only an intercept

is present. For the smallest sample size considered, T=20, the power never falls under

30% regardless of the choice of truncation lag scaling parameter and serial correlation.

Hence, the power of the test is well above the size of the test, which was presented in

Table 1. This is of course a nice property of the test since it implies that it is more likely

that the test rejects the null hypothesis when it is false than when it is true. From Table

3, it can also be seen that the power of the test increases as T increases, while the power

decreases with increasing truncation lag.

When the power of the KPSS test is investigated for the case where a linear trend is

present, radically different conclusions are reached compared to when only an intercept

is accounted for. The power of the test is reduced when both an intercept and a linear

trend are present. When comparing the power in Table 4 to the size on Table 2, it can

be seen that there are cases where the power of the test actually falls below the size

of the test. For example, when T=20 and k=8, the size is 69.7% in absence of serial

correlation. The corresponding power is 65.6%. When there is no serial correlation and

(T,k)=(30,12), size and power are 71.8% and 61.8%, respectively. Similar results hold

when disturbances are serially correlated. Hence, it can be seen that the KPSS test is

biased when samples are small and serial correlation is allowed for. Furthermore, the bias

arises without introducing any prewhitening as considered by e.g. Lee (1996).

Considering the small-sample size and power properties of the KPSS test, caution

should be taken when drawing inference regarding the stationarity hypothesis, especially

when a linear trend and serially correlated errors are allowed for. However, the results of

this section indicate that there is a possible route for handling the size distortions that

8THe power presented is raw power, i.e. no size-adjustment is made.
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arise. In order to explore this route, the current paper continues by investigating the

sources of the distortions and elaborating on possible remedies.

4 Effects of truncation lag and serial correlation

As seen in the previous section, the size of the KPSS test is affected by two main factors

when we allow disturbances to be serially correlated. First and foremost, the truncation

lag will affect how appropriate the asymptotic critical values will be in finite samples.

Second, given the choice of truncation lag, the autocorrelation of the disturbances will

affect the performance of the test. The later dependence is less severe for larger truncation

lag, as evident from Tables 1 and Table 2. The fact that nuisance parameters, related to

the truncation lag and serial correlation properties of the disturbances, enter the finite-

sample distribution of the KPSS test can make inference unreliable. However, one key

difference between the two nuisance parameter dimensions offers a potential remedy for

the poor finite-sample size that was documented in the previous section.

In order to be able to improve on the size properties of the KPSS test, it would be

ideal if the finite-sample distribution of the test depends more on the choice of truncation

lag and less on the serial correlation of the disturbances. If such a situation was to be

the case, it would be possible to, for each given sample size and truncation lag, obtain an

approximate finite-sample distribution of the KPSS test with the prospect of working well

even when serial correlation is present. The approximate distribution would be of great

help since it would eliminate one of the two effects that work to distort the size of the

stationarity test in small and medium-sized samples. By taking the truncation lag into

account, the only effect unaccounted for would be that of uncaptured serial correlation.

But given that the ideal situation entails that uncaptured serial correlation is a problem

that can be regarded as minor once the truncation lag is taken into account, the properties

of the test would still have been improved. In order to see if this is a feasible solution to

reducing the size distortions of the KPSS test, the small-sample distribution of the test

needs to be scrutinized. This can be done in two steps by first considering the behavior

of the long-run variance estimator by itself and then considering the role that it plays for

the KPSS test statistic.

Consider first the distribution of the long-run variance estimator. To be able to

account for the effects that this estimator has on the KPSS test, the effects that arise as

a consequence of serial correlation must be sorted out. Hence, the variance estimator is

applied to an i.i.d. sequence of random variables. To this end, T i.i.d. N(0, 1) variables

are generated and detrended with either an intercept or an intercept and a time trend.

ŝ(l) is then estimated for various choices of l. As above, we consider the case where l =
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[k(T/100)0.25] with k ∈ {4, 8, 12}. Based on 5,000 replications, the empirical cumulative

distribution function for the long-run variance estimator is obtained.

The empirical cumulative distribution functions (CDFs), for the cases where only an

intercept is present and the sample sizes are T=20 and T=100, are given in Figure 1.

In the upper panel of Figure 1, i.e. for the case where T=20, it can be seen that the

long-run variance estimator is considerably downward biased. For the case where k = 4,

about 70% of the probability mass falls below the true value of the long-run variance,

which is equal to 1. Considering that the support of the CDF is approximately symmetric

around 1, this implies a substantial downward bias in the long-run variance estimator.

For k = 8 and k = 12, the corresponding figures for the probability mass are 75% and

80% respectively. However, the degree of bias displayed when k = 4 and k = 8 does not

affect the distribution of the KPSS test to any larger extent. This was seen when the size

was investigated in the upper panel of Table 1. For k = 4 and k = 8, the test only had

small size distortions. However, for the case where k = 12, it was seen that the downward

bias in the variance estimator induced an upward size distortion of about 4.5 percentage

points. For the case where T=100, the bias for the case where k = 12 is smaller than

the bias for the case where k = 4 and T=20. Since no noticeable size distortion was seen

in the latter case, we would not expect to find any size distortion in the former either.

When consulting Table 1, it can be seen that this assertion is indeed true.

Considering the fact that the downward bias of the distribution of the long-run vari-

ance estimator seems to affect the size of the KPSS test, it can be expected that the size

distortions found in Table 2 are explained by a more severe bias in the variance estimator

when both an intercept and a time trend are accounted for.

When we look at the empirical cumulative distribution functions in Figure 2, we

see that the distribution of the long-run variance is indeed more biased when both an

intercept and a time trend are present. In the case where T = 20 and k = 4, it can be

seen that about 80% of the probability mass of the long-run variance density falls below

the true value. This is approximately the same figure that was found in Figure 1 for

T = 20 and k = 12. Hence, given that the shape of the empirical CDFs are similar in

both cases, we would expect to find size distortions that are close in magnitude if the

long-run variance estimator plays a central role in the finite-sample distribution of the

KPSS test. If Table 1 and Table 2 are once again consulted, and the size when T = 20,

k = 12 and an intercept is present is compared to the size when T = 20, k = 4 and

both an intercept and a time trend are present, it can be seen that the distortions are

of similar magnitude. In the former case the size is 14.5%, while in the latter case the

size is 13.6%. As before, it can also be seen that the adverse effects of the bias in the

long-run variance estimator increase with k and vanishes as T increases.

We are now in a position to say that one should take the bandwidth parameter into
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account when using the KPSS test to test for stationarity in finite-sample situations.

More specifically, the finite-sample distribution of the KPSS statistic, conditional upon

T and l, should be used when testing for stationarity. However, in order for this to

be of any practical use, the distribution of the KPSS test statistic, conditional on the

sample size and truncation lag, should depend relatively little on the remaining nuisance

parameters, i.e. serial correlation of the disturbances. This will be investigated next.

In order to illustrate how the distribution of the KPSS test statistic depends on the

nuisance parameters relating to the serial correlation and the truncation lag, data is

generated as described in the previous section. But instead of calculating the size, we

plot the kernel density estimates of the KPSS test. To separate out the influence of the

truncation lag and the serial correlation, two sets of kernel densities are obtained. First,

the serial correlation is set to zero and the density for the case where k = 4 is compared

to the density when k = 12. This scenario is presented in Figure 3. Then, the bandwidth

is kept fixed, equal to k = 12, and the kernel density estimates for the cases ρ = 0.2,

ρ = 0.4 and ρ = 0.6 are compared. This comparison can be seen in Figure 4.9

As seen from Figure 3, the distribution of the KPSS test statistic depends heavily

on the truncation lag, l. Of course this is expected given the bias found in the long-run

variance estimator.10 When we turn to Figure 4, on the other hand, it can be seen that

once we have accounted for the truncation lag, the test statistic is not very dependent

on the degree of serial correlation. This indicates that size distortions indeed can be

reduced by taking into account the truncation lag when performing the stationarity test

of Kwiatkowski et al. (1992).

From the findings of this section, the applied researcher could be better off by taking

into account the bandwidth parameter when testing the consumption series for station-

arity. Critical values for a limited choice of time-series dimensions and truncation lags

are available in Hornok and Larsson (2000), but no extensive tabulation of critical values

is currently available. In the next section, we provide approximate small-sample criti-

cal values for the KPSS test. These critical values will be obtained by conditioning the

distribution of the test statistic on the sample size and the bandwidth parameter.

9To obtain the kernel density estimates we use the so-called triweight kernel with a bandwidth of

0.08.
10From the upper panel of Figure 3, it can be seen that the significance level chosen when investigating

the size of the KPSS test affects how large the size distortions will be for various choices of k. Considering

that the asymptotic critical value of the KPSS test is 0.347 on the 10% significance level, it is seen that

this choice of significance level is likely to make the figures presented in Table 1 look favorable for the

KPSS test. Hence, choosing another significance level should have made the main arguments of the

current paper stronger from the outset.
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5 Accounting for the finite sample

Based on the evidence found in the previous section, it would be desirable to have critical

values available for each possible combination of sample size and truncation lag. Such

critical values can be approximated numerically, as suggested by Hornok and Larsson

(2000), and tabulated. Tabulations of such critical values would require a considerable

amount of space. However, by fitting response surface regressions to simulated critical

values, obtained for a wide range of T and l, critical values can be easily calculated for

any given sample size and truncation lag.

As seen above, the truncation lag seems to affect the small-sample distribution of

the stationarity test more than the serial correlation in the disturbances. Furthermore,

the former nuisance parameter is integer-valued and effectively bounded from above by

the sample size and from below by zero. The serial correlation, on the other hand,

cannot easily be characterized by only a few nuisance parameters, since e.g. the entire

class of stationary and invertible ARMA processes are candidates when modelling the

disturbance term. The magnitude of this parameter space makes the truncation lag the

primary candidate to condition the small-sample distribution on.

In order to obtain small-sample critical values for the KPSS test, data is generated

according to yt = α0 + ut or yt = α0 + α1t + ut, with ut being i.i.d. N(0,1). The series,

yt, is detrended using appropriate deterministic components and the KPSS test is ap-

plied to the detrended series. We obtain 100 critical values, on the 1%, 2.5%, 5% and

the 10% significance levels, for each choice of T and l, based on 10,000 replications for

each set of critical values. The time-series dimensions and truncation lags considered are

T ∈ {20, 21, 22, . . . , 100} and l ∈ {1, 2, 3, . . . , T −3}, which in total renders critical values

for 4617 different combinations of T and l.11 In order to reduce the influence of simulation

variability, the mean over the 100 critical values is calculated for each parameter combi-

nation and significance level when running the response surface regressions. After some

experimentation with the specification, the response surface regressions in (5) turned out

to fit the critical values well.

CV α
T,l = γ0 +

4∑
i=1

γ1,iT
−i/2 +

4∑
i=1

γ2,il
−i/2 +

4∑
i=1

γ3,i

(
T

l

)−i/2

+ εT,l (5)

In (5), CV α
T,l is the mean over the 100 critical values, at the α% significance level, for

a specific choice of T and l. When the regressions in (5) are estimated, we obtain the

11Although critical values can be obtained for truncation lags up to T-3, we recommend that the

largest truncation lag used is T-8 in order to obtain a desirable finite-sample distribution of the KPSS

test statistic. This will be of importance e.g. when employing the automatic truncation lag selection

procedure investigated by Hobijn et al. (2004).
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parameters in Table 5.12 In Table 5, the R2 measure of regression fit is also presented in

order to assess the in-sample fit of the response surface regression.13

As seen in Table 5, the fit of the response surface regressions is excellent. The response

surface regressions can hence be used to calculate critical values for a specific choice of

time-series dimension and truncation lag.14

6 Finite-Sample performance

As we saw in the previous section, the response surface regressions have a good in-sample

fit. The next step is to study how well the stationarity test performs when employing the

finite-sample critical values and compare the performance to the case when asymptotic

critical values are used for inference. From the results in Section 5, it can be expected

that the use of finite-sample critical values reduces the size distortions that arise when

disturbances are serially correlated under the null hypothesis. This assertion is studied

both in the context of deterministic and data-dependent truncation lag determination.

Moreover, the power of the finite-sample test is studied.

6.1 Size of the stationarity test

6.1.1 Deterministic choice of truncation lag

When a deterministic bandwidth selection procedure is employed, l is usually set as a

function of T . In the previous literature, the selection rule l = [k(T/100)0.25], where

k ∈ {4, 8, 12}, is frequently used, see e.g. Schwert (1989). As seen in Section 3, the

KPSS test worked poorly when this rule was used and asymptotic critical values were

employed. In order to see if the response surface regressions produce critical values that

render better size properties, we begin by rerunning the size simulation of Section 3, with

the modification that the finite-sample critical values, obtained from the parameters of

Table 5, are employed instead of the asymptotic critical values supplied by Kwiatkowski

12The response surface regression in (5) is estimated using the OLS estimator. This estimator turned

out to be more stable than the GMM estimator of Cragg (1983) as considered by e.g. MacKinnon (1994).
13Contrary to e.g. MacKinnon (1994), the sole purpose of the response surface parameters in Table

5 is to provide a good in-sample fit. Hence, the asymptotic critical values of the test will not, as an

example, be represented by the intercepts.
14It should be noted that the critical values are to be calculated from the response surface regressions

only when l > 0. When l = 0, no truncation lag is used and the critical values of Sephton (1995) can be

applied.
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et al. (1992). In Table 6 and Table 7, the resulting finite-sample size of the KPSS test is

presented.

The first thing that stands out when the results of Table 6 and Table 7 are investigated

is that the size is close to the 10% level when no serial correlation is present, i.e. when

ρ = 0 and θ = 0. This is of course an expected property since the critical values where

obtained especially for these circumstances. Nevertheless, the size distortions introduced

by the mere application of a long-run variance estimator are eliminated, and hence there

is room for possible improvement of the performance of the stationarity test even when

serial correlation is present, i.e. when ρ 6= 0 or θ 6= 0. As we move down in Table

6 and Table 7, it can be seen that as the degree of serial dependence, as described by

the AR and MA parameters, increases, so do the size distortions of the test. However,

the most important feature that can be observed when looking at the simulation results

in the tables, and comparing them to the results of Table 1 and Table 2, is that the

test that employs the finite-sample critical values outperforms the test that employs the

asymptotic critical values of Kwiatkowski et al. (1992).

To further illustrate the effects of accounting for the finite sample distribution of the

KPSS test, data is also generated under the null hypothesis while letting the stationary

disturbance term follow an AR(1) process. The AR parameter takes the values ρ ∈
{0.0, 0.1, . . . , 0.9}, while, as before, the innovation driving the AR process is distributed

i.i.d. N(0, 1). Data is generated for T ∈ {20, 30, . . . , 100} and 50,000 data sets are

generated for each parameter setup. The KPSS test is then applied to the simulated data

sets, while letting k = 12, and the 10% size is calculated using both finite-sample and

asymptotic critical values.15

In Figure 5, a size comparison is plotted for the case where only an intercept is present.

From Figure 5, it can be seen that the size of the KPSS test, when based on finite-sample

critical values, is better than the size of the test based on asymptotic critical values when

T=20. For larger values of T, the two tests perform equally well with the differences in

performance being attributable to simulation error. These results are in line with what

we would expect from the results in Table 1, where it was seen that size distortions were

present only for T=20. If we look at Table 2, on the other hand, it is expected that there

are more to gain in terms of reduced size distortions when both an intercept and a time

trend is allowed for.

In Figure 6, the size comparison is presented for the case where both an intercept and

a time trend is present. As expected from Table 2, the KPSS test employing asymptotic

critical values is heavily size distorted. However, when using finite-sample critical values

15The main conclusions regarding the size are unaltered when the truncation lag scaling parameter is

set to k = 4 or k = 8.
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it can be seen that the size distortion, to a large extent, can be reduced. Contrary to the

case where only an intercept is present, the size performance of the KPSS test can be

enhanced for sample sizes up to T=90 when both an intercept and a trend are present.

From studying Figure 6 it is seen that the finite-sample critical values are preferable over

the asymptotic critical values for the situations where T ≤ 90 and for all ρ considered.

For the case where T = 100 the tests perform equally well across the various values of

the autoregressive parameter.

The overall conclusion, when considering deterministic bandwidth selection, is that

the size distortions, that arise when performing the KPSS test with asymptotic critical

values, can be reduced by employing the finite-sample critical values. The reduced size

distortions are achieved by accounting for the detrimental effects of the long-run variance

estimator through the use of finite-sample critical values that depend, not only on the

sample size, but also on the truncation lag.

The results presented in this subsection rely on a bandwidth choice that is a deter-

ministic function of T. In practice this can induce some problems since we do not know

a priori which choice of k that is appropriate for a specific empirical situation. To come

to terms with this problem, the researcher can, following Newey and West (1994), let the

truncation lag selection depend on the characteristics of the data material at hand.

6.1.2 Data-dependent choice of truncation lag

In the previous subsection, it was seen that applying finite-sample critical values improved

the performance of the KPSS test compared to the case where asymptotic critical values

were used. The use of deterministic truncation lag selection only requires tabulations of

critical values for a restricted set of truncation lag parameters since it is deterministically

related to the sample size. However, the response surface parameters in Table 5 can be

employed to obtain critical values, not only for the values of l implied by k ∈ {4, 8, 12},
but for every T ∈ {20, 21, . . . , 100} and l ∈ {1, 2, . . . , T − 8}. Hence, the data-dependent

selection procedure of Newey and West (1994) can be implemented without restricting

the truncation lag parameter space and, perhaps, without disturbing the size of the KPSS

test. The latter issue will be investigated next.

In order to study the size of the KPSS test when using a data-dependent method for

truncation lag selection, data is generated as in the previous subsection. The KPSS test

is then performed while setting l according to (6)-(10) below (see e.g. Newey and West,
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1994; Hobijn et al., 2004).

l = min

(
[γ̂T 1/3],

[
12

(
T

100

)0.25
])

(6)

γ̂ = 1.1447

((
ŝ(1)

ŝ(0)

)2
)1/3

(7)

ŝ(0) = T−1

T∑
t=1

e2
t + 2T−1

nT∑
s=1

T∑
t=s+1

etet−s (8)

ŝ(1) = 2T−1

nT∑
s=1

s

T∑
t=s+1

etet−s (9)

nT =

[
12

(
T

100

)2/9
]

(10)

As noted from (6) above, we do not allow the truncation lag to take values above

[12(T/100)0.25]. This restriction ensures that the stationarity test is consistent, i.e. has

an asymptotic power that is greater than the size of the test (see e.g. Carrion-i-Silvestre

and Sansó, 2006).16

In Figure 7 and Figure 8 we depict the size of the KPSS test when the data-dependent

truncation lag selection procedure is applied. As above, the size is given for different

sample sizes and autoregressive parameters.

If we start looking at the size of the test including an intercept only, we see from

Figure 7 that the size is upward biased regardless of whether finite-sample or asymptotic

critical values are used. The figure also indicates that there are relatively small gains from

using finite-sample critical values when an intercept is the only deterministic component

that occurs in the data-generating process and the test. This result is not expected to

apply when the time series contains both an intercept and a trend.

As expected from the experience of the previous sections, we see in Figure 8 that the

principal pattern from Figure 7 is reinforced even more when both an intercept and a time

trend are allowed for. The size of the KPSS test turns out to have a severe upward bias

when asymptotic critical values are used, while the test based on finite-sample critical

values performs better.

From this section we have seen that the KPSS test has an upward size distortion in

small samples when serial correlation is allowed for even though no serial correlation is

present. We have also seen that the size performance of the KPSS test can be enhanced

by taking this fact into account and use critical values that are conditioned on, not only

the sample size, but also the truncation lag used in the test.

16The author is grateful to an anonymous referee for pointing this out.
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In the following subsection, we will investigate how the power of the KPSS test is

affected when critical values are conditioned on the time-series dimension and the trun-

cation lag.

6.2 Power of the stationarity test

As seen from Section 3, the KPSS test has an upward size distortion in small samples

when asymptotic critical values are used and serially correlated disturbances are allowed

for. It was also seen that the size distortions could be so large that the power fell below

the size and the KPSS test became biased. In this subsection, we will investigate the

power properties of the KPSS test when small-sample critical values are used.

To investigate the power of the KPSS test, we generate data under the alternative

hypothesis (as described in Section 3) and apply the KPSS test using the finite sample

critical values of Section 5. The power of the tests on the 10% significance level is

presented in Table 8 and Table 9.17

As seen from the Table 8, the power of the KPSS test is well above the size for all

situations considered when an intercept is the only deterministic component included.

However, as was the case with the power of the KPSS test utilizing asymptotic critical

values, the power of the test falls below the size when T is small, k is large and an

intercept and a time trend are included in the econometric model. As seen from Table

9, the power falls below the size when T = 20 with k ∈ {8, 12} and T = 30 with k = 12.

However, for all the other parameter combinations considered, the KPSS test, utilizing

finite-sample critical values calculated from the response surface regression parameters in

Table 5, is unbiased.

Having studied the behavior of the KPSS test with respect to how well the asymp-

totic approximation works in small samples when disturbances are allowed to be serially

correlated under the null hypothesis, it is interesting to see whether or not accounting for

the finite-sample has any implications for empirical application of the test. This issue is

investigated in the next section.

7 Empirical illustration

In order to illustrate how inappropriate use of asymptotic critical values affect infer-

ence about the stationarity hypothesis, we set out to investigate the permanent income

17The finite-sample critical values are used when investigating the power. Hence, the power is not

size-adjusted for the cases where serial correlation is present.
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hypothesis. More specifically, assume that we are to investigate whether or not the per-

manent income hypothesis has any empirical support. To do this, it is first assumed that

a representative agent maximizes the expected lifetime utility, Ut, given in (11).

Ut =
∞∑
i=0

βiEtu(ct+i) (11)

In (11), β = 1/(1 + δ) is a subjective discount factor, with δ being the subjective

discount rate. Furthermore, u(·) is the instantaneous utility function, which is assumed

to be quadratic in private consumption, ct, i.e. u(ct) = −0.5(c̄ − ct)
2.18 If it is assumed

that the permanent income hypothesis holds and assumed that the subjective discount

rate is equal to the interest rate, private consumption can, following Hall (1978), be shown

to follow a random walk.

To test the whether or not the permanent income hypothesis has any empirical sup-

port, we can use the KPSS test for stationarity as put forward in the previous sections.

Under the null hypothesis, the stationarity test stipulates consumption is stationary and

that the permanent income implications discussed above has no empirical support. If

the null hypothesis is rejected on the other hand, the stationarity test indicates that the

predictions of the permanent income hypothesis are not violated.

In Table 10, the stationarity test results for real per capita consumption in 22 OECD

countries are presented.19 The stationarity tests are performed using a linear trend,

while the truncation lag is determined either by the data-dependent rule in (6)-(7) with

l = min
(
[γ̂T 1/3],

[
k (T/100)0.25]) and nT =

[
k (T/100)2/9

]
or by the deterministic rule

according to l = [k(T/100)0.25], where in all cases k = 18.20

As seen in Table 10, the test results are mixed for the various countries. When

using the deterministic bandwidth selection procedure asymptotic critical values, the

null hypothesis of stationarity is rejected for all countries except Australia. Hence, the

results indicate that, for almost all countries, the permanent income hypothesis seems

to be plausible. However, when using the finite-sample critical values, the conclusion

regarding the permanent income hypothesis is reversed for nine of the countries. The

results for almost half of the countries are hence dependent of the fact that the finite-

sample behavior of the KPSS test can differ from the asymptotic behavior.

This result is even more accentuated when the deterministic bandwidth selection

procedure is used. Under these circumstances, the conclusion is reversed for all but one

of the countries in the sample.

18c̄ is used to denote the bliss level of consumption.
19The data is obtained from OECD Economic Outlook Database, No 78, Vol 2005, release 02.
20The value for k is chosen for illustrative purposes only.
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The results from the empirical illustration show a considerable heterogeneity between

the countries investigated with respect to conclusions regarding private consumption de-

termination. More importantly, however, the results indicate that the failure to take

the finite-sample distribution of the KPSS test into account can have large effects on

conclusions drawn about economic hypotheses.

8 Concluding remarks

In this paper we have studied the small-sample behavior of the KPSS test for stationar-

ity. We have investigated the case where samples are small or medium-sized and serial

correlation is allowed for. It was found that the finite-sample size distortions that arise

in the stationarity test are by and large a consequence of the poor properties of long-

run variance estimator when applied to small samples. This applies specifically when a

linear trend is present. We find that the size distortions can be controlled in small and

medium-sized samples by conditioning the distribution of the KPSS test on the sample

size and the choice of truncation lag. However, a considerable loss of power against a

non-stationary alternative follows in the path of the controlled size. Sometimes the loss

of power can be so severe that the rejection frequencies under the alternative are below

the rejection frequencies under the null, i.e. the test becomes biased.21 In order to restore

the power of the KPSS test, a viable way for future research could perhaps be to find a

long-run variance estimator that is in some sense optimal specifically for the KPSS test,

more precise in the estimation of the long-run variance and more insensitive to the choice

of truncation lag. Finally, by applying the main findings of this paper in an empirical

testing problem, the adverse effects of failing to control for a limited sample size, while

allowing for serially correlated errors, are illustrated.

As a final remark, it should be noted that the many of the results of the current paper

are obtained by varying k when setting l according to l = [k(T/100)a]. Exactly the same

results apply when selecting l by varying a for a fixed k or when simultaneously varying

k and a. The main factor driving the results is the value of l.22

21All of the conclusions presented here are obtained with the minimum time-series dimensions being

T=20. Hence, caution should be taken when considering even shorter time series.
22The author thanks an anonymous referee for accentuating this aspect of the lag selection procedure.
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Carrion-i-Silvestre, J. L. and Sansó, A. (2006). A Guide to the Computation of Station-

arity Tests. Empirical Economics, 31:433–448.

Cheung, Y.-W., Chinn, M. D., and Tran, T. (1995). How Sensitive are Trends to Data

Definitions? Results for East Asian and G5 Countries. Applied Economics Letters,

2:1–6.

Cheung, Y.-W. and Lai, K. S. (1995). Lag Order and Critical Values of the Augmented

Dickey-Fuller Test. Journal of Business and Economic Statistics, 13(3):277–280.

Cragg, J. G. (1983). More Efficient Estimation in the Presence of Heteroscedasticity of

Unknown Form. Econometrica, 51(3):751–764.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the Estimators for Autoregres-

sive Time Series with a Unit Root. Journal of the American Statistical Association,

74(366):437–431.

Engle, R. F. and Granger, C. W. J. (1987). Co-Integration and Error Correction: Rep-

resentation, Estimation, and Testing. Econometrica, 55(2):251–276.

Hall, R. E. (1978). Stochastic Implications of the Life Cycle Permanent Income Hypoth-

esis: Theory and Evidence. Journal of Political Economy, 86:971–987.

Hobijn, B., Franses, P. H., and Ooms, M. (2004). Generalizations of the KPSS-test for

Stationarity. Statistica Neerlandica, 58(4):483–502.

Hornok, A. and Larsson, R. (2000). The Finite Sample Distribution of the KPSS test.

Econometrics Journal, 3:108–121.

Jönsson, K. (2006). Finite-Sample Stability of the KPSS Test. Working Paper 2006:23,

Department of Economics, Lund University, Sweden.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing the

Null Hypothesis of Stationarity Against the Alternative of a Unit Root. Journal of

Econometrics, 54:159–178.

Lee, J. (1996). On the Power of Stationarity Tests Using Optimal Bandwith Estimates.

Economics Letters, 51:131–137.

21



MacKinnon, J. G. (1994). Approximate Asymptotic Distribution Functions for Unit-Root

and Cointegration Tests. Journal of Business and Economic Statistics, 12(2):167–176.

Müller, U. K. (2005). Size and Power of Tests of Stationarity in Highly Autocorrelated

Time Series. Journal of Econometrics, 128:195–213.

Newey, W. K. and West, K. D. (1987). A Simple, Positive Semi-Definite, Heteroskedastic-

ity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3):703–708.

Newey, W. K. and West, K. D. (1994). Automatic Lag Selection in Covariance Matrix

Estimation. Review of Economic Studies, 61:631–653.

Phillips, P. C. B. and Perron, P. (1988). Testing for a Unit Root in Time Series Regression.

Biometrica, 75:335–346.

Phillips, P. C. B. and Solo, V. (1992). Asymptotics for Linear Processes. The Annals of

Statistics, 20(2):971–1001.

Said, S. E. and Dickey, D. A. (1984). Testing for Unit Roots in Autoregressive-Moving

Average Models of Unknown Order. Biometrika, 71(3):599–607.

Schwert, W. G. (1989). Tests for Unit Roots: A Monte Carlo Investigation. Journal of

Business and Economic Statistics, 7(2):147–159.

Sephton, P. S. (1995). Response Surface Estimates of the KPSS Stationarity Test. Eco-

nomics Letters, 47:255–261.

Sul, D., Phillips, P. C. B., and Choi, C.-Y. (2005). Prewhitening Bias in HAC Estimation.

Oxford Bulletin of Economics and Statistics, 67(4):517–546.

22



Table 1: Size of KPSS test, asymptotic CV, intercept only.a

ρ = 0 θ = 0
T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.095 0.095 0.145 20 0.095 0.095 0.145
30 0.102 0.104 0.100 30 0.102 0.104 0.100
40 0.096 0.091 0.095 40 0.096 0.091 0.095
50 0.097 0.100 0.099 50 0.097 0.100 0.099
75 0.103 0.099 0.102 75 0.103 0.099 0.102

100 0.098 0.097 0.099 100 0.098 0.097 0.099
ρ = 0.2 θ = 0.2

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.129 0.113 0.160 20 0.117 0.109 0.157
30 0.134 0.117 0.112 30 0.123 0.114 0.109
40 0.113 0.106 0.103 40 0.106 0.103 0.099
50 0.125 0.112 0.112 50 0.116 0.108 0.108
75 0.116 0.102 0.100 75 0.106 0.099 0.097

100 0.120 0.109 0.105 100 0.113 0.105 0.102
ρ = 0.4 θ = 0.4

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.173 0.129 0.172 20 0.130 0.113 0.162
30 0.186 0.139 0.124 30 0.137 0.120 0.113
40 0.155 0.128 0.115 40 0.116 0.108 0.105
50 0.166 0.135 0.125 50 0.127 0.112 0.111
75 0.156 0.120 0.110 75 0.116 0.102 0.099

100 0.152 0.123 0.115 100 0.120 0.108 0.105
ρ = 0.6 θ = 0.6

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.254 0.168 0.184 20 0.135 0.117 0.165
30 0.284 0.185 0.150 30 0.144 0.123 0.116
40 0.233 0.166 0.145 40 0.119 0.111 0.107
50 0.245 0.174 0.147 50 0.133 0.116 0.114
75 0.229 0.153 0.129 75 0.119 0.105 0.099

100 0.213 0.156 0.135 100 0.122 0.110 0.105
ρ = 0.8 θ = 0.8

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.411 0.252 0.219 20 0.138 0.119 0.168
30 0.466 0.294 0.211 30 0.148 0.123 0.116
40 0.401 0.277 0.212 40 0.121 0.112 0.105
50 0.414 0.287 0.212 50 0.135 0.118 0.116
75 0.432 0.260 0.196 75 0.122 0.106 0.099

100 0.387 0.251 0.198 100 0.123 0.111 0.106

Notes: a ρ and θ are the AR and MA parameters, respectively.
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Table 2: Size of KPSS test, asymptotic CV, intercept and trend.a

ρ = 0 θ = 0
T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.136 0.697 1.000 20 0.136 0.697 1.000
30 0.109 0.198 0.718 30 0.109 0.198 0.718
40 0.115 0.164 0.400 40 0.115 0.164 0.400
50 0.108 0.126 0.262 50 0.108 0.126 0.262
75 0.107 0.109 0.139 75 0.107 0.109 0.139

100 0.097 0.099 0.110 100 0.097 0.099 0.110
ρ = 0.2 θ = 0.2

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.163 0.665 1.000 20 0.150 0.672 1.000
30 0.140 0.208 0.672 30 0.126 0.206 0.680
40 0.134 0.160 0.385 40 0.125 0.156 0.388
50 0.138 0.140 0.269 50 0.129 0.135 0.270
75 0.134 0.128 0.150 75 0.124 0.121 0.148

100 0.130 0.119 0.124 100 0.123 0.114 0.123
ρ = 0.4 θ = 0.4

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.214 0.609 1.000 20 0.164 0.649 1.000
30 0.205 0.222 0.627 30 0.140 0.209 0.664
40 0.178 0.179 0.374 40 0.137 0.164 0.384
50 0.190 0.163 0.269 50 0.140 0.143 0.270
75 0.191 0.149 0.160 75 0.133 0.127 0.151

100 0.170 0.137 0.136 100 0.130 0.119 0.124
ρ = 0.6 θ = 0.6

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.306 0.579 1.000 20 0.171 0.637 1.000
30 0.324 0.252 0.589 30 0.146 0.212 0.655
40 0.272 0.218 0.353 40 0.141 0.165 0.383
50 0.285 0.208 0.267 50 0.147 0.146 0.272
75 0.315 0.190 0.180 75 0.140 0.131 0.151

100 0.266 0.176 0.157 100 0.136 0.122 0.126
ρ = 0.8 θ = 0.8

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.434 0.586 1.000 20 0.177 0.630 1.000
30 0.514 0.347 0.561 30 0.148 0.211 0.653
40 0.464 0.320 0.370 40 0.144 0.166 0.385
50 0.507 0.325 0.318 50 0.151 0.145 0.272
75 0.563 0.320 0.246 75 0.141 0.132 0.152

100 0.505 0.314 0.236 100 0.138 0.123 0.127

Notes: a ρ and θ are the AR and MA parameters, respectively.
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Table 3: Power of KPSS test, asymptotic CV, intercept only.a

ρ = 0.0 θ = 0.0
T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.599 0.465 0.366 20 0.599 0.465 0.366
30 0.708 0.578 0.483 30 0.708 0.578 0.483
40 0.734 0.629 0.551 40 0.734 0.629 0.551
50 0.778 0.667 0.573 50 0.778 0.667 0.573
75 0.878 0.739 0.654 75 0.878 0.739 0.654

100 0.890 0.766 0.693 100 0.890 0.766 0.693
ρ = 0.2 θ = 0.2

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.594 0.455 0.359 20 0.593 0.455 0.359
30 0.702 0.577 0.481 30 0.702 0.579 0.481
40 0.713 0.615 0.539 40 0.714 0.615 0.539
50 0.776 0.670 0.570 50 0.776 0.669 0.570
75 0.879 0.729 0.647 75 0.878 0.729 0.647

100 0.895 0.779 0.707 100 0.895 0.779 0.707
ρ = 0.4 θ = 0.4

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.587 0.449 0.348 20 0.582 0.450 0.351
30 0.693 0.568 0.472 30 0.693 0.572 0.477
40 0.708 0.608 0.531 40 0.709 0.612 0.535
50 0.768 0.665 0.566 50 0.770 0.666 0.568
75 0.873 0.720 0.645 75 0.874 0.723 0.645

100 0.891 0.778 0.704 100 0.893 0.778 0.706
ρ = 0.6 θ = 0.6

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.580 0.432 0.342 20 0.571 0.439 0.343
30 0.684 0.547 0.456 30 0.682 0.563 0.470
40 0.694 0.592 0.521 40 0.703 0.606 0.531
50 0.756 0.650 0.553 50 0.764 0.664 0.564
75 0.863 0.709 0.635 75 0.870 0.721 0.644

100 0.882 0.767 0.698 100 0.890 0.777 0.705
ρ = 0.8 θ = 0.8

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.594 0.437 0.332 20 0.555 0.426 0.337
30 0.676 0.529 0.432 30 0.670 0.555 0.461
40 0.678 0.570 0.489 40 0.695 0.602 0.527
50 0.742 0.625 0.523 50 0.757 0.659 0.562
75 0.841 0.685 0.612 75 0.865 0.716 0.642

100 0.866 0.751 0.677 100 0.887 0.774 0.701

Notes: a ρ and θ are the AR and MA parameters, respectively.
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Table 4: Power of KPSS test, asymptotic CV, intercept and trend.a

ρ = 0.0 θ = 0.0
T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.448 0.656 1.000 20 0.448 0.656 1.000
30 0.590 0.452 0.618 30 0.590 0.452 0.618
40 0.632 0.491 0.497 40 0.632 0.491 0.497
50 0.733 0.550 0.483 50 0.733 0.550 0.483
75 0.857 0.659 0.524 75 0.857 0.659 0.524

100 0.889 0.734 0.589 100 0.889 0.734 0.589
ρ = 0.2 θ = 0.2

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.443 0.631 1.000 20 0.441 0.633 1.000
30 0.591 0.457 0.630 30 0.589 0.457 0.631
40 0.621 0.471 0.490 40 0.620 0.473 0.490
50 0.710 0.528 0.474 50 0.710 0.529 0.474
75 0.853 0.647 0.514 75 0.854 0.647 0.515

100 0.881 0.725 0.587 100 0.882 0.726 0.586
ρ = 0.4 θ = 0.4

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.437 0.618 1.000 20 0.429 0.631 1.000
30 0.585 0.445 0.625 30 0.573 0.449 0.630
40 0.606 0.458 0.488 40 0.608 0.465 0.488
50 0.699 0.514 0.469 50 0.699 0.520 0.472
75 0.841 0.634 0.505 75 0.846 0.640 0.510

100 0.873 0.719 0.579 100 0.878 0.721 0.583
ρ = 0.6 θ = 0.6

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.444 0.599 1.000 20 0.412 0.629 1.000
30 0.585 0.430 0.608 30 0.555 0.440 0.632
40 0.597 0.450 0.478 40 0.591 0.457 0.488
50 0.686 0.498 0.458 50 0.684 0.511 0.470
75 0.828 0.616 0.493 75 0.834 0.633 0.505

100 0.862 0.702 0.574 100 0.872 0.716 0.579
ρ = 0.8 θ = 0.8

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.483 0.592 1.000 20 0.395 0.628 1.000
30 0.624 0.439 0.586 30 0.530 0.433 0.636
40 0.614 0.450 0.466 40 0.577 0.452 0.491
50 0.688 0.489 0.438 50 0.670 0.504 0.466
75 0.817 0.587 0.463 75 0.822 0.624 0.502

100 0.845 0.669 0.544 100 0.866 0.713 0.577

Notes: a ρ and θ are the AR and MA parameters, respectively.
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Table 6: Size of KPSS test, finite-sample CV, intercept only.a

ρ = 0.0 θ = 0.0
T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.107 0.108 0.097 20 0.107 0.108 0.097
30 0.099 0.096 0.093 30 0.099 0.096 0.093
40 0.100 0.097 0.099 40 0.100 0.097 0.099
50 0.097 0.098 0.097 50 0.097 0.098 0.097
75 0.103 0.106 0.105 75 0.103 0.106 0.105

100 0.091 0.090 0.090 100 0.091 0.090 0.090
ρ = 0.2 θ = 0.2

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.124 0.102 0.103 20 0.115 0.098 0.099
30 0.135 0.118 0.113 30 0.121 0.114 0.110
40 0.126 0.118 0.115 40 0.116 0.114 0.112
50 0.123 0.116 0.113 50 0.115 0.108 0.109
75 0.129 0.118 0.109 75 0.119 0.114 0.108

100 0.121 0.110 0.112 100 0.114 0.107 0.109
ρ = 0.4 θ = 0.4

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.173 0.122 0.111 20 0.127 0.104 0.103
30 0.185 0.137 0.131 30 0.137 0.119 0.113
40 0.164 0.139 0.130 40 0.126 0.119 0.118
50 0.162 0.137 0.125 50 0.123 0.114 0.111
75 0.170 0.133 0.123 75 0.132 0.117 0.110

100 0.154 0.128 0.123 100 0.119 0.110 0.112
ρ = 0.6 θ = 0.6

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.254 0.157 0.124 20 0.134 0.107 0.108
30 0.274 0.182 0.152 30 0.144 0.121 0.115
40 0.243 0.186 0.157 40 0.132 0.123 0.118
50 0.239 0.176 0.149 50 0.127 0.118 0.112
75 0.249 0.169 0.145 75 0.135 0.119 0.113

100 0.219 0.162 0.147 100 0.123 0.113 0.112
ρ = 0.8 θ = 0.8

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.411 0.246 0.142 20 0.138 0.109 0.111
30 0.455 0.293 0.212 30 0.147 0.123 0.117
40 0.403 0.286 0.221 40 0.133 0.123 0.120
50 0.416 0.291 0.215 50 0.130 0.118 0.113
75 0.454 0.269 0.205 75 0.137 0.120 0.114

100 0.385 0.255 0.203 100 0.125 0.113 0.113

Notes: a ρ and θ are the AR and MA parameters, respectively.
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Table 7: Size of KPSS test, finite-sample CV, intercept and trend.a

ρ = 0.0 θ = 0.0
T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.105 0.079 0.129 20 0.105 0.079 0.129
30 0.109 0.104 0.070 30 0.109 0.104 0.070
40 0.101 0.107 0.076 40 0.101 0.107 0.076
50 0.101 0.109 0.096 50 0.101 0.109 0.096
75 0.095 0.102 0.112 75 0.095 0.102 0.112

100 0.085 0.096 0.118 100 0.085 0.096 0.118
ρ = 0.2 θ = 0.2

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.129 0.068 0.117 20 0.118 0.074 0.120
30 0.144 0.116 0.068 30 0.129 0.115 0.070
40 0.137 0.120 0.079 40 0.126 0.116 0.079
50 0.123 0.111 0.091 50 0.113 0.108 0.091
75 0.124 0.117 0.125 75 0.113 0.113 0.123

100 0.104 0.101 0.115 100 0.095 0.098 0.112
ρ = 0.4 θ = 0.4

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.174 0.051 0.111 20 0.128 0.069 0.121
30 0.208 0.125 0.056 30 0.148 0.118 0.070
40 0.186 0.138 0.076 40 0.138 0.122 0.082
50 0.174 0.135 0.098 50 0.124 0.112 0.095
75 0.173 0.137 0.134 75 0.124 0.116 0.125

100 0.145 0.120 0.128 100 0.104 0.102 0.116
ρ = 0.6 θ = 0.6

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.251 0.032 0.096 20 0.133 0.069 0.125
30 0.319 0.150 0.041 30 0.157 0.118 0.071
40 0.278 0.168 0.072 40 0.145 0.123 0.081
50 0.272 0.179 0.101 50 0.128 0.116 0.096
75 0.292 0.174 0.149 75 0.129 0.121 0.124

100 0.232 0.155 0.151 100 0.107 0.104 0.118
ρ = 0.8 θ = 0.8

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.372 0.020 0.071 20 0.138 0.069 0.126
30 0.503 0.222 0.019 30 0.160 0.118 0.072
40 0.467 0.259 0.072 40 0.147 0.127 0.082
50 0.497 0.302 0.132 50 0.132 0.116 0.097
75 0.551 0.291 0.211 75 0.132 0.122 0.123

100 0.464 0.274 0.222 100 0.109 0.106 0.119

Notes: a ρ and θ are the AR and MA parameters, respectively.
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Table 8: Power of KPSS test, finite-sample CV, intercept only.a

ρ = 0.0 θ = 0.0
T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.608 0.460 0.249 20 0.608 0.460 0.249
30 0.694 0.580 0.479 30 0.694 0.580 0.479
40 0.728 0.622 0.541 40 0.728 0.622 0.541
50 0.769 0.666 0.572 50 0.769 0.666 0.572
75 0.876 0.732 0.649 75 0.876 0.732 0.649

100 0.892 0.760 0.690 100 0.892 0.760 0.690
ρ = 0.2 θ = 0.2

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.600 0.458 0.249 20 0.600 0.460 0.249
30 0.684 0.566 0.464 30 0.683 0.569 0.463
40 0.718 0.615 0.538 40 0.718 0.615 0.537
50 0.773 0.671 0.584 50 0.774 0.672 0.584
75 0.869 0.735 0.659 75 0.869 0.735 0.660

100 0.889 0.769 0.696 100 0.890 0.768 0.696
ρ = 0.4 θ = 0.4

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.591 0.439 0.247 20 0.589 0.447 0.247
30 0.675 0.552 0.455 30 0.677 0.559 0.461
40 0.709 0.606 0.527 40 0.711 0.611 0.533
50 0.767 0.665 0.579 50 0.771 0.668 0.581
75 0.864 0.731 0.657 75 0.867 0.733 0.658

100 0.886 0.764 0.695 100 0.888 0.766 0.697
ρ = 0.6 θ = 0.6

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.579 0.422 0.241 20 0.575 0.434 0.246
30 0.662 0.535 0.434 30 0.666 0.549 0.453
40 0.696 0.591 0.517 40 0.704 0.602 0.526
50 0.758 0.651 0.564 50 0.764 0.663 0.579
75 0.855 0.721 0.649 75 0.862 0.731 0.657

100 0.878 0.754 0.688 100 0.885 0.765 0.695
ρ = 0.8 θ = 0.8

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.585 0.420 0.230 20 0.559 0.419 0.241
30 0.662 0.523 0.419 30 0.651 0.540 0.444
40 0.679 0.567 0.487 40 0.695 0.595 0.524
50 0.745 0.634 0.534 50 0.757 0.657 0.572
75 0.846 0.704 0.624 75 0.855 0.728 0.654

100 0.864 0.743 0.669 100 0.883 0.762 0.692

Notes: a ρ and θ are the AR and MA parameters, respectively.
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Table 9: Power of KPSS test, finite-sample CV, intercept and trend.a

ρ = 0.0 θ = 0.0
T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.387 0.024 0.060 20 0.387 0.024 0.060
30 0.594 0.341 0.017 30 0.594 0.341 0.017
40 0.634 0.411 0.114 40 0.634 0.411 0.114
50 0.727 0.512 0.276 50 0.727 0.512 0.276
75 0.852 0.637 0.490 75 0.852 0.637 0.490

100 0.873 0.703 0.572 100 0.873 0.703 0.572
ρ = 0.2 θ = 0.2

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.391 0.025 0.052 20 0.388 0.026 0.053
30 0.570 0.326 0.019 30 0.569 0.327 0.019
40 0.626 0.426 0.125 40 0.627 0.427 0.125
50 0.718 0.521 0.279 50 0.720 0.521 0.279
75 0.843 0.644 0.493 75 0.845 0.645 0.493

100 0.863 0.696 0.573 100 0.864 0.698 0.574
ρ = 0.4 θ = 0.4

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.382 0.022 0.062 20 0.372 0.026 0.058
30 0.564 0.317 0.020 30 0.556 0.319 0.021
40 0.613 0.409 0.120 40 0.613 0.417 0.123
50 0.700 0.509 0.271 50 0.706 0.515 0.277
75 0.833 0.630 0.487 75 0.837 0.635 0.490

100 0.854 0.690 0.567 100 0.861 0.693 0.571
ρ = 0.6 θ = 0.6

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.391 0.019 0.060 20 0.354 0.028 0.063
30 0.571 0.306 0.019 30 0.539 0.311 0.023
40 0.598 0.392 0.113 40 0.598 0.408 0.120
50 0.684 0.488 0.262 50 0.689 0.504 0.272
75 0.821 0.609 0.474 75 0.828 0.628 0.487

100 0.838 0.670 0.558 100 0.852 0.689 0.567
ρ = 0.8 θ = 0.8

T k=4 k=8 k=12 T k=4 k=8 k=12
20 0.430 0.014 0.053 20 0.336 0.031 0.065
30 0.610 0.315 0.014 30 0.520 0.303 0.025
40 0.609 0.385 0.105 40 0.582 0.402 0.119
50 0.692 0.466 0.244 50 0.673 0.494 0.266
75 0.810 0.587 0.451 75 0.816 0.624 0.482

100 0.821 0.643 0.529 100 0.845 0.683 0.564

Notes: a ρ and θ are the AR and MA parameters, respectively.
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Figure 1: Empirical distribution of long-run variance, intercept only.
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Figure 2: Empirical distribution of long-run variance, intercept and trend.
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Figure 3: Kernel density estimates, fixed ρ = 0.0, various k.a
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Notes: aThe kernel densities are obtained for the case where T=20.
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Figure 4: Kernel density estimates, fixed k = 12, various ρ.a
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Notes: aThe kernel densities are obtained for the case where T=20.
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Figure 5: Size comparison, intercept.
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Figure 6: Size comparison, intercept and trend.
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Figure 7: Size comparison, intercept.
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Figure 8: Size comparison, intercept and trend.
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