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Testing for Error Correction in Panel Data∗

Joakim Westerlund†

January 26, 2005

Abstract

This paper proposes four new tests for the null hypothesis of no coin-

tegration in panel data that are based on the error correction parameter

in a conditional error correction model. The limit distribution of the test

statistics are derived and critical values are provided. Our Monte Carlo

results suggest that the tests have reasonable size properties and good

power relative to other popular residual-based cointegration tests. These

differences arises because latter imposes a possibly invalid common factor

restriction. In our empirical application, we present evidence suggesting

that international health care expenditures and GDP are cointegrated

once the possibility of an invalid common factor restriction has been ac-

counted for.

JEL Classification: C12; C32; C33; O30.
Keywords: Panel Cointegration Test; Monte Carlo Simulation; Common

Factor Restriction; International Health Care Expenditures.

1 Introduction

The use of panel cointegration techniques to test for the presence of long-run
relationships among integrated variables with both a time series dimension
t = 1, ..., T and a cross-sectional dimension i = 1, ..., N has received much
attention recently. The literature concerned with the development of such tests
has thus far taken two broad directions. The first consists of taking as the
null hypothesis that of cointegration. This is the basis of the panel cointegra-
tion tests proposed by McCoskey and Kao (1998), and Westerlund (2004). The
second approach is to take as null hypothesis that of no cointegration. Tests
within this category are almost exclusively based on the methodology of Engle
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and Granger (1987) whereby a unit root statistic is employed to test for the
existence of a unit root in the residuals of a static spurious regression. The
most influential contributions within this category are those of Kao (1999) and
Pedroni (1999; 2004). Pedroni (2004) introduces several test statistics that are
appropriate for various cases of heterogeneous dynamics, endogenous regressors,
and individual specific constants and trends. Tests are developed both for the
case with a common autoregressive root under the alternative hypothesis as
well as tests that permit heterogeneity of the autoregressive roots. In Pedroni
(1999), critical values are also provided that facilitates the cointegration testing
to be performed in situations characterized by multiple regressors. The study
of Kao (1999) is similar but brings special attention to the case in which the
autoregressive roots and the cointegration vectors are presumed homogenous.

The tests of Kao (1999) and Pedroni (1999; 2004) have attracted much in-
terest in the empirical literature. Typical examples of common applications
include studies of wage inequality, manufacturing growth and financial develop-
ment, commercial security prices, the Balassa-Samuelson effect, current account
dynamics, the Feldstein-Horioka puzzle, and international R&D spillovers, to
mention a few.1 The single most cited rationale for using these tests are the
increased power that may be brought to bare on the cointegration hypothesis
through the increased number of observations that derives from adding the in-
dividual time series. Yet, many studies fail to reject the null hypothesis, even
in cases when cointegration is strongly suggested by theory (see, e.g. Ho, 2001).
One plausible explanation for this derives from the common factor restriction
that is implicitly superimposed when using residual-based tests of this sort. The
common factor restriction being that the long- and short-run adjustment pro-
cesses are equal. If this restriction is invalid, although still consistent, these
tests may suffer from poor power properties in finite samples.

In this paper, we propose four new tests of the null hypothesis of no coin-
tegration that does not impose any common factor restriction on the data and
that uses the available information more efficiently than residual-based tests.
The proposed tests are panel extensions of those proposed in the time series
context by Banerjee et al. (1998). As such, they are designed to test the null
hypothesis of no cointegration by inferring whether the error correction term
in an conditional error correction model (ECM) is equal to zero. If the null
hypothesis of no error correction is rejected, then the null hypothesis of no
cointegration is also rejected. Each test is able to accommodate individual spe-
cific short-run dynamics, including serially correlated error terms and weakly
exogenous regressors, individual specific intercept and trend terms, as well as
individual specific slope parameters. It is shown that the tests have limiting
normal distributions and that they are consistent. In our Monte Carlo study,
we demonstrate that the ECM tests maintain nominal size reasonably well and
that they are more powerful than other existing residual-based tests that ignores

1See Pedroni (1999) for references.
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potentially valuable information by imposing a possibly invalid common factor
restriction. In our empirical application, we provide evidence suggesting that
international health care expenditures and GDP are cointegrated once the long-
and short-run adjustment processes are allowed to differ.

The paper proceeds as follows. In the next section, we present the ECM test
statistics. Section 3 concern itself with the asymptotic results, while Section
4 is devoted to the Monte Carlo study. Section 5 then contains the empiri-
cal application and Section 6 concludes the paper. For notational convenience,
the Bownian motion Bi(r) defined on the unit interval r ∈ [0, 1] will be writ-
ten as only Bi and integrals such as

∫ 1

0
Wi(r)dr will be written

∫ 1

0
Wi, and∫ 1

0
Wi(r)dW (r)i as

∫ 1

0
WidWi. The symbol ⇒ will be used to signify respec-

tively weak convergence,
p→ to signify convergence in probability and [z] to

signify the largest integer less than z.

2 The ECM tests

Let zit = (yit, x
′
it)
′ be an K + 1 dimensioned vector of integrated variables that

may be partitioned into a scalar variate yit and a K dimensional vector xit.
The data generating process (DGP) of zit can be described by the following
conditional ECM system

∆yit = δ′idt + λ′i∆xit + γiβ
′
izit−1 + uit, (1)

∆xit = vit, (2)

where the linear combination β′izit is assumed to be stationary, βi is the cointe-
gration vector and γi contains the associated error correction parameters. The
vector dt contains the deterministic components. Typical elements of dt include
a constant and a linear time trend. To accommodate for this, we distinguish
between three cases. In Case 1, dt = {∅}, in Case 2, dt = 1 and in Case 3,
dt = (1, t)′. To be able to derive the tests and their asymptotic distributions,
we assume that the vector wit = (uit, v

′
it)
′ is cross-sectionally independent and

that it follows a general linear process whose parameters satisfy the summability
conditions of the following assumption.

Assumption 1. (Error process.) (i) The data is i.i.d. cross-sectionally; (ii)
The vector wit satisfies wit = Ci(L)eit, where L is the lag operator, Ci(L) =∑∞

j=0 CijL
j , Ci(1) 6= 0,

∑∞
j=0 j2CijCij < ∞ and eit is a mean zero i.i.d. se-

quence with covariance matrix Σi; (iii) The lower right K × K submatrix of
Ωi ≡ Ci(1)ΣiCi(1) is positive definite; (iv) The regressors are weakly exogenous
with respect to (δ′i, λ

′
i, γi, β

′
i)
′.

Assumption 1 provides us with the basic conditions for developing the panel
cointegration tests. Assumption 1 (i) states that the individuals are i.i.d. over
the cross-sectional dimension. This condition is convenient as it will allow us

3



to apply standard central limit theory in a relatively simple manner. Similarly,
the linear process conditions of Assumption (ii) are convenient because they
facilitate a straightforward asymptotic analysis by application of the methods
developed by Phillips and Solo (1992). In particular, Assumption 1 (ii) ensures
that a functional central limit theorem holds individually for each cross-section
as T increases. Thus, we have T−1/2

∑[Tr]
t=1 wit ⇒ Bi ≡ LWi as T −→ ∞ with

N held fixed, where Ωi = L′L, Bi = (Bi1, B
′
i2)
′ is a vector Brownian motion and

Wi = (Wi1,W
′
i2)
′ is a vector standard Brownian motion with covariance matrix

equal to identity. The asymptotic analysis of linear processes holds under a
variety of conditions and can be generalized to different classes of time series
innovations such as the class of all stationary autoregressive moving average
processes. The asymptotic analysis is therefore widely applicable.

Assumption 1 (iii) and (iv) are concerned with the covariance matrix of Bi,
equally the long-run covariance matrix of wit. Specifically, Assumption 1 (iii)
states that the lower right K ×K submatrix of Ωi is positive definite, which is
tantamount to requiring that xit is not cointegrated in case we have multiple
regressors. Assumption 1 (iv) requires that the vector of regressors is weakly
exogenous with respect to the parameters of interest, which is implicit in the
formulation of the DGP given by (1) and (2) as the marginal model for xit is
not error correcting. The implication of this is that uit is independent of all
current and past realizations of vit suggesting that E(uitvij) = 0 for all j < t.
Apart from these assumptions, however, no further restrictions are placed on
the long-run covariance of wit. Notably, the fact that Ωi is permitted to vary
between the individuals of the panel indicate that we are in effect allowing for
a completely heterogeneous long-run covariance structure.

Assumption 1 is relatively weak and allow for quite general forms of error
dynamics. In order to facilitate the construction of tests with simple enough
structure, however, in this section we shall initially make some simplifying as-
sumptions, which will subsequently be disregarded. Specifically, we strengthen
Assumption 1 to the following set of conditions.

Assumption 2. (Error independence.) (i) The processes uit and vkj are mean
zero and mutually independent for all i, k and t 6= j; (ii) The covariance matrix
of vit is positive definite.

The parameter γi governs the error correction of the ECM. If γi < 0, then
there is error correction, which imply that yit and xit will be cointegrated.
Conversely, if γi = 0, then the error correction will be absent and there is no
cointegration. In what follows, we shall propose four new test statistics that
are based on the value taken by γi. Two of the statistics are based on pooling
the information regarding the error correcting property of the data along the
cross-sectional dimension of the panel. These are referred to as panel statistics.
The second pair do not exploit this information and are referred to as group
mean statistics. The relevance of this distinction lies in the formulation of
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the alternative hypothesis. For the panel statistics, the null and alternative
hypotheses are formulated as H0 : γi = 1 for all i versus H1 : γi = γ < 1 for all
i. With this formulation, a rejection of the null should be taken as evidence in
favor of cointegration for the panel as a whole. By contrast, for the group mean
statistics, H0 is tested versus H1 : γi < 1 for at least some i suggesting that a
rejection of the null should be taken as evidence in favor of cointegration for a
nonzero fraction of the panel.

It is clear that the ECM test statistics of no cointegration must rely upon
some estimate of γi. Although seemingly simple an exercise, the estimation
of γi has proven extremely difficult. In fact, most time series test statistics
based on the error correction parameter are not similar and depend on nuisance
parameters (see, e.g. Banerjee et al., 1986; Kremers et al., 1992; Campos et
al., 1996), which is the main reason why ECM tests has not received much
attention in the applied literature. Another problem is that most ECM tests
require that the cointegration vector is known. Banerjee et al. (1998) suggest a
straightforward solution to both these problems that is based on the following
ordinary least squares (OLS) regression

∆yit = δ′idt + λ′i∆xit + γiyit−1 + ϕixit−1 + uit. (3)

Suppose that the cointegration vector βi is normalized with respect to yit so
that βi = (1,−α′i)

′. In this case, the parameter on yit−1 in (3) is identically γi.
Thus, a panel data test of H0 versus H1 may be constructed based on the OLS
estimator of γi in (3) for each individual or for the panel as a whole. Notably,
because the parameter on xit−1 is unrestricted and because the cointegration
vector is implicitly estimated under the alternative hypothesis, as seen by writ-
ing ϕi = −γiαi, this means that it is possible to construct a test based on γi

that is asymptotically similar and whose distribution is free of nuisance param-
eters. Following this, in this paper, we propose four new panel data tests of H0

versus H1 that are based on the value taken by γi in (3). The exact form of the
test statistics is given as follows.

Definition 1. (The panel and group mean ECM test statistics.) Let eit =
yit − δ̂′idt − λ̂′i∆xit − ϕ̂ixit−1, Eit = (eit−1,∆eit)′, Ei =

∑T
t=1 EitE

′
it, σ̂2

i =
T−1

∑T
t=1 û2

it and σ̂2 = N−1
∑N

i=1 σ̂2
i . The panel and group mean ECM test

statistics are defined as follows

EPγ ≡
(

N∑

i=1

Ei11

)−1 N∑

i=1

Ei12, EPt ≡ σ̂−1

(
N∑

i=1

Ei11

)−1/2 N∑

i=1

Ei12,

EGγ ≡
N∑

i=1

E−1
i11Ei12 and EGt ≡

N∑

i=1

σ̂−1
i E

−1/2
i11 Ei12.

Some remarks are in order. First, as will be shown in the next section, the
limiting distributions of the above statistics are free of the nuisance parameters
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associated with the underlying DGP. Once we allow for the possibility of nonzero
constants and time trends in (1), however, the distributions of the statistics will
no longer be be invariant with respect to these nuisance parameters. Therefore,
in order to obtain statistics that are asymptotically similar in Case 2, the data
should be demeaned prior to using the above formulas. For Case 3, the data
should be both demeaned and detrended to account for the linear trend appear-
ing in (1). Thus, as in the case of a single time series, if a deterministic element
is present but not accounted for when constructing the test statistics, the en-
suing cointegration test will be inconsistent. Therefore, in order to obtain tests
that are asymptotically similar, we use project yit upon dt when constructing
the statistics.

Second, notice that the regression in (3) cannot be used to identify the
underlying deterministic structure of the variables. In Case 1, (3) contains no
deterministic component and there is no ambiguity. In this case, both xit and yit

are pure unit root processes with no deterministic components. In Case 2, (3)
is fitted with an individual specific constant as the deterministic component.
This case captures both the situation when the variables are generated with
a constant term as well as the situation when they are generated with both
constant and trend terms but the trend is eliminated through the cointegration
relationship. Similarly, Case 3 captures the situations when the variables are
generated with constant and trend terms as well as when they are generated
with a quadratic trend that is eliminated through the cointegration relation.

Third, the relaxation of Assumption 2 means that the error process may
serially correlated and the regressors weakly exogenous. This imply the ECM
statistics are no longer asymptotically similar and that they need to be modified
to account for the temporal dependence in the DGP. Under Assumptions 1, this
may be accomplished by simply augmenting the right-hand side of (1) with
lagged values of ∆yit as well as lagged and leaded values of ∆xit. In so doing,
it is necessary that the lag and lead order p, say, is chosen sufficiently large to
whiten the errors and to make the regressors strictly exogenous. This suggests
that in order to obtain similar test statistics, we should replace eit in Definition
1 with the projection errors of yit from p lags of ∆yit as well as p lags and leads
of ∆xit. That is, eit = yit − δ̂′idt − λ̂′i∆xit − ϕ̂ixit−1 should be replaced with
eit = yit − δ̂′idt −

∑p
k=1 θ̂ik∆yit−k −

∑p
k=−p λ̂′ik∆xit−k − ϕ̂ixit−1. Lags of ∆yit

and ∆xit are required to accommodate for serial correlation while leads of ∆xit

are needed to account for the effects of weakly exogenous regressors.

3 Asymptotic distribution

In this section, we study the asymptotic distribution of the ECM test statistics
proposed in the previous section. In particular, it will be shown that all statistic
converges to limiting normal distributions with moments based on the following
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vector Brownian motion functionals

Vi ≡
(∫ 1

0

Q2
i ,

∫ 1

0

QidWi1

)′
and Ki ≡

(
Vi2V

−1
i1 , Vi2V

−1/2
i1

)′
,

where

Qi = Wi1 −
(∫ 1

0

Wi1W̄
′
i2

)(∫ 1

0

W̄i2W̄
′
i2

)−1

W̄i2.

To succinctly express the limiting distributions of the ECM statistics when de-
terministic terms are added to the regression in (3), it is useful to let W̄i2 =
(d′,W ′

i2)
′, where d is the limiting trend function. Specifically, let DT = diag(1, T )

denote a matrix of normalizing orders that is conformable with dt = (1, t)′, then
D−1

T d[Tr] ⇒ d = (1, r)′ as T −→ ∞. It follows that W̄i2 = Wi2 in Case 1,
W̄i2 = (1,W ′

i2)
′ in Case 2 and W̄i2 = (1, r,W ′

i2)
′ in Case 3. The vector W̄i2 en-

ters Vi and Ki through the Brownian motion functional Qi, which is the Hilbert
projection of Wi1 onto the space orthogonal to the vector W̄i2. Also, it is conve-
nient to let Θ and Θ̃ denote the expected values of Vi and Ki, respectively. The
variances of these functionals are written in an obvious notation as Σ and Σ̃.
As indicated by the following theorem, when the ECM statistics are normalized
by the appropriate values of T and N , then the asymptotic distributions only
depend on the known values of Θ, Σ, Θ̃ and Σ̃.

Theorem 1. (Asymptotic distribution.) Define φ ≡ (−Θ2Θ−2
1 , Θ−1

1 )′ and ϕ ≡
(−2−1Θ2Θ

−3/2
1 , Θ−1/2

1 )′. Under Assumption 1 and the null hypothesis of no
cointegration, as T −→∞ prior to N

TN1/2EPγ −N1/2Θ2Θ−1
1 ⇒ N(0, φ′Σφ),

EPt −N1/2Θ2Θ
−1/2
1 ⇒ N(0, ϕ′Σϕ),

TN−1/2EGγ −N1/2Θ̃1 ⇒ N(0, Σ̃11),

N−1/2EGt −N1/2Θ̃2 ⇒ N(0, Σ̃22).

The proof of Theorem 1 is outlined in the appendix but it is instructive to
consider why it holds. The proof of the results for the group mean statistics
is particularly simple and proceeds by showing that the intermediate limiting
distribution of the normalized statistics passing T −→∞ while holding N fixed
can be written entirely in terms of the elements of the vector Brownian mo-
tion functional Ki. Therefore, by subsequently passing N −→ ∞, asymptotic
normality follows by direct application of the Lindberg-Lévy central limit the-
orem to sums of N i.i.d. random variables. The proof for the panel statistics
is similar. It proceeds by showing that the intermediate limiting distribution of
the normalized statistics can be described in terms of differentiable functions of
i.i.d. vector sequences to which the Delta method is applicable. Hence, taking
the limit as N −→ ∞, we obtain a limiting normal distribution for the panel
test statistics.
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Theorem 1 indicates that each of the normalized statistics, when standard-
ized by the appropriate moments, converges to a standard normal distribution.
Thus, to be able to make inference based on the normal distribution, we must
first obtain the moments for each statistic. This can be done by Monte Carlo
simulations. For this purpose, we make 10, 000 draws of K independent scaled
random walks of length T = 1, 000. By using these random walks as simulated
Brownian motions, we construct approximations of the vector Brownian mo-
tion functionals Vi and Ki. The means and the variances of these simulated
functionals are then used to approximate the asymptotic moments. The results
obtained from this exercise are reported for up to five regressors in Table 1.

In view of Table 1, note that, although the distributions of the statistics are
free of nuisance parameters, they do depend upon the deterministic specification
of the ECM in (1) and on the number of regressors as reflected by dependence
of Qi on W̄i2. Thus, the moments will also depend on the deterministic specifi-
cation and on the number of regressors. Moreover, notice that the distributions
are independent of the short-run dynamics of the DGP as captured by the first
differences of the regressors. Thus, the statistics are asymptotically similar with
respect to the short-run parameters of the ECM. In Table 1, therefore, we only
report simulated moments for the different deterministic cases and for different
number of regressors. There no need to tabulate separate moments for different
lag and lead orders.

It is important that a statistical test is able to fully discriminate between
the null and alternative hypotheses in large samples. The next theorem shows
that the test statistics are consistent and that they are divergent under the
alternative hypothesis.

Theorem 2. (Test consistency.) Under Assumption 1 and the alternative hy-
pothesis of no cointegration, then TN1/2EPγ , EPt, TN−1/2EGγ and N−1/2EGt

diverges to negative infinity as T −→∞ prior to N .

The proof of Theorem 2 is provided in the appendix. Some remarks are in
order though. First, the theorem establishes that the divergence occurs towards
negative infinity. This suggests that the tests can be constructed as one-sided
using only the left tail of the normal distribution to reject the null hypothesis.
Therefore, to test the null hypothesis of no cointegration based on the moments
from Table 1, one simply computes the value of the standardized test statistic
so that it is in the form specified in Theorem 1. This value is then compared
with the left tail of the normal distribution. Large negative values imply that
the null hypothesis should be rejected.

Second, the proof of Theorem 2 uses the sequential limit theory developed by
Phillips and Moon (1999). Although this allows for a relatively straightforward
and tractable analysis, it cannot be used to obtain the joint rate of divergence,
which is indicative of the relative power properties of the tests. It is, however,
possible to establish the order of the statistics as T −→∞ for a fixed N . In this
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case, it is shown in the appendix that TN1/2EPγ and TN−1/2EGγ are Op(T )
while EPt and N−1/2EGt are Op(T 1/2), which is in agreement with the results
obtained for residual-based tests in the time series literature (see, e.g. Phillips
and Ouliaris, 1990). Given their faster rate of divergence, it is likely that the
EPγ and EGγ statistics have higher power than EPt and EGt in samples where
T is substantially larger than N .

4 Monte Carlo simulations

In this section, we study some of the small-sample properties of the ECM tests
relative to those of some of the popular residual-based tests recently proposed by
Pedroni (2004). For this purpose, a large number of experiments were performed
using the following process to generate the data

∆yit = λi∆xit−1 + γi(yit−1 − αixit−1) + uit, (4)

xit = δyit + vit, (5)

vit = vit−1 + wit. (6)

For the error process uit, we have two scenarios. In the first, uit = eit + θeit−1

so uit follows an MA(1) process. In the second, uit = φuit−1 + eit in which case
uit follows an AR(1) process. For the initiation of xit, yit, vit, uit and eit, we
use the value zero. Moreover, λi ∼ N(0, 1) and (eit, wit)′ ∼ N(0, V ), where V

is a positive definite matrix with V11 = 1 and V12 = V21. Data is generated
for N ∈ {10, 20} individual and T ∈ {50, 100} + 50 time series observations.
To eliminate startup effects, we discard the first 50 observations for each series.
The number of replications is 1, 000.

In our basic DGP, we consider the parameter space (δ × θ× φ× V12 × V22),
where δ = (0, 1), θ = (0,−0.2,−0.6), φ = (0, 0.2, 0.6), V12 = 0.4 and V22 =
(1, 2, 4). This gives us a total of 54 experiments for each combination of N

and T . The parametrization is given as follows. The error correction of the
ECM is governed by γi. Its value determines the extension to which the null
hypothesis of no cointegration can be regarded as true. For brevity, we make
the assumption that this parameter takes on a common value γi = γ for all i.
Therefore, under the null hypothesis, we have γ = 1, while γ < 1 under the
alternative hypothesis. The remaining parameters θ, φ, ψ, δ and V introduces
nuisance in the DGP. Specifically, θ 6= 0 imply that uit will have an MA(1)
component while φ 6= 0 imply that uit will have an AR(1) component. The
degree of endogeneity in the DGP is governed by δ and V12. The regressor
is strictly exogenous if δ = V12 = 0 and it is weakly exogenous if δ = 0 and
V12 6= 0. If δ 6= 0, then the regressor is fully endogenous. The choice of V12 did
not affect the results and we therefore use V12 = 0.4 throughout.

The parameters λi, αi and V are especially interesting and their role in
determining the relative power properties of the tests and will be examined
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thoroughly. The reason for this is the following. Consider the conditional ECM
in (4). The test regression for the residual-based tests of Pedroni (2004) can be
derived from (4), thus establishing a relationship between them and the ECM
tests. Specifically, let eit = (λi − αi)∆xit + uit and subtract αi∆xit from both
sides of (4) and rearrange. This gives us the following expression

∆(yit − αixit) = γi(yit−1 − αixit−1) + eit. (7)

The tests of Pedroni (2004) test the null hypothesis of no cointegration by
inferring whether yit − αixit has a unit root or, equivalently, whether γi in (7)
is equal to zero. The problem with this approach is that it imposes a possibly
invalid common factor restriction as seen by nothing that the two errors eit and
uit are not equal unless λi = αi. To get an intuition on this, notice that the
variance of eit is given by V11 + (λi − αi)2V22. Suppose that V11 is close to
zero but that (λi−αi)2V22 is large. In this case, the ECM regression in (4) has
nearly perfect fit with γi being estimated with excellent precision. The ECM
test will therefore tend to have good power. By contrast, the estimation of γi

in (7) will tend to be much more imprecise producing tests with low power.
Thus, we expect the ECM tests to enjoy higher power whenever αi 6= λi and
the signal-to-noise ratio of V22 to V11 is large. In our DGP, V11 = 1 so the
signal-to-noise ratio is given by V22. Having drawn λi from N(0, 1), we use αi

to determine whether the common factor restriction is satisfied or not. If the
restriction is satisfied, then αi = λi, whereas αi = 1 otherwise. The degree of
the violation is controlled by varying the value taken by V22.

To evaluate these theoretical predictions, the ECM test statistics will be
compared to four of the statistics developed by Pedroni (2004). To this end, we
use ZGt and ZGρ to denote his semiparametric group mean t and ρ test statis-
tics. The corresponding panel statistics are denoted ZPt and ZPρ, respectively.
As with the ECM statistics, the panel and group mean statistics of Pedroni
(2004) differ mainly because of the treatment of the autoregressive parameter
γi in (7). In particular, while the panel statistics presume a common value
γi = γ for all i under the alternative, the group mean statistics does not. To
keep the amount of table space manageable, we present only the size-adjusted
power and the empirical size on the five percent level when the critical value
−1.645 is used. The reported results are for Case 1 with no individual specific
constant or trend terms. The results for the other cases did not change the
conclusions and are therefore not included. All computations were performed
in GAUSS.

The purpose of this section is primarily to illustrate the common factor
issue and the relative power of the ECM tests. For completeness, however, we
first make a brief degression on the performance of the tests under the null
hypothesis. To this effect, we have experimented with different selection rules
for the lag and lead orders of the tests. Among these are information based
rules such as the Akaike and the Schwarz Bayesian information criteria, and
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Figure 1: Size-adjusted power when N = 10 and T = 50.

deterministic rules that chooses the lag order as a fixed function of T . Consistent
with the results of Haug (1996), the results suggest that the information based
rules tend to choose too parsimonious lag and lead orders, which generally result
in size distortions. Selecting the order as a fixed function of T generally produces
much more satisfactory results. To this end, we have performed a large number
of experiments using different rules. Among these rules, [4(T/100)1/4] generally
performs best and we therefore only report the results for the tests based on
this rule.

The results on the empirical size are reported in Table 2 for the case when the
regressor is weakly exogenous and in Table 3 for the case when the regressor is
endogenous. The data were generated with both MA(1) and AR(1) errors, which
makes θ and φ convenient nuisance parameters to investigate. It has been well
documented in the earlier literature that negative moving average structures
may cause substantial size distortions when testing the null hypothesis of no
cointegration (see, e.g. Haug, 1996; Kao, 1999). In agreement with these results,
Table 2 and 3 show that all tests tend to reject the null hypothesis too frequently
when θ < 0. In fact, save for the EGt and EPt statistics, we see that a larger
negative MA(1) component almost uniformly result in the size going to unity.
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Figure 2: Size-adjusted power when N = 10 and T = 50.

The results are very different when the errors are generated as an AR(1) process.
In this case, a larger autoregressive parameter seem to result in the size going
to zero. Thus, autoregressive errors causes an underrejection of the null thus
leading to a more conservative test.

Overall, the simulations under the null hypothesis leads us to the conclusion
that all tests performs reasonably well with the size being close to the nominal
level in most experiments, which supports the asymptotic result that the distri-
bution of the ECM test statistics should be free of nuisance parameters under
the null hypothesis. Interestingly, since the performance of the tests appear to
be unaffected by the introduction of endogenous regressors, this suggests that
researchers may proceed with the cointegration testing as if the regressors are
weakly exogenous with little or no loss of generality. Moreover, because there
appear to be no large differences in performance between the ECM and the
residual-based tests, the choice of test will depend to a large degree on their the
performance under the alternative hypothesis.

Next, we continue to the results on the power properties of the tests. In this
case, θ = φ = 0 so the regression errors are generated as i.i.d. innovations. All
results are adjusted for size so that each test has the same rejection frequency
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Figure 3: Size-adjusted power when N = 20 and T = 50.

of five percent when the null hypothesis is true. The results are summarized
in Figures 1 through 6.2 The figures suggest that the ECM tests are uniformly
more powerful than the residual-based tests. Notably, the ECM tests have
highest power even though λi = αi and the common factor restriction is satisfied.
Moreover, in accordance with our earlier discussion, we see that power of the
ECM tests relative to that of the other tests increases monotonically as the
signal-to-noise ratio V22 increases. This effect is further magnified by the fact
that the power of the residual-based tests appear to be decreasing in V22. This
is to be expected as large values of V22 will tend to inflate the test regression
in (7) with excess volatility and a loss of power. The implication is that the
power advantages to the ECM tests may be substantial even though the signal-
to-noise ratio is only slightly larger than one. Also, since these effects seem to
materialize even in very small samples, they should be relevant in most empirical
applications.

The panel tests have highest power. This in not surprising since they are
constructed based on the pooled least squares estimator of the error correction

2In Figures 1 through 6, the curves representing the size-adjusted power of the test statistics
have been smoothed by means of a least squares spline of neighboring points.
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Figure 4: Size-adjusted power when N = 20 and T = 50.

parameter and pooling is efficient under the homogenous alternative considered
here. Among the panel tests, the figures suggest that the EPγ test is most
powerful when the common factor restriction is satisfied or the value of V22 is
close to unity. As V22 increases, the power of the EPt test raises relative to that
of the EPγ test. Among the group mean tests, the figures suggest that the EGt

test has highest power. As expected, we see that the power is increasing in N

and T . We also see that the power increases as the autoregressive parameter
departs from its hypothesized value of unity.

In summary, the simulation results suggest that the ECM tests generally
perform well under the alternative hypothesis with good power in most panels.
More importantly, when the common factor restriction is not satisfied by the
data, as V22 increases, the power of the ECM tests increases significantly relative
to that of the other tests. This result appears to be very robust and extends
to all sample sizes examined and to the cases with demeaned and detrended
data. The overall impression of the Monte Carlo evidence is therefore that the
proposed tests compares favorably with the tests of Pedroni (2004).
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Figure 5: Size-adjusted power when N = 10 and T = 100.

5 Health care expenditures and GDP

The relationship between health care expenditures (HCE) and GDP is the sub-
ject of a large literature in health economics. Many early contributions employed
cross-sectional data to obtain estimates of this relationship. Without exception
it has been found that most of the observed variation in HCE can be explained
by variation in GDP. Many of these studies, however, have been criticized for the
smallness of their data sets and for the assumption that HCE is homogenously
distributed across countries. More recent research have therefore resorted to
panel data, which offers a number of advantages over pure cross-sectional data.
For instance, using multiple years of data increases the sample size while si-
multaneously allowing researchers to control for a wide range of time invariant
country characteristics through the inclusion of country specific constants and
trends. In addition, with multiple time series observations for each country,
this enables researchers to exploit the presence of unit roots and cointegration
among HCE and GDP.

This avenue is taken by Hansen and King (1996), which examines a panel
spanning the years 1960 to 1987 across 20 OECD member countries. They show
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Figure 6: Size-adjusted power when N = 10 and T = 100.

that, if one examines the time series for each of the countries separately, one can
only rarely reject the unit root hypothesis for either HCE or GDP. Moreover,
their county specific tests rarely reject the hypothesis of no cointegration. Mc-
Coskey and Selden (1998) uses the same data set as Hansen and King (1996).
Based on the panel unit root proposed by Im et al. (2003), the authors are able
to reject the presence of a unit root in both HCE and GDP. Once a linear time
trend has been accommodated, however, the null hypothesis cannot be rejected.
Hansen and King (1998) question the preference of McCoskey and Selden (1998)
for omitting the time trend from their main results and argues that this may
lead to misleading inference. Indeed, using a panel covering 24 OECD countries
between 1960 and 1991, Blomqvist and Carter (1997) challenge the findings of
McCoskey and Selden (1998). Drawing on a battery of tests, including the panel
unit root test of Levin et al. (2002), the authors conclude that HCE and GDP
both appear to be nonstationary and cointegrated. Gerdtham and Löthgren
(2000) present confirmatory evidence using a panel of 21 OECD countries be-
tween 1960 and 1997. Similarly, using a panel of 10 OECD member countries
over the period 1960 to 1993, Roberts (2000) found clear evidence suggesting
that HCE and GDP are nonstationarity variables. The results on cointegration
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were, however, not conclusive.
Apparently, although the evidence seem to support unit root hypothesis for

HCE and GDP, it is less conclusive on the cointegration hypothesis. One pos-
sible explanation to the differing results may be the common factor restriction
implicitly imposed when testing the null hypothesis of no cointegration using
the two-step Engle and Granger (1987) procedure as in e.g. Hansen and King
(1996).3 In this section, we verify this conjuncture using a panel consisting of
20 OECD counties covering the period 1970 to 2001. For this purpose, data
on annual frequency has been acquired through the OECD Health Data 2003
database. Both HCE and GDP are measured in per capita terms at constant
1995 prices and are transformed in logarithms. Moreover, since both variables
are clearly trending, we follow the earlier literature and model HCE and GDP
with a linear time trend in their levels. An obvious interpretation of such a
trend is that it accounts, in part, for the impact of technological change. The
basic model we postulate is the following simple log-linear relationship between
HCE and GDP

log HCEit = µi + τit + λi log GDPit + uit. (8)

The first step in our analysis of this relationship is to test whether the variables
are nonstationary or not. To this effect, we employ the Zt̄ and Z̃t̄ statistics
recently proposed by Im et al. (2003). Both statistics have limiting normal
distributions under the null hypothesis of a unit root in the panel. The difference
is that the tests have different distributional properties for a fixed T in which
case the Z̃t̄ statistic is analytically more manageable and is likely to lead to
more accurate tests in small samples. The tests were constructed with both
individual specific constant and trend terms in the level of the variables. The
length of the lag augmentation is set equal to [4(T/100)2/9]. Moreover, the
appropriate moments needed to construct the Zt̄ and Z̃t̄ statistics for the model
with a time trend are not available, and must therefore be obtained by means
of Monte Carlo simulation. For this purpose, we make 10, 000 draws of a single
random walk of length T = 1, 000, which is then used to compute the moments.
The simulated mean and variance are −2.2208 and 0.5785, respectively. The
calculated values of Zt̄ and Z̃t̄ for HCE based on these moments are −2.2972
and −0.3671, respectively. The corresponding values for GDP are −1.3663 and
0.1886. Hence, compared to the lower tail of the normal distribution, we cannot
reject the null hypothesis at the one percent significance level.

The tests of Im et al. (2003) are constructed as a sum of N individual
unit root test statistics. In this sense, they are very similar to the group mean
versions of the ECM statistic. The interpretation is therefore that a rejection
should be taken as evidence in favor of a unit root for a nonempty subset of
the panel. By contrast, the tests of Harris and Tzavalis (1999), and Levin et al.

3Since the data sets used in the previous studies are nearly identical, any differences in
test results are not likely to be due to differences in the process generating the data.
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(2002) are constructed as the panel ECM test statistics by pooling across the
cross-sectional dimension. Hence, in this case, a rejection of the null should be
taken as evidence in favor of a unit root for the panel as a whole. Given these
differences, it is interesting to infer whether the same results are obtained using
the panel type unit root tests. The computed value of the Harris and Tzavalis
(1999) statistic for HCE and GDP are 1.3742 and −1.6162, respectively. The
corresponding values of the Levin et al. (2002) statistic are 1.5859 and 0.2723.
Hence, the results confirm those obtained using the tests of Im et al. (2003)
and we therefore conclude that the variables are nonstationary.

The second step in our analysis is to test whether HCE and GDP are cointe-
grated. One way to do this is to follow the Engle and Granger (1987) procedure
of subjecting the residuals from the OLS fit of (8) to a unit root test. As pointed
out earlier, however, the prospect of imposing an invalid common factor restric-
tion may well result in this procedure having very low power in samples as small
as ours. In that case, the ECM test statistics may be able to produce more pow-
erful tests. Our test results confirm this conjuncture. In agreement with the
Monte Carlo results of the previous section, we set the lag and lead order of the
tests to [4(T/100)2/9].

The calculated values of the ZGt and ZGρ statistics with both a constant
and a linear time trend are −0.4009 and 3.0643, respectively. For the ZGt and
ZGρ statistics, the calculated values are 1.5893 and 1.2991. Thus, based on the
tests of Pedroni (2004), we cannot reject the null hypothesis of no cointegra-
tion. This conclusion is supported by the results presented in Table 4 on the
individual test statistics abbreviated tEC and ρEC . In fact, results suggest that
the null hypothesis cannot be rejected based on the five percent significance
level for any of the countries. We note, however, that the standard error of the
individual test regressions for the residual-based tests are much lager than those
of the corresponding ECM regressions, which is indicative of an invalid common
factor restriction. Indeed, the individual F -statistics of the common factor hy-
pothesis presented in Table 4 suggest that the restriction must be rejected at
all conventional significance levels for all countries of the panel. The table also
present the estimated signal-to-noise ratios, which are well above one in most
cases.

The implication of these results is that the ECM test statistics may be more
powerful. The calculated values of the EGt and EGγ statistics are −3.6743 and
0.2696, respectively. The corresponding values of the EPt and EPγ statistics are
−2.3478 and −0.7353. Hence, using the EGt and EPt tests, we are in fact able
to reject the null hypothesis suggesting that HCE and GDP are cointegrated. In
addition, based on the individual ECM test statistics presented in Table 4, we
reject the null hypothesis at the five percent level on at least seven occasions,
which reinforces this conclusion. By contrast, the null hypothesis cannot be
rejected based on the EGγ and EPγ tests. This is not unexpected, however,
given the simulation results of the previous section suggesting that the EGt and
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EPt statistics should be able to produce more powerful tests in the presence of
an invalid common factor restriction. Hence, the evidence is interpreted as
supportive of the hypothesis of cointegration between HCE and GDP.

6 Conclusions

In this paper, we propose four new panel ECM test, which is designed to test
the null hypothesis of no cointegration by testing whether the error correction
term in an conditional ECM is equal to zero. If the null hypothesis of no
error correction is rejected, then the null hypothesis of no cointegration is also
rejected. Each test is able to accommodate individual specific short-run dynam-
ics, including serially correlated error terms and weakly exogenous regressors,
individual specific intercept and trend terms, as well as individual specific slope
parameters. Using sequential limit arguments, we are able to show that the
tests have limiting normal distributions and that they are consistent. In our
Monte Carlo study, we demonstrate that the ECM tests maintain nominal size
reasonably well and that they are more powerful than the residual-based tests
of Pedroni (2004). These differences in power arises because the latter statistics
ignore potentially valuable information by imposing a possibly invalid common
factor restriction. In our empirical application, we provide evidence suggesting
that international health care expenditures and GDP are cointegrated once the
short- and long-run dynamics are allowed to differ.

19



Appendix: Mathematical proofs

This appendix proves the limiting distributions of the ECM test statistics. For
ease of exposure, we shall prove the results for Case 1 with no deterministic
components. The proof uses the techniques of Banerjee et al. (1998) and hence
only essential details are given.

Proof of Theorem 1. Under the null hypothesis of no cointegration, γi = 0
in which case the ECM in (1) reduces to

∆yit = λ′i∆xit−1 + uit. (A1)

For convenience in deriving the distributions under the null hypothesis, we intro-
duce the following matrix notation. Define Sit ≡

∑t
j=1 uij and Rit ≡

∑t
j=1 vij ,

then we have Si = (Si1, ..., SiT )′, Ri = (Ri1, ..., RiT )′, Vi = (vi1, ..., viT )′ and
Ui = (ui1, ..., uiT )′, Xi = (Ri,−1, Vi)′, Hi = (Si,−1, Ri,−1, Vi, Ui)′ and Ai =
HiH

′
i. In addition, we define Qi ≡ IT − Ri,−1(R′i,−1Ri,−1)−1R′i,−1 and Pi ≡

IT − Xi(X ′
iXi)−1X ′

i. It follows that Pi = Qi − V ′
i Qi(V ′

i QiVi)−1V ′
i Qi, which

implies that Ei11 and Ei12 can be expanded as

T−2Ei11 = T−2S′i,−1PiSi,−1 = T−2S′i,−1QiSi,−1

− T−1
(
T−1S′i,−1QiVi

) (
T−1V ′

i QiVi

)−1 (
T−1V ′

i QiSi,−1

)
, (A2)

T−1Ei12 = T−1S′i,−1PiUi = T−1S′i,−1QiUi

− (
T−1S′i,−1QiVi

) (
T−1V ′

i QiVi

)−1 (
T−1V ′

i QiUi

)
, (A3)

where

T−2S′i,−1QiSi,−1 = T−2Ai11 −
(
T−2Ai12

) (
T−2Ai22

)−1 (
T−2Ai21

)
,

T−1S′i,−1QiVi = T−1Ai13 −
(
T−2Ai12

) (
T−2Ai22

)−1 (
T−1Ai23

)
,

T−1V ′
i QiVi = T−1Ai33 − T−1

(
T−1Ai32

) (
T−2Ai22

)−1 (
T−1Ai23

)
,

T−1S′i,−1QiUi = T−1Ai14 −
(
T−2Ai12

) (
T−2Ai22

)−1 (
T−1Ai24

)
,

T−1V ′
i QiUi = T−1Ai34 − T−1

(
T−1Ai32

) (
T−2Ai22

)−1 (
T−1Ai24

)
.

In these expressions, all normalized partitions of Ai but T−1Ai33 and T−1Ai34

are Op(1) by standard limit theory. As for T−1Ai33, notice that under Assump-
tion 2 (iii), T−1Ai33

p→ E(Ai33) > 0 as T −→ ∞ so T−1Ai33 = Op(1). For
T−1Ai34, we have T−1Ai34 = 0 under Assumption 2 (iv). Together, these re-
sults imply that the second term appearing in (A2) and (A3) are both op(1)
and can be disregarded. Therefore, we obtain the following limits for T−2Ei11

and T−1Ei12 passing T −→∞ with N held fixed

T−2Ei11 = T−2S′i,−1QiSi,−1 + op(1) ⇒ σ2
i

∫ 1

0

Q2
i , (A4)
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T−1Ei12 = T−1S′i,−1QiUi + op(1) ⇒ σ2
i

∫ 1

0

QidWi1. (A5)

Let Fi = IT − Yi(Y ′
i Yi)−1Y ′

i , where Yi = (X ′
i, Yi,−1)′ and Yi = (yi1, ..., yiT )′.

By the same arguments used in obtaining (A4) and (A5), it is possible to show
that T−1U ′

iYi = Op(1) and T−2Y ′
i Yi = Op(1). This imply that the estimated

variance can be written as

σ̂2
i = T−1U ′

iFiUi

= T−1U ′
iUi − T−1

(
T−1U ′

iYi

) (
T−2Y ′

i Yi

) (
T−1Y ′

i Ui

)

= T−1U ′
iUi + op(1)

= σ2
i + op(1). (A6)

This imply that σ̂2
i is consistent for σ2

i . Now, define the scaled random variables
Ei1 ≡ T−2Ei11 and Ei2 ≡ T−1Ei12, and let Ei3 ≡ Ei2E

−1
i1 and Ei4 ≡ Ei2E

−1/2
i1 .

These definitions together with the results in (A4) and (A5) imply that TEGγ

and has the following limit as T −→∞ with N held fixed

TEGγ =
N∑

i=1

(
T−1Ei11

)−1
Ei12

=
N∑

i=1

Ei3

⇒
N∑

i=1

(
σ2

i

∫ 1

0

Q2
i

)−1

σ2
i

∫ 1

0

QidWi1

=
N∑

i=1

(∫ 1

0

Q2
i

)−1 ∫ 1

0

QidWi1. (A7)

For EGt, we have the following limit

EGt =
N∑

i=1

σ̂−1
i E

−1/2
i11 Ei12

=
N∑

i=1

σ̂−1
i Ei4

⇒
N∑

i=1

σ−1
i

(
σ2

i

∫ 1

0

Q2
i

)−1/2

σ2
i

∫ 1

0

QidWi1

=
N∑

i=1

(∫ 1

0

Q2
i

)−1 ∫ 1

0

QidWi1. (A8)

This shows that the limiting distribution of the group mean statistics are free
of nuisance parameters under the null. Therefore, because the limiting distribu-
tions passing T −→∞ is i.i.d. over the cross-section, we deduce that E(Ki) = Θ̃
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for all i. The variance of Ki may be decomposed as

Σ̃ =
(

Σ̃11 Σ̃12

Σ̃12 Σ̃22

)
.

To derive the sequential limiting distribution of EGγ and EGt, we expand the
statistics in the following manner

TN−1/2EGγ −N1/2Θ̃1 = N1/2

(
N−1

N∑

i=1

Ei3 − Θ̃1

)
, (A9)

N−1/2EGt −N1/2Θ̃2 = N1/2

(
N−1

N∑

i=1

σ̂−1
i Ei4 − Θ̃2

)
. (A10)

It follows that TN−1/2EGγ−N1/2Θ̃1 ⇒ N(0, Σ̃11) and N−1/2EGt−N1/2Θ̃2 ⇒
N(0, Σ̃22) as T −→ ∞ prior to N by direct application of the Lindberg-Lévy
central limit theorem. This establishes the limit distribution of the group mean
statistics.

Consider next the limiting distribution of the panel statistics. Making use
of the weak limits in (A2) and (A3), we may infer the following limit for TEPγ

as T −→∞

TEPγ =

(
N∑

i=1

T−1Ei11

)−1 N∑

i=1

Ei12

=

(
N∑

i=1

Ei1

)−1 N∑

i=1

Ei2

⇒
(

N∑

i=1

σ2
i

∫ 1

0

Q2
i

)−1 N∑

i=1

σ2
i

∫ 1

0

QidWi1. (A11)

Similarly, for EPt, we have the following limit

EPt = σ̂−1/2

(
N∑

i=1

Ei11

)−1 N∑

i=1

Ei12

= σ̂−1

(
N∑

i=1

Ei1

)−1/2 N∑

i=1

Ei2

⇒ σ−1

(
N∑

i=1

σ2
i

∫ 1

0

Q2
i

)−1/2 N∑

i=1

σ2
i

∫ 1

0

QidWi1. (A12)

To be able to infer the sequential limits of these expressions, we shall make use
of the Delta method, which provides the limiting distribution for continuously
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differentiable transformations of i.i.d. vector sequences. In so doing, we expand
TN1/2EPγ as follows

TN1/2EPγ − N1/2Θ2Θ−1
1

= N1/2

(
N−1

N∑

i=1

Ei2 − σ2Θ2

)(
N−1

N∑

i=1

Ei1

)−1

− σ2Θ2N
1/2




(
N−1

N∑

i=1

Ei1

)−1

− (
σ2Θ1

)−1


 . (A13)

The expansion of N1/2EPt is as follows

N1/2EPt − N1/2Θ2Θ
−1/2
1

= σ̂−1N1/2

(
N−1

N∑

i=1

Ei2 − σ2Θ2

)(
N−1

N∑

i=1

Ei1

)−1/2

− σΘ2N
1/2




(
N−1

N∑

i=1

Ei1

)−1/2

− (
σ2Θ1

)−1/2


 . (A14)

Let σ2 denote the expected value of σ2
i . Thus, by a law of large numbers, we

have that σ̂2 p→ σ2 as T −→ ∞ and then N −→ ∞ sequentially. Consequently,
by Corollary 1 of Phillips and Moon (1999), the terms appearing in (A13) and
(A14) with normalizing order N−1 converges in probability to σ2 times the
expectations of the corresponding random variable as T −→ ∞ prior to N .
Hence, N−1

∑N
i=1 Ri1

p→ σ2Θ1 and N−1
∑N

i=1 Ri2
p→ σ2Θ2. Moreover, by direct

application of the Lindberg-Lévy central limit theorem, N1/2(N−1
∑N

i=1 Ei2 −
σ2Θ2) ⇒ N(0, σ4Σ22) passing T −→ ∞ and then N −→ ∞. In deriving this
result we use the fact that Σ may be decomposed as

Σ =
(

Σ11 Σ12

Σ12 Σ22

)
.

The remaining expressions in (A13) and (A14) involves a continuously differen-
tiable transformation of i.i.d. random variables. Thus, by the Delta method, as
T −→∞ prior to N

N1/2




(
N−1

N∑

i=1

Ei1

)−1

− (
σ2Θ1

)−1


 ⇒ N(0, σ−4Θ−4

1 Σ11), (A15)

N1/2




(
N−1

N∑

i=1

Ei1

)−1/2

− (
σ2Θ1

)−1/2


 ⇒ N(0, 4−1σ−2Θ−3

1 Σ11). (A16)
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This suggests that the limits of TN1/2EPγ − N1/2Θ2Θ−1
1 and N1/2EPt −

N1/2Θ2Θ
−1/2
1 may be rewritten in the following fashion

TN1/2EPγ −N1/2Θ2Θ−1
1 ⇒ (

σ2Θ1

)−1
N(0, σ4Σ22)

− σ2Θ2

(
σ2Θ1

)−2
N(0, σ4Σ11), (A17)

N1/2EPt −N1/2Θ2Θ
−1/2
1 ⇒ σ−1

(
σ2Θ1

)−1/2
N(0, σ4Σ22)

− σΘ2

(
41/2σ3Θ3/2

1

)−1

N(0, σ4Σ11). (A18)

Using (A17) and (A18), it is straightforward to verify that the centered statistics
TN1/2EPγ − N1/2Θ2Θ−1

1 and N1/2EPt − N1/2Θ2Θ
−1/2
1 are mean zero with

variances given by φ′Σφ = Θ−2
1 Σ22 − 2Θ−3

1 Θ2Σ12 + Θ2
2Θ

−4
1 Σ11 and ϕ′Σϕ =

Θ−1
1 Σ22 − Θ−2

1 Θ2Σ12 + 4−1Θ2
2Θ

−3
1 Σ11, respectively. This completes the proof.

¥

Proof of Theorem 2. Under the alternative hypothesis, β′izit in (A1) is sta-
tionary. Moreover, if we denote by β̂i the OLS estimator of βi, then β̂i − βi =
Op(T−1). Therefore, inference γi in (A3) is asymptotically equivalent to infer-
ence in the following regression

∆yit = λ′i∆xit−1 + γiwit−1 + uit, (A19)

where wit = β′izit is the putative disequilibrium error. Let Wi = (wi1, ..., wiT )′,
Qi ≡ IT − Vi(V ′

i Vi)−1V ′
i , Ei1 ≡ W ′

i,−1QiWi,−1, Ei2 ≡ W ′
i,−1QiUi, Hi ≡

(Wi,−1, Vi, Ui) and Bi ≡ H ′
iHi. The normalized quantities T−1Ei1 and T−1Ei2

may be expanded as

T−1Ei1 = T−1Bi11 −
(
T−1Bi12

) (
T−1Bi22

)−1 (
T−1Bi21

)
, (A20)

T−1Ei2 = T−1Bi13 −
(
T−1Bi12

) (
T−1Bi22

)−1 (
T−1Bi23

)
. (A21)

By the stationarity of the regressors, all partitions of Bi normalized by T−1 are
Op(1). Thus, T−1Ei1 and T−1Ei2 are Op(1) too. These results imply that the
ECM statistics have the following orders

TEGγ =
N∑

i=1

T
(
T−1Ei1

)−1 (
T−1Ei2

)
= Op(T ),

EGt =
N∑

i=1

T 1/2
(
T−1Ei1

)−1/2 (
T−1Ei2

)
= Op(T 1/2),

TEPγ = T

(
N∑

i=1

T−1Ei1

)−1 (
N∑

i=1

T−1Ei2

)
= Op(T ),

EPt = T−1/2σ̂−1/2

(
N∑

i=1

T−1Ei1

)−1 (
N∑

i=1

T−1Ei12

)
= Op(T 1/2).

24



This establishes that each of the ECM test statistics diverges as T −→ ∞ and
then N −→ ∞ sequentially. Moreover, as γi < 0 under the alternative, the
divergence occurs towards negative infinity. ¥
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Table 4: Country specific test statistics

Country tECM γECM tEG ρEG SN FCOMF

Australia −4.6858 −14.0851 −2.3205 −6.7425 1.1009 12.0856

Austria −2.9665 −12.7742 −2.7261 −11.0941 1.5644 16.7759

Belgium −3.6164 −11.6763 −2.3254 −9.7256 1.5586 107.7053

Canada −2.9827 −6.9541 −1.9592 −4.7615 2.4904 21.6730

Denmark −2.6486 −10.1772 −2.2761 −8.2464 2.9986 9.2030

Finland −1.2624 −3.5524 −1.6016 −3.7843 1.5465 68.4147

Germany −4.6412 −10.8999 −3.4844 −12.0944 1.1896 132.7105

Iceland −2.9639 −15.2907 −2.9582 −14.8821 2.8438 31.8930

Ireland −3.3967 −11.6916 −3.3115 −9.1965 2.6383 16.2727

Japan −2.3934 −4.0364 −2.0804 −4.1806 2.5626 42.7549

Luxembourg −1.7553 −7.6790 −2.4192 −8.0706 2.0777 9.0761

Netherlands −4.9915 −26.0161 −3.4908 −14.0679 3.2189 33.0150

New Zealand −1.1904 −4.1305 −1.9545 −5.5628 0.4271 4.8109

Norway −1.8287 −10.4927 −3.1842 −14.0203 1.7195 24.2765

Portugal −4.4761 −24.0592 −3.6218 −12.6986 1.0101 16.9359

Spain −2.0632 −13.9547 −2.6695 −7.7966 1.5551 6.7591

Sweden −2.3528 −4.4077 −2.1590 −4.6508 1.3850 24.6726

Switzerland −3.4925 −12.9242 −3.3841 −11.2136 2.3383 16.1373

United Kingdom −4.4140 −21.2605 −2.8328 −11.3774 4.3440 8.7129

United States −2.1945 −3.8733 −1.1822 −1.0543 4.1947 28.6096

Notes:

(i) The column labelled SN contains the estimated signal-to-noise ratios.

(ii) The FCOMF statistics for the common factor restriction have a limiting

F -distribution under the null hypothesis. The five and one percent critical

values for one and 25 degrees of freedom are 4.24 and 7.77, respectively.

(iii) The critical values for the individual cointegration test statistics have been

obtained through Monte Carlo simulation. The five percent critical values

for the tECM and γECM statistics are −3.5824 and −24.8003, respectively.

The corresponding values for tEG and ρEG are −3.6752 and −26.8896.
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[5] Gerdtham, U. G., and M. Löthgren, 2000, On Stationarity and Cointe-
gration of International Health Expenditure and GDP, Journal of Health
Economics, No. 19, pp. 461-475.

[6] Hansen, P., and A. King, 1996, The Determinants of Health Care Expen-
ditures: A Cointegration Approach, Journal of Health Economics, No. 15,
pp. 127-137.

[7] Hansen, P., and A. King, 1998, Health Care Expenditures and GDP: Panel
Data Unit Root Test Results - Comment, Journal of Health Economics,
No. 17, pp. 377-381.

[8] Harris, R. D. F., E. Tzavalis, 1999, Inference for Unit Roots in Dynamic
Panels where the Time Dimension is Fixed, Journal of Econometrics, No.
91, pp. 201-226.

[9] Haug, A. A., 1996, Tests for Cointegration: A Monte Carlo Comparison,
Journal of Econometrics, Vol. 71, pp. 89115.

[10] Ho, T., 2002, A Panel Cointegration Approach to the Saving-Investment
Correlation, Empirical Economics, No. 27, pp. 91-100.

[11] Im, K. S., M. Peseran and Y. Shin, 2003, Testing for Unit Roots in Het-
erogeneous Panels, Journal of Econometrics, No. 115, pp. 53-74.

[12] Kremers, J., N. Ericsson and J. Dolado, 1992, The Power of Cointegration
Tests, Oxford Bulletin of Economics and Statistics, Vol. 54, No. 3, pp.
325-348.

[13] Levin, A., C-F. Lin and C-S. J. Chu (2002). ‘Unit Root Tests in Panel Data:
Asymptotic and Finite-Sample Properties’, Journal of Econometrics, Vol.
108, pp. 1-24.

30



[14] McCoskey, S., and C. Kao, 1998, A Residual-Based Test of the Null of
Cointegration in Panel Data, Econometric Reviews, No. 17, pp. 57-84.

[15] McCoskey, S., and T. Selden, 1998, Health Care Expenditures and GDP:
Panel Data Unit Root Test Results, Journal of Health Economics, No. 17,
pp. 369-376.

[16] Pedroni, P., 1999, Critical Values for Cointegration Tests in Heterogeneous
Panels with Multiple Regressors, Oxford Bulletin of Economics and Statis-
tics, No. 61, pp. 653-670.

[17] Pedroni, P., 2004, Panel Cointegration: Asymptotic and Finite Sample
Properties of Pooled Time Series Tests with an Application to the PPP
Hypothesis, Econometric Theory, Vol. 3, pp. 579-625.

[18] Phillips, P. C. B., and H. R. Moon, 1999, Linear Regression Limit Theory
of Nonstationary Panel Data, Econometrica, No. 67, pp. 1057-1111.

[19] Phillips, P. C. B., and S. Ouliaris, 1990, Asymptotic Properties of Residual
Based Tests for Cointegration, Econometrica, No. 58, pp. 165-193.

[20] Phillips, P. C. B., and V. Solo, 1992, Asymptotics for Linear Processes,
Annals of Statistics, Vol. 20, No. 2, pp. 971-1001.

[21] Roberts, J., 2000, Spurious Regression Problems in the Determinants of
Health Care Expenditure: A Comment on Hitiris (1997), Applied Eco-
nomics Letters, No. 7, pp. 279-283.

[22] Zivot, E., 2000, The Power of Single Equation Tests for Cointegration when
the Cointegration Vector is Prespecified, Econometric Theory, No. 16, pp.
407-439.

[23] Westerlund, J., 2004, A Panel CUSUM Test of the Null of Cointegration,
Oxford Bulletin of Economics and Statistics, forthcoming.

31


