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1 Introduction

A major challenge facing the community working on integral equation based
solvers for boundary value problems is the construction of efficient discretiza-
tions of integral operators with singular kernels on curved surfaces. Classic
approaches such as singularity subtraction, special purpose quadrature, sin-
gularity cancellation, kernel regularization, and various adaptive strategies
may work well in many situations but have not yet fully, in three dimensions,
succeeded in unleashing the computational power of integral equation meth-
ods needed for excellence in real-world physics applications [5, Section 1].
Recently, two new promising methods have been launched: the quadrature
by extension (QBX) method which exploits that fields induced by integral
operators are often smooth close to the boundaries where their sources are
located [5] and a method relying on a combination of adaptivity, local invert-
ible affine mappings with certain orthogonality properties, and the use of
precomputed tables of quadrature rules [1]. It seems to be an open question
what method, or combination of techniques, is best.

This note is about promoting a classic technique for the discretization
of singular integral operators on curved surfaces, namely singularity sub-
traction. The idea is to use analytical evaluation to a maximum degree and
split singular (and nearly singular) operators into two parts each – one ill-
behaved part whose action can be evaluated using high-order analytic prod-
uct integration, and another more regular part for which purely numerical
integration is used, compare [2]. Based on this idea we present and imple-
ment a simple Nyström scheme for Laplace’s equation on tori. Surprisingly
accurate results are produced.

∗Supported by the Swedish Research Council under contract 621-2011-5516.
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Figure 1: Left: a torus with δ1 = 0.5, δ2 = 1, p1 = 4, p2 = 8 and 32 patches
Γij. Right: δ1 = 0, δ2 = 0.25, p1 = 4, p2 = 16 and 64 patches Γij.

2 Problem formulation and methods

We consider the interior Dirichlet Laplace problem

∆U(r) = 0 , r ∈ V , (1)

U(r) = g(r) , r ∈ Γ , (2)

where g(r) is a smooth function on the boundary Γ of a smooth domain V
in R

3. For the solution of (1,2) we use the double-layer representation

U(r) =
1

4π

∫ ∫

Γ

nr′ · (r
′ − r)

|r′ − r|3
µ(r′) dσr′ , (3)

where nr is the exterior unit normal of Γ at position r, dσ is an element
of surface area, and µ is an unknown layer density. An integral equation
formulation for (1,2) reads

µ(r) +
1

2π

∫ ∫

Γ

nr′ · (r
′ − r)

|r′ − r|3
µ(r′) dσr′ = 2g(r) . (4)

2.1 Parameterization

The domain V is taken to be a torus whose surface Γ is parameterized over
the square

{

s = (s1, s2) ∈ R
2 : −π ≤ s1, s2 ≤ π

}

as

r(s) = [̺(s) cos(s2), ̺(s) sin(s2), δ2 sin(s1)] , (5)

where
̺(s) = 2 + δ1 cos(2s2) + δ2 cos(s1) (6)

and δ1 and δ2 are shape parameters. The choice δ1 = 0 corresponds to the
standard tori used in [1, Section 3.5].

We shall use Nyström discretization for (4) based on composite tensor
product Gauss–Legendre quadrature. For this, we introduce a sequence of
mappings ρij with i = 1, . . . , p1 and j = 1, . . . , p2

ρij(t) = r(π(t1 + 2i − p1 − 1)/p1, π(t2 + 2j − p2 − 1)/p2) . (7)
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The mapping ρij(t) covers a patch Γij of Γ when mapped from the square
{

t = (t1, t2) ∈ R
2 : −1 ≤ t1, t2 ≤ 1

}

. The disjoint union of the Γij is Γ. See
Figure 1 for two examples.

Using (7) and introducing

uij(r, t
′) = ρij(t

′) − r , (8)

Jij(r, t
′) =

(

∂ρij(t
′)

∂t′2
×

∂ρij(t
′)

∂t′1

)

· uij(r, t
′) , (9)

we can rewrite the integral operator in (4) as the sum

p1,p2
∑

i=1,j=1

Dijµ(r) =

p1,p2
∑

i=1,j=1

1

2π

∫ 1

−1

∫ 1

−1

Jij(r, t
′)

|uij(r, t′)|3
µ(r′) dt′1 dt′2 . (10)

2.2 Singularity subtraction

Nyström discretization works well for a particular Dij in (10) if r is far
away from the patch Γij. If r is close to, or on, Γij then the kernel is nearly
singular, or singular, and something better is needed. Let

vij(r, t
′) =

2
∑

k=1

(t′k − tk(r))
∂ρij

∂tk
(t(r)) , (11)

∆ij(r, t
′) = |uij(r, t

′)|2 − |vij(r, t
′)|2 , (12)

where t(r) = ρ−1
ij (r). For t′ close to t(r) the operator Dij can be expanded

Dij =

∞
∑

k=0

Dijk , (13)

Dijkµ(r) =

(

−3/2

k

)

1

2π

∫ 1

−1

∫ 1

−1

Jij(r, t
′)∆k

ij(r, t
′)

|vij(r, t′)|3+2k
µ(r′) dt′1 dt′2 . (14)

See [4, Section 1] for a discussion of a similar expansion.
Our proposed singularity subtraction technique for t′ close to t(r) makes

use of the split
Dij = DK

ij + D◦

ij . (15)

Here

DK
ij =

K
∑

k=0

Dijk , D◦

ij = Dij − DK
ij , (16)

with K a small integer and with Dij as in (10). The action of DK
ij is to be

evaluated using high-order analytic product integration and D◦

ij is supposed
to be sufficiently smooth as to allow for accurate Nyström discretization.

3



3 Recursive evaluation of integrals

Computing Dijkµ(r) in (14) requires the evaluation of an expression of the
form

∑

m,n=0

∫ 1

−1

∫ 1

−1

αmnt′m1 t′n2 dt′1 dt′2

(a2(t′1 − t1)2 + 2abc(t′1 − t1)(t′2 − t2) + b2(t′2 − t2)2)
k+3/2

,

(17)
where a, b, and c are constants known from (11) and αmn are coefficients
of a polynomial approximating the smooth function Jij(r, t

′)∆k
ij(r, t

′)µ(r′).
The variable substitution x = at′1, x0 = at1, y = bt′2, y0 = bt2 makes the
terms in (17) appear as

1

am+1bn+1

∫ a

−a

∫ b

−b

αmnxmyn dxdy

((x − x0)2 + 2c(x − x0)(y − y0) + (y − y0)2)
k+3/2

. (18)

We now present a scheme for the evaluation of integrals of the form (18).
Let

dc(x, y) = x2 + 2cxy + y2 (19)

and define in the Hadamard finite part sense the indefinite integrals

Cmnk(x, x0, y, y0, c) =

∫ ∫

xmyn dxdy

|dc(x − x0, y − y0)|k+1/2
, (20)

Fmk(x, x0, y, y0, c) =

∫

xm dx

|dc(x − x0, y − y0)|k+1/2
, (21)

Gnk(x, x0, y, y0, c) =

∫

yn dy

|dc(x − x0, y − y0)|k+1/2
. (22)

Using partial integration, and for given values (x, x0, y, y0, c), one can show
that when m + n + 1 6= 2k holds

Cmnk =
mx0C(m−1)nk + ny0Cm(n−1)k + (x − x0)x

mGnk + (y − y0)y
nFmk

m + n + 1 − 2k
.

(23)
When m + n + 1 = 2k holds

Cmnk = x0C(m−1)nk + βk

(

(m − 1)C(m−2)n(k−1) − cnC(m−1)(n−1)(k−1)

− xm−1Gn(k−1) + cynF(m−1)(k−1)

)

, (24)

Cmnk = y0Cm(n−1)k + βk

(

(n − 1)Cm(n−2)(k−1) − cmC(m−1)(n−1)(k−1)

− yn−1Fm(k−1) + cxmG(n−1)(k−1)

)

, (25)
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where βk = 1/((1 − c2)(2k − 1)). For the evaluation of Fmk we use

F00 = log
(

|dc(x − x0, y − y0)|
1/2 + (x − x0) + c(y − y0)

)

, (26)

F0k =
βk

(y − y0)2

(

(x − x0) + c(y − y0)

|dc(x − x0, y − y0)|k−1/2
+ 2(k − 1)F0(k−1)

)

, k ≥ 1 ,

(27)

Fm0 =
1

m

(

xm−1|dc(x − x0, y − y0)|
1/2 − (m − 1)dc(−x0, y − y0)F(m−2)0

+ (2m − 1)(x0 − c(y − y0))F(m−1)0

)

, m ≥ 1 , (28)

Fmk =
1

2k − 1

(

(m − 1)F(m−2)(k−1) − xm−1|dc(x − x0, y − y0)|
k−1/2

)

+ (x0 − c(y − y0))F(m−1)k , m, k ≥ 1 . (29)

Expression for Gnk are obtained by interchanging x ⇄ y and m ⇄ n in
the expressions for Fmk. The recursions for Cmnk, Fmk and Gnk allow the
integrals in (17) to be evaluated at a modest computational cost. Note that,
for this, only Cmnk with m,n ≥ 0 and k ≥ 1 are needed.

4 Details on the discretization

We now give precise details on our Nyström discretization of (4). Aiming at
10th order convergence we take 10-point composite tensor product Gauss–
Legendre quadrature (GL10) as our underlying quadrature scheme. On each
Γij there will then be a grid of 100 discretization points where the discretized
density µ is sought. The discretized system (4) has 100p1p2 unknowns. We
shall also use a temporary, finer, grid with 256 discretization points on each
Γij placed according to 16-point composite tensor product Gauss–Legendre
quadrature (GL16).

If, for a particular Dij and r in (10), the local parameter t = ρ−1
ij (r) is

such that 3.5 < |t|, then the point r is considered far away from Γij and we
discretize Dijµ(r) using the underlying GL10 scheme.

If 2 < |t| ≤ 3.5, then r is somewhat close to Γij and we use an extended
scheme: first µ is interpolated to the finer grid on Γij and then Dijµ(r)
is discretized using GL16. High-degree polynomial interpolation of smooth
functions known at Legendre nodes can be very accurate, despite involving
ill-conditioned Vandermonde systems [3, Appendix A].

If |t| < 2, then r is close to Γij , the operator Dij is nearly singular or
weakly singular, and we use the split (15). The discretization is carried out
on the GL16 grid on Γij, which means that µ has to be interpolated to
256 points as in the previous paragraph. The operator D◦

ij is discretized

using GL16. The operator DK
ij is discretized using the method of Section 3.

We let m,n = 0, . . . , 15 in (17). The 256 coefficients αmn are obtained
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Figure 2: Relative L2 error in U(r) at the tube center when solving an interior
Dirichlet Laplace problem on tori given by (5).

by multiplying the pointwise values of µ at the 256 fine grid points on Γij

with pointwise values of Jij(r, t
′)∆k

ij(r, t
′) and then, in principle, solving a

Vandermonde system of size 256 × 256. In practice one can obtain the αmn

by solving two 16 × 16 systems with multiple right hand sides. As for the
optimal number K in (15), it turns out to be related to the polynomial
degree of the underlying discretization and to the overall mesh refinement
determined by p1 and p2 of (7). For small vales p1 and p2 and high degree
quadrature, K should be rather low. We choose K = 1, that is, we use two
terms in the sum of (16).

5 Numerical examples

Numerical experiments are performed on tori given by (5) using a program
solely implemented in Matlab and executed on a workstation equipped
with an IntelXeon E5430 CPU at 2.66 GHz and 32 GB of memory. Three
different δ = (δ1, δ2) are chosen: δ = (0, 1), δ = (0.5, 1), and δ = (0, 0.25).
See Figure 1 for illustrations. The boundary condition g(r) in (2) is taken
as g(r) = 1/|r − r1| − 1/|r − r2|, with r1 = (4, 0, 0) and r2 = (0, 4, 0) for
δ = (0, 1), with r1 = (4.5, 0, 0) and r2 = (0, 3.5, 0) for δ = (0.5, 1), and
with r1 = (3.25, 0, 0) and r2 = (0, 3.25, 0) for δ = (0, 0.25). The discretized
system (4) is solved iteratively using GMRES.

Figure 2 shows convergence of U(r), evaluated via a discretization of (3),
at points along the center of the torus tubes. The mesh is refined by in-
creasing the parameters p1 and p2 of (7), keeping p2 = p1 for δ = (0, 1),
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p2 = 2p1 for δ = (0.5, 1), and p2 = 4p1 for δ = (0, 0.25). A relative residual
less than ǫmach is obtained in between 15 and 20 iterations for reasonably
resolved systems. The recursion of Section 3 is rather fast. For example,
with 10,000 discretization points and δ = (0, 0.25) only 28 seconds are spent
doing singularity subtraction.

One can see in Figure 2 that the initial convergence of U(r) is approx-
imately 10th order, as expected. As the number of discretization points
grows, however, the error stemming from the discretization of D◦

ij domi-
nates and the convergence slows down. Our scheme can, on its own, not
compete with the mix of techniques presented by Bremer and Gimbutas [1].

6 Conclusion

This note is about promoting singularity subtraction as a helpful tool in
the discretization of singular integral operators on curved surfaces. Singular
and nearly singular kernels are expanded in series whose terms are integrated
on parametrically rectangular regions using high-order product integration,
thereby reducing the need for spatial adaptivity and precomputed weights.
A simple scheme is presented and an application to the interior Dirichlet
Laplace problem on some tori gives around ten digit accurate results using
only two expansion terms and a modest programming- and computational
effort. Further development, including modifications as to allow for para-
metrically triangular regions, is needed before the technique may find its
way into competitive solvers.
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