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Abstract—MacKay-Neal (MN) and Hsu-Anastasopoulos (HA)
low-density parity-check (LDPC) codes are known to achieve the
capacity of memoryless binary-input symmetric-output channels
under maximum likelihood (ML) decoding with bounded col-
umn and row weight in their associated parity-check matrices.
Recently, Kasai and Sakaniwa showed that spatially coupled (SC)
versions of the MN and HA LDPC codes have belief propagation
(BP) iterative decoding thresholds that approach capacity on the
binary erasure channel (BEC) as the coupling length increases.

In this paper, we extend the results of Kasai and Sakaniwa to
the additive white Gaussian noise (AWGN) channel and show that
the thresholds of the SC-MN and SC-HA ensembles approach
capacity with bounded density as the coupling length increases,
i.e., the number of edges per information bit approaches a finite
value as the estimated BP threshold approaches the Shannon
limit. We also perform an asymptotic weight enumerator analysis
and show that, provided the density parameters are chosen to
be sufficiently large, the SC-MN and SC-HA ensembles are
asymptotically good. Further, for certain selections of parameters,
some of these ensembles are shown to have both excellent
thresholds and good distance properties.

I. INTRODUCTION

Ensembles of spatially coupled low-density parity-check

codes (SC-LDPCCs) can be obtained by terminating LDPC

convolutional code ensembles [1]. The reduced check node

degrees resulting from the termination of the convolutional

codes have been shown to lead to substantially better belief

propagation (BP) decoding thresholds compared to corre-

sponding block, or uncoupled, code ensembles [1]–[6]. It

has been proven analytically for the binary erasure chan-

nel (BEC) that the BP decoding thresholds of a class of

(J,K)-regular SC-LDPCC ensembles achieve the maximum

a posteriori probability (MAP) decoding thresholds of the

corresponding (J,K)-regular LDPC block code ensembles [5].

This phenomenon has been termed “threshold saturation” and

has recently been proven for general memoryless binary-input

symmetric-output (MBS) channels [6].

As a result of threshold saturation, the (J,K)-regular SC-

LDPCC ensembles studied in [5] and [6] achieve capacity

universally on MBS channels with BP decoding as the variable

and check node degrees J and K increase, since, for an

arbitrary MBS channel, the MAP thresholds of the correspond-

ing block code ensembles improve to the Shannon limit [7].

This work was partially supported by NSF Grants CCF-0830650 and CCF-
1165714.

However, the density of a rate R = 1 − J/K, (J,K)-regular

LDPC code ensemble, defined as the number of edges per

information bit, is given by JK/(K−J), which is unbounded

as J,K → ∞.

In comparison to many other capacity approaching construc-

tions, MacKay-Neal (MN) [8], [9] and Hsu-Anastasopoulos

(HA) [10] LDPC codes can be shown to achieve capacity

on MBS channels with bounded density under maximum

likelihood (ML) decoding [10]–[12]. This is achieved by

puncturing a number of the variable nodes in the Tanner graph

of the code. MN codes are non-systematic LDPC codes, with

two different edge types. HA codes, the duals of MN codes,

are constructed by concatenating LDPC codes and low-density

generator-matrix (LDGM) codes. In [13], Kasai and Sakaniwa

showed that spatially coupled versions of the MN and HA

LDPC codes have BP thresholds that approach capacity on

the BEC as the coupling length increases.

In this paper, we extend the results of [13] to the additive

white Gaussian noise (AWGN) channel and show that the BP

thresholds of the SC-MN and SC-HA ensembles approach ca-

pacity with bounded density as the coupling length increases,

i.e., the number of edges per information bit approaches a

finite value as the estimated BP threshold approaches the

Shannon limit. We also perform an asymptotic weight enumer-

ator analysis and show that, provided the density parameters

are chosen to be sufficiently large, the SC-MN and SC-HA

ensembles are asymptotically good, i.e., the minimum distance

typical of most members of the ensemble grows linearly with

block length as the block length tends to infinity. Further, for

certain selections of parameters, some of these ensembles are

shown to have both excellent thresholds and large minimum

distance growth rates.

II. PROTOGRAPH-BASED SPATIALLY COUPLED LDPC

CODE ENSEMBLES

A. Protograph construction of LDPC codes

A protograph [14] is a small bipartite graph B = (V,C,E)
that connects a set of nv variable nodes to a set of nc check

nodes by a set of edges E. The protograph can be represented

by a parity-check or base biadjacency matrix B, where Bx,y is

taken to be the number of edges connecting variable node vy to

check node cx. The parity-check matrix H of a protograph-

based LDPC block code can be created by replacing each



non-zero entry in B by a sum of Bx,y permutation matrices

of size N and a zero entry by the N ×N all-zero matrix. It

is an important feature of this construction that each derived

code inherits the degree distribution and graph neigbourhood

structure of the protograph. The ensemble of protograph-based

LDPC codes with block length n = Nnv is defined by the set

of matrices H that can be derived from a given protograph by

all possible combinations of N ×N permutation matrices.

B. Spatially coupled protographs

SC-LDPC code ensembles can be constructed by coupling

together several block code ensembles in a chain. Figure 1

shows representative Tanner graphs for (a) an LDPC block

code ensemble, (b) an uncoupled chain of LDPC block code

ensembles, and (c) a SC-LDPC code ensemble.

0 1 2 ... L  -1 0 1 2 ...0

(c)

L  -1

Fig. 1. Tanner graphs associated with (a) a (3, 6)-regular LDPC block
code protograph, (b) a chain of L uncoupled (3, 6)-regular LDPC block code
protographs for L = 7, and (c) a chain of L spatially coupled (3, 6)-regular
LDPC block code protographs for L = 7.

For the (3, 6)-regular ensemble depicted in Fig. 1(a), the

iterative decoding threshold for the BEC is ǫBP = 0.4294.

Figure 1(b) shows a chain of L uncoupled (3, 6)-regular

LDPC block code protographs. This figure corresponds to

block code transmission over time. Here, at each time unit

t = 0, 1, . . . , L−1, a block of data of length 2N is transmitted

and decoded independently. As a result of the noninteracting

structure, each component behaves like the original protograph

in Fig. 1(a) and the BP threshold of each protograph is

ǫBP = 0.4294.

By coupling together the block code protographs, as demon-

strated in Fig. 1(c) for L = 7, we obtain the protograph of a

SC-LDPCC ensemble. Note that, by coupling the protographs

in this way, we introduce a “structured irregularity” into the

coupled protograph; in this example all of the variable nodes

still have 3 edge connections, however the check nodes at the

start and the end of the chain have fewer than 6 connections.

For this example of a (3, 6)-regular SC-LDPC code ensemble,

the threshold saturation effect improves the BP threshold from

the uncoupled BP threshold ǫBP = 0.4294 to the (optimal)

MAP threshold ǫMAP = 0.4881 as the coupling length L
becomes sufficiently large.

The base matrix of a SC-LDPCC ensemble is given by

B[0,L−1] =

















B0

...
. . .

Bms
B0

. . .
...

Bms

















(L+ms)bc×Lbv

. (1)

where ms + 1 is the coupling width,1 and the bc × bv com-

ponent base matrices Bi, i = 0, . . . ,ms, represent the edge

connections from the bv variable nodes in segment t to the bc
check nodes in segment t+ i. Starting from the base matrix B

of a block code ensemble with design rate R = 1−bc/bv , one

can construct the base matrix of a SC-LDPCC ensemble that

has (asymptotically, for large L) the same degree distribution

and structure as the original ensemble. This is achieved by

an edge spreading procedure (see [1] for details) that divides

the edges from each variable node in the base matrix B

among ms + 1 component base matrices Bi, i = 0, . . . ,ms,

such that the condition B0 + B1 + · · · + Bms
= B is

satisfied. For example, the (3,6)-regular example given above

can be constructed by spreading the edges of B = [ 3 3 ] as

B0 =
[

1 1
]

= B1 = B2 , where ms = 2.

As a result of the boundary effects of spatial coupling, we

observe some rate loss. Without puncturing, the design rate

RL of the SC-LDPCC ensemble is equal to

RL = 1−

(

L+ms

L

)

(1−R) .

Note that, as the coupling length L increases, the rate increases

and approaches the rate R = 1 − bc/bv of the block code

ensemble as L → ∞.

III. SPATIALLY COUPLED MACKAY-NEAL AND

HSU-ANASTASOPOULOS LDPC CODE ENSEMBLES

We follow the construction of SC-MN and SC-HA pro-

tographs presented in [13]. The constructions are designed

such that the SC-MN and SC-HA constructions have the same

column-weight and almost the same row-weight distributions

as the corresponding MN and HA construction, respectively.

The protographs of SC-MN and SC-HA ensembles will be

constructed from several simple terminated LDPC convolu-

tional code base matrices.

A. SC-MN LDPCC ensembles

Let J = kK, J,K ≥ 2, g ∈ [2, 2k + J ], and L ≥ 1,

for J,K, g, L, k ∈ Z. We construct the base matrix of

a (J,K, g, L) SC-MN LDPCC ensemble by concatenating

two SC-LDPCC base matrices V[0,2L] and S[0,k(2L+K)−g],

in the form of (1), where the component submatrices Vi,

i = 0, . . . ,K − 1, are each the all-ones matrix of size k × 1
and the submatrices Sj , j = 0, . . . , g − 1, are each the all-

ones matrix of size 1× 1, respectively. Consequently, V[0,2L]

has size k(2L +K) × (2L + 1) and S[0,k(2L+K)−g] has size

k(2L+K)× (k(2L+K)− g + 1). Then the base matrix of

a (J,K, g, L) SC-MN LDPCC ensemble can be written as

B
MN
[0,L−1] =

[

V[0,2L] S[0,k(2L+K)−g]

]

, (2)

where the variable nodes associated with V[0,2L] are punc-

tured. The design rate of the ensemble is given by

RMN (J,K, g, L) =
2L− g + 2

k(2L+ 1) + J − g − 1
, (3)

1The value ms denotes the syndrome former memory of the associated
(unterminated) convolutional code ensemble.



where

lim
L→∞

RMN (J,K, g, L) =
1

k
,

and the number of edges per information bit, or density, of

members of the ensemble is given by

ρMN (J,K, g, L) =
J(2L+ 1) + g(2kL+ J − g + 1)

2(L+ 1)− g
, (4)

with

lim
L→∞

ρMN (J,K, g, L) = J + gk.

For example, consider the (4, 2, 2, 2) SC-MN LDPCC en-

semble. Here, k = J/K = 2, RMN (4, 2, 2, 2) = 4/11, and

ρMN (4, 2, 2, 2) = 21/2. The component submatrices are given

as

V0 = V1 =

[

1
1

]

and S0 = S1 =
[

1
]

,

which are used to construct the base matrix of the (4, 2, 2, 2)
SC-MN ensemble as follows:

B
MN
[0,L−1] = B

MN
[0,1] =

[

V[0,4] S[0,10]

]

=






























1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1































.

The corresponding protograph is shown in Fig. 2.

Fig. 2. Protograph corresponding to a (4, 2, 2, 2) SC-MN LDPC code
ensemble. The white variable nodes are punctured.

Table I displays the BEC BP thresholds ε∗ calculated

for a selection of (4, 2, 2, L) SC-MN LDPCC ensembles.

The AWGN channel BP thresholds obtained for both the

(4, 2, 2, L) and (6, 3, 2, L) SC-MN ensembles are shown in

Fig. 3.2 Due to the boundary effects of coupling, there

is some rate loss for finite L. The rates RMN (4, 2, 2, L)
and RMN (6, 3, 2, L) increase monotonically and tend to

1/k = 1/2 as L → ∞. The densities ρMN (4, 2, 2, L) and

ρMN (6, 3, 2, L) decrease monotonically, and tend to J+kg =
8 and J + kg = 10 as L → ∞, respectively, i.e., the

density is bounded. We find that, for both the BEC and the

AWGN channel, the iterative decoding thresholds converge to

2The (estimated) values obtained for the BP thresholds on the AWGN
channel were computed using the RCA method [15].

a constant value as L gets sufficiently large and that the gap to

capacity decreases with increasing L. Moreover, the obtained

thresholds are close to capacity in the limit of large L.

L RMN (4, 2, 2, L) ρMN (4, 2, 2, L) ε∗ [13] εSh

2 0.3636 10.5 0.5611 0.6364
4 0.4211 9.25 0.5113 0.5789
8 0.4571 8.625 0.5002 0.5429
16 0.4776 8.3125 0.4999 0.5224
32 0.4885 8.1562 0.4999 0.5115

TABLE I
BEC ITERATIVE DECODING THRESHOLDS FOR A SELECTION OF

(4, 2, 2, L) SC-MN LDPCC ENSEMBLES.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
at

e

 

 

Threshold (E
b
/N

0
)

MN(4,2,2,L)

MN(6,3,2,L)

HA(2,4,2,L)

HA(3,6,2,L)

L=2

Shannon
limit

Increasing L

L=32

L=16

L=8

L=4

L=2

L=1

L=1

L=2

L=4

L=2

L=4

Fig. 3. AWGN channel BP thresholds for a selection of SC-MN and SC-HA
LDPCC ensembles.

B. SC-HA LDPCC ensembles

Let K = jJ , J,K, g ≥ 2, and L ≥ 1, for J,K, g, L, j ∈ Z.

Suppose that we construct two SC-LDPCC base matrices

F[0,2L] and S[0,j(2L+1)−1], in the form of (1), where the com-

ponent submatrices Fi, i = 0, . . . ,K−1, are each the all-ones

matrix of size 1× j and the submatrices Sj , j = 0, . . . , g− 1,

are each the all-ones matrix of size 1 × 1 as for the MN

codes. Consequently, F[0,2L] has size (2L + J) × j(2L + 1)
and S[0,j(2L+1)−1] has size (j(2L+ 1) + g − 1)× j(2L+ 1).
Then the base matrix of a (J,K, g, L) SC-HA ensemble can

be written as

B
HA
[0,L−1] =

[

F[0,2L] 0

S[0,j(2L+1)−1] I

]

, (5)

where 0 is the all-zeros matrix of size (2L + J) × (j(2L +
1) + g − 1), I is the identity matrix of size (j(2L+ 1) + g −
1) × (j(2L + 1) + g − 1), and the variable nodes associated

with the left submatrix are punctured. The design rate of the

ensemble is given by

RHA(J,K, g, L) =
(j − 1)(2L+ 1)− J + 1

j(2L+ 1) + g − 1
, (6)

where

lim
L→∞

RHA(J,K, g, L) =
j − 1

j
,

and the density of members of the ensemble is given by



ρHA(J,K, g, L) =
j(J + g + 1)(2L+ 1) + g − 1

j(2L+ 1)− 2L− J
, (7)

with

lim
L→∞

ρHA(J,K, g, L) =
j(J + g + 1)

j − 1
.

For example, consider the (2, 4, 2, 2) SC-HA ensemble.

Here j = K/J = 2, RHA(2, 4, 2, 2) = 4/11, and

ρHA(2, 4, 2, 2) = 51/4. The component submatrices are given

as

F0 = F1 =
[

1 1
]

and S0 = S1 =
[

1
]

,

which are used to construct the base matrix of the (2, 4, 2, 2)
SC-HA ensemble

B
HA
[0,L−1] = B

HA
[0,1] =

[

F[0,2L]6×10
06×11

S[0,j(2L+1)−1]11×10
I11×11

]

. (8)

The corresponding protograph is shown in Fig. 4. Table

II displays the BEC BP thresholds ε∗ calculated for a se-

lection of (2, 4, 2, L) SC-HA LDPCC ensembles. The rate

RHA(2, 4, 2, L) increases monotonically and tends to (j −
1)/j = 1/2 as L → ∞. The density ρHA(2, 4, 2, L) decreases

monotonically and tends to j(J+g+1)/(j−1) = 10 as L →
∞, i.e., the density is bounded. Note that RHA(2, 4, 2, L) =
RMN (4, 2, 2, L) = 2L/(4L + 3); however, we see that the

density of the SC-HA ensemble is larger. From Fig. 3, we

observe that the thresholds obtained for the (2, 4, 2, L) SC-HA

LDPCC ensembles on the AWGN channel show a significant

gap to capacity. However, the thresholds of the (3, 6, 2, L)
SC-HA LDPCC ensembles display similar characteristics to

the SC-MN ensembles and converge to a constant value close

to capacity in the limit of large L.

Fig. 4. Protograph corresponding to a (2, 4, 2, 2) SC-HA LDPC code
ensemble. The white variable nodes are punctured.

L RHA(2, 4, 2, L) ρHA(2, 4, 2, L) ε∗ [13] εSh

1 0.2857 15.5 0.6954 0.7143
2 0.3636 12.75 0.5944 0.6364
4 0.4211 11.375 0.5169 0.5789
8 0.4571 10.6875 0.5004 0.5429
16 0.4776 10.3438 0.4999 0.5224
32 0.4885 10.1719 0.4999 0.5115

TABLE II
BEC ITERATIVE DECODING THRESHOLDS FOR A SELECTION OF

(2, 4, 2, L) SC-HA LDPCC ENSEMBLES.

IV. MINIMUM DISTANCE ANALYSIS OF SC-MN AND

SC-HA LDPCC ENSEMBLES

In this section, we study the minimum distance of SC-

MN and SC-HA LDPCC ensembles. The asymptotic spectral

shape function of a code ensemble is given by r(δ) =
limn→∞ sup rn(δ), where rn(δ) = ln(Ad)/n, δ = d/n, d
is the Hamming weight, n is the block length, and Ad is the

ensemble average weight distribution. Suppose that the first

positive zero crossing of r(δ) occurs at δ = δmin. If r(δ)
is negative in the range 0 < δ < δmin, then δmin is called

the minimum distance growth rate of the code ensemble. By

considering the probability P(d < nδmin) ≤
∑nδmin−1

d=1 Ad,
it is clear that, as the block length n becomes sufficiently

large, if P(d < nδmin) << 1, then we can say with high

probability that a randomly chosen code from the ensemble has

a minimum distance that is at least as large as nδmin [16], i.e.,

the minimum distance increases linearly with block length n.

We refer to such an ensemble of codes as asymptotically good.

The asymptotic spectral shape function r(δ) of a protograph-

based LDPC code ensemble can be calculated using the

techniques presented by Divsalar et al. in [16].

A. Asymptotic distance analysis of SC-MN LDPCC ensembles

Consider the (4, 2, 2, 2) SC-MN LDPC code ensemble pre-

viously discussed in Section III-A. The asymptotic spectral

shape function for this ensemble is plotted in Fig. 5. We

see that this ensemble is asymptotically good and that the

minimum distance growth rate is δmin = 0.022.
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 = 0.022

Fig. 5. Asymptotic spectral shape functions for the (4, 2, 2, 2) and (6, 3, 2, 2)
SC-MN LDPC code ensembles.

As we increase the coupling length L, the rate increases, and

the calculated BP thresholds get closer to capacity (see Table I

and Fig. 3). The minimum distance growth rates, on the other

hand, decrease with L, as shown in Fig. 6 for L = 2, 3, . . . , 8.

Numerically, it becomes problematic to evaluate δmin for large

values of L; however, it is clear from the structure of the

ensembles that the growth rates continue to decrease and tend

to zero in the limit of large L if the coupling width is fixed.

Now consider increasing the density of the punctured vari-

able nodes. The asymptotic spectral shape function for the

(6, 3, 2, 2) SC-MN code ensemble is plotted in Fig. 5. We

see that this ensemble is asymptotically good and that the

minimum distance growth rate is significantly larger than

for the (4, 2, 2, 2) SC-MN code ensemble. Fig. 6 shows the

minimum distance growth rates obtained for the (6, 3, 2, L)
SC-MN ensembles for L = 2, 3, . . . , 8. We observe a sig-

nificant increase in the growth rates by increasing J and K
while maintaining thresholds close to capacity (see Fig. 3).

Analogously to (J,K)-regular LDPC block code ensembles,
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Fig. 6. Minimum distance growth rates for a selection of SC-MN and SC-HA
LDPCC ensembles. The parameter ρ indicates the ensemble density obtained
in the limit of large L.

we expect to observe increased minimum distance growth rates

as we continue to increase J and K.

B. Asymptotic distance analysis of SC-HA LDPCC ensembles

Consider the (2, 4, 2, 2) SC-HA LDPC code ensemble pre-

viously discussed in Section III-B. The asymptotic spectral

shape function for this ensemble is plotted in Fig. 7 along

with the results for coupling lengths L = 1 and L = 4.

The asymptotic spectral shape functions for these ensembles

indicate that they are not asymptotically good. (Recall also

that the AWGN channel thresholds displayed a significant gap

to capacity for these ensembles (see Fig. 3).)
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Fig. 7. Asymptotic spectral shape functions for (2, 4, 2, L) SC-HA LDPC
code ensembles with L = 1, 2, and 4.

Fig. 6 displays the calculated growth rates for several

(3, 6, 2, L) SC-HA LDPCC ensembles. We observe that, by

increasing the density of the punctured variable nodes, in

addition to obtaining BP thresholds close to capacity for

both the BEC and the AWGN channel, the SC-HA LDPCC

ensembles are asymptotically good. Comparing the (6, 3, 2, L)
SC-MN ensembles and (3, 6, 2, L) SC-HA ensembles, we

find that the rates of both families of SC-LDPCC ensembles

approach 1/2 with BP thresholds close to capacity; however,

the minimum distance growth rates of the SC-HA codes are

larger, which can be attributed in part to their higher density.

V. CONCLUSIONS

In this paper, we have performed an asymptotic analysis

of spatially coupled MacKay-Neal and Hsu-Anastasopoulos

LDPC codes. We demonstrated that, for both the BEC and

the AWGN channel, the BP thresholds of the SC-MN and

SC-HA ensembles are close to capacity with bounded density

as the coupling length increases, i.e., the number of edges

per information bit approaches a finite value as the estimated

BP threshold approaches the Shannon limit. By performing

an asymptotic weight enumerator analysis, we also showed

that, provided that the density parameters are chosen to be

sufficiently large, the SC-MN and SC-HA ensembles are

asymptotically good. Further, for certain selections of parame-

ters, some of these ensembles are shown to have both excellent

thresholds and large minimum distance growth rates.
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