
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On Sensor-Controlled Robotized One-off Manufacturing

Cederberg, Per

2004

Link to publication

Citation for published version (APA):
Cederberg, P. (2004). On Sensor-Controlled Robotized One-off Manufacturing. [Doctoral Thesis (monograph),
Department of Electrical and Information Technology]. Robotics.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/30f35d9b-9a67-4586-af09-d0fcd04e8bf1

On Sensor-Controlled Robotized

One-off Manufacturing

Per Cederberg

Division of Robotics

Department of Mechanical Engineering

Lund Institute of Technology

Lund University , 2004

Organization Document Name

Lund University PhD Thesis

Department of Mechanical Engineering Date of Issue

P.O. Box 118, SE-221 00 Lund, Sweden 2004-08-27

Phone: +46-46-222 45 92 CODEN: LUTMDN/(TMMV-1058)/1-
78/(2004)

Fax: +46-46-222 45 29

Author(s) Sponsoring Organization(s)

Per Cederberg Vinnova (Komplexa Tekniska System)

Title and subtitle

On Sensor-Controlled Robotized One-off Manufacturing

A semi-automatic task oriented system structure has been developed and tested on an
arc welding application. In normal industrial robot programming, the path is created and
the process is based upon the decided path. Here a process-oriented method is proposed
instead. It is natural to focus on the process, since the path is in reality a result of process
needs. Another benefit of choosing process focus, is that it automatically leads us into
task oriented thoughts, which in turn can be split in sub-tasks, one for each part of the
process with similar process-characteristics. By carefully choosing and encapsulating the
information needed to execute a sub-task, this component can be re-used whenever the
actual subtask occurs.
By using virtual sensors and generic interfaces to robots and sensors, applications built
upon the system design do not change between simulation and actual shop floor runs. The
system allows a mix of real- and simulated components during simulation and run-time.

Keywords

robotics, sensor, control, simulation, task-oriented programming, real-time, world model,
arc welding, one-off manufacturing

Classification system and/or Index term (if any)

Supplementary bibliographical information Language

English

ISSN and key title ISBN

91-628-6289-8

Recipient’s notes Number of pages 123 Price

Security classification

We, the undersigned, being the copyright owner of the abstract of the above men-
tioned thesis, hereby grant to all reference sources permission to publish and dis-
seminate the abstract of the above mentioned thesis.

Signature Date

On Sensor-Controlled Robotized One-off
Manufacturing

Per Cederberg

Akademisk avhandling som för avläggande av teknologie doktorsexamen vid
tekniska fakulteten vid Universitetet i Lund kommer att offentligen försvaras i
sal M:E, Tekniska Högskolan i Lund, onsdagen den 8 dec 2004, kl 10.15.

On Sensor-Controlled Robotized One-off
Manufacturing

Per Cederberg

Division of Robotics
Department of Mechanical Engineering

Lund Institute of Technology
Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

PhD Thesis
CODEN: LUTMDN/(TMMV-1058)/1-78/(2004)
ISBN 91-628-6289-8

c©2004 by Per Cederberg and the Department of Mechanical Engineering, Lund
University.
All rights reserved.

Printed in Sweden

KFS i Lund AB, Lund

Summary

While robots today are cheaper, faster, more reliable and accurate than ever be-
fore, they are still mainly used to reiterate preprogrammedtrajectories. These
static robot programs are fairly efficient in handling high volume production pro-
cesses, but fail to address problems facing small batch and one-off manufacturing-
dependent systems.

Off-line programming has reduced the transition time between products in a man-
ufacturing system, but requires accurate information about the physical work-cell.
In practice, the precision needed is seldom possible to achieve, and costly adjust-
ments have to be taken care of on the shop floor. Other ways to address the
precision deficiencies, besides touch-up on the shop floor, are expensive clamping
and design modification.

It is tempting to think that sensors solely should be able to bridge the gap between
a manufacturing potential and the result accomplished. Butadvanced application
processes imply more complex relationships; observable variables are not neces-
sarily controllable and controllable variables are not necessarily those that define
the task. Hence, in complex industrial operations, there are mapping issues in
both directions between not only variables that are detected by sensors and con-
trollable variables, but also between the task specification described in terms of
how to reach productivity and quality measures and how to control the process to
obtain such goals.

From the above, a comprehensive view yields the best understanding of the prob-
lem. Knowledge of the environment is important in robotics automation. The use
of advanced sensors may yield the competitive edge in robotized small batch and
one-off production systems. However, sensors increase thesystem complexity.
To avoid, for instance, singularities and collisions, decisions have to be taken at a
system level, during run-time or even before a process is started. This collection
of system knowledge has been given a name – theworld model.

vi Summary

The world model may quite easily be appreciated as a general concept but is
much harder to implement in reality. It depends on process-specific conditions
and equipment limitations. Computer modeling of sensor behavior is difficult.
Manufacturers of robots, sensors, robot simulation systems, etc., are as eager to
sell the equipment as they are reluctant to reveal the “business secrets” inside. In
the perfect world, a manufacturer of sensors should be able to provide a black
box, a piece of software that when used in simulations rendered similar results as
the real sensor. Robot simulations are for instance more accurate today than ten
years ago much because of the introduction of a corresponding technique, RRS –
Realistic Robot Simulation.

Despite static off-line programming problems,only onerobot program exists after
simulation and can be down-loaded to the robot, and we feel quite assured that the
robot will carry out an identical sequence of instructions each time the robot pro-
gram executes. On the contrary, if simulating and executingdynamic programs
that includes sensors, it would also be preferable to be surethat certain situations
do not occur, and when we feel assured, we do not wish to be uncertainabout
what to expect later on the shop floor. This situation is quitedifferent compared
to the former, and it seems obvious that a simulation and run-time environment
for sensor-driven robots must, besides high quality simulated sensors, also incor-
porate a realistic work-cell simulation tool with, for instance, collision detection.

Even if we succeed to copy robots and sensors well, we still need to decide the
context our world model should grasp and at what abstractionlevel people will
interact with the system. Robot motion is usually seen as series of continuous
moves, but from a human point of view, the process is rather understood as a
sequence of discrete steps, tasks and sub-tasks. Thus, on a human level, it is
favorable to be able to work with components on process levels that encapsulate
the logic needed to drive the robot and its sensors in the work-cell.

The thesis includes a task-oriented structure that describes how to organize sim-
ulated and real components in development and deployment ofsensor-controlled
applications. Realistic sensor simulation includes management of sensor defi-
ciencies. Likewise, it involves sensor APIs that do not reveal whether the sensor
utilized is modeled or real. The proposed structure also includes means to organ-
ize an application for allowing users to extend the world model with respect to
process knowledge by applying tasks and sub-tasks as reusable components in an
object-oriented way.

As a test and implementation case, the thesis describes an arc welding application
process where sensors have been utilized: a laser seam tracker, a distance-sensor
and stereo cameras. The technique is by no means limited to these sensors, but

vii

they serve to illustrate difficulties that can be handled by the proposed structure.
Process parameters studied include collision tests and singularity detection and
avoidance. Particular arc welding process issues have not been under study.

By the development and organization of simulated and real components in the
proposed structure, the potential of applications that includes sensor-controlled
industrial robots have been studied. Most components are developed in-house by
the author and could be used on any operating system with minor effort. The
Robot Simulation Application is used as a server for graphical feedback and colli-
sion tests, and as a tool to create the nominal work-cell in. In this context, the term
nominal refers to known knowledge of the work-cell’s frame dependencies before
any input from sensors (“how we think the world looks like”).The application
and the developed library for high-level robot motion, RLib, manages kinematical
relationships, trajectory creation, error handling, etc.

Sensor-driven applications need to be able to create trajectories in run-time. The
included “feeder”, which allows the developed experimental platform to continu-
ously create trajectories and to send joint values to the unmodified industrial ro-
bot used, has provided the means to show the industrial potential of the platform
(given the significant limitations imposed by the robot manufacturer). Still, an
Open Control System1 would yield a more appealing solution.

The organization of objects and the level chosen for the sub-tasks they encapsulate
are essential. Their initialization parameters define the reusability in different
contexts. The level suggested was chosen considered that the example application
was created as a raw C program. The objects define process-specific subtasks
and handle a certain set of sensors. By use of an object-initialization GUI, a
higher granularity of collaborating objects, or as an alternative, more customizable
objects would probably yield greater reusability without adding extra burden on
the user. It is also important that these objects have clear responsibilities in their
relation to the underlying motion control and to other objects.

1Many robot control systems support some type of user IOs connected to local networks or
buses. An Open Control System would for instance allow an application to read and write the robot
pose with short and predictable latency, something that would make the application more robust.

viii Summary

Preface

Acknowledgements

First of all I would like to thank Professor Gunnar Bolmsjö for his contributions
to the research and the guidance throughout the work. I wouldalso like to express
my gratitude to other colleagues at Division of Robotics, especially Dr. Magnus
Olsson who I have had the pleasure to share ideas and a lot of research hours with,
Dr. Mikael Fridenfalk who has been a great supporter and discussion partner, Dr.
Stefan Adolfsson who has contributed to the experimental model and Dr. Giorgos
Nikoleris with whom I have had interesting discussions in regard to seam tracker
calibration methods.

I have also appreciated the cooperation with the Departmentof Automatic Con-
trol and Department of Computer Science at Lund University.I would like to
thank Professor Rolf Johansson, Dr. Klas Nilsson, Dr. Anders Robertsson, Techn.
Lic. Mathias Haage and Techn. Lic. Tomas Olsson for their generous help and
interest in my work. I am also grateful to Professor Roland Pusch for his valu-
able comments respecting the content and the language, Dr. Lars Christer Böiers,
Department of Mathematics, for guidance on issues related to calibration and, fi-
nally, to Dr. Jacek Malec, Department of Computer Science, for advice in mobile
robotics. Financial support from Vinnova “Complex Technological Systems” is
gratefully acknowledged.

Research work is often stimulating and energizing but sometimes implies isolation
and frustration. I therefore wish to express a special gratitude to my dear friends,
Richard Weston and Arne Ingemansson, for their concern and attention through
good and hard times.

Finally, my♥ belongs to my family, especially my beloved wife Meta and I thank
her for just being here for me.

Per Cederberg, Lund, 2004

x Preface

Papers

The thesis is based on the following papers:

A. Cederberg, P., Olsson, M. and Bolmsjö, G. (1999), A Generic Sensor In-
terface in Robot Simulation and Control,in ‘Proceedings of Scandinavian
Symposium on Robotics 99’, Oulu, Finland, pp. 221–230.

B. Cederberg, P., Olsson, M. and Bolmsjö, G. (2002a), Remote control of a
standard ABB robot system in real time using the Robot Application Pro-
tocol (RAP),in ‘Proceedings of the International Symposium on Robotics,
ISR2002’, IFR, Stockholm.

C. Cederberg, P., Olsson, M. and Bolmsjö, G. (2002b), ‘Virtual triangulation
sensor development, behavior simulation and CAR integration applied to
robotic arc-welding’,Journal of Intelligent and Robotic Systems35(4), 365–
379.

D. Cederberg, P., Olsson, M. and Bolmsjö, G. (2004), ‘A semiautomatic task
oriented programming system for sensor-controlled robotised small batch
and one-off manufacturing’. Submitted to Robotica at the time of printing
of this thesis.

E. Olsson, M., Cederberg, P. and Bolmsjö, G. (1999a), Integrated system for
simulation and real-time execution of industrial robot tasks, in ‘Proceedings
of Scandinavian Symposium on Robotics 99’, Oulu, Finland, pp. 201–210.

F. Olsson, M., Cederberg, P. and Bolmsjö, G. (1999b), Tele-Robotics for Sen-
sor Driven Industrial Robot Tasks,in ‘Proceedings of Deneb User Confer-
ence 99’, Troy, MI, USA.

G. Olsson, M., Cederberg, P. and Bolmsjö, G. (2002), Integration of Simu-
lation and Execution in Industrial Robot Systems,in ‘Proceedings of the
International Symposium on Robotics, ISR2002’, IFR, Stockholm. paper
No. 112.

H. Bolmsjö, G., Olsson, M. and Cederberg, P. (2002), ‘Robotic Arc Weld-
ing - Trends and Developments for Higher Autonomy’,Industrial Robot
29(2), 98–104.

I. Johansson, R., Robertsson, A., Nilsson, K., Brogardh, T., Cederberg, P.,
Olsson, M., Olsson, T. and Bolmsjö, G. (2004), ‘Sensor Integration in Task-
Level Programming and Industrial Robotic Task Execution Control’, Indus-
trial Robot31(3), 95–102.

xi

J. Blomdell, A., Bolmsjö, G., Brogårdh, T., Cederberg, P., Isaksson, M., Jo-
hansson, R., Haage, M., Nilsson, K., Olsson, M., Olsson, T.,Robertsson,
A. and Wang, J. J. (2004), ‘Extending an industrial robot controller with a
fast open sensor interface – implementation and applications’. Accepted
for publication in Robots and Automation.

xii Preface

Contents

Summary v

Preface ix

1 Introduction 1
1.1 Research Problem . 1
1.2 Research Objective . 1
1.3 Outline of thesis . 2

2 Materials and Methods 5
2.1 Introduction . 5
2.2 Methodology . 6
2.3 Scientific Method . 7
2.4 System Modeling Hardware . 7
2.5 System Modeling Software . 7

3 Welding 9
3.1 Introduction . 9
3.2 Joint types . 9
3.3 Weld process variables . 10
3.4 Weld techniques . 10
3.5 Weld errors . 11
3.6 Weld management . 12
3.7 Manual welding . 12
3.8 Robotic welding . 13
3.9 Weld methods . 14

3.9.1 Arc welding . 14
3.9.2 Laser welding . 15

3.10 Sensor technology normally applied to robotic welding. 16
3.10.1 Wire touch sensing . 16

xiv Contents

3.10.2 Through-arc sensing . 17
3.10.3 Vision-guided line scan systems 17
3.10.4 Vision-guided circular scan systems 17
3.10.5 Calibration of line scan systems 17

3.11 Designing for automated systems 18
3.11.1 Tooling and fixtures . 18
3.11.2 Part tolerances . 19
3.11.3 Joint design decisions 19
3.11.4 Parameterization of robot programs 20

3.12 Conclusions . 20

4 Programming of robots 23
4.1 Introduction . 23
4.2 Industrial robotics programming 24

4.2.1 Teach programming . 24
4.2.2 Off-line simulation systems 25
4.2.3 “Automatic robot programming” 26

4.3 Approaches used in research projects27
4.4 Programming languages . 28

4.4.1 Motion-oriented programming languages 28
4.4.2 Task-oriented robot programming languages 29

4.5 Task-level programming systems 30
4.6 Robot programming libraries and environments 34

4.6.1 Orocos . 34
4.6.2 Pyro . 35
4.6.3 Robotics Toolbox for Matlab 35
4.6.4 SPACELIB . 36
4.6.5 ROBOOP . 36
4.6.6 Open Dynamics Engine 37
4.6.7 Simderella . 37
4.6.8 Game Engines . 38

4.7 Conclusions . 38

5 High-level control 41
5.1 Introduction . 41
5.2 Artificial intelligence . 42

5.2.1 Artificial intelligence applied to industrial robotics 42
5.3 Sensors . 43

5.3.1 Sensor simulation . 43
5.3.2 Sensor fusion . 45

Contents xv

5.4 High-level control of industrial robots with examples 46
5.4.1 Example: A surgical robot system 47
5.4.2 Example: A meat-processing robot system 48
5.4.3 Example: Experiments using an open control architecture 49

5.5 Conclusions . 49

6 Motivation 51
6.1 Introduction . 51
6.2 Manufacturing of one-off products 52
6.3 Conceptual ideas . 53
6.4 Conclusions . 55

7 Contribution 57
7.1 Introduction . 57
7.2 Scope and limitations . 57

7.2.1 Development of virtual sensors/robots 58
7.2.2 Generic interfaces to robots and sensors 58
7.2.3 Run-time library . 59

7.3 Main objective: A semiautomatic task-oriented programming model 59
7.4 System philosophy . 60
7.5 General system structure . 61

7.5.1 Definition of the nominal model 61
7.5.2 The run-time model . 62
7.5.3 Supporting libraries . 63
7.5.4 Process-oriented parameterization 64
7.5.5 Visualization of work-cell components 65
7.5.6 Object aspects . 66

7.6 Conclusions . 68

8 Experimental system structure 71
8.1 Introduction . 71
8.2 Application . 72
8.3 Feeder . 73

8.3.1 RAPID language . 73
8.3.2 Remote Procedure Call and External Data Representation 73
8.3.3 High-level remote motion control 74
8.3.4 Remote editing and compilation of RAPID programs . . . 77

8.4 Stereo cameras . 77
8.5 Tracker . 77
8.6 Physical tracker components . 79

xvi Contents

8.6.1 Laser scanner . 79
8.6.2 Control unit . 79
8.6.3 Processing algorithms 79
8.6.4 Image-processing region and breakpoints 80
8.6.5 Weld joint recognition 81
8.6.6 Process results . 81

8.7 Simulated laser camera . 81
8.7.1 Virtual laser scanner . 81

8.8 Simulated control unit . 83
8.8.1 Segmentation process . 83
8.8.2 Fillet joint template matching 83

8.9 Distance-sensor . 84
8.10 The RSA and its resources . 84

8.10.1 Export of the nominal kinematic relationships 84
8.11 Application objects . 84

8.11.1 Search object . 85
8.11.2 Start point object . 85
8.11.3 Weld object . 85
8.11.4 Obstacle object . 85
8.11.5 End weld object . 86

8.12 Application object interaction mechanisms 86
8.13 RLib, the high-level motion control library 86
8.14 The world model . 87
8.15 Conclusions . 87

9 Experimental work 89
9.1 Introduction . 89
9.2 Creating and importing the nominal model91
9.3 Reading nominal data and initiating application objects 91
9.4 Improving the workpiece nominal pose 92
9.5 Execution of start and search simulation objects 93
9.6 Start point search and trajectory creation 94
9.7 Finding the start point and weld path generation 95
9.8 Workpiece calibration . 95
9.9 Singularity check and collision detection 96
9.10 Welding from the start point towards the reinforcement. 96
9.11 Handling the reinforcement . 96
9.12 Welding from the reinforcement 98
9.13 Conclusions . 98

Contents xvii

10 Discussion 103
10.1 Introduction . 103
10.2 Sensor modeling, simulation and integration 104
10.3 Simulation and execution of sensor-guided robots 105
10.4 Future Research . 106

11 Conclusions 109

xviii Contents

Chapter 1

Introduction

Industrial robot utilization of today is optimized for large batch manufacturing.
Large batches are needed since high costs caused by, for instance, robot program-
ming, touch-up on the shop floor and clamping, largely prevent industrial robots
from being used in small batch or one-off manufacturing.

1.1 Research Problem

As mass production of large-lot items moves to less labor-expensive countries, it
is believed that if one is able to successfully introduce industrial robots in small
batch manufacturing and in one-off manufacturing, the increased automation will
yield the edge to stay competitive in a changing market.

By introducing advanced sensors, these costs are assumed tobe reduced. Today’s
programming technique, using off-line systems that createstatic programs, which
are downloaded to the robots, assumes that advanced sensorssuch as cameras and
seam trackers are not used, since no sensor feedback is provided except in local
loops.

1.2 Research Objective

The presented objectives below have the overall objective to develop a concept for
utilization of sensor-controlled industrial robots for one-off manufacturing. Scope
and limitations of the thesis are specified in Chapter 7.

2 Introduction

Research objective 1 Sensor modeling, simulation and integration

Develop methods for sensor simulation and integration in simulation and execu-
tion environments.

The concept of (modeling of) virtual sensors and generic sensor interfaces is
presented and is applied to arc welding. A virtual arc welding sensor and its gen-
eric interface to graphical environments and control unitshave been developed.

Research objective 2 Simulation and execution of sensor-guided robots

It is apparent that realistic sensor simulation and run-time execution of sensor-
guided robots cannot be performed using today’s mechanisms, where no inform-
ation is fed back to the model in which the robot program was created. To avoid
the problem of differences between simulation and execution of applications that
include sensor-guided robots, find a structure that allows asingle source code and
a transparent transfer between simulation and execution.

A structure parameterizing on reusable objects representing sub-tasks, and the un-
derlying run-time system is presented. It permits execution of high-level control
on a single nominal and predictable model. Generic robot andsensor interfaces
developed, which allow an application to transparently simulate and execute ex-
perimental welding operations, are utilized.

1.3 Outline of thesis

This Chapter has given some introductory perspective to theresearch area and
formulated the problem and the objective of the thesis. Chapters 3-5 give the
necessary background to the main part of the thesis, Chapters 6 and 7. Besides
this Chapter the thesis outline is as follows.

Chapter 2 starts with the methodology behind the thesis and follows up with some
words about the scientific method used and a summary of the modeling tools.

Chapter 3 gives an introduction to welding, the chosen experimental case area of
the thesis. Welding is complicated and when robotized and performed with the
use of sensors, it is even more complex and the Chapter creates an understanding
to the problems.

In Chapter 4, robot programming is discussed, both from an industrial robotics
view and from the viewpoint of research. Examples of non-commercial robot
programming libraries and environments are also given.

The high-level control Chapter, No. 5, comprises reasons for and against Artifi-

1.3 Outline of thesis 3

cial Intelligence, general sensor concepts and their relation to industrial robotics.
High-level control is still an important research area, andexamples of developed
applications are given.

The main part of the thesis is described in Chapters 6 and 7. Chapter 6 is important
as it gives a background to the choice of research area and identifies small batch
manufacturing and one-off manufacturing as an important industrial focus for the
years to come. Chapter 6 also presents the conceptual ideas of the work presented
in Chapter 7.

The thesis contribution is described in Chapter 7. Scope andlimitations of the
thesis are specified. Then, it continues with the philosophybehind the research
work and describes a model for sensor-controlled robots applied to arc welding.
Some parts of the implementation are discussed, but the mainfocus is on the
methodology.

In the experimental system structure Chapter, i.e. No 8, theproposed system of
real and computerized components built to enable a task-oriented application to
operate is described.

In Chapter 9, the experiments are depicted. They show how thesystem handles
process-related events during run-time in a system where real and simulated ob-
jects (robots, sensors, workpieces) are transparently interchangeable.

A wider discussion of the implications by the thesis is takenin Chapter 10 where
after conclusions follow in Chapter 11.

4 Introduction

Chapter 2

Materials and Methods

A seaman meets a pirate in a bar, and they take turns to tell their adventures on the seas.
The seaman notes that the pirate has a peg leg, hook, and an eye patch.
Curious, the seaman asks "So, how did you end up with the peg-leg?"
The pirate replies "I was swept overboard into a school of sharks.
Just as my men were pulling me out, a shark bit my leg off".
"Wow!" said the seaman. "What about the hook"?
"Well...", replied the pirate, "We were boarding an enemy ship
and were battling the other sailors with swords.
One of the enemy cut my hand clean off."
"Incredible!" remarked the seaman. "How did you get the eye patch"?
"A seagull dropping fell right in my eye", replied the pirate.
"You lost your eye to a seagull dropping?" the sailor asked.
"Well..." said the pirate, "That was my first day with the hook."

2.1 Introduction

Laboratory experiments seldom surprise the researcher by functioning immedi-
ately; it may not be easy to receive data from some equipmentsfor different reas-
ons: the manual is not up-to-date and does not explain the preferred method of
how to communicate, or the often cryptic communication interface may have been
invented at a time with low bandwidth. Sometimes, the equipment does not work
at all which may only be discovered after tedious test work. This was the also the
case during the experiments in this thesis. The sensor used did not seem to ac-
cept any data requests sent to it at all. It was noticed ratherearly but for different
reasons it took a while before it was decided to ship the 50 kg sensor control unit
overseas for service.

Time constraints made it necessary to test the performance of the various compon-
ents although the actual hardware was missing. This resulted in the development
of a tracker control simulator with a GUI and two seam trackerinterfaces, one

6 Materials and Methods

simple and dedicated to the current task, and one underlyingand more complete.
The interfaces were generic in the sense that the sensor and other system compon-
ents did not have to change for using the hardware after simulation. This matter
plays a key role in the thesis.

2.2 Methodology

The methodology is based on earlier research and reflectionson how to create a
structure that benefits most from advantages of sensors usedin small batch and
one-off manufacturing cases while minimizing possible drawbacks. A number of
systems exists for off-line programming purposes, but havebeen found unsuitable
for on-line execution of sensor-driven robots for different reasons. An important
reason is the lack of an environment that allows both development and deployment
of sensor-driven processes. A run-time environment needs,in practice, robots
with Open Control Systems (OCS). OCS is important, because decisions based
on (global) sensor information can be taken and trajectories can be produced in
real-time and executed by the low-level robot controller.

An experimental platform has been developed, which is interfaced to a commer-
cial robot system. Because of the limited openness of commercial robot systems,
the platform developed also has had to cope with significant latencies. By the
choice of a slow1 process – arc welding – as the example application, it has been
possible to conduct experiments. It includes a library, RLib, for high-level robot
motion control in soft real-time. Furthermore, two virtualsensors, which both are
soft replicas of real industrial sensors with similar characteristics, and an applic-
ation built on object-oriented principles, have been developed. The platform also
includes a “feeder” that permits joint values to be sent to a commercial robot in
real-time and allows high-level control during execution.

The application defines a task as a number of instances of sub-tasks that can be
re-used in related contexts. A commercial robot simulationsystem is used to
graphically perform any robot motion induced by the application and produced by
the library. Any component, robot or sensor in the system, can either be simulated
or real. Moreover, a mix of these components may coexist during execution. This
is manageable by the use of a world model that keeps virtual and real components
synchronized. The platform is not dependent on a particularsimulation system
and any system that is capable of providing means to respond to requests via the
experimental platform’s API will do well.

1Slow considering the travel speed of the robot.

2.3 Scientific Method 7

The experimental system would, with minor modifications, beusable in an indus-
trial test case. With support from OCS, the precision would increase drastically,
thereby widening the industrial opportunities.

2.3 Scientific Method

Scientific work methods are the processes by which scientists create a reliable and
consistent representation of the world. The use of procedures2 aims to minimize
influences of cultural and personal beliefs in our perceptions and interpretations.
These methods can assist in getting sufficient as well as correct and structured
information compiled and expressed in an understandable arrangement (Patel and
Tebelius, 1987).

2.4 System Modeling Hardware

Most system development and evaluation has been done on SGI3 workstations
running the IRIX operating system. The M-Spot laser scanner, the physical tracker
and two Unibrain Fire-i-400 cameras each equipped with a 3.5mm lens are equip-
ped with setup and GUI software that only run on DOS/Windows-based PCs. All
other software is developed in-house, and the chosen language, C, has made it
possible to compile and run it at home on an Apple Workstationequipped with
the MacOSX operating system.

The robot used is a standard ABB IRB2400/16 with the S4C+ robot controller.

2.5 System Modeling Software

During experiments, IGRIP from DELMIA4 has been used. IGRIP is a com-
mercial 3D Robot Simulation Application (RSA5) that includes tools for design,

2However, good procedures mainly create a foundation for theresearch work when the idea is
already there. If we know what we do not know, a good research procedure may be of great help.
Insights in the subject of research that is gained through years of experience increases research
efficiency but do also limit the creativity. What is of more philosophical interest is how new ideas
originate. How do we find out the things we do not know that we donot know? It is the author’s
belief that chance and pure co-incidents are probably the main factors of real invention.

3Formerly Silicon Graphics, Inc. http://www.sgi.com
4Digital Enterprise Lean Manufacturing Interactive Applications. http://www.delmia.com
5RSA is not an established abbreviation but will be used in this thesis.

8 Materials and Methods

evaluation and off-line programming of robotics work-cells. It has been extended
with custom logic in C using IGRIP’s shared library technology.

It is only a minor part of the system that is developed as an extension to IGRIP.
Most of the system code, underlying routines to support the application devel-
opment, and the example application itself have been programmed in separate C
programs. Some implementations are in JAVA. Chapter 7 describes the supporting
code in more detail.

The running program on the robot controller is developed in the ABB RAPID lan-
guage. Communicating software between the system code and the robot has also
been developed in C and has followed the ABB RAP API and the SunMicrosys-
tems6 RPC API.

6http://www.sun.com

Chapter 3

Welding

3.1 Introduction

Welding can, according to Merriam-Webster, be defined as “tounite (metallic
parts) by heating and allowing the metals to flow together” (Merriam-Webster’s
Collegiate Dictionary, 11th Edition, 2003). Welding can be performed by one of
the two major welding processes – spot welding and arc welding. Here, only arc
welding will be discussed. In welding, the base materials are joined by having
their respective abutting faces melted. In some welding processes, mainly during
laser welding and TIG welding, only the base material melts to form the weld. In
other processes a filler material is added to the joint.

3.2 Joint types

There are basically two major joint types – fillet weld and butt weld, see Figure
3.1. Fillet welds are triangular in cross section and form between two surfaces that
are not in the same plane. The weld metal is placed alongside the two surfaces.
Butt welds are applied between two components, normally in the same plane.
The weld metal creates continuity between the components. Other weld types,
for instance corner weld, lap weld and edge weld can be considered as special
variations of these two types (Chester, 2004; AWS, 1976).

10 Welding

Toe

Face

Leg Length

Throat

Root

Toe
Face

Gap
Root

Throat

Figure 3.1: The two major joint types – fillet weld (left) and butt weld.

3.3 Weld process variables

Welding may look uncomplicated but is really a sophisticated process. The two
weld types mentioned must be treated differently dependenton shape, size and a
number of other process variables, for instance: gaps between the plates, travel
speeds, electrode selection, electrode angles, and thermally induced strain. Fur-
thermore, different techniques must be used if the weld is produced horizontally,
vertically or overhead (AWS, 1976).

3.4 Weld techniques

Two different welding techniques are applied based on how wide weld bead one
want to achieve: straight welding and weaving. In straight welding, the size of
the weld pool can be adjusted by selecting a proper weld speedand size of the
electrode. If a wider bead is needed, several passes of straight weld beads can
be used. A wider bead can also be achieved with a smaller electrode by laterally
moving the tip across the weld puddle. The weaving is normally limited to a
movement twice the diameter of the electrode. Weaving techniques, which differ
in the shape, exist as well (AWS, 1976).

3.5 Weld errors 11

3.5 Weld errors

The goal is of course to achieve a “perfect” weld, but there are many pitfalls.
Crackscan occur in both the base metal and the weld metal as a result of welding.
Therefore, the composition of base and weld metals is important. Too high current
produces excessive concavity. A too large electrode, too slow travel speed or too
low current will create slag entrapment on the root of the weld. Both concavity
and slag entrapment will reduce the throat thickness and maylead to cracking of
a shrinking weld and a restrained joint.

Besides cracks,undercutis considered a severe defect. Undercut is a term for a
sharp narrow groove along the toe of the weld due to the scouring action of the arc
removing the metal and not replacing it with weld metal, as seen in Figure 3.2. It
reduces the cross sectional area and provides a notch into the heat-affected area of
the joint, raising the stress and acting as a nucleus of crackinitiation and possibly
causing fatigue failure. It is often caused by incorrect electrode angles, incorrect
weaving technique, excessive current and too fast travel speed. If, on the other
hand, too much molten metal is flowing within the joint area without sufficient
direct arc action on the base metal beneath, another defect,lack of fusion, occurs,
see Figure 3.2.

Undercut

Incomplete penetrationLack of fusion

Figure 3.2: Common weld defects: undercut, lack of fusion and incomplete pen-
etration.

Slag inclusionsmay occur if penetration of the weld is incomplete and there is
lack of fusion. Insufficient cleaning of slag along an undercut toe of a multi-pass
weld and incorrect electrode manipulation can also cause slag inclusions. Other
reasons are excessive weaving and the use of a too large electrode diameter in a
narrow groove, or too low amperage. Slag inclusions reduce the cross sectional
area strength and may serve as an initiation point for serious cracking, particularly
in harder steels (Chester, 2004; AWS, 1976).

12 Welding

If incorrect current and size or type of electrode is chosen or if the electrode is
poorly manipulated, anincorrect profilemay be the result. Besides appearance
deficiencies, the overall strength of the joint is also affected by excessive concavity
or convexity.

Incomplete penetrationoccurs when the weld does not penetrate to the root, res-
ulting in insufficient throat thickness and reduced joint strength, see Figure 3.2.
Insufficient root gap, too large electrode, too low current or incorrect electrode
angle all contribute to such imperfection.

Finally, porositymay arise as a result of coating breakdown due to excessive cur-
rent or moisture pickup by the electrode and absorption of impurities from the
base metal.

Besides these weld errors, the expansion caused by the heat during welding and
the subsequent contraction as the metal cools down may result in distortion from
the original or expected shape. It is therefore important inwelding to carefully
plan the placements and order of welds, preheats, joint preparations, use of jigs,
etc (Chester, 2004; AWS, 1976).

3.6 Weld management

Besides avoiding weld errors it is even more important to live up to specifications.
These are normally defined in Weld Procedure Specifications,WPSs, and in qual-
ity control records, NDEs. WPS is an instruction sheet that gives details of how
the weld is to be performed. Its purpose is to aid planning andquality control of
the welding operation. A WPS may cover a range of thicknesses, diameters and
materials and is required for demonstration of the ability to produce welds with
required mechanical and metallurgical properties. Examples of Non Destructive
Examination methods are: Eddy current testing; Ultrasonicleak detection; X-ray
diffraction and Visual inspection. Finally, it is also necessary to demonstrate that
the welders have the required knowledge and skill to do a sound work. Certain
weld tests exist to assure this, see (Dyson, 2004) and (Boving, 1989) for more
information.

3.7 Manual welding

Manual welding is still an important production process. Many areas still ex-
ist where welding robots cannot provide the flexibility of human workers. This
applies especially to workpieces that are too large to be handled by standard weld-

3.8 Robotic welding 13

ing robots. Another problem is geometry changes due to heat distortion during the
welding process especially in case of multilayer welding, something that a manual
welder (but not an automated robotized system) may be able tocompensate for.
Because of these reasons many advantages of welding robots cannot be realized
(Helms, Schraft and Hagele, 2002).

A human worker is able to start welding with no further instruction or teaching,
while the teaching of a welding robot can be very time-consuming especially for
small batch sizes and multiple curved welding trajectories. Another advantage of
manual welding is offered by the possibility to change important process variables
like current, welding angle and feed rate instantly. This can improve the welding
quality (Helms et al., 2002).

3.8 Robotic welding

There are two popular types of industrial welding robots: articulating robots
and rectilinear robots1. Rectilinear robots move in line along any of three axes
(X,Y,Z). In addition to linear movement, there is a wrist that allowsrotational
movement. Articulating robots employ arms and rotating joints and are the type
of robots focused on in this thesis. Robotic welding needs tobe engineered dif-
ferently from manual welding and there are a number of factors that must be
considered, for instance (McCabe, 2003)

• the number of axes needed,

• reliability and maintenance of the equipment used,

• accuracy and repeatability demands,

• fixture planning,

• calibration and programming of robots and sensors,

• seam tracking and other sensor system demands,

• control issues of robots and sensors,

• arc welding or laser welding equipment, and

• positioner and part transfer issues.

1A common configuration combines the two with a XYZ gantry and an articulating robot
hanging upside down from the gantry.

14 Welding

To reach an arbitrary pose in 3D space, six-axes robots are needed but if seam
tracking is not used, welding can sometimes be a five-axis process. The sixth
axis is then free for rotation about the weld-wire which is a proposed method to
avoid singularities (Olsson, 2002). Besides the six axes, external ones may as
well be necessary to position the work-piece or to be able to move around large
work-pieces.

Even if modern industrial robots are considered robust and reliable, they need
scheduled maintenance on a regular basis. Preventive maintenance could keep
a robot from experiencing major breakdown. Most robot manufacturers have
courses on robotics maintenance. Robot maintenance training includes: training
on safety operations, basic operations, periodic maintenance, countermeasures for
troubles and exchange of worn units for recovery (Fuller, 2004). The robot’s ro-
bustness may not be the weakest link in the chain. Tools, tool-exchangers and
other equipment will also have to be checked and possibly repaired or exchanged.

Mechanical movements cause physical wear, and electronic power supplies, sen-
sors, and analog-to-digital converters change in value with age. Preventive main-
tenance should include checking for possible accuracy and repeatability problems.
Recalibration of the robot requires adjustment or replacement of mechanical or
electronic parts. Sensor calibration is as equally important as robot calibration
and orientation is often harder than positioning for correct calibration.

3.9 Weld methods

Several weld methods exist, each with different advantagesand drawbacks associ-
ated with the welding engineering problem to be solved. The methods pertinent to
this thesis are briefly discussed below. For outline of the theoretical and practical
basics of welding and metallurgy, special literature is recommended (Cary, 1997).

3.9.1 Arc welding

Welding is one of the major applications in the use of industrial robots. Arc weld-
ing is a predominant application area for industrial robotics and the process nor-
mally includes control of positioning of the welding-torchand control of weld pro-
cess variables in real-time. Different materials and quality demands need diverse
approaches and many methods and variants exist. The most common techniques
will be discussed here.

3.9 Weld methods 15

Gas Tungsten Arc Welding(TIG2) is a commonly used high quality and high
precision welding process. In TIG welding, an arc is formed between a non-
consumable tungsten electrode and the metal being welded. Gas is fed through
the torch to shield the electrode and molten weld pool. If filler wire is used, it
is added to the weld pool separately. TIG welding may requiregreater dexterity
than other welding methods and has normally lower deposition rates and may be
more costly (AWS, 1976).

Plasma Arc Welding(PAW) is achieved by establishing the arc and generating
the plasma inside the torch head. The plasma reaches temperatures as high as
30000◦C near the tungsten electrode and exits the torch through a small-diameter
aerodynamically designed constricting orifice that collimates the plasma and dra-
matically concentrates its energy into a beam-like, high-velocity stream. The
small-diameter constrained plasma column provides directional control and pro-
duces narrower welds than the TIG process as well as deeper penetration for the
same energy level. The higher energy density of the concentrated plasma heats the
weld joint more rapidly and significantly decreases the sizeof the heat-affected
zone adjacent to the weld (Eckart and Francoeur, 2002).

Gas Metal Arc Welding(GMAW) is frequently referred to asMIG3 andMAG4

welding. In this context, an inert gas is one that does not react with the molten
material. MIG and MAG welding are high deposition rate processes where the
wire is continuously fed from a spool. The shielding gas forms the arc plasma,
stabilizes the arc on the metal being welded, shields the arcand molten weld pool,
and allows smooth transfer of metal from the weld wire to the molten weld pool.
The primary shielding gas in MIG welding is argon mixed with helium. In MAG
welding, argon containing a small proportion of carbon dioxide or oxygen is an
example of an active gas (McCabe, 2003; Sedlenieks, 2004).

The travel speeds achieved with arc welding is in the range of0.25 to 2 meters per
minute.

3.9.2 Laser welding

Laser beams have been applied for welding since the invention of laser techniques.
In the early 1970s, laser beams where used for thick steel plate welding using
experimental carbon dioxide lasers with output power exceeding 10kW. Applica-
tions for laser welding have increased steadily. Today, laser welding is versatile

2Tungsten Inert Gas
3Metal Inert Gas
4Metal Active Gas

16 Welding

with power ranging from a few hundreds to 60kW and can be applied to as differ-
ent areas as joining miniature electronic components and welding steel structures
thicker than 25mm (Farson and Duhamel, 2001).

The laser welding process speed and penetration contributeto its high productiv-
ity compared to arc welding. Speeds range from 1 to 10 meters per minute and are
even higher for sheet metal applications with thin materialthickness. In addition
to single pass welding at relatively high speed, the laser process commonly does
not utilize filler material that is necessary for multiple-pass arc welding. Further-
more, the deep penetration characteristic of laser welds usually allows single-pass
welding, and finally, since laser welding is a process with minimum thermal dis-
tortion, fixturing may be simplified, resulting in shorter loading and unloading
time and lower fixture cost (Farson and Duhamel, 2001).

3.10 Sensor technology normally applied to robotic welding

Tight tolerances and other requirements for automated welding may not always be
possible to achieve. This, however, does not automaticallyimply that robotized
welding is out of the question; sensory technology can sometimes be used for
seam location, seam tracking, torch distortion compensation, metrology and to
localize form errors. The most important techniques utilized today can be divided
into

• wire touch sensing,

• through-arc sensing,

• vision-guided line scan systems, and

• vision-guided circular scan systems.

There exist also variations on the methods described here.

3.10.1 Wire touch sensing

After applying a sensing voltage to the weld wire, the robot is programmed to
move to a series of positions relative to the weld joints. Thetool point position
is recorded when the wire touches the part and the voltage drops to zero. After a
series of touches, the position of the joint found relative to the original program
is calculated and the original program is adjusted. The technique is not applicable
to all joints, materials and shapes (McHaney, 2001).

3.10 Sensor technology normally applied to robotic welding 17

3.10.2 Through-arc sensing

The robot is programmed to weave the arc across the weld joint. The weaving
results in a current change in the weld power supply and the robot controls offsets
in the programmed trajectory to bring the weld current back to a specified level.
As with wire touch sensing, this technique cannot be appliedto all joints, materials
and shapes (McHaney, 2001).

3.10.3 Vision-guided line scan systems

A laser camera is mounted a distance ahead of the weld torch. An accurate po-
sition of the weld, down to 0.1 mm, and process variables suchas gap and joint
angles, are measured. Based on an accurate calibration of the camera’s pose com-
pared to the weld torch, the weld pose is calculated and time stamped with regard
to the weld speed and saved in a circular array of calculated values. The array
length is proportional to the sensing speed and/or accuracyneeded. But vision-
based systems have drawbacks as well. Robotized welding is normally a five-axis
process and a sixth axis can be utilized to avoid singularities by rotation along the
sixth axis (Olsson, 2002). However, the vision system, prevents rotation by its
need to be nearly perfectly perpendicular to the weld direction. Another problem
is that despite the small size of modern laser cameras, they do make the robot
system more sensitive to collisions.

3.10.4 Vision-guided circular scan systems

Using a circular scan rather than a line scan, three-dimensional data can be ob-
tained from a single measurement. If the circle crosses the seam twice, the tra-
jectory can also be calculated within one scan. A circular scan system is usually
slower than a line scan system.

3.10.5 Calibration of line scan systems

When relying on a sensor for guidance, any initial calibration inaccuracy or sub-
sequent misalignment during production will result in a robot system that con-
sistently produces defective parts, unless this can quickly and automatically be
detected and corrected. Laser welding is a technique that demands extreme spa-
tial accuracy with which the robot must position the focal point of the laser with
respect to the joint to be welded.

18 Welding

Determining the transformation that defines the sensor frame with respect to the
wrist frame is referred to as the “sensor mount registrationproblem” and was first
addressed by Shiu and Ahmad (Shiu and Ahmad, 1989). Several other approaches
for obtaining a solution have been presented, see (Chou and Kamel, 1988; Tsai
and Lenz, 1989; Zhuang and Shiu, 1993; Park and Martin, 1994).

In (Huissoon, 2002), a calibration system consisting of a reference object and a
laser focal-point sensor is described. The reference object is designed so that a
structured-light seam-tracking sensor can be used to determine uniquely the pose
of a frame associated with the reference object with respectto a frame associated
with the seam-tracking sensor solving a set of linear equations using the singular
value decomposition (SVD) technique.

According to Huissoon, the technique works well with simulated data but is prone
to measurement noise and provides only a good estimate when actual measure-
ment data are used. However, by solving the forward problem:given an assumed
sensor frame pose with respect to the reference object, the location of the edges
in the sensor image can be predicted. By using the solution provided by the SVD
algorithm as an initial estimate of the sensor pose, a multidimensional optimiza-
tion technique such as the Simplex algorithm can be used to quickly converge to
the sensor pose that provides a general least squares best fitto the measured edge
locations (Huissoon, 2002).

3.11 Designing for automated systems

A simple but efficient type of tooling uses fixed locators and hand clamps to secure
the part. With larger volumes more sophisticated approaches such as pneumatic
or hydraulic clamping, part-presence sensing and auto-pneumatic clamping can
be used. Products designed with arc welding in mind may minimize the costs and
problems associated with jigs. By applying laser cutting, ajig-less approach can
be utilized. However, the method requires relatively largevolumes to cover its
increased product development costs.

3.11.1 Tooling and fixtures

Air-driven actuators reduce load/unload time and improve ergonomics for fix-
tures that require a large number of clamps if clamping points are not easily
reached and if high clamping forces are needed. By adding part-presence sen-
sors, the robot system can confirm that parts have been properly loaded before
part-processing starts. Auto-pneumatic clamping combines pneumatic clamping

3.11 Designing for automated systems 19

and part-presence sensing. This tooling is controlled by a PLC5 to allow part-
presence confirmation, clamp position sensing, clamp sequencing and extension
or retraction during welding (AWS, 1976).

It is important to determine if the tooling and fixturing equipment should hold a
pre-tacked subassembly or to hold individual pieces in their exact locations while
they are being welded together. Holding individual pieces during a welding se-
quence is much more complex since they must be held securely in their relat-
ive position as the positioner moves and rotates at high speeds and accelerations
(Crowe, 2001).

3.11.2 Part tolerances

To increase productivity in an automated system, the parts to be welded and the
system itself must by designed properly. Careful re-designof existing parts may
be necessary, and the design of new parts will probably change to accommodate to
an automatic system. The tolerance for each component in therobotic arc welding
system affects the overall tolerance of the system and when tolerances from robot,
positioner, fixture and the part itself is summed up, the location of the weld may
very well end up to be out of place. Size and capacity of components in a robot
system can also affect tolerances; maintaining low tolerances is critical when the
volume increases (Crowe, 2001).

3.11.3 Joint design decisions

After choosing the correct weld method, several ways exist that can be used to
reduce welding costs and increase finished part quality (Crowe, 2001):

• Reduce the distortion potential and eliminate possible secondary processes
such as bending or straightening by welding close to the centerline of the
part.

• Increase the travel speed of the welding robot and reduce theamount of
filler material by using the minimum root opening and the smallest included
angle needed.

• Improve weld quality and reduce heat input to the part by designing the
weld joint for torch access and maintaining the proper torchangle through-
out the weld.

5Programmable Logic Controller.

20 Welding

However, the methods above increase in general the demands on the control of the
weld process as the allowable process operational window with respect to various
variables becomes smaller.

Joint design decisions also include methods of stress calculation, structural design
philosophies and their influence on the choice of welding processes and proced-
ures and their effect on fatigue and fracture behavior. Alsopractical constraints on
joint design and configuration in the context of joint preparation and access must
be considered. For a deeper understanding, see (Hicks, 2000).

3.11.4 Parameterization of robot programs

To be able to handle different variants of parts without writing a new robot pro-
gram for each part,parameterizationof the robot program is a commonly used
method. Normally the differing shape parameters are saved in files residing on a
hard drive on the robot controller, and the appropriate set of parameters is chosen
by user-selection on the teach pendant.

This is a technique that works well if parts have similarities in shape, for instance
different lengths within a product line of forks to forklifts, but it does not work if
parts have different forms. One-off manufacturing or small-batch series of differ-
ent products cannot benefit from using this method. For that kind of production,
the only option is to write different robot programs or to write a single and com-
plex program. Therefore, robots are rarely used for one-offproducts unless quality
demands make manual welding unfeasible.

3.12 Conclusions

The welding process is one of the most complex manufacturingprocesses and
frequently the least understood. Choosing a weld method andweld variables is
difficult both in manual and robotized welding because of allthe different aspects
mentioned. Robotized welding not only includes optimization of the robot process
but also introduces new difficult decisions in terms of feeding, sensing and robot
and sensor programming.

There is a limited use of advanced sensors in the industry andthey are mostly used
for closing local loops. The reluctance to use sensors is based on

• the assumed increase in system complexity that normally follows,

3.12 Conclusions 21

• the fact that only parts of the process information needed are normally given
by the sensor,

• the mapping problem between what is observable and controllable, and

• that the sensors normally are only used in a local loop; decisions are taken
at a too low level.

A fully automated system is not a realistic goal today. However, tools that make
it possible to use advanced sensors in robotized welding will give the welding en-
gineer the opportunity of making his specialist input to themanufacturing process
for one-off products and a tool to handle the increase in complexity.

The most flexible manufacturing system takes advantage of both the robot and the
welding engineer. The knowledge and the skillfulness of thewelding engineer
are combined with the advantages of the robot (e.g. strength, endurance, speed,
accuracy) to an enhanced system (Helms et al., 2002).

22 Welding

Chapter 4

Programming of robots

4.1 Introduction

Robot programming is the means by which a robot is instructedto perform its task.
The art of robot programming is almost as old as the development of robot manip-
ulators. The first was a language, called MHI, designed by Ernst at MIT in 1961
(Ernst, 1961). Two languages developed at Stanford University, WAVE (Paul,
1977) and AL (Finkel, Taylor, Bolles, Paul and Feldman, 1974; Mujtaba and
Goldman, 1979) were particularly influential in the field. The earliest efforts were
on hardware level via point-to-point and simple motion-level languages to motion-
oriented structured robot programming languages (Blume and Jakob, 1986; Ránky
and Ho, 1985). But as with programming languages and environments in general,
the robot programming efficiency has, despite the tremendous efforts undertaken,
by no means followed the manipulator hardware improvements.

A common denominator of modern robot programming is that it has to deal with
both the real, physical world and a virtual world representing – and possibly aug-
menting – the physical world. The two worlds need to be kept synchronized at all
times. Robot programs are basically computer programs which deal with a richer
variety of I/O devices. However, manipulating objects in the physical world may
lead to errors, and therefore the programmer must try to anticipate and test erro-
neous conditions (Korein and Ish-Shalom, 1987).

The position and orientation of a rigid object in space with respect to a reference
frame may be represented as a4 × 4 homogeneous transformation matrix with,
when the last row is ignored, three unit vectors describing rotation(n,o,a) and
a translation vectorp locating the origin of the object coordinate system. The

24 Programming of robots

conventions for the names1 where taken from Paul (Paul, 1981). Although not
computationally efficient (Taylor, 1979), the homogeneousmatrix representation
is particularly convenient for manipulation. In the context of robotics, the homo-
geneous matrix representation has come to be called aframe. It is important in
robot programming to be able to specify the pose of an object with respect to a
reference frame and then obtain that pose with respect to another reference frame
and this conversion is made simple by the use of homogeneous transformations
(Korein and Ish-Shalom, 1987).

The testing and debugging of robot programs is characterized by much greater
degree of trial and error than many other kinds of programming. It is common
to debug robot programs at low speed, and then increase the speed as much as
possible without producing intolerable losses in accuracy(Korein and Ish-Shalom,
1987).

There are many different ways to specify robot-programmingsystems. In this
thesis, we will divide the field of robot programming into industrial robotics pro-
gramming and approaches used in research projects.

4.2 Industrial robotics programming

There are basically two programming modes in developing programs for industrial
robots: on-line and off-line programming (Nitzan, 1990; Lozano-Perez, 1987a).
Most programming languages are controller-specific and robot manufacturers of-
ten provide a simulation system as well. By using a translator between robot lan-
guages a single simulation system can be used. A translator framework worked
out by various researchers has been used in commercial environments (Freund,
Ludemann-Ravit, Stern and Koch, 2001). However, a few expensive off-line sys-
tems provide the means to generate robot programs for different target robots.

4.2.1 Teach programming

A safe but time consuming method to program the robot is to manually move
the robot using a teach pendant. This time demanding procedure also halts the
production and each variation of a workpiece demands a new ormodified robot
program, reasons that make teach programming suitable onlyfor large series man-
ufacturing of identical workpieces (Jacobsen, 2004). While a substantial research

1Because the object was often a gripper,o indicates the axis along which the gripperopens, a

indicates theapproachdirection in which the gripper points, andn indicates their commonnormal
in the directiono × a (Korein and Ish-Shalom, 1987).

4.2 Industrial robotics programming 25

effort is directed toward task-level programming, most industrial robots are still
programmed using a simple pendant. However, teach pendantsare ill suited for
tasks involving complex manipulator trajectories, or whenthere is increased reli-
ance on outside sensing (Burdea, 1999).

4.2.2 Off-line simulation systems

Off-line programming is a term that is usually applied to a collection of techniques
for robot programming without actually using a (physical) robot. A Computer-
Aided Design (CAD) system is typically used to model the robot workstation,
parts, and auxiliary equipment. Then the simulated robot isprogrammed and its
task executed in the simulated environment (Meyer, 1981). However, if a model
does not include uncertainties in part position, part dimensions, and robot posi-
tion, the simulation will succeed in situations where a realapplication would fail
(Korein and Ish-Shalom, 1987).

Off-line simulation systems were introduced in the mid 1980’s and today make up
a mature technology that permits performance and functional simulation of work-
cells. These systems are usually programmed in virtual systems such as IGRIP2,
eMPower3 and CimStation4. Some features of off-line systems are

• cycle time evaluations,

• reach determination,

• trajectory optimisation,

• collision detection,

• jigs and fixture design,

• calibration, and

• evaluation of robots.

Besides being able to create the robot program without interfering with the phys-
ical robot system except for touch-up, the major benefit of off-line systems is
the possibility of doing advanced trajectory optimizations to achieve shorter cycle
times. Some of these optimizations, especially in cases where two or more robots

2http://www.delmia.com/
3http://www.tecnomatix.com/
4http://www.acel.co.uk/

26 Programming of robots

move in the same working-area, would not be possible by manual-processing.
There are many systems currently on the market, both from robot vendors target-
ing their own product range, for instance RobotStudio5 and from other suppliers
that are independent such as IGRIP, eMPower and CimStation.

Off-line programming environments typically offer a simulation language that
hides the underlying robot language, which means that the robot programmer
“only” has to learn one language, even if robots from multiple vendors are to
be programmed. However, they are normally not feasible for advanced sensor
simulation.

4.2.3 “Automatic robot programming”

In (Jacobsen, 2004), a third method to program a robot which Jacobsen have
named “Automatic robot programming”6 (ARP) is discussed. In ARP, robot tra-
jectories are automatically calculated based on CAD information, a task descrip-
tion, sensor data and expert process knowledge from a robot operator. A disad-
vantage with ARP is that the system must be configured specifically for each type
of production. While CAD data has been standardized to a few formats, task de-
scriptions have not and it is not trivial to transform task descriptions into ARP
system readable forms. Process knowledge is important and even processes that
look simple actually contain extensive human expertise andsuccessful robot in-
tegration depends on to what extent process knowledge is paired with the task
description (Jacobsen, 2004).

At the Odense Steel Shipyard in Denmark, an ARP installationhas been running
for nearly ten years. Steel plates are joined in large block assemblies which are
similar in construction but vary in details. Multiple gantry-mounted robots are off-
line programmed to weld fillet joints on block assemblies. Sensors are utilized to
find the exact start point and to correct deviations of the groove compared to CAD
data during welding. The system has a theoretical capacity of welding 2000-2500
meters per day, but about 5000 meters are weld per week due to restrictions in the
assembly line. When the wire mesh input data is replaced by modern solid 3D
information and with the introduction of a more advanced ARPtool, the system
is expected to be able to weld about 90% of all seams (Jacobsen, 2004).

Jacobsen identifies five important issues to take into account when introducing

5http://www.abb.com
6The term Automatic Robot Programming is in (Wahl and Thomas,2002) referred to as a task-

level programming systems where the application (what to do) is specified on a high abstraction
level and is automatically converted into a sequence of actions/motions (how it should be done) by
a task planner.

4.3 Approaches used in research projects 27

robots in a manufacturing system (Jacobsen, 2004):

1. The operator’s knowledge and understanding of the system.

2. A good working position, enough workspace and degrees of freedoms for
the robot.

3. The use of sensors to allow for imprecisions of the workpiece.

4. Good planning of the capacity of the robot work cell.

5. CAD datamustfit the real world.

4.3 Approaches used in research projects

Besides controller-specific languages a few different approaches exist. In research
environments it is not uncommon to extend a high-level language such as C, C++
and Java to provide robot-specific functionality. Some implementations are spe-
cific to a certain robot, but others use abstract classes to circumvent hardware
differences. One example is Pyro7 that provides abstractions for robots and al-
gorithms. Pyro is written in Python, which is an interpretedlanguage. This means
that it is easy to experiment interactively with the robot program on the expense
of the execution speed.

Virtual systems should be suited for sensor-intensive tasks, but robotic languages
are dependent on the particular manipulator used, and the debugging stage is quite
time consuming (Blume and Jakob, 1986; Rehg, 1997; Burdea, 1999). The DLR
project, a man-machine interface based on a high performance VR8-environment
(Landzettel, Brunner, Hirzinger, Lampariello, Schreiberand Steinmetz, 2000),
and the project at Fraunhofer IPA in Stuttgart, Germany (Strommer, Neugebauer
and Flaig, 1993; Flaig, Grefen and Neuber, 1996), are examples of attempts to ad-
vance the state-of-the-art in robot programming. In the Fraunhofer project, a GUI
is used, which allows the user to specify the dynamic behavior of components.
Once the program is completed, it is downloaded to a real robot connected to the
same VR engine and the same task is executed (Burdea, 1999).

Behavior-based languages provide a different approach, specifying how a robot
should react to different conditions and defining functionality that the end-user
would use to perform tasks. An alternative to text-based methods is graphical

7http://emergent.brynmawr.edu/pyro/?page=Pyro
8Virtual Reality.

28 Programming of robots

programming systems. They typically use flow-charts and areconsidered easy to
use, at least for simple application programming. Lego Mindstorms robotics kit
LEGO9 let the user create advanced performances by combining stacks of low-
level actions to form high-level tasks.

A graphical system for off-line programming of welding robots has been de-
veloped with the main objective to increase sensor use in welding robot programs
by providing a user-friendly interface (Dai and Kampker, 2000). An icon-oriented
interface provides the main programming method. To make it easy to incorporate
sensor operations, macros are defined in a sensor editor.

Another method,Programming by demonstration, is to use teach pendants for
demonstration. Current research in this area extracts information besides move-
instructions in order to, for example, optimize paths (Chenand McCarragher,
1998; Chen and McCarragher, 2000; Chen and Zelinsky, 2001b; Chen and Zelin-
sky, 2001a). There are mainly three different ways to collect information: voice,
touch and vision. While these systems certainly are improving, they are not eas-
ily used in cluttered industrial environments. Programming that includes virtual
environments will probably prove to be more successful. Foradvances in this par-
ticular area, see (Friedrich, Holle and Dillmann, 1998; Zollner, Rogalla, Dillmann
and Zollner, 2002; Onda, Suehiro and Kitagakiand, 2002).

Voice- and gesture recognition can be used to command robotsto carry out tasks
for which they are already programmed. TheseInstructive Systemsuse for ex-
ample gestures to find and direct the attention of the robot toparticular objects,
avoiding and overcoming problems caused by cluttered environments (Strobel,
Illmann, Kluge and Marrone, 2002; Steil, Heidemann, Jockusch, Rae, Jungclaus
and Ritter, 2001).

4.4 Programming languages

4.4.1 Motion-oriented programming languages

Modern motion-oriented programming languages were first developed in the mid
seventies. Some of the proprietary languages used today still lack the soph-
isticated data structures that can be found in the early languages such as VAL
(Shimano, 1979) and AML (Taylor, Summers and Meyer, 1982), although elab-
orated languages exist, for instance ABB Rapid (ABB Rapid Reference Version
3.2, RAPID Summary, n.d.). Today, well over a hundred robot languages exist.

9http://mindstorms.lego.com/eng/products/ris/rissoft.asp

4.4 Programming languages 29

Attempts to introduce general languages (Fahim and Choi, 1998; Lapham, 1999)
have so far had none or little impact on industrial robotics.

Modern robot languages use frames, often expressed by homogeneous transform-
ation matrices that somehow conform to human intuition, andhide the robot hard-
ware behind software interfaces. The use of internal and external sensors has led
to the monitor concept (M. A. Lavin, 1982). Monitors are small user-defined
or built-in programs heavily communicating with both user applications and the
robot control system’s motion pipeline. Monitors read a setof sensors in spe-
cified time intervals, or depend on changed sensor values andreact by modifying
the path’guided motion’or trigging some action’guarded motion’(Wahl and
Thomas, 2002). While this monitor concept seems to be useful, it is hardly ap-
plied today in commercially available robot programming languages.

4.4.2 Task-oriented robot programming languages

The idea behind task-oriented robot programming is to hide machine details and
let the user specify an application at a higher level of abstraction. Instead of
lengthy programs that describehow to do something, the emphasis is onwhat
to do. As task-level specifications do not describe the details of how the robot
is to perform an operation, the translation of such a specification into a robust
robot program is a central research problem in robot programming. Some pioneer
efforts in this area can be studied in (Feldman, 1971; L.Lieberman and Wesley,
1977; Popplestone, Ambler and Bellos, 1980) and (Lozano-Pérez and Winston,
1987).

Still, the complexity of a task remains of course even if we are successful in hiding
it under a task-oriented interface. Human interfaces, e.g.GUIs, and commands,
have to be developed. These interfaces will, when invoked bythe user, transfer
the high-level commands to a sequence of actions and motions.

If this transformation is made automatically, we normally talk about atask plan-
ning systemsuch as the one described in (Mosemann and Wahl, 2001; Thomasand
Wahl, 2001). The most difficult part in automatic robot programming seems to be
execution and control of the generated action/motion sequences, including the
generation of collision-free paths and force-controlled mating operations (Wahl
and Thomas, 2002). A task planning system also includes amotion planner.

Grasp motion planninghandles object grasping. Early work made by R. Paul on
grasp planning made the assumption that the gripper should be positioned so that,
at grasp time, simply closing the jaws produced a stable grasp on the workpiece
but was, in the presence of uncertainty, not stable (Paul, 1972). Existing meth-

30 Programming of robots

ods for automatic grasp motion planning handles objects with certain geometric
restrictions; arbitrarily shaped objects would magnify the time and space com-
plexity. In (Miller, Knopp, Christensen and Allen, 2003), an object is modeled
as a set of shape primitives (spheres cones, boxes etc.) and uses a set of rules to
generate a set of grasp starting positions and pre-grasp shapes that can be tested
on the object model.

Gross motion planningcomputes the intermediate paths and includes obstacle
avoidance which is a problem that has received considerableattention. Early
work includes (Udupa, 1977) and (Lozano-Pérez, 1987b). In (Hwang and Ahuja,
1992), research directions and their performances are briefly described. Sev-
eral methods exist, among them approaches based on a numerical potential field
method (Barraquand and Latombe, 1991; Barraquand, Langlois and Latombe,
1992). Other attempts are based on an idea of attraction and repulsion forces
and, more recently, probabilistic road map planners (PRMs)(Bohlin and Kav-
raki, 2000). As with grasp motion planning, all methods haveto trade between
computation time and path optimization.

While task-oriented programming in theory provides mechanisms to convert ab-
stract high-level actions into low-level code, there are some difficulties to over-
come according to (DaCosta, Hwang, Khosla and Lumina, 1992):

• no generalized mechanism to translate the task specification low-level code
exists,

• sensor integration is difficult, for example error detection and part variation
handling, and

• it is often difficult to represent complex real-world scenarios.

4.5 Task-level programming systems

According to (Meynard, 2000), atask-level programming systemarchitecture must
be able to cope with three main issues: task specification, representation of objects
and robot program synthesis.

The task specification specifies a task to the planner as a sequence of actions on
the objects in the world model. Different concepts exist on with respect to spe-
cification of these actions. The spatial relationship between objects is described
by their relative position in (Nnaji, 1993). This method is interesting because it
allows a high-level of automatic reasoning leading to advanced automated plan-
ning. Other methods rely on manually created sequences of actions that let the

4.5 Task-level programming systems 31

user describe the requested task without creating an objectmodel at a specified
position.

Theworld modelcontains the spatial, kinematical and dynamical features of the
objects related to the task.

The robot program synthesiscorresponds to three steps: sequence planning, mo-
tion planning and plan checking. Sequence planning translates a task into a low-
level code. Then, motion planning finds a collision-free path that is kinematically
suitable for the manipulator. Finally, plan checking guarantees that the planned
task does not violate any rules and is allowed in the current system state.

In (Meynard, 2000), an experimental research platform, XPROB, is presented that
features “a task-level programming environment, a dynamicrepresentation of the
work-cell’s equipment, and sensor data integration at run-time allowing on-line
program monitoring and adaptation”. By introducing an interpreted task-level
programming language that hides hardware-specific references, the XPROB sys-
tem has, according to Meynard, been made application-independent and hardware-
independent.

DLR10 has focused its work in space robotics on the design and implementation
of MARCO11, a domain-specific high-level task-oriented robot programming and
control system. The goal is to develop a unified concept for a flexible and highly
interactive on-line programmable teleoperation ground station as well as an off-
line programming system, which includes all sensor-based control features partly
tested in the ROTEX12 scenario (Brunner et al., 1993; Landzettel et al., 2000;
Landzettel, Brunner, Schreiber, Steinmetz and Dupuis, 2001).

In ROTEX, tasks such as assembly, tracking and capture of an object floating in
zero gravity were successfully executed despite almost seven seconds of round
trip time delays. The key to the impressive demonstration was the use of virtual
models of the robot geometry as well as of its sensory data (Burdea, 1999).

DLR’s system provides a flexible architecture that can be adapted to application
specific requirements. Programming and control methodology is based on the
use of sensors such as cameras, laser range finders and force-torque sensors. Ap-
plications that include sensor feedback loops in a well-known environment can
be preprogrammed and verified on-ground (Landzettel et al.,2000; Landzettel
et al., 2001).

Tasks can be composed in a virtual world by a user without expertise in robot-

10Das Deutsche Zentrum für Luft- und Raumfahrt (Eng: The German Aerospace Center).
11Modular Automation and Robotics COntroller.
12ROboter Technology EXperiment

32 Programming of robots

ics. A man-machine interface based on a high performance VR-environment.
The power of the task-oriented sensor-based programming approach was shown
1999, demonstrating the vision and force control scheme by executing a pro-
totypic peg-in-hole task fully autonomously on-board. Allthe operations were
preprogrammed in the simulation environment on-ground, including image pro-
cessing and vision controller parametrization (Landzettel et al., 2000).

The task-level architecture in (Landzettel et al., 2000) was based on two layers,
the expert layerand theuser layer. The expert layer controlshow the system
should act to successfully execute the task and make heavilyuse of sensor data
processing algorithms. In the virtual environment, nominal sensor patterns were
stored and appropriate robot motion reactions were generated as elementary oper-
ations.

An operation in the user layer was characterized by a sequence of elementary
operations. These operations were, however, not visible tothe user. The operator
only selected the object/place that should be handled. Thiswas reflected by the
virtual reality environment which showed the work cell without the robot. Via
a 3D interface, an object could be grasped and moved to an appropriate place
thereafter a specific VR-hand gesture started the task execution (Landzettel et al.,
2000).

MARCO is a task-oriented programming and controller framework to program
sensor-based robots like the DLR 7-axes light weight robot (Hirzinger, Albu-
Schäffer, Hähnle, Schäfer and Sporer, 2001), which enablesan operator to pre-
simulate the robot tasks at a graphical simulation, including all sensor processing
(force-torque, laser range finder, vision13). The controller code for the simulation
as well as the real system is the same, however the interfacesto robots and sen-
sors are not identical for simulation and real operation. PowerPC and VxWorks
are used for the real-time environment, while Linux or IRIX are used for the sim-
ulation. Almost all the code (written in C) is platform-independent14.

Donald L. Pieper, who derived the first practically relevantresult when he in his
Ph.D. thesis (Pieper, 1968) showed that the inverse kinematics of serial manipu-
lators with six revolute joints, and with three consecutivejoints intersecting, could
be solved in closed-form, i.e., analytically, 1989 posted aproposal to NASA15’s

13The sensors are general models of force-, camera-, and laserscanner type, and not models of
existing sensors.

14Thanks to Bernhard Brunner at DLR for sharing information about MARCO not disclosed in
papers.

15National Aeronautics and Space Administration

4.5 Task-level programming systems 33

SBIR16 program. The abstract of his17 proposal Macro- and Task-Level Program-
ming of Arc Welding Robots for Aerospace Applications” contains ideas related
to those presented in this thesis and is quoted below:

Abstract:

The goal of the overall project is an innovative programmingenvironment for the next
generation of advanced welding robot controllers. This environment will incorporate
macro-level programming, icons for user interfaces, graphical simulation, and, possibly,
elements of task-level programming, e.g. automatic path planning and weld sequence
optimization. Macro-level programming, aspects of which will be considered in Phase I,
refers to the generation of complex part programs from primitives which encapsulate all
the required motions and operations needed to weld generic classes of parts, components,
or joints. Such developments could significantly improve productivity and consistency of
teaching welding robot programs and impact the cost and reliability of robotic welding
in aerospace application. Phase I tasks include: a brief review of related work, analysis
of welding requirements for aerospace fabrication, preliminary design of the advanced
programming environment, and evaluation of macro-level programming approaches. The
feasibility of the proposed schemes will be examined, needsfor future research will be
identified, and the Phase II effort will be planned.

Potential Commercial Applications:

Advanced welding robot controllers may benefit commercial low-volume/small-batch ro-
botic welding applications.

Unfortunately, no documentation except the above abstracthas been made pub-
licly available18 but the concept is nonetheless relevant and close to some ideas
presented in this thesis.

Task-level programming systems have been identified as a goal in the field of robot
programming, since they should be able to produce a robot program solely from a
description of a desired final state without specifying the actions needed to achieve
it (Ude and Dillmann, 1995). The problem of going from the final state description
to the underlying actions at a low level has been a problem considered in planning

16Small Business Innovation Research (http://www.sba.gov/sbir/). This particular project was
sponsored by NASA’s Marshall Space Flight Center.

17The proposal (89-1-04.10-7900) was actually sent from Automatix, Inc, Billerica, MA 01821,
USA.

18This has been confirmed by a representative from NASA SBIR Program Support and National
Technology Transfer Center (NTTC). Technology Transfer products and services that are sponsored
by NASA are not available to individuals or organizations outside the United States or to resident
aliens living in the United States.

34 Programming of robots

research in the field of artificial intelligence (Nilsson, 1980; Sacerdoti, 1977).

An obvious approach to augment workspace knowledge is to usesensors. But
each sensor has its own issue. Vision-based systems, for instance, suffer from in-
accuracy even in a clean laboratory with close to optimal conditions. In disordered
shop floors, these drawbacks become even more pronounced. Ifmultiple sensors
are used, sensor fusion problems may also occur.

4.6 Robot programming libraries and environments

Besides the commercial robot programming environments that normally turn to
end-users and in-house developers, a number of “open source” software libraries
exist that are released under different licenses. These libraries would normally
interest application programmers or serve as a base for research projects. Most
open source software projects have originally been developed as a side effect of
research in some particular area.

4.6.1 Orocos

The OROCOS19 (Open Robot Control Software) organization (OROCOS, 2004)
ambitious goals are to develop robot control software underFree Software20 and/or
OpenSource21 licenses for all sorts of robotic devices, including manipulators,
mobile robots and humanoids offering an infrastructure that is independent of any
particular architecture for both hard real-time and non real-time applications.

The organization also attempts to contribute to the development of programming
interfaces that can be accepted as standards by robotics sub-communities and to
the development of free educational material. Orocos is written in C++ and runs
under Linux22 and RTAI23, a Real-Time Linux Application Interface.

The Orocos project follows a component-based strategy, where components alter
their state when called. This modular robot control framework provides the infra-
structure and the functionalities to build applications. The visionary software en-
gineering requirements include (Bruyninckx, Soetens, Issaris and Leuven, 2002):

• Object-oriented design.

19http://www.orocos.org
20http://www.fsf.org/philosophy/license-list.html
21http://www.opensource.org/licenses/
22http://www.linux.org
23http://www.aero.polimi.it/ rtai/

4.6 Robot programming libraries and environments 35

• Decoupling and modularity. Class-wise interfaces and complete encapsula-
tion of internal data to promote independent evolution and re-implementa-
tion of classes.

• Small and shallow interfaces. Separated interfaces give more flexibility in
changing implementations.

• Distributable. The robot control software benefits from being scalable and
network-based. Abstraction layers are needed for both operating system
and interfacing hardware.

• Minimalism. Superfluous APIs may lead to different implementation with
similar functionality.

• Hardware independent. Linux has been the operative system of choice for
both development and deployment.

• Thorough large-scale design. Safe design should always consider a com-
plex distributed and hard real-time implementation.

Orocos started in September 2001, is still developing but isfar from complete.
The current status is available on the Orocos website.

4.6.2 Pyro

Pyro provides abstractions for robots, especially mobile robots, and algorithms.
Pyro is written in Python, which is an interpreted language.This means that
it is easy to experiment interactively with the robot program on the expense of
the execution speed. Since Pyro abstracts underlying hardware details, it can be
used for experimenting with several different types of robots and robot simulators.
Currently, robots supported include the Pioneer and the Khepera family. These are
all small, mobile robots. Industrial robots do not seem to bea primary target.

4.6.3 Robotics Toolbox for Matlab

The Robotics Toolbox24 (Corke, 1996) provides many functions that are useful
in robotics, such as kinematics, dynamics and trajectory generation. The tool-
box provides functions for manipulating data types such as vectors, homogeneous

24http://www.cat.csiro.au/cmst/staff/pic/robot/

36 Programming of robots

transformations and quaternions (Chou, 1992). It is also able to graphically dis-
play any robot that can be represented in the Denavit and Hartenberg parameters
(Denavit and Hartenberg, 1955). It also includes a Simulink25 block library. Ro-
botic Toolbox is small and simple and is equipped with sourcecode.

4.6.4 SPACELIB

SPACELIB26 (Legnani, Casolo, Righettini and Zappa, 1996; Legnani, Casolo,
Zappa and Righettini, 1996) is a library for 3D kinematics and dynamics of sys-
tems of rigid bodies and is available in C and in Matlab sourcecode. It is based
on an extension of the homogeneous transformation matrix approach by Denavit
and Hartenberg and adds4 × 4 matrices for velocity, angular- and linear acceler-
ations, and4 × 4 matrices for forces, torques, angular and linear momentum and
inertia. Its functionality includes basic operations on matrices, points, lines and
planes, vectors and transformation matrices and is freely available for non-profit
activities.

4.6.5 ROBOOP

ROBOOP27 (Gourdeau, 1997) is an object-oriented programming toolbox written
in C++ for robot kinematics, dynamics and linearized dynamics of serial robotic
manipulators. It depends on the NEWMAT1028 matrix library and if graphical
features are to be used, also the gnuplot29 software. It is released under the terms
of the GNU General Public License30. It includes operations on homogeneous
matrices such as rotation and translation, operations on quaternions and a specific
robot class, which for each link handles kinematics as defined by Denavit and
Hartenberg, link- and motor inertias and motor gear ratio and friction.

25Simulink (http://www.mathworks.com/products/simulink/) is an interactive tool for modeling,
simulating and analyzing dynamic, multi-domain systems.

26http://bsing.ing.unibs.it/%7elegnani/
27http://www.cours.polymtl.ca/roboop/
28http://www.robertnz.net/
29http://www.gnuplot.info
30http://www.gnu.org/copyleft/gpl.html

4.6 Robot programming libraries and environments 37

4.6.6 Open Dynamics Engine

The Open Dynamics Engine31 (ODE) is a free library for simulating articulated
rigid body dynamics. It has built-in collision detection and according to the au-
thor, Russel Smith, ODE is “reasonably mature and stable”. ODE is designed to
be used in interactive or real-time simulation. The user hasthe freedom to change
the structure of the system while the simulation is running.ODE is written in
C++ but uses a native C interface. ODE is a computational engine and completely
independent of any graphics library. However the examples that come with ODE
use OpenGL. It is released under either the GNU Lesser General Public License
(LGPL)32 or the BSD-style license33.

4.6.7 Simderella

Simderella34 (van der Smagt, 1994) is a robot simulator. It was originallyde-
veloped to aid research in neural networks for arm control. It consists of a simple
controller, a forward kinematics part (simulator), and an X-Windows oriented
graphics back-end. The controller, simulator and graphical back-end are separate
processes synchronized by message parsing. The flexible communication setup
lets the controller handle multiple simulators and/or realrobots simultaneously if
required. The simulator handles kinematics for any robot with rotational and/or
translational joints as defined by Denavit and Hartenberg (Denavit and Harten-
berg, 1955).

During operation, the simulator expects joint values, velocities and accelerations
from the robot socket connected to the controller. At each time step, the simulator
translates the current pose of the robot into a set of homogeneous matrices describ-
ing the position and orientation of the links in Cartesian space. These matrices are
then sent to the graphical back-end, followed by a matrix describing the pose of
the target object, which place the objects on the canvas. In addition, it has a user
interface for object rotation, translation, scaling and picture dumping. It can also
render z-projection of all shown objects – i.e., a shadow on the floor. Simderella
3.0 is written in C++ and was released 1999 under the GNU Public License.

31http://q12.org/ode/
32http://www.opensource.org/licenses/lgpl-license.html
33http://opende.sourceforge.net/ode-license.html
34http://www.robotic.dlr.de/Smagt/software/simderella/

38 Programming of robots

4.6.8 Game Engines

Game engines offer frameworks for games or game-like applications. Their power
lies normally in appearance features such as lighting, shading and reflections.
Rendering and visualization is important to game engines and how models and
worlds are stored is often apart of the function of the renderer. In game engines,
the 3D pipeline (the equivalent to the motion pipeline in off-line systems) handles
everything from scene/geometry database traversal via geometry, different trans-
forms, triangle set up35 and rendering/rasterization to the final display on screen.
As a contrast to most robotic off-line programming applications, which are pro-
prietary and expensive, many sophisticated game engines are released under GNU
and other licenses and can be downloaded from the Internet.

One example is Crystal Space36 which is a free (LGPL) and portable 3D game
development kit written in C++ with an extensive list of features. Crystal Space
currently runs on all major platforms.

4.7 Conclusions

Off-line programming systems have evolved to efficiently handle design and op-
timization of robot programs. Their greatest strength is the predefined robot librar-
ies and also their ability to visualize the designed work-cell. However, as design
tools and run-time environments for sensor-driven robot applications, the generic,
complex, monolithic and integrated approach yields an unpredictable perform-
ance. Instead, specialized software based on the problem tobe solved has the
potential to create efficient solutions to problems that include sensor-guided ro-
bots.

There obviously exists a somewhat higher threshold in programming a system
from “scratch”, but the lesson learned from the author’s ownexperience is that
even if one usually gets a quick start with some pre-engineered expensive tool,
the thrill of development speed is likely to end well before the project objectives
are fulfilled.

Open source libraries and frameworks are available for freeon the Internet. Al-
most all of them have developed as offsprings from research projects and have
therefore particular strengths and weaknesses. Nevertheless, they usually repres-
ent good ideas, and provide inspiration and sometimes source codes that can be
used as a basis for specialized software development. The use of a game engine

35E.g. back-face culling, slope/delta calculations and scan-line conversion
36http://crystal.sourceforge.net

4.7 Conclusions 39

involves commitment to its large infrastructure and will only be beneficial if most
of the features of the engine will be used.

Task orientation will mean as much for robot technology as object-oriented pro-
gramming has improved software engineering. Research shows that there are
tremendous obstacles that must be overcome to find general solutions (DaCosta
et al., 1992). These difficulties clearly show that it is not realistic to find a generic
task-oriented approach valid for the vast robotic area. Butstill, even if general
mechanisms cannot be found, particular application areas can and will benefit
from task orientation. Arc welding is one such area.

40 Programming of robots

Chapter 5

High-level control

5.1 Introduction

For low-level control, a close relation between what a sensor measures and what
is to be controlled is not uncommon, but for a sensor measuring more complex
data patterns or data from several sensors, the matter is notso trivial. A seam
tracker for arc welding can of course be used for simple positioning control, but
if it provides some geometrical features of the weld joint profile, that informa-
tion can be used for high-level control of the process or the sub-task the robot is
performing1.

High-level control in industrial robotics is a vast research area and a selection of
interesting topics related to this thesis is discussed. Starting with a short introduc-
tion to artificial intelligence from an industrial roboticspoint of view, a discussion
of the concept of sensors in general and virtual sensors in particular and their rela-
tion to high-level control follows, and finally, a few examples of research projects
in the wide robotics research field related to high-level control are presented.

1Conceptually, such sensor data is considered as process-related feedback information. If, for
example, a gap in the weld joint is varied, but still within acceptable limits defined in a WPS,
different controlling actions may be needed. Such actions can be a combination of controlling the
welding power source and the motion of the robot. A wider gap may, for instance, need a lower
travel speed and/or weaving. Likewise, the orientation of the weld relative to the horizontal plane
may need to adjust based on the size of the weld pool.

42 High-level control

5.2 Artificial intelligence

Artificial Intelligence (AI) is an interesting area that hasalways had a close rela-
tion to robotics in general. It has always been a delicate problem to define what
AI is. Problem areas that earlier were thought of as AI areas are now well known
and reinterpreted (Stork, 2001).

One of the central lessons learned in the last 40 years of AI research is that prob-
lems that were thought to be difficult turned out to be less troublesome and vice
versa (Stork, 2001). AI papers and textbooks often discuss significant questions,
such as “how to reason with uncertainty” or “how to reason efficiently”. It is hard
to find descriptions of ambitious, interesting and concreteAI problems (Selman,
Brooks, Dean, Horvitz, Mitchell and Nilsson, 1996).

The success of Deep Blue2(DeepBlue, 2004; Schaeffer and Plaat, 1997) is a good
example of something that at the time was a concrete AI challenge problem: de-
velop a program that is able to defeat the world chess champion. However, the
Deep Blue was not superior to Kasparov in strategy and tactics because of any
sophisticated, heuristically guided search AI-method. Deep Blue’s strength was
an efficient brute-force search. In fact, it was so successful that it led Kasparov to
exclaim “I could feel – I could smell – a new kind of intelligence across the table”
(Kasparov 1996).

While many AI researchers may not like the lesson learned from the Deep Blue
experience, the value of brute-force over more “intelligent” search-forms is, nev-
ertheless, very substantial (Selman et al., 1996). However, chess is far easier than
many other tasks like those involved in the evolution of an infant, such as under-
standing a simple story, recognizing objects and their relationships, understanding
speech, and so forth. For these and nearly all realistic AI problems, the brute force
methods in Deep Blue are hopelessly inadequate (Stork, 2001).

5.2.1 Artificial intelligence applied to industrial roboti cs

The AI community seems to have a limited interest in concreteapplications in
general and industrial applications in particular. The important goal of having a
completely automatic and still reliable task-level approach in a concrete industrial
robotic case does not yet appear to have been fully examined by the academic
world.

2Deep Blue is an IBM supercomputer that 1997 had a special-purpose hardware that enabled it
to calculate nearly a quarter of a billion chess positions per second

5.3 Sensors 43

Trajectory planning, which often requires exploring largesearch spaces, raises
critical complexity issues and there is strong evidence that any complete algorithm
will require exponential time in the number of degrees of freedom (Reif, 1979;
Canny, 1989). The AI community has made some progress, mainly in assembly,
but academia has yet to find industrial robotics an interesting platform for apply-
ing its technology. A reason for the reluctance to apply AI inindustrial robotics
may be that the high process accuracy demands, both in absolute accuracy and in
repeatability, normally prevent the uncertainty-based AIalgorithms.

Another problem is the problem of time allocation for planning versus control and
sensing (Halperin, Kavraki and Latombe, 1999). This problem remains poorly
understood, though promising ideas have been proposed (Boddy and Dean, 1989;
Nourbakhsh, 1996). Moreover, real robot tool trajectoriesdeviate from planned
paths due to errors in control and position sensing and such errors raise recogniz-
ability issues which make planning more complex (Halperin et al., 1999).

5.3 Sensors

Simple switch-type sensors are often used in industrial robotics, but more ad-
vanced sensors such as cameras and seam trackers are still uncommon. The goal
is to reach a higher level of autonomy, but the introduction of sensors is associ-
ated with high-level control issues. A higher level of autonomy implies complex
relationships; there is normally no straight coupling between observable and con-
trollable variables and between controllable variables and variables that define the
task.

A comprehensive survey of sensors that describes general aspects, technical and
physical fundamentals, construction, function, applications and developments of
the various types of sensors can be found in (Gopel, Hesse andZemel, 1997).

5.3.1 Sensor simulation

Computer-based sensors known assimulated sensorsor virtual sensors3 should
yield a significant leap forward in industrial robotics. In (Cederberg, Olsson and
Bolmsjö, 1999), the author defines a virtual sensor as “a software model of a
physical sensor with similar characteristics, using geometrical data from a ’real’
world model”4. Off-line programming systems normally provide means to sim-

3Virtual sensors is also a concept in Automatic Control, but has the different meaning of calcu-
lating values of (unsensed) process variables from real sensor readings.

4In this context, sensors for use in robotics are considered,like vision and laser seam trackers.

44 High-level control

ulate work-cells with several robots working in parallel, but simple switch-type
sensors typically control their interaction.

Advanced sensors are not common in industrial robotics and therefore it is dif-
ficult to find sensor models of real industrial sensors. Most sensor simulation
models are strictly of research character and are not soft replicas of any known
sensor. An off-line system is a reasonably useful design, prototyping and visual-
izing tool for shorter delivery time by automatic code generation (Adolfsson, Ng,
Olofsgård, Moore, Pu and Wong, 2002). The normal process in off-line robotic
programming using an off-line system is to build the work-cell, create trajectories
and finally generate a program for the particular target robot. If the work-cell is
created with sufficient accuracy and fixtures prevent changes in geometry during
the manufacturing process, the program will run correctly on the target system.

In reality, however, such a procedure is not adequate for robots using sensors,
especially if they are used for (simulating) trajectory guidance in real-time. Feed-
back of advanced sensor data must then be reflected in the world model. Virtual
sensors provided as black boxes by manufacturers and sold asan option along
with the physical sensors, would of course yield the most natural solution. How-
ever, there is no indication that this will happen in the nearfuture. The idea of
simulating sensors in robotic systems is not new.

In (Chen and Trivedi, 1994), Chen and Trivedi describes a system which main
goal is to create a visualization environment to aid the automatic robot program-
ming and off-line programming capabilities of sensor-driven robots. The software
system should help the users visualize the motion and reaction of sensor-driven ro-
bots. Their main research objective included 1) integration of sensing and motion
simulation; 2) integration of planning and simulation; 3) simulation of multiple
sensor modalities; 4) compatibility of operation in real and simulation modes,
i.e., switching between real and virtual modes occurs at lower level of control and
is transparent to the operator; 5) exchangeability of software tools and hardware
devices between real and virtual world operations, e.g., a real robot controller
should be able to control the virtual robot, and the perceptual and motor com-
mands and routines generated in virtual environment shouldbe able to control
the real robot as well; and 6) functionality as a stand alone and also as a system
interfaced with a real robotic system.

In the system, sensory information is generated (simulated) by the system upon
receiving sensing commands. The sensing simulation is based on the sensor’s
type, position and orientation, process parameters, and the status of the work-
piece. A 3-D object data structure is defined to specify structural relationships
and kinematics of the components. The ability to switch fromvirtual world oper-

5.3 Sensors 45

ation to real world operation and vice versa ensures 1)compatibilityof the system
operation in real and simulation modes, and 2)exchangeabilityof software tools
and hardware devices (Chen and Trivedi, 1994).

The system had three modes. In theOperator Interface/Monitor Mode, the sys-
tem received the control signals from the real controller ofthe robot, and displayed
real-time graphics simulation of the robot’s motion and sensing. TheReal Con-
troller/Virtual Robot Modeallowed the operator to control the virtual robot using
the real controller without running the real robot. In theOff-Line Visualization
Mode, the system acted as a stand alone simulation and visualization environ-
ment. This mode allowed the operator to create and examine new robots and their
work environments before real production and construction, and also allowed for
development and testing of new algorithms (Chen and Trivedi, 1994).

Virtual sensors are at least as important as virtual robots.A non-tactile sensor, for
example a camera or laser (Cederberg, Olsson and Bolmsjö, 2002b), is normally
more easily simulated than a tactile sensor (Li, Wang and Ho,1998; Li and Wang,
1999), especially when the tactile sensor measures forces in a process that includes
removal of materials.

5.3.2 Sensor fusion

Sensor fusion is defined by (Hall and Linas, 2001) as: “A process dealing with
the association, correlation, and combination of data and information from single
and multiple sources to achieve refined position and identity, estimates, and com-
plete and timely assessments of situations and threats, andtheir significance”.
This definition is appropriate for the kind of sensor fusion technology that was
originally developed in military applications research. But there are wider and
more recent definitions than the original one from U.S DoD. Hence, in (Steinberg,
Bowman and White, 1999), sensor fusion is “the process of combining data or in-
formation to estimate or predict entity states”.

Independent of definition, sensing and gathering of environmental information
make up the first step and one of the most fundamental tasks in building intelli-
gent Human-Computer-Interaction (HCI) systems. The purpose of sensor fusion
is to sense the environmental information of its users or theusers’ own activity
information (Wu, 2003). According to Wu, this purpose ranges from deploying
suitable sensors to detect the interesting phenomena or variables, extracting ne-
cessary features and combining these information pieces together.

Sensor fusion is important in several research areas. Incontext-aware comput-
ing, the ultimate goal is to have computers understand the real world. The result

46 High-level control

would be that human beings and computers could interact at a higher level of ab-
straction, for instance in hospitals (Munoz, Rodriguez, Favela, Martinez-Garcia
and Gonzalez, 2003) or when using mobile phones (Myers and Beigl, 2003).

In (Brooks and Iyengar, 1997), sensor fusion has been divided into three classes:
complementary sensors, competitive sensorsand cooperative sensors. The au-
thors give definitions and examples:

• Complementary sensorsare not dependent on each other, and can be merged
to form a more complete picture of the environment. An example is a set
of radar stations covering non-overlapping geographic regions. Since these
sensors do not conflict with each other, they are easily implemented.

• Competitive sensorsprovide redundant information about the environment.
An example is that three identical radar units can tolerate the failure of one
unit. It is a challenging general problem that involves interpreting conflict-
ing readings.

• Cooperative sensorswork together to mobilize information that none of the
individual sensors can provide. This is exemplified by the case with two
cameras in stereo for 3D vision. It is a type of fusion that depends on the
affected devices’ details and cannot be approached as a general problem.

For those specially interested in sensor data fusion, (Brady, 1989) and (Hall and
Linas, 2001) may be of interest. Even if an application only handles one sensor
at a time, packaging of components and information may stillbe one of decisive
importance for the result of production improvement.

5.4 High-level control of industrial robots with examples

By default, commercial robot environments are proprietaryand closed systems.
Normally, they are customized by the vendor of the system to meet certain applic-
ation demands. A more flexible production, however, demandsa comprehensive
view of a work-cell or even a shop floor, where optimization ofcontrollable vari-
ables must be taken on system level, outside any robot, sensor or other specific
part of the system.

High-level industrial robot control deals with similar problems as telerobotics
(Hirzinger, Brunner, Koeppe and Vogel, 1997). Learnings from DLR’s ROTEX,
the first remotely controlled robot in space, has been applied to task-level pro-
gramming (Brunner et al., 1995; Landzettel et al., 2000; Landzettel et al., 2001)

5.4 High-level control of industrial robots with examples 47

and to teleconsultation by telepresence in medicine (Wei, Arbter and Hirzinger,
1997).

Experiences from space robotics have had a tremendous impact on robotics in
general. Telerobotics depend on virtual environments for simulation and training,
automatic control, dynamics, haptics and robotics. At the Stanford Telerobot-
ics Lab, the core belief is that robots can be great tools, buthuman intelligence
“remains unsurpassed in guiding robots”, and this is also the author’s opinion.
Constructing robots that are fully autonomous is, at least in unstructured environ-
ments, not possible today.

Sensors is a way to cope with accuracy problems and moving from large to low
volumes with less try outs will generally increase the use ofsensors (Bolmsjö,
Olsson and Cederberg, 2002). But today’s robot simulation systems are not well
suited to handle advanced sensor-driven applications. Sensors are basically not
used by the industry because of lack of simulation and run-time tools and the
industrial robotics vendors unwillingness to open up theircontrol systems. A pro-
posed OCS architecture can be studied in (Nilsson, 1996; Johansson, Robertsson,
Nilsson, Brogardh, Cederberg, Olsson, Olsson and Bolmsjö,2004).

5.4.1 Example: A surgical robot system

The surgical robot system RobaCKa used for maxillofacial5 and craniofacial6

treatment by “automation” in (Raczkowsky, Däuber, Engel, Hoppe, Korb, Schorr,
Hassfeld and Wörn, 2003) is custom-made, since it was impossible to use a stand-
ard robot from any of the major vendors. RobaCKa enables the surgeon to carry
out precise bone cuts for bone repositioning. The problem offinding the correct
robot position relative to the patient is similar to the problem of finding a suitable
path in robot arc welding:

1. Feasibility of the robot path

2. No proximity to singularities

3. No collisions of robot and patient

4. No collisions of robot arm segments

5. Consideration of surgical access path

5Relating to the jaws and the face.
6Relating to both the cranium and the face.

48 High-level control

The RobaCKa system consists of a modified Stäubli RX90 robot with a robot con-
trol system running V+. The system relies on input from a force-/torque sensor, an
infrared navigation system Polaris and an inspection camera and sensor data pro-
cessed on a Sensor-PC running RT/Linux. Furthermore, a graphical user interface
with a pointer-based human-machine interface is used.

To support the surgeon in planning and intraoperative realization an augmented
reality system PROBARIS (Hoppe, Kuebler, Raczkowsky, Woern and Hassfeld,
2002) has been developed. The system allows overlaying the operating field with
planning data and other information.

5.4.2 Example: A meat-processing robot system

Food Science Australia (FSA) has developed several applications for the meat in-
dustry that require the robot to have quick responses duringboth on-line operation
and off-line communication (Li, Ring, MacRae and Hinsch, 2003). However, the
authors establish the fact that “commercial robots have notbeen designed with
the operational response common among other types of ’real-time control’ equip-
ment”. The dynamic response of industrial robots is recognized as a critical factor
when determining their use in meat industry.

The particular system studied in this case was a robotic beefcarcass splitter. The
components integrated to the application were an ABB IRB 6600 robot with
a standard S4C+ controller, an ultrasound image-processing unit and a remote
primary control unit responsible for the majority of the system-processing. A
simple ABB RAPID (controller resident program) routine wasloaded on to the
S4C+ controller that performed specific move operations. The RAPID program
executed on the robot received update position data from a remote computer in
real-time7 according to the schedule proposed in (Cederberg, Olsson and Bolmsjö,
2002a). In this application the position of the backbone was detected via analysis
of images from an off-the-shelf medical ultrasound unit.

The motivation to use a commercial industrial robot rather than purpose-built ma-
nipulator was that the former possess proven positioning performance, has sound
safety records, has operational reliability and have replacement parts and service
technicians readily available. Furthermore, FSA has foundthat the development
of an application that integrates an industrial robot reduces development cycle
time for an application significantly, and is more economical, especially since a
single robot can be used in the development of multiple applications.

7Real-time means that the RAPID program running on the robot controller accepts new joint
values from a external computer with a frequency of 5-10Hz.

5.5 Conclusions 49

However, the robot response to position data sent varied with the velocity and
actual acceleration performance of the robot and with the distance to a singularity
configuration. Li, Ring, MacRae and Hinsch conclude that adapting an industrial
robot directly to an application is “extremely challenging” if real-time or quick
response operation is required (Li et al., 2003).

5.4.3 Example: Experiments using an open control architect ure

A platform for fast external sensor integration to an industrial robot control system
(ABB S4C+) has been used to interface an ABB IRB6400 robot equipped with a
force sensor and a grinding tool (Johansson et al., 2004; Blomdell, Bolmsjö, Bro-
gårdh, Cederberg, Isaksson, Johansson, Haage, Nilsson, Olsson, Olsson, Roberts-
son and Wang, 2004). The experiments have been performed at Lund University
and at Kranendonk, an enterprise in the Netherlands. The special grinding tool has
been developed at KU in Leuven, Belgium. The sensor interface main features are

• a shared memory interface to the built-in motion control, enabling fast in-
teraction with external sensors in both hard and soft real-time,

• compensation at low-level propagates to higher level of execution and con-
trol,

• system and safety supervision and other standard controller features (IO,
RAPID, etc.) are still preserved, and

• add-ons to the original controller can be engineered by bothstandard and
state of the art engineering tools.

The sensor platform is an open experimental platform for robotics research and
can handle problems with different need of bandwidth. Experience from the plat-
form confirms that the design is appropriate and that software and control need to
be tightly integrated.

5.5 Conclusions

High-level control is an area of research that definitely will grow in the near future.
Manufacturing of one-off products creates a spectrum of questions that will need
creative solutions which traditional local control fails to deliver. The decision
to possibly use AI for path planning, process planning, etc., should be based on

50 High-level control

the particular application control needs in terms of precision, repeatability and
speed. In some cases, exact algorithms with calculated worst-case exponential
time growth might behave quite well8.

Sensors are vital to high-level control, but the potential in using them may be
hampered by the introduced uncertainty and increased system complexity. Simu-
lations of manufacturing systems that include sensors is therefore needed to find
robust and safe solutions. Virtual sensors with a behavior that conforms with their
real counterparts must be developed. Sensor fusion is an important research area
of its own. In this thesis, complementary sensors have been used.

The three examples clearly show the need for open control systems to be able to
automate typical small batch production systems. Industrial robots of today do not
generally support control outside the standard system, which normally demands
an off-line program. Industrial robot vendors have not beenespecially responsive
to provide solutions for applications for which it is necessary to let the robot’s end
tool position reflect a real-time output from one or more sensors.

Naturally, safety and technical issues (Hissam and Klein, 2004) are good reasons
to reject end user influence tight control loops, but it is probably not the only
reason. Today, most vendors try to control the whole market chain, not only by
selling the manipulator, but also by exerting control over installation and service.

8See for instance (Andersson, 2003), where the exact algorithms presented not only produce
better solutions than the traditional heuristic methods, but also, indeed, seem to perform surprisingly
fast according to the measurements on the presented implementations.

Chapter 6

Motivation

6.1 Introduction

The business potential for robotized production has been high in recent time, with
lower robots prices, higher reliability and accuracy both respecting repeatable po-
sitional accuracy and in absolute terms. Industrial robotsare increasingly becom-
ing an integral part of manufacturing strategies. Industrial robots are used for a
wide spectrum of applications: material handling, assembly, spray painting, weld-
ing and product inspection1. There are several reasons to use robots, for instance

• fast implementation times,

• increased manufacturing performance and output rate,

• enhanced quality,

• eliminated dangerous and undesirable jobs, and

• reduced labor cost.

According to the UN, robot orders in first half of 2003 were up by 26% to the
highest level ever recorded (United Nations, 2003). 80 000 robots were sold
between January and June. According to the same source, a robot sold in 2002
would have cost less than a fifth of what it would have cost in 1990. The UN report
also states that the usual pay-back period is as short as 1-2 years. Moreover, the

1A new potential market is underground construction where robots are expected to be used for
a number of applications like drilling in rock and concrete,as well as shotcreting.

52 Motivation

report states that the price of robots in Germany relative tolabor costs has dropped
from 100 in 1990 to 17 in 2002 taking into account the radically improved per-
formance of robots.

Regarding its profitability, it may be asked why robotics investment not even
greater? In the UN report, UNECE claims that robot systems still are so com-
plicated that potential buyers need “sufficient in-house technological know-how
as well as a thorough comprehension of their production processes” to benefit
from the investments.

Another reason is that there are a few dominating application areas, i.e. arc weld-
ing and material handling serving a single type of end user, like the automotive
industry. A problem with this dominance is that integrationof robots into other
areas may be hampered since these applications have other demands measured in
speed, accuracy or flexibility such as fast changeover to other products and easy
operation. Traditionally, most other application areas have not been considered
important business segments for the robotics manufacturers, which therefore have
not provided solutions. There is a challenge to robot manufacturers to evaluate
the potential of robots in other areas of manufacturing.

Finally, the shift in production batch sizes is an importantfactor. As mass pro-
duction of large-batch items moves to less labor-expensivecountries, many high-
developed countries will find that the key to future manufacturing success is to
move to production of many smaller batches of different items. However, fast
product changes along with customization and optimized design using new ma-
terials and manufacturing processes put greater demand on manufacturing opera-
tions with respect to control performance and productivityas well as quality. This
inevitable change to small batch volumes and one-off manufacturing of products
is also the main focus in this thesis.

6.2 Manufacturing of one-off products

Small batch and one-off production systems are rarely able to use robots effi-
ciently. The investment in an industrial robot system and the time taken to pro-
gram the robots are usually too long and costly compared to the financial benefits
and actual throughput in material. Another reason is that the cost of necessary
fixtures and clamping becomes high compared to the number of products to be
made. Sometimes, for instance in shipyards, it may even be impossible to use
fixtures because of the size of the parts to be welded. Finally, some products
are unique, expensive and may have such a high material cost compared to the
manufacturing cost that production mistakes cannot be afforded.

6.3 Conceptual ideas 53

The use of sensors is a promising way of meeting the demands ofthis situation.
The use of robots generally requires an integrated approachwhere product data
defined within a CAD2 environment is taken as input and applied within a RSA
software that enables modeling, simulation and programming of robot operations.

However, traditional off-line programming systems are notsuited to simulations
that include sensor-guided robots. The normal process in off-line robotic pro-
gramming using a RSA is to build the work-cell, create trajectories and finally
generate a program for the particular target robot. Generally, the program will
run correctly on the target system if the work-cell is created with sufficient ac-
curacy and fixtures prevent changes in geometry during the manufacturing. For
robots using sensors, however, such a procedure is inadequate if they are used for
trajectory guidance in real-time.

There is no trivial way to simulate the behavior of sensors and sensor-controlled
robots. Most (robot) feedback systems are implemented as a local loop, which
only considers the specific instructions used to define the robot task as a set of mo-
tions. Since a sensor-guided robot’s trajectory may choosea trajectory somehow
different from the nominal and static trajectory that is produced by the traditional
off-line systems, creating and applying a nominal pre-calculated program is not
possible.

6.3 Conceptual ideas

Considering the number of robots used in industrial automation, the use of ad-
vanced sensors such as vision, laser scanners or force/tactile sensors is still not
comprehensive. One area where sensors are important is arc welding where pro-
ducts based on new materials decrease the overall dimension(plate thickness)
and increase the general need for keeping tight tolerances during welding. New
processes such as laser welding further emphasize this.

Off-line programming systems are not suited to simulation that includes sensor-
guided robots. But given the new opportunities for precision and calculation of
speed allowed by specialized software and hardware closelycollaborating with
open control systems, sensors are likely to appear more often in new manufactur-
ing systems that include robots in small batch and one-off manufacturing systems.

A promising way of meeting the demands of this situation is touse a simulation
environment to test a work-cell that includes a sensor-controlled robot before its
actual operation in real life. The idea of simulating the robot task with its use of

2Computer Aided Design

54 Motivation

sensors is interesting since robots equipped with sensors with real-time connec-
tion to trajectory generation may later lead to malfunctionof the real robot cell.
Problems that may occur are numerous including out-of-joint limits, collisions
with objects in the workspace, movement into singularitieswith resulting robot
configuration changes, etc.

Thus, instead of feeding back instructions, the static image of the model normally
used in today’s programs, sensor information can be fed backto a model rep-
resentation of the task. Real-time sensor feedback to the world model allows the
information from sensors to be used to actually update the world model, including
updating object positions in real time as required, or creating objects not included
beforehand. Through this mechanism, the use of sensors can be validated in a
simulated environment in the same way that similar tests arecarried out in a real,
physical set-up.

The idea is to control the robot by specifying the task ratherthan by using a
set of predefined motions and logic, thus providing a higher level of abstraction
in the formulation of instructions. Examples of how this canbe used include
resolution of singularity issues, necessary trajectory planning, process adaptation
due to changing conditions and environment, motion planning that considers real-
time update of geometrical objects in the world model, etc. As indicated by these
examples, lack of coupling between the running robot program and the virtual
model is not acceptable since the system must have the ability to emulate and act
on possible situations in the real environment, which of course are not fully known
in advance.

Also, by receiving sensor information in the same way regardless of whether a
real or virtual sensor is producing the data, dynamic effects originating from the
internal system relating to time delays, information flow and bandwidth are also
taken into account. The interface between sensor and application facilitates these
properties. This system structure makes it possible to testand validate the op-
eration of a sensor-guided robot system during simulation,as well as to run the
system on the shop floor without any change to the task program.

An important feature of such a task-oriented programming environment and run-
time system should be usability. This is normally a foreseenfeature of many
technical systems and almost never considered of any interest, especially by tech-
nically oriented professionals, that prevent the systems to be used at all or to a
limited extent. It is important that the user has a feeling ofbeing in control. In-
stead of having to rely on intricate and automated system decisions on how things
should be done, and what process variables should be chosen,the industrial ac-
ceptance will likely be higher if these conclusions are taken by the staff, while

6.4 Conclusions 55

letting the automated system handle and conceal the underlying technology to
create the necessary trajectories. Of course, when or if reliable intelligent de-
cisions can be taken by machines and when or if this techniqueis accepted by
human beings, machine responsibility may increase in the future and higher level
of task abstractions may be reached.

The above mentioned ideas are all needed but must be supported by industrial
control systems that allow trajectories to be sent in real-time during the process
instead of, as done today, demanding a predefined and static trajectory. These
open control systems exist today mainly for research purposes, but will most likely
be commercially available in a five-year perspective.

6.4 Conclusions

We can conclude that there are some important features missing in traditional
robotic programming systems. They need to be found for extending the usability
of industrial robots to small-batch and one-off productionsystems:

• Traditional off-line programs are inadequate in serving small batch and
one-off production systems. New systems are required that allow users to
develop, simulate and run applications that includes sensors and sensor-
controlled robots.

• Virtual sensors need to be developed to support these systems with adequate
models, similarly to how traditional off-line systems are supported by robot
libraries.

• Virtual sensor interfaces should hide the underlying logicof the sensor, vir-
tual or real, from the user. The application using the virtual sensor should
focus on the task, and not on whether a virtual or real sensor is used.

• Task-oriented programming systems that let the user keep the upper hand,
not leaving difficult and important decisions to a machine that because of
insufficient or unreliable technology is unable to take optimal decisions.

• Open Control Systems that allow real-time trajectory generation for indus-
trial robots and let a high-level control system make necessary comprehen-
sive decisions.

56 Motivation

Chapter 7

Contribution

7.1 Introduction

Most contributions from other work in the task-level and task-oriented program-
ming areas are generic solutions having complexity issues and limitations such as
exponential growth of planning algorithms. In this work, planning is the respons-
ibility of the user, who is supposed to have the expertise necessary to define the
problem, and to choose, order and initialize subtasks. Thisstrategy does, how-
ever, not impose that it would be impossible to automate planning in particular
situations or for a certain application. Perhaps arc welding is such an application,
but it has not been studied.

7.2 Scope and limitations

The author’s contribution consists of identifying problemareas and resolving is-
sues preventing a successful implementation of high-levelcontrol of industrial
robots. The technique presented is intended for small batchand one-off manu-
facturing systems for which it should be advantageous to usesensor-controlled
robots.

The main objective, described in section 7.3, has been to develop a semiauto-
matic model for task-oriented programming applied to sensor-controlled robotic
arc welding. To reach this goal, three subsystems have been developed

58 Contribution

1. a virtual sensor,

2. generic interfaces to sensors/robots, and

3. an underlying run-time library to real and virtual sensors/robots.

7.2.1 Development of virtual sensors/robots

Scope:To be able to simulate the use of sensors/robots it is necessary to develop
virtual sensors/robots that behave sufficiently well compared to real sensors/robots
and conform geometrically. Using these virtual components, different scenarios
can be simulated without compromising safety and without having to use the ac-
tual equipment on the shop floor. In traditional off-line programming, libraries
describing kinematical properties usually exist for standard industrial robots.

Limitation: A virtual laser tracker has been developed based on the M-Spot sensor
from ServoRobot, Inc. The real sensor is of a type commonly used in the arc weld-
ing industry and uses a triangulation method for depth measurements. The sensor
is validated both statically and dynamically by matching itwith a commercial
sensor through measurements in setups and by comparing a welding application
performed in a real and a virtual work-cell created with a RSA. The experimental
results successfully validate its performance. In this context, a virtual sensor is a
software model of a physical sensor with similar characteristics, using geometrical
and/or process-specific data from a computerized model of a real work-cell.

7.2.2 Generic interfaces to robots and sensors

Scope: A well defined virtual sensor/robot should be exchangeable with a real
sensor/robot without affecting the application(s) using it. This is important since
every mode added to the program will make it error prone and difficult to main-
tain. Seamless exchange of virtual and real components is also crucial to run
experiments with a mix of virtual and real components. For instance, a real robot
can be used along with a simulated sensor acting in the virtual environment. The
simulated sensor may discover virtual obstacles that the physical robot avoids,
despite the fact that no physical obstacles exist. Such arrangements allow the user
to check and debug different parts of the system during the development of task
objects.

Limitation: A generic interface to the M-Spot sensor and the virtual sensor has
been developed. The interface covers a large subset (but notall) of the possible
interaction between the client using the sensor capabilities and the sensor itself.

7.3 Main objective: A semiautomatic task-oriented programming model 59

A generic interface to the real and simulated robot has also been developed that
allows the application to send joint values in real-time (5-10Hz). The client is
unaware of if a real or simulated sensor/robot is used.

7.2.3 Run-time library

Scope:A run-time library is needed to support the building of the different com-
ponents that constitute an application. Robots, the description of which follows
the Denavit and Hartenberg representation are supported. The library handles
kinematical relationships, interpolation and functions for manipulating data types
such as vectors, matrices, homogeneous transformations and quaternions. Fur-
thermore, implemented events, communication, threads andsynchronization rou-
tines may be needed to efficiently handle interaction between components.

Limitation: The library has been tested with the ABB2400/16 robot and theM-
Spot sensor1.

7.3 Main objective: A semiautomatic task-oriented program -
ming model

Scope:The proposed approach could be considered semiautomatic task-oriented
programming in the sense that the user manually defines the task by choosing a
sequence from a set of predefined sub-tasks. One or more sequences of objects
constitute the robot program needed to execute the task. A sub-task can be thought
of as an “object”. Several instances of objects may co-existindependently during
the task. When the sequence is defined, the task execution is autonomous.

This approach handles a task differently than the existing parameterization tech-
nique, which is based on similarities in shape rather than, as is proposed here, in
sub-tasks.

Limitation: Current planning research has generally not reached such a mature
level that it can be used in industrial robotics. Still, human beings better accom-
plish perception of the work-cell – geometrical and processunderstanding as well
as planning. The semiautomatic task-oriented programmingmodel presented is
tested on the weld application described in this thesis.

1These are the robot and sensor available for research in our robotics lab.

60 Contribution

7.4 System philosophy

Previous work at the department has over the past years developed ideas on themes
related to this thesis. In (Brink, Olsson, and Bolmsjö, 1995), a task-oriented ro-
bot programming method focusing on tasks connected to the objects in the robot
work-cell, is presented. Tasks are described as states of objects and their de-
pendencies, and the method described should avoid an Achilles heel in task-level
programming, the intricate problem to describe complex systems in a language
similar to written natural languages. The robot work-cell is expressed as a dis-
crete event system where attributes (conditions) of the parts in the environment
only change at a discrete set of points in time, and when certain conditions are
fulfilled. But as with other generic methods, its weakness lies in the fact that
although there is a finite number of possible states, the combinatorial explosion
could make the number very large.

A theoretical description of a framework for higher level ofcontrol and autonomy
is described in (Bolmsjö, Olsson and Brink, 1999). The research stresses the im-
portance and advantage of a high-level task control system and the control struc-
ture layout is given. The framework uses a world model and virtual sensors are
briefly mentioned.

In (Olsson, Cederberg and Bolmsjö, 1999a) and (Olsson, Cederberg and Bolmsjö,
1999b), a system is presented that integrates a simulation and execution envir-
onment for industrial robot tasks. Sensor feedback is used to update a virtual
work-cell model and sub-tasks are autonomously executed based on the inform-
ation currently available from the virtual model. The idea of the work presented
in this paper was to add an interface to a commercial RSA, capable of interact-
ing with the physical system in real-time. The authors referto virtual sensors and
sensor interfaces but at the time the paper was written, these ideas were fairly new.
Nevertheless, this RSA centric solution, further developed in (Olsson, Cederberg
and Bolmsjö, 2002) was an inspiring source for the development of the platform
described here.

Research in industrial robotics implicitly means that any trust-worthy solution
should be based on an engineering strategy even if the experimental work some-
times has to be done on a somewhat simplified experimental platform. It is nat-
ural for researchers to favor generic solutions, and they are normally also the most
interesting. However, good engineering solutions in a particular domain are fore-
seen because of unsolvable difficulties with a general solution.

7.5 General system structure 61

7.5 General system structure

A system structure to support high-level control of sensor-controlled industrial
robots to support small batch and one-off production systems has been developed.
A nominal model is defined and exported. The run-time model uses the nominal
model along with kinematical robot models to create a world model. All tasks are
then executed on this world model, which communicates during run-time through
sensor and robot interfaces with real and simulated robots and sensors, see Figures
7.1 and 7.2.

The described system structure contains components developed by the author
mixed with other components. In section 7.2, the scope and limitations of the
thesis have been stated.

7.5.1 Definition of the nominal model

The technique of modeling work-cell components in CAD environments and cre-
ating off-line robot programs in RSAs is mature and applied by users of industrial
robots today. Process data may originate from process databases, for example a
weld database and from the CAD models. As we today are used to model pro-
cesses in CAD/RSAs, these systems are a natural starting point for generating
models. The model created is thenominalmodel, i.e. it describes our work-cell
as well as we know it before information from sensors gives usreasons to change
it.

Nominal world model
defined in the RSA

Robot model

Initialization
Forward kinematics
Inverse kinematics

Application
initialization
routine

RLib DB

RLib DB
Run-time4

1

2

3

Figure 7.1: A nominal model is defined and exported (1). The run-time library
uses the nominal model along with kinematical robot models (2, 3) to create a
world model (4). All tasks are then executed on this world model.

Kinematic data from CAD/RSAs are related in an order that is considered effi-
cient for the particular application and its purpose and is saved in a proprietary
format or a common CAD format. Normally, these expensive applications also

62 Contribution

give the user the opportunity to view data via some functionality that recursively
traverses the internal structures of the application. By either using this option or
by traversing documented formats, data relevant to kinematic relationships and
process relationships, when appropriate, can be collected. The developed system
provides an API that makes it possible to save relevant information in a system-
dependent, but CAD/RSA-independent way. After using the API, kinematic data
is saved in a CAD/RSA-independent format but it may still notbe related in a
feasible way for its new purpose – realistic simulation and run-time handling of
sensor-controlled robots. The system API therefore also let us change kinematic
relationships “manually”, i.e. with a few lines of code, after data are read from
the system format into our application.

Process data from the CAD/RSA environment along with manually created data is
also collected. Some process data can be collected during the traverse of internal
structures, but not all. Sensor-specific data are not commonin CAD/RSAs today,
since they do not normally support sensors or modeling of sensors. Process data
may be different for various parts of the workpiece, and the system take this into
account by creating objects that relate to the process parts.

After kinematic and process data are made available to the system, the CAD/RSAs
are mainly used as hosts for virtual sensors/robots and to simulate the running op-
erations either as a full virtual process without any physical parts involved or to
let the user monitor the real process. Despite their often extensive functional-
ity CAD/RSAs may be more or less suitable for this purpose2. Another general
problem is that these applications tend to be quite large andtheir multipurpose
monolithic structure may harm their execution speed significantly. To overcome
these and other problems it is suggested that efficient graphical environments are
built and used instead.

7.5.2 The run-time model

At this point, nominal kinematic data, process and sensor data are well known to
the system and available in appropriate structures. An efficient run-time library, a
library API and a set of objects, serve as a foundation to which applications can be
built upon. Today’s RSAs are not suitable as engines in the run-time environment
either. This is mainly because of their complicated and single-threaded structure
and their different layers of APIs with functionality only reachable from vendor
proprietary languages. One has to remember that these applications are optimized

2As an example, the graphics update process within the RSA maynot be fully controllable from
a user standpoint, and this significantly hampers the accuracy of measurements done by virtual
sensors inside the graphical environment.

7.5 General system structure 63

for simulation purposes only, and are not built for run-timeusage. A better solu-
tion is a library where one simple API gives access to the required functionality.

RLib DB
Run-time

Application
task execution

Subtasks:
-Search
-Start Point
-Weld
...

Sensors:
-Simulated
-Physical

3D Visualization

Simulated sensor-
data acqusition S

e
n
s
o
r

a
n
d
 r

o
b
o
t

in
te

rf
a
c
e
s

1

2

3

4 5

Figure 7.2: The world model communicates during run-time through sensor and
robot interfaces (4) to real and simulated robots and sensors (2). The task is
visualized in 3D (3). When simulated sensors are present, sensor data acquisition
is made in the 3D model (1). Changes in the world model are saved in the run-time
database (5).

The library consists of all or at least most of the functionality needed to create
an application, including interpolation routines that canact upon the kinematical
data that is saved in the database, service routines such as conversions between
different mathematical representations of orientations,communication routines
and others. Interpolation routines will be needed since theposition and orientation
of the tool is continuously calculated by the high-level control system, outside the
traditional robot-control system.

It is important that this library is used both for simulationand for running the
actual system. The application built will not have to act differently on virtual
and real components, and will not even know which componentsit is operating.
This is a major feature in the high-level control system thatcreates more realistic
simulations, less errors and simpler applications.

7.5.3 Supporting libraries

A library of robots and sensors needed in the model is also required. The robot
library is preferably based on routines provided by the robot manufacturer, “black
boxes”, that will help the high-level control system to calculate correct accelera-
tions, speeds, and limitations in the different situations. Accurate trajectory per-
formance is important in the industry. Laser welding, for instance, demands very
accurate performance to obtain a good weld quality. The black box includes an

64 Contribution

accurate dynamic model of the robot consisting of mechanical3, electrical/digital
and robot control models.

The sensor library is also based on manufacturer routines and each virtual sensor
is essentially built around this black box consisting of routines providing the same
interface and accuracy as the real sensor. Also, limitations in hardware must be
taken into account, for example bandwidth and, if possible,failures that will oc-
cur with some measured or expected probability. Force-sensors and other tactile
sensors will be more difficult, but not impossible to simulate. In cases where
there is a major difference between reality and simulation,this discrepancy can be
quantified.

It is realistic that generic robot/sensor interfaces are provided for groups of ro-
bots/sensors with similar characteristics and usability.By using generic inter-
faces, the user will have the opportunity to compare similarsolutions from dif-
ferent manufacturers. Virtual components are also valuable before a work-cell is
built, or when different alternatives are to be assessed. Inother words, two dimen-
sions of generic interfaces are needed: one that hides if a component is virtual or
real, and one that groups similar components together, see Figure 7.3.

Component A
(physical)

Component A
(simulated)

Component B
(physical)

Component B
(simulated)

In
te

rf
a
c
e
 A

In
te

rf
a
c
e
 B

C
o
m

p
o
n
e
n
t

ty
p
e
 I
n
te

rf
a
c
e

A
pp

lic
ation (Main task)

Run-time
 Library

Obj 1 O
b
j 2

 O

bj 3 Obj 4

O

b
j
5

Figure 7.3: Two dimensions of generic interfaces, one that hides if a component
is virtual or real, and one that groups similar components together.

7.5.4 Process-oriented parameterization

In normal industrial robot programming, the path is createdand the process is
based upon the decided path. Here a process-oriented methodis proposed, based
on the hypothesis that it is natural to focus on the process, since the path is in real-
ity merely a result of process needs. Another benefit of choosing process focus is

3Calculated, for instance, using a non-linear finite elementformulation.

7.5 General system structure 65

that it automatically leads us into task-oriented thoughts, which in turn can be split
in sub-tasks, one for each part of the process with similar process-characteristics.
By carefully choosing and encapsulating the information needed to execute a sub-
task, this kind of encapsulation, orobject4 can be re-used whenever the actual
subtask appears. For each subtask, an instance of the objectis created, see Figure
7.4.

Object A Object B Object C Object D Object E Object F Object G

Object repository

A1 B1 C1 B2 G1

Application 1 (main task)

D1 B1 C1 B2 E1 F1 E2 G1

Application 2 (main task)

Figure 7.4: Applications are built upon object instances taken from theobject
repository. Each object can be re-used whenever the actual subtask appears.

The path is often created during run-time and is based on sensor readings. This
put clear demands of openness of the robot control system. Luckily, in many con-
crete industrial applications, a nominal path is normally known before hand and a
deviation from the nominal path over a specific threshold would be considered an
error that can stop the process. For those processes, a control system that allows
a certain deviation from a nominal path will probably suffice.

7.5.5 Visualization of work-cell components

The system also consists of APIs to visualize general components besides robots
and sensors in the work-cell. Thus, an application built with the system is inde-
pendent of visualization software used and can basically beseen as a controller in
the model-view-controllerparadigm. Portions of the model are spread in differ-
ent parts of the system, in the graphical environment, in theprocess database, in
kinematical and other databases. The view is, not surprisingly, appearing in the
visualization software. As mentioned before, each object has responsibility over
a subtask and may occur in as many instances as needed to fulfill the particular
task.

4The name is given because of the resemblance with object classes in Object-Oriented Program-
ming, OOP.

66 Contribution

7.5.6 Object aspects

When an application is running, one of the objects normally has the actual control.
The underlying run-time system is the framework that essentially permits high-
level control and supports the objects and the main program in all major aspects.
The object may create the path on-line-dependent on sensor readings. Since the
object encapsulates most of the control of the process it hasimportant duties:

• Initialization and execution

• Sensor-process interaction

• Interaction with other objects

• Graphics interaction

• Interaction with run-time and operating system

Object-initialization and execution

Each object must be initialized with relevant sensor parameters, process variables
and world model parameters and these are usually different for each object. Then,
the objects are executed in sequence order. Some objects arerestricted to start
the process, some defines the process end, and other objects can occur in arbitrary
order between start- and end objects.

Sensor-process interaction

The objects rely on data from a world model and are bound to output from one or
more sensors and a process. A good example is the experimental weld object that
is bound to a laser tracker sensor and weld process variables. The chosen level
of abstraction is intended to hide sensor-process interaction from the user. The
objects’ behavior is predetermined by their initialization data and run-time rules.

The coupling between sensor and process makes it possible tocreate a library of
objects that can be re-used for tasks within similar context. In the robotic arc
welding experiment, the weld object is invariant of the welddistance. Thus, a
single weld object can be used for all possible distances. Iftwo separate welds are
necessary to complete a particular task, two separately initialized instances of the
weld object are needed.

7.5 General system structure 67

Object-object interaction

Although objects normally are independent they are part of acontinuous task. The
weld object, for example, is designed to weld forever unlessan error occurs, i.e.
sensor readings are indicating a lost seam. To end a weld properly an end-weld
object5 has been chosen, which interpret a lost seam as an normal end-of-weld
condition instead of an error.

In this situation it is feasible to stop execution of the weldobject close to where the
weld is supposed to end without signaling an error condition, whereafter control
is returned to the main program, which then invoke the end-weld object. There
are, of course, several possible solutions to accomplish transfer between objects.6

Object and graphics interaction

The kinematic definition of the nominal work-cell is separated from the execution
of tasks, and can preferably be made in a RSA. The work-cell can then be saved
in a RSA-independent text-based format. When a program is started, the nominal
world-model can be imported. The model describes the kinematic relationships
between different objects (including robots) in the work-cell.

During execution, the user interface and the motion controllogic should be separ-
ated whenever possible7. An advantage of separating graphics and logic is that it,
under execution, becomes possible to accomplish high-level control using a real-
time operating system, which is needed to actually run the system as a component
sharing resources with an open control system. However, it is beyond the scope
of this thesis to propose actual hardware solutions.

Object and run-time system interaction

The implementation of the underlying run-time system,RLib, calls the objects
regularly during execution if the object uses interrupt procedures for tags and
tasks. RLib calls the task procedure before and after the task is executed. The call
includes the current task state. The tag procedure is calledbefore, during and after

5This is an implementation decision. Another solution couldbe to introduce an end-weld mode
in the weld object.

6The implementation uses procedure hooks that are called every interpolation step, i.e. each
time the object itself is called from the underlying run-time system.

7Although it is not realistic to use a RSA as a container for virtual sensors during execution of a
system with hard real-time demands, it has been used in the experiments.

68 Contribution

each tag is processed. Here, “during” denotes an interrupt after each interpolation
step when executing the tag.

RLib holds the state of the task in a structure. The structureholds the current path
and tag8 along with other information pertinent to the current motion and current
state, and is passed to the task- and tag procedures. By usingthis information,
the object can read the current motion state and use it after the main program has
invoked it.

Run-time system and operating system interaction

A problem with today’s off-line systems is that logic and graphics are mixed and
dependent on each other, which results in that actual load onthe graphical system
strongly affects the control performance. In reality, the performance of embedded
systems is usually needed in parallel to high performance 3Dgraphics. If graphics
need to be updated in tight loops which might be the case when virtual sensors are
used, today’s commercial RSAs do not provide a realistic solution because of their
low and unpredictable performance. Customized solutions are probably required.
This does not impose major difficulties taking into account today’s computing
potential and available software tools.

7.6 Conclusions

With current programming technique, robotized small batchmanufacturing and
manufacturing of one-off products demand individual robotprograms. As a res-
ult, robotized manufacturing is not cost-effective for this type of production. The
fact that today’s industrial robot programming is motion-centered probably results
from that robots normally just iterate through a predefined and downloaded pro-
gram. Apart from local adjustments, most robot programs still do not use sensors
which output affects the actual path of the tool. The use of sensors has potentially
to cope with the different set-ups for one-off products, butthe increased system
complexity and uncertainty that sensors implicate must then be handled.

The methodology addresses the mapping problem between observable and con-
trollable variables and the focus is on controlling the process/task rather than the
motion alone. As indicated above, such motion may include orientation changes
of the weld object (with a positioner), changes of poses of the robot and changes of
travel speed. In turn, this will require to monitoring issues related to out-of-joint

8A tag contains a pose and one or more tags constitute a path. The trajectory is then created
from one or more paths.

7.6 Conclusions 69

limits, collisions, configuration changes and singularities, which, during sensor
guidance, has to be done in real-time.

The proposed process-sensor oriented methodology parameterizes on sub-tasks.
Each sub-task is based on process-sensor data and this information is encapsulated
in an object. Motion is generated by the object, taking into account limitations
imposed by initialization and process restrictions. The ideas have been submitted
for publication in (Cederberg, Olsson and Bolmsjö, 2004).

70 Contribution

Chapter 8

Experimental system structure

8.1 Introduction

A test bench has been developed based on the general system structure described
in Chapter 7 for combining simulated and real components andverifying their
functionality, both during simulation and execution. The experimental structure
and arc welding application used a laser tracker with control hardware, which
existed both as simulated and as real components, a commercial six-axis robot
with an unmodified control system, a distance-sensor, whichonly existed in the
simulated world, and two cameras1. The cameras were not simulated.

Several features were handled by the system components: remote compilation and
loading of a specially designed program to the robot controller, on-line trajectory
generation, and on-line collision-tests and singularity detection and avoidance.
The commercial robot controller could only execute pre-loaded programs. To
be able to execute on-line generated trajectories, the robot program downloaded
to the robot was given a generic design that demanded continuous updated joint
values to execute. This was very different from the static programs with pre-
decided trajectories typically executing on the robot controller.

The arc welding application was assembled as a set of objects, which divided the
logic of the arc welding task into sub-tasks. Each object encapsulated sensor-
process related data and could potentially occur several times during the applica-
tion process. Figure 8.1 gives a logical view of system components.

1Camera set-up and mathematical treatment of camera output are courtesy of Stefan Adolfsson
(stefan.adolfsson@hbg.lth.se).

72 Experimental system structure

A
pp

lic
ation (Main task)

RLib

Search Sta
rt P

t W

eld Obsta

cl
e
 E

n
d
 W

d

Feeder

Physical robot

ABB 2400/16
S4C+ control unit
RAPID

Simulated robot

Collision detection
Simulated work-cell
Simulated laser camera

Simulated M-Spot tracker

CSR4000 control simulator
GUI
Slave

Tracker interface

Master

Physical M-Spot tracker

M-Spot laser camera
CSR4000 control unit

Vision system

Unibrain Fire-i-400
3.5 mm lens
MatLab

S
la

ve
 -

 S
im

u
la

te
d
 c

a
m

e
ra

Robot interface

Figure 8.1: Logical view of system components in the experimental setup.

8.2 Application

The application was connected to the different sub-systems: the RSA, the tracker,
the distance-sensor interface, the robot interface and the“feeder”. The information
time rate needed for a tracker-guided robot during arc welding was in the interval
of 40-60 ms (20Hz) which made local host TCP/IP communication a suitable
choice.

8.3 Feeder 73

8.3 Feeder

In this particular experiment an ABB 2400/16 robot was used.Its S4C+ control
system executed programs written in the ABB RAPID language.To accomplish
on-line trajectory generation the “feeder” component routed the joint values from
the application to the generic program executing on the robot controller. This
system component utilized a robot vendor proprietary protocol, the ABB Robot
Application Protocol (RAP), to communicate with the robot controller. Thus,
the feeder served as an interface to the robot and hid vendor-dependent protocols
from the application. From the application’s point of view,the requirement was
to deliver joint values whenever requested by the feeder. The feeder was also
responsible for reading the actual position and orientation of the robot.

8.3.1 RAPID language

The program consists of a number of instructions that describe the work of the
robot in a Pascal-like syntax. There are specific instructions for the various com-
mands, such as to move the robot or to set an output, etc. Thereare three types
of routines: procedures, functions and trap routines and three kinds of data: con-
stants, variables and persistents. Persistents are variables that can be reached from
the outside world. Other features in the language are: routine parameters, arith-
metic and logical expressions, automatic error handling, modular programs and
multitasking (ABB Rapid Reference Version 3.2, RAPID Summary, n.d.).

8.3.2 Remote Procedure Call and External Data Representati on

Remote procedure calls are a high-level communication paradigm that allows pro-
grammers to write client/server network applications using procedure calls that
hide the details of the underlying network. The RPC model is similar to the
local procedure call model where the caller places arguments to a procedure in
a well-specified location (such as a result register) and transfers control to the
procedure. When the caller eventually regains control, it extracts the results of the
procedure from the location and continues execution (IRIX Network Programming
Guide, n.d.). RPC uses XDR to establish uniform representations for data types
in order to transfer message data between machines (AIX Version 4.3 Communic-
ations Programming Concepts, 1997). Sun’s RPC and XDR are freely available
on numerous platforms.

The Robot Application Protocol provides a set of services that makes it possible

74 Experimental system structure

to monitor and control the robot from an external computer. These are grouped
into four classes: general management, variable access, file management and pro-
gram control services. The general management services aresupport services for
all other services, e.g. opening and closeing a connection to a specified server
and restart of the controller. RAP is using named variable objects to get inform-
ation from the robot-system or affect the robot system, e.g.to read and write
RAPID defined and predefined system variables and event handling. An event
in the system can be subscribed for, and as a result of such subscription, a spon-
taneous message will asynchronously be sent to the externalcomputer when the
event occurs. RAP file management provides the functionality to access files on
the memory devices in the robot system, e.g. to open, read, write, close, rename
and delete a file (ABB RAP Protocol Specification 1.05, n.d.; ABB RAP Service
Specification 1.05, n.d.;ABB Ethernet Services 3.0, n.d.).

8.3.3 High-level remote motion control

Typically, a standard RAPID program needs no invocation from the outside world
after execution has been initiated. It is only possible to send data with RAP2.

A special RAPID program with a designated sequence of move instructions was
downloaded to the controller. The RAPID program needed to bedesigned for
letting a remote application control the robot’s motion in amaster-slave fashion.
The relevant part of the program consisted of a loop where move instructions
continuously were executed as shown below.

!RAPID program executing on robot controller
...
PERS num pnum := -1;
PERS num p0set := 0;
...
PERS robtarget p0:=[...];
...
WHILE NOT aborted DO

WaitUntil p1set <> 0;
p1set := 0;
pnum := 0;
MoveL p0, v, z, tool0;

WaitUntil p2set <> 0;
p2set := 0;
pnum := 1;

2As oppose to instructions; a limitation that has been circumvented in (Pires and da Costa, 2000)
by introducing a switch statement in the RAPID program whereeach selector defines a predefined
and possibly complex service.

8.3 Feeder 75

MoveL p1, v, z, tool0;

WaitUntil p3set <> 0;
p3set := 0;
pnum := 2;
MoveL p2, v, z, tool0;

WaitUntil p0set <> 0;
p0set := 0;
pnum := 3;
MoveL p3, v, z, tool0;

ENDWHILE
...

The loop represented a circular buffer of4 robtarget structuresp0...p3which
contained position, orientation of tool center point (tcp)and configuration of robot
and external axes. The variables were declared asPERS (persistent). During exe-
cution, these structures were dynamically set (with some latency) with joint values
provided by the application. The feeder kept track of which move instruction that
was to be executed by the robot controller, i.e. whichrobtarget structure to
be updated at a specific time.

TheMoveLdirective refers to a via movement andv andz denoted tcp speed and
the zonedata structure respectively.zonedata was used to specify how a
position was to be terminated, i.e. how close to the programmed position the axes
had to be before moving towards the next position. For instance, at some point
of time during the move fromp1 to p2, bothp2 andp3 had to be known to the
robot control system. To be able to prepare for the next movement a fourth point
was needed.

Even though a RAP call returns synchronously, there is no guarantee that the
robtarget structure in RAPID is updated whenwriteRobTarget() re-
turns. Since RAP calls that write data to RAPID variables in practice are asyn-
chronous, there is need for a mechanism to be certain that a particular variable
holds the data previously written to it.

This hand-shaking problem was resolved by using busy wait3 in the RAPID code
as well as in the feeder. Thepnum variable in the running RAPID program was
continuously monitored by the feeder and when it eventuallybecame updated in
the RAPID program, the nextrobtarget structure update was sent from the
feeder to the robot controller.

/* Feeder pseudo code to handle */
/* routing of data and hand-shaking */

3A polling method.

76 Experimental system structure

/* between application and robot */

static int pnum = -1;

int pnumChanged()
{

RAPVAR_DATA_TYPE data;

readRAPIDVar("pnum", data);
if (data.RAPVAR_DATA_TYPE_u.num != pNum) {
pNum = data.RAPVAR_DATA_TYPE_u.num;
return 1;

}
return 0;

}

void feedRobTarget(ROBTARGET robTarget)
{

/* set two pnum’s ahead, i.e. */
/* if pnum = 0, set p2set = 1 */
/* in RAPID program */
int pXset = (pnum + 2) MODULUS 4;
writeRobTarget(robTarget, pXset);
writepXset(pXset);

}

void routeJoints()
{

ROBTARGET robTarget;
JOINTVALUES joints;
do {
if (pnumChanged()) {

joints = sendJointRequestToApplication();
robTarget = kinematicCalculation(joints);
feedRobTarget(robTarget);

}
} while (!aborted);

}

void main()
{

if (compileProgram() == SUCCESS) {
connectApplication();
/* initialize first two robtargets */
initializeRobTargets();
startRAPIDExecution();
routeJoints();

}
else
displayErrors();

}

8.4 Stereo cameras 77

To avoid having the speed of the application exceeding the speed of the robot,
the application only sent joint values after receiving a request message from the
feeder. If the application was unable to send values upon a request, the robot
came to a temporary stop until the application was ready to resume delivery of
joint values.

8.3.4 Remote editing and compilation of RAPID programs

Some of the strengths of RAP were shown in the supporting parts of the feeder.
Besides handling the real-time issues of routing values from the application to the
robot, the feeder provided a RAPID compile environment within emacs4, a well
known LISP-based editor. By issuing a compile command in emacs, the RAPID
program would get syntax checked and any errors were shown with row, column
and error message in a second window. By clicking on the error, the cursor marked
the offending line in the RAPID program, see Figure 8.2.

Behind the scene, the actual compilation was performed remotely on the robot
system. By using RAP, the RAPID program was sent to the robot controller and
was loaded and checked. The errors were saved in a log file on the robot con-
troller and were transferred back to the feeder and displayed to the user in an
user-friendly fashion. If the RAPID program passed the syntax check, the user
could choose to automatically run it.

8.4 Stereo cameras

Two Unibrain Fire-i-400 cameras each equipped with a 3.5 mm lens were used to
calibrate the nominal world model. The cameras were placed to get a bird view
of the work area. Workpiece images were processed in Matlab and the result, a
better nominal workpiece pose was written to a file before theapplication started.

8.5 Tracker

A tracker component was developed to allow applications to interact with the
tracker control unit. The tracker interface permitted the application to use a single
protocol for communication irrespective of if communicating with the physical

4Originally written by Richard Stallman in 1976, as a set of Editor MACroS for the TECO
editor. Popular versions today are GNU Emacs, see http://www.gnu.org (also written by Stallman),
and its close relative XEmacs.

78 Experimental system structure

Figure 8.2: The feeder provided an emacs compile environment which allowed
the user to remotely edit and execute RAPID programs (the program in the Figure
is just provided as an example, please disregard from details).

or with the simulated tracker. The interface was simple and the application did
not need to be aware of issues such as internals of data packets, error-handling
procedures etc.

When the tracker component was used for simulation, a simulator emulated the
tracker controller’s actions. A simulated tracker, i.e. the tracker running a sim-
ulator subcomponent, could work in conjunction with a real or simulated robot.
Again, this did not affect the application, which because ofthe tracker interface
was truly unaware of whether the tracker connected to the simulator or to the
tracker control unit.

Next will a description of the physical tracker, the ServoRobot M-Spot Laser and
the CSR4000 control unit, follow.

8.6 Physical tracker components 79

8.6 Physical tracker components

8.6.1 Laser scanner

The laser beam projection is called the optical plane and thecamera can only
image objects that intersect the optical plane within the effective depth of field of
the camera. The coordinate system of the camera is defined in the optical plane.
A 3D model, as represented in the RSA, is shown in Figure 8.3. Depending on the
camera head, it has a practical resolution ranging from lessthan 0.015 millimeter
at close-working distances (100 mm) to 1.5 millimeters at far working-distances
(1000 mm).

Figure 8.3: A 3D model representation in the RSA of a welding torch with at-
tached seam tracker.

8.6.2 Control unit

The controller maintained the camera at its optimal operating level. It adjusted
the power and/or sensitivity in order to cope with varying surface finishes and di-
gitized the video signal of the camera and performed low-level vision-processing.

8.6.3 Processing algorithms

Several image-processing algorithms were provided dedicated to the five follow-
ing joints: fillet, corner, lap, butt and v-groove, as shown in Figure 8.4. Several

80 Experimental system structure

techniques were used to ensure the system robustness. A scratch on the surface of
the plates or shiny surface conditions could cause outliers. An outlier is a point
that is far away from most of the others. The outliers were detected and elimin-
ated at the initial stage of image-processing. The algorithm of each joint included
validation features taking into account the obstacles thatcan be seen in the field
of view of the camera.

Figure 8.4: Standard joints: fillet and corner in left column. Lap, butt and v-
groove in right column.

8.6.4 Image-processing region and breakpoints

Each profile contained 256 or 512 points. The boundary size defined the image-
processing region, which could be specified for two reasons:to restrict the vision-
processing region in order to avoid unnecessary features that may confuse the vis-
ion analysis, and to reduce the vision-processing time by eliminating unnecessary
profile points.

Breakpoints are feature points extracted from the profiles.In each image-process-
ing algorithm, the breakpoints were extracted from the profiles based on the joint
features. They were numbered from 0 to 7 and were used to definethe tracking
point position or to extract further information. The quantity of breakpoints de-
pended on the quantity of joint features but did not exceed 8.The breakpoints
were labeled asB0, ..., B7.

8.7 Simulated laser camera 81

8.6.5 Weld joint recognition

A basic function was to filter the data and create line segments that matched the
criteria of specific weld joints and their tolerances. The details in this process are
beyond the scope of this thesis but included in principle (1)elimination of outliers,
(2) creation of line segments, (3) merging of line segments with similar geomet-
rical characteristics and (4) validation of joint parameters, for instance angle and
gap, see Figure 8.5. The process result consisted of a set of breakpoints, i.e. in-
formation describing the geometry of the chosen joint type.If no such joint was
discovered, an error was returned.

8.6.6 Process results

The process results from both the physical and virtual tracker was used by the
“master”, which was the tracker sub-component closest to the application. When-
ever the application wished to receive information from thesimulated tracker, the
request was handled by the master sub-component, which in turn talked to either
the tracker control unit or the simulator, without knowledge of which. When
running the tracker in a simulated mode, a tracker GUI could be used to monitor
the joint and the calculated breakpoints.

8.7 Simulated laser camera

If a simulated robot was used, a simulated camera emulating the tracker, could be
applied. A simulated robot could be an ordinary robot from a robot library in any
RSA or other application providing visualization and an APIthat enabled the user
to create a simulated camera for interaction with the work-cell objects. By having
the simulated camera emulate laser rays sweeping over the camera’s field of view
and working-distance, an array of distances to objects in the work-cell could be
collected. The sweep distance array could then be sent to the“slave”, which was
another tracker sub-component.

8.7.1 Virtual laser scanner

The virtual scanner was represented by only one function, which emitted virtual
rays over a certain angle. For each ray, the RSA APIAxsEntityRayCast()
was called, which yielded the distance in millimeters and the point of intersection
to the closest part (plates, weld joint). The distance was compared to a maximum

82 Experimental system structure

B 2

Rough
surface

Outlier
elimination

RaysPlates

dmax

pmax

Split when
dmax > tsplit and
s >= smin

α
g

Merge when
|α| < αmerge and
g < gmax

gap

Fillet Joint Templa te Matching.

Accept if
αmin < α < αmax and
gapmin < gap < gap max

Create breakpoints B0..B4 and
process parameters α and gap

1

2 3

s

4

αB 0

B 3

B 4

B 1

L 01

L 34

L 12

Figure 8.5: Principle of the joint filtering process: (1) elimination ofoutliers, (2)
creation of line segments, (3) merging of line segments withsimilar geometrical
characteristics and (4) validation of joint parameters.

8.8 Simulated control unit 83

hit distance that limited the measurable area. Measurements exceeding this dis-
tance were not taken into account. Finally, a complete sweepwas returned as a
raylist containing a vector with measured points of intersection inthe coordinate
system of the virtual camera and the total number of successful measurements.

8.8 Simulated control unit

The segmentation process and fillet joint template matcher represented the control
unit in the physical world.

8.8.1 Segmentation process

The slave sub-component performed image-processing on thesweep distance ar-
ray using similar algorithms as the physical tracker control unit. The segmentation
process consisted of calling thesplit procedure followed by themergeprocedure,
see Figure 8.5. The points of intersection formed a profile ofstraight lines. Ini-
tially, the profile was considered consisting of only one segment. Thesplit al-
gorithm divided the initial profile into several according to tsplit, sintv andsmin.
Only segments with length between end points larger than thesplit threshold,
tsplit, were split. To increase the calculation speed, thesintv parameter could be
set to an integer value greater than 1. A value of 2 means that every second ray
were discarded in calculations. The segments were stored insegmentlistalong
with num_segments, the number of segments. Split was implemented as a recurs-
ive algorithm, which divided the segment until eitherdmax was less thantsplit,
or the region was smaller than the predefined minimum sizesmin. dmax was the
maximum distance between the intersection of a line betweenthe end points of
the segment and the normal to this line to a point included in the segment.

Next, themergealgorithm was called. Two segments that were close enough to
each other and fulfill angular requirements, i.e., less thanthe maximum merge gap,
gmax and the maximum merge angle,αmerge respectively were merged to one. A
merge gap could occur after outliers were eliminated. The merge angle was the
angle between two segments. The iteration continued through all segments in the
profile.

8.8.2 Fillet joint template matching

The result from the segmentation process consisted of a number of segments that
fulfilled stated terms of linearity. The simple template-matching module imple-

84 Experimental system structure

mented used these segment to check if the segments corresponded to pre-defined
angular and gap restrictions and to create breakpoints.

8.9 Distance-sensor

The range sensor, which measured the distance to obstacles in the weld direction,
utilized a similar simulation technique as the tracker.

8.10 The RSA and its resources

The RSA provided resources for creating the nominal virtualwork-cell and the
simulated physical work-cell, visualization and collision detection in the simu-
lated work-cell. In simulation mode, it also displayed the “physical” robot motion
and distance measurements utilized by simulated sensors. These resources were
reached by the RSA’s proprietary APIs. RLib handled the kinematic relationships
between these objects and the RSA was responsible for visualization, collision
detection, export of the nominal kinematical relationships and for simulating the
M-Spot camera.

8.10.1 Export of the nominal kinematic relationships

When the nominal work-cell was created in IGRIP, a RLib database was built
by using IGRIP’s proprietaryAxxessAPI. During the recursive traverse of the
work-cell objects, the kinematical relationships were saved outside IGRIP in RLib
database format by using RLib object creation methods.

8.11 Application objects

The application consisted of a number of independent objects, where instances of
some of the objects could be used and re-used in virtually anymeaningful order.
The objects encapsulated the logic in different process phases of the application;
search phase, start point phase, weld phase, obstacle avoidance phase, end weld
phase etc. For all application objects, the user defined object-specific behavior
such as speed, weld current and other process-dependent data5. Several instances
of an object could be utilized in one application, each instance with its own pro-
cess characteristics.

5However, weld process dependent data was not utilized during the experiments.

8.11 Application objects 85

8.11.1 Search object

The search object was utilized to determine the weld start point. When found, it
created a start point path and a weld path. The search continued so as to measure
the weld workpiece orientation and thus, the weld direction. This extended search
distance was usually equal to the distance measured in the weld direction between
the weld wire and the laser beam sweeping perpendicular to the weld direction.
The search information was saved as a number of tags in the weld path, each
containing a pose. A search path was a user-defined number of sweeps in the
weld direction, and each sweep was performed at some distance from the nominal
start point. After the extended search, the virtual workpiece was calibrated with
respect to the actual pose of the (possibly simulated) workpiece measured in the
search.

8.11.2 Start point object

This object consisted of the start point task that in turn executed motion along the
start point path that was created by the search object. Usually, the start point path
only consisted of a single start tag.

8.11.3 Weld object

The weld object continuously read data from the tracker and created tags during
the welding process. In other words, new poses were appendedto the weld path
at the same time the as motion system used earlier added tags to guide the weld
gun. Instances of this object could be utilized anywhere between the start point
object and the end weld object.

8.11.4 Obstacle object

The obstacle object responsibility was to safely guide the robot in the vicinity
of the obstacle. The robot followed a predefined obstacle path. The path was
“owned” by the obstacle being described in the obstacle coordinates, and natur-
ally depended on the shape of the obstacle. The obstacle object could be applied
between weld two objects or between a weld object and an end weld object.

86 Experimental system structure

8.11.5 End weld object

The end weld object was similar to the weld object except thata lost weld message
from the seam tracker was interpreted as end-of-seam instead of being interpreted
as an error. It was normally used after a weld object but couldbe applied after an
obstacle object as well. In any case, it was utilized close tothe expected end weld
point.

8.12 Application object interaction mechanisms

While it was comfortable to split the weld task into logically defined discrete
sub-tasks using the above-mentioned objects, since robot motion is continuous,
there was a need to know when one object should hand over the responsibility to
another. Instances of, for example, a weld object could occur after a search object
or after an obstacle object and therefore the object-initialization prerequisites also
had to be defined. The strategy utilized in this implementation was to refer to
common motion data by calls to objects owned by the motion control library,
RLib (briefly described below). Application-specific data,such as references to
the robot, tracker and distance-sensor, were handled through a shared process
object that was passed to every application object during initialization.

8.13 RLib, the high-level motion control library

All components, except for the tracker GUI, were built upon objects from RLib,
a lightweight library for high-level simulation and high-level control of advanced
sensor-guided robots in soft real time. RLib was the run-time library that handled
the interaction with the unmodified S4C controller and interfaced application ob-
jects. RLib was written in portable ANSI C in an object-oriented style and handled
model building including frame dependencies, trajectory creation, singularity de-
tection and motion. The library was based on POSIX threads and included APIs
to handle threads and synchronization between objects. RLib objects were for
example tags, paths, tasks and robots. RLib handled the kinematical relationships
between these objects.

RLib also contained an API that was utilized to import kinematical relations from
a work-cell in a RSA or any other system providing work-cell data. Provided that
the application allowed its internal data to be read, an RLibdatabase could be
saved to disk and read into a run-time database during initialization of the applic-
ation. The application objects could then modify the run-time database through

8.14 The world model 87

an API. Modification of RLib objects included both adjustment of object content
and changes in kinematical relationships between objects.Other features of RLib,
besides motion handling, were:

• Device independence. Handled all devices that could be described with the
Denavit-Hartenberg notation.

• Synchronization and thread handling routines.

• Kinematic expression of any RLib object in any other RLib object.

• Conversion functions between homogeneous coordinates andother repres-
entations.

• Event handling, notification and subscription routines.

• Communication, printing and serialization routines.

• Safety routines and debugging help.

8.14 The world model

In the experimental structure described, the world model was split between the
application, RLib and the RSA. RLib was responsible for handling kinematic
relationships and for generating robot motion, while IGRIPprovided graphical
feedback, measurements needed by simulated sensors and collision tests. The
two environments were kept synchronized during run-time bythe application and
any change in RLib therefore immediately affected the graphical model in IGRIP.
The opposite also hold; a detected collision in IGRIP propagated instantly to the
application, which in turn asked RLib to halt execution.

If the application besides the virtual work-cell also simulated the real robot, the
world model was extended to comprise the simulated robot andits attached sen-
sors.

8.15 Conclusions

A system of real and simulated components was built to enablea task-oriented
application to operate by executing instances of reusable objects, each with a par-
ticular sub-task responsibility. The structure let the application use real or sim-
ulated components without change of object code and it couldtherefore be used

88 Experimental system structure

for both simulation and execution of the robot program. The structure even made
it possible to mix simulated and real components. Focus was on these ideas and
not on the implementation issues, but virtual sensors, sensor and robot interfaces,
and a run-time library were nonetheless developed to support the experimental
platform.

The integration of computerized and real components made itpossible to create
applications that included sensor-guided robots off-lineand run them unmodified
on-line. In this particular experimental platform, arc welding was the application
in mind but the method can of course be utilized in other areasas well.

Chapter 9

Experimental work

9.1 Introduction

An arc welding application was chosen to verify the conceptual ideas in Chapters
6 and 7 of dividing a sensor-guided process into sub-tasks using the experimental
structure described previously. The use of sensors implieddeviation from some
nominal condition and in robotized arc welding a change of path could lead to
several malfunctions that had to be detected. In this particular experiment, sin-
gularity detection, collision detection and out-of-jointlimits were caught. Actual
welding was not performed. Figure 9.1 shows the experimental set-up.

The experiment showed a capability to handle process-related events during run-
time in a system where real and simulated objects (robots, sensors, workpieces)
were transparently interchangeable. The on-line events were

• finding the workpiece actual pose,

• calibration of world model objects based on sensor input,

• trajectory creation based on calibrated objects,

• singularity and out-of-joint limit detection performed inthe calibrated
world model,

• collision detection of simulated objects in the calibratedworld model, and

• handling of objects that interrupted the trajectory.

90 Experimental work

Figure 9.1: Acutal experimental set-up. An ABB 2400/16 robot with unmodified
S4C controller (outside view), the M-Spot Laser Scanner attached 50 mm ahead
of the weld torch with its CSR4000 controller (outside view)and two Unibrain
Fire-i-400 cameras, each equipped with a 3.5 mm lens.

The application execution was essentially based on a numberof objects that con-
trolled robots and sensors without knowledge of if they weresimulated or real.
Simulating the entire welding application on the computer did most of the ex-
perimental work. The delay of two interpolation steps caused by the design of
the generic RAPID program running on the real robot controller influenced the
tracker and was therefore also simulated.

The program was defined by the subset of chosen objects and theorder between
these objects. The order of objects was laid out by hand and was compiled in a
“normal” C program. The program then ran autonomously without any human
intervention.

The application remained unchanged independently of whether real or simulated
components were used. By using, for instance, a real robot and a simulated laser
tracker attached to a simulated robot in IGRIP, the real robot followed the simu-

9.2 Creating and importing the nominal model 91

lated robot’s trajectory and the real robot’s motion could be studied without any
chance of collision with real obstacles. In other experiments, a real laser tracker
was used with a virtual robot. By using this set up it was easy to make sure that
the tracker worked as supposed without having to run the riskof colliding with
the physical robot.

9.2 Creating and importing the nominal model

The nominal model was created in IGRIP and included the workpiece, the robot,
the seam tracker and the distance-sensor. The cameras1 were not included in the
model since they were not simulated. The work-cell in IGRIP was recursively tra-
versed. RLib APIs were used to save the work-cell to a file in the RLib format still
keeping the hierarchical kinematical relationships between items in the work-cell.
In the imported work-cell, only the robot’s base coordinatesystem was represen-
ted. The internal relations between robot joints, forward and inverse kinematics,
were accessed by RLib from a shared library.

9.3 Reading nominal data and initiating application object s

After the application was launched, a run-time database wasbuilt from the saved
file. After the nominal work-cell was defined, the application objects were ini-
tialized. The following application objects were used to build the experimental
application:

1. Start object. Contained the path from the home position tothe position of
the search start point.

2. Search object. Controlled the search path, the creation of the start point
path and the first 50 mm of the weld path. Created a new workpiece pose
and calibrated the simulated workpiece according to it.

3. First weld object. Was responsible for the weld from the start point to the
reinforcement2.

4. Reinforcement object. Handled welding just before and just after the rein-
forcement, and guided the robot safely around the reinforcement.

1Camera set-up and mathematical treatment of camera output are courtesy of Stefan Adolfsson
(stefan.adolfsson@hbg.lth.se)

2It is a type of reinforcement that supports the structure during welding only and is sometimes
removed depending on the application.

92 Experimental work

5. Second weld object. Controlled welding from the reinforcement and almost
to the end of the seam.

6. End weld object. Was responsible for the last weld distance.

7. Retract object. Retracted to a safe pose after the weld wasdone.

The first and second weld objects were instances of the weld object but initialized
separately. Besides these active objects, simulation objects were also initiated.
These objects, which were used to simulate the operations before actual searching,
welding, etc., served to minimize chances for entering singular conditions, out-of-
joint limits and collisions.

In the main experiment, described below, stereo cameras were used to improve the
nominal pose and to measure the position of the reinforcement. As a second exper-
iment, a simulated distance-sensor was used to measure the reinforcement position
during the first weld. After the distance was measured, the simulated work-cell in
IGRIP was updated, and since the reinforcement path was expressed in reinforce-
ment coordinates, the path was updated accordingly. Since the distance-sensor
did not exist in the real world, this experiment was done without a real reinforce-
ment, but the real robot acted as if a real reinforcement existed and followed the
simulated trajectory to avoiding it.

Only a minor change to the code was needed to handle the case when the rein-
forcement’s position was known from the beginning, and the case when its po-
sition was computed during the weld. This procedure, which was called during
each interpolation from the weld object, either just stopped the weld object after
the fixed distance given from camera readings, or called the distance-sensor to
measure the range and then stopped the weld object at a specified distance from
the reinforcement.

9.4 Improving the workpiece nominal pose

The workpiece, seen in Figure 9.2, was essentially a four-sided box with a size
and geometry known in advance. The pose of the workpiece and exact position
of the reinforcement along the weld was, however, not known.The objective of
the first part of the experiment was to find a good estimate of the workpiece’s
actual position and orientation by using the stereo cameras. The calibrated cam-
eras yielded a rough estimate of the parameters as well as of an accurate relative
position of the reinforcement compared to the weld start point, represented by a
corner of the box. The cameras yielded a good estimate of the workpiece position

9.5 Execution of start and search simulation objects 93

Figure 9.2: (Left) The workpiece before calibration from the vision system.
(Middle) After the camera calibration but before search with the laser tracker.
(Right) After searching with the tracker, the position and orientation error of the
workpiece is sufficiently small to create a good quality weld

and orientation. In the vertical direction, the error was less than five millimeters
and in the horizontal direction less than 20 mm. The reinforcement’s pose was
accurately given as an offset from the weld start point.

The tack-welded reinforcement had a known size and orientation perpendicular
to the weld seam but had an unknown absolute position measured in the weld
direction. Having knowledge of what kind of obstacle is expected and of their
approximate position of where to expect them is relevant in industrial applications
and should not be interpreted as a restriction.

The application adjusted the position of the virtual workpiece and reinforcement
to coincide with camera output, see Figure 9.2. The simulated model in IGRIP
was updated as well. Under lab conditions, the workpiece position and orientation
interpretation of the camera-produced data were in the range of two centimeters
from its actual pose. The path from the home position to the searched starting
point was represented in workpiece coordinates and, therefore, a good estimate of
the nominal position and orientation of the workpiece assured a collision-free and
safe trajectory to the position where the search started.

9.5 Execution of start and search simulation objects

After the nominal pose of the workpiece had been improved by camera readings,
the start and search simulation objects were executed. A simulated robot in IGRIP
followed the start path to the search start point and then a complete search includ-
ing all sweeps was then conducted, see Figures 9.3 and 9.4. Ifa singular condition
occurred, or if an out-of-joint limit condition or collision was encountered, the ap-

94 Experimental work

Figure 9.3: The search phase. The semi-hidden box in the background represen-
ted the nominal placement of the workpiece. In the foreground, the actual pose of
the box was simulated. The search path followed the nominal weld direction. The
tags already created in the lower left corner of the Figure represented the start
point and other poses found during the extended search. These tags became first
poses in the weld path.

plication was aborted signaling an error condition.

Figure 9.4: (Left) The start phase.(Middle) The weld phase. The tags already
created at the bottom of the middle picture represented the start point and other
poses found during the extended search.(Right) The reinforcement phase. The
reinforcement path is marked as detour.

9.6 Start point search and trajectory creation

A search path, representing the workpiece’s frame and parallel to the nominal
weld direction covered the position of the nominal start point, was followed. Us-

9.7 Finding the start point and weld path generation 95

Figure 9.5: The start point phase. After the search phase the virtual workpiece
was calibrated by the application, the laser was lit, and theweld torch approached
the weld start point.

ing the cameras to adjust the nominal pose of the workpiece guaranteed a safe
search path. Figure 9.3 shows a simplified search between just two tags. The
search volume occupied at the most 10×10×5 cm but normally less, dependent
on the quality of the output from the cameras for the given workpiece and light
conditions. The search could contain several sweeps from side to side.

9.7 Finding the start point and weld path generation

When the joint was eventually found, the start point was calculated based on the
breakpoint data provided by the tracker. If the tracker was unable to find the joint
during the search, the process was aborted and the robot stopped. The start point
was then saved as the first tag in the newly created trajectory– the weld path, see
Figures 9.4, 9.5 and 9.7.

9.8 Workpiece calibration

The laser camera was mounted 50 mm ahead of the tool tip and thesearch contin-
ued over this distance and accumulated information about the joint. This extended
search phase, see Figure 9.3, yielded joint-local information and the actual orient-
ation of the workpiece. The extended search resulted in an update of the nominal
world model to the workpiece real position and orientation,see Figure 9.2. All

96 Experimental work

objects referring to the workpiece – paths, tags and the reinforcement – also auto-
matically received their correct pose.

9.9 Singularity check and collision detection

Before the robot followed the weld path, a singularity checkwas conducted. It
was performed as a simulated weld; a virtual robot was moved along the weld
path and the check was done for each interpolated pose. Sincethe position of the
reinforcement was known, the detour around it, the second weld and the end weld
were also simulated at this point. The application was halted if the robot came to
close to a singular pose or if it was out-of-joint limits or collided with anything in
the work-cell.

The actual pose of the workpiece could possibly induce a collision between the
robot and objects in the work-cell and therefore collision detection was also per-
formed in parallel with the singularity check during the simulated weld. Optim-
ized collision avoidance and trajectory re-planning, which are specific research
areas, were not particularly studied in this thesis but the experiment showed the
benefits of using a world model to detect and avoid collisions.

9.10 Welding from the start point towards the reinforcement

After a successful singularity and collision check, the application was ready to
perform the first weld, from the start point to the reinforcement. The simulated
tracker sent measured data to the tracker slave, which calculated breakpoints de-
scribing the joint profile. The application used the breakpoints to calculate tags,
which it appended to the weld path. These tags were then used by RLib to calcu-
late joint values that created the trajectory for the (simulated) robot, see Figures
9.6 and 9.7. The laser tracker had already scanned the first 50mm path length and
tags taking local deviations into account were created during the extended search.
When the weld started, new tags were added to the weld path at the same time as
the weld torch followed previously created tags.

9.11 Handling the reinforcement

The precise location of the reinforcement was defined after the initial calibration.
The vision system yielded the information needed, i.e. the distance from the weld
start point to the reinforcement. The reinforcement was designed to let the weld

9.11 Handling the reinforcement 97

Figure 9.6: After executing the start point object, the application performs the
first weld.

continue uninterrupted below it. To be able to approach the reinforcement and to
create a continuous weld, the M-Spot camera was rotated 120 degrees, away from
the workpiece and the weld torch was tilted by 45 degree anglefrom the weld
direction. During the time when the weld torch was rotated and tilted, the seam
tracker was temporarily put in a passive mode and welding performed without
sensor readings.

The path around the obstacle was expressed in virtual obstacle coordinates, which
in turn were expressed in the virtual workpiece coordinate system. Since the
virtual workpiece at this point was calibrated, the obstacle path created a valid
trajectory around the reinforcement after it was calibrated. Moreover, by using a
path expressed in obstacle coordinates, it was easy to exchange obstacle without
affecting application code, see Figures 9.4 and 9.8. When the weld on the left
side of the box was complete, the weld torch was retracted in the opposite torch
direction and followed a trajectory relative to the reinforcement.

By using a world model, it was easy and desirable to create trajectories relative to

98 Experimental work

Figure 9.7: The weld phase. The simulated tracker sent measured distances to
the tracker slave, which calculated breakpoints describing the joint profile. The
application used the breakpoints to calculate tags, which it appended to the weld
path. These tags were then used by RLib to calculate joint values that created the
trajectory for the (simulated) robot.

other objects. This produced an association between the sub-task program, the tra-
jectory and the real object, and encapsulated their dependencies. The association
could then be reused to handle similar sub-tasks in different contexts.

9.12 Welding from the reinforcement

The second weld started when the weld torch and laser trackerreached the normal
perpendicular orientation to the seam. The second weld object started welding
without local sensor readings over the first 50 mm and continued welding until
90% of the weld was made. At this point, the second weld objectstopped and
the end weld object started and continued until the end pointwas reached and the
retract object moved the torch from the workpiece, see Figures 9.9 and 9.10.

9.13 Conclusions

The experimental system running an arc welding applicationshows how a system
that includes sensor-controlled robots can be built to allow simulation and execu-
tion without any change of the task oriented program. Independent and reusable
components, here called objects, autonomously detected singularities, collisions

9.13 Conclusions 99

Figure 9.8: The reinforcement phase. The reinforcement path is marked as detour.

Figure 9.9: The second weld phase. A second instance of the weld object isused.

100 Experimental work

Figure 9.10: The end weld phase. To highlight the idea of a unique process
information per object, the end weld object used has been given an increased
speed compared to the weld object that shows in the Figure as greater distances
between tags.

and out-of-joint limits. These are common problems even without sensors, but
can be resolved before the application is run on the shop floor. However, when
sensor-guided robots are used, these limitations cannot beresolved beforehand.
Some of the advantages with the experimental platform are summarized below:

• The overall performance, robustness and algorithms for information feed-
back could be investigated and analyzed at an early stage.

• The implementation of the sensor to the real, physical robotwas a seamless
procedure and no major changes had to be made except for issues related to
calibration. Accurate sensor calibration is, however, critical to the system.

• The sensor interface developed has the advantage of being a platform for
both simulation and actual operation. The same code was usedin both
modes.

• The “requester”3 of sensor data could be exchanged without affecting the
sensor and vice versa by separating the requester from the sensor itself.

• During execution, the requester using sensor data was unaware of which
sensor, virtual or real, it was receiving sensor data from since both used
identical communication protocols and channels.

3The requester is the client which is provided with sensor data. In this case, the requester resides
in the application.

9.13 Conclusions 101

• During execution, dynamic conditions were preserved independently of if
a virtual or real work-cell was used. Deficiencies such as delays in the real
system were also simulated.

• During development, time was saved because modularity allowed specific
tests on component level during testing and debugging.

By using a mix of virtual and real sensors and robots, it is possible to gradually
test different parts of the application. This gives a robustway of creating sensor-
based applications. Most of the development of the experimental platform has
been done by simulating the system and only a limited amount of time has been
spent in the lab with the actual robot.

The problem of sensor calibration is always important and became an issue during
the experiments. Small positional and rotational errors inthe wrist-sensor trans-
formation matrix yielded large (10mm) positional errors, when sensor readings
where done from different distances to the workpiece.

The high-level control system shows a parameterization technique based on sub-
tasks where instances of a limited set of objects can be reused in similar contexts.
This generalization is one of the most important outcomes ofthe author’s work
and indicates applicability of the worked out techniques ina large number of in-
dustrial activities. In the experiment, the weld object wasused both between the
start point object and the reinforcement object as well as between the reinforce-
ment object and the end weld object.

The utilization of a world model makes it possible to use and accumulate work-
cell information and to act on events and information which normally would not
be available to the robot program otherwise. This is of course even more important
when a system of robots and sensors is controlled.

102 Experimental work

Chapter 10

Discussion

10.1 Introduction

The increasing emphasis on more personalized products and shorter product life-
cycles as well as reduced production cost will result in major changes in manufac-
turing practices. Competition requires higher quality of manufactured products.
Different strategies will be needed to cope with these changes and the thesis has
included study of the consequences of resolving the sensor issues among several
other matters. The use of sensors has turned out to be particularly important and
the discussion therefore focuses on this issue.

Sensor feedback must include several levels in time space and information com-
plexity and a comprehensive control perspective to meet aims set up in a task or
process specification. Traditionally, sensors are used to feed back information to a
low-level type of actuator or process control. Advanced application processes and
a higher level of autonomy implies more complex relationships; observable vari-
ables are not necessarily those that are controllable and the controllable variables
are not necessarily those that define the task. Hence, in complex industrial op-
erations there are mapping issues in both directions between not only observable
variables that are detected by sensors and controllable variables, but also between
the task specification described in terms of how to reach productivity and quality
measures and how to control the process to obtain such goals.In most cases this
is not a trivial problem, as many controllable variables arecontradictory. As a
result, many such issues must be considered as optimizationproblems that, due
to the complexity and incoming information from sensors in real-time, must be
solved on a case-by-case basis.

104 Discussion

The research responds to the demands for flexibility in the use of sensors in cop-
ing with various facets of production. Examples of increased flexibility include
reduced requirements on feeders (vision), seam tracking during welding (triangu-
lation scanners), inspection (various type of sensors) andso on. However, apply-
ing sensors in industrial automation is not as easy as it may appear. Sensors not
only add valuable information needed to perform a task, but also cause system
complexity. Thus, the robustness of the system may be degraded as a result of
poorly integrated subsystems.

The research responds to the demands for quality, safety anda reliable view of the
advancing process during the process of development. The robot programs de-
veloped for real-time decisions require a completely different simulation environ-
ment. The traditional way of off-line programming and downloading of ready-to-
go programs will not work as greater autonomous behavior with sensor feedback
is needed. Today’s methods are only sufficient for large-scale manufacturing such
as in the automotive industry. In one-off and small batch production, sensors give
the robot system more flexibility and speed up product changeover.

10.2 Sensor modeling, simulation and integration

The sensor model mimics closely the behavior of the real sensor by using sim-
ilar characteristics and aspects related to sensor and robot control. This is dif-
ferent from previous research in sensor modeling, where generic (non existent)
type of sensors are modeled. The use of simulated sensors andthe methodology
developed to model sensor-guided robot systems provide a good match between
reality and simulation. Such modeling allows the manufacturer to deal with the
shorter product life cycles required by current and future customer demands. It
permits sensor-based systems to be analyzed at an early stage. A further step
would be to introduce sensor models from sensor vendors in a similar way as
robot vendors now offer software for RSAs for more realisticrobot simulation
(RRS).

The developed sensor model is fully integrates with a simulation and execution
model by the use of generic interfaces. The interfaces are generic to such an extent
that they handle simulation and operation without any change of the application.
The sensor developed is modeled after an existing sensor, and is utilizing the same
protocols as the real counterpart. The generic sensor interface developed lets the
sensor act as a separate component in a simulation or run-time system.

In (Chen and Trivedi, 1994), sensor interfaces are utilizedthat allows the user to
decide whether the sensor and robot should act in simulated or real mode. In the

10.3 Simulation and execution of sensor-guided robots 105

Chen and Trivedi system, one of the three modes:Operator Interface/Monitor
Mode, Real Controller/Virtual Robot Mode, andOff-Line Visualization Modeas
discussed earlier, had to be selected. However, modes couldnot be selected on in-
dividual sensor (and robot) basis, and therefore the systemlacked the potential of
mixing real and virtual components, one of the significant strengths of the system
described in this thesis.

Most virtual sensors developed, for instance (Li et al., 1998; Brunner et al., 1999;
Fridenfalk, 2003) do not have a real counterpart. They are developed to solve a
specific problem, for instance the force-sensor described in (Li et al., 1998) or
have general objectives as the 6-D seam tracker reported in (Fridenfalk, 2003).
They may also be of a generic1 type such as the camera, seam tracker and force
sensor utilized in the impressive DLR system (Brunner et al., 1993; Brunner
et al., 1999; Landzettel et al., 2000; Landzettel et al., 2001). In the DLR system,
most of the controller code from the simulation environmentis also used in the
real system, but generic sensor interfaces are not utilizedand virtual and real
components cannot be used concurrently.

The developed sensor has been verified in (Cederberg et al., 2002b) and the ideas
about generic sensor interfaces are described in (Cederberg et al., 1999).

10.3 Simulation and execution of sensor-guided robots

The task-oriented framework developed has the advantage ofbeing a platform for
both simulation and actual operation. It operates on the system level and cooper-
ates with modern RSAs but can easily be connected to any program with a graph-
ical model. The separation between graphics and motion generation makes it pos-
sible to interface an open control system such as the one described in (Johansson
et al., 2004; Blomdell et al., 2004).

By using the author’s approach, task-oriented control strategies can be validated
through controlled experiments in a simulated environment. As the same com-
ponents and protocols are used for both environments, dynamic effects originat-
ing from the internal system are taken into account. As mentioned before, this
is not fully the case with the DLR system, which lacks of generic interfaces to
components.

The methodology described makes it possible to produce and validate sensor-
guided robot programs. Robustness is increased in the sensethat the robot op-
eration has been verified in a simulated environment. With defined tolerances in

1Generic in the sense that no specific physical sensor has beenmodeled.

106 Discussion

the world model, a nominal robot program can be produced thatwill most likely
succeed in a real time operation.

Robotized manufacturing of unique products and small batchmanufacturing need
programming models where the process rather than the shape of the product is
important. The parameterizing technique that is used todayfocuses on product
families with similar appearance and does not support sensors. The presented
methodology is focused on parameterizing on sub-tasks which could appear on
any product independent on shape. The sub-tasks, which include sensors, which
either can be used in simulated or real mode and act independently of other sub-
tasks, have not been found in literature. The mix of real and virtual components
that can be run with the example system developed assure a transparent trans-
fer between simulation and execution. This functionality has not been seen in
other developed systems such as those described in (Chen andTrivedi, 1994) and
(Brunner et al., 1993; Brunner et al., 1999; Landzettel et al., 2000; Landzettel
et al., 2001). The methodology is submitted in (Cederberg etal., 2004).

By using objects that operate on a continuously updated world model, simulation
and process execution can be run on a single (nominal) model despite changes to
the actual work cell. Virtual robots and sensors may simulate changed conditions
in real-time and in advance of real robots and sensors, and may be able to predict
and possibly avoid difficulties.

10.4 Future Research

Today’s robot systems do not provide the flexibility needed to create industrial
solutions that include sensors. Future enhancements with respect to the devel-
opments described in this thesis will consist of extending the capabilities of the
model by implementing it on a real-time operating system andincorporate an open
control system.

The model implementation should be simplified as well. This thesis has been fo-
cused on the model structure and the development of a graphical user interface for
initialization and ordering of objects that should enhanceimplementation. Also,
there is a need for replacement of IGRIP, the RSA used in the implementation. A
customized implementation that includes collision detection and tightly integrates
with other system scomponents is necessary if the system should run efficiently
in real-time.

The simulated sensor developed could be improved by adding the capability to
handle different joint-types besides fillet joint, for instance corner, lap butt and v-

10.4 Future Research 107

grove in a similar way as the real sensor operates. This wouldcreate a foundation
for simulation of more complicated welding scenarios than the test case described.

Future work should also generalize the sensor interface’s operation to support
different sensors and different requesters of sensor information.

108 Discussion

Chapter 11

Conclusions

It can be concluded that performing high-level control witha world model updated
in real-time from sensors in a work-cell, real or virtual, using a sensor interface
yields several advantages:

1. High-level control can be moved outside the actual work-cell. More effect-
ive coordination in a particular work-cell and between different work-cells
is therefore possible.

2. Robot programs can be tested in a virtual world and later ina real work-
cell without rewriting of code. This cuts development time and increases
robustness.

3. On-line tests, collision tests, out-of-joint limit tests and alike can be per-
formed in advance or in real-time as soon as sufficient information regard-
ing the real world becomes available to the virtual world model.

4. Since the virtual model is updated continuously, knowledge of the process
can be accumulated. This can effectively be used to recover from errors
during autonomous robot operations.

Performing sensor-guided operations using an on-line geometry model outside
the robot control hardware may appear more futuristic than it really is. Our ex-
perimental setup used an ABB S4 system robot controller withits RAPID pro-
gramming environment where features of RAPID were available through remote
procedure calls (RPC). Thus, it is already technically possible to remotely control
a standard robotic system and it is not unrealistic to assumethat sensor-guided
robots will be controlled from world models updated in real-time in the future.

110 Conclusions

The method described to model and implement sensor functionality opens new
possibilities for simulation and programming of robot systems in realistic indus-
trial applications. This is important for more advanced manufacturing systems and
specifically for rapid and virtual development of products where time is important
for developing systems that produce the product. Thus, the combined simulation
and run-time environment must be able to represent real world processes as they
appear in the context of industrial automation. The virtualsensor developed acts
in the tested cases similar to its real counterpart and has been shown to be easily
managed in a simulation environment.

Bibliography

ABB Ethernet Services 3.0(n.d.).

ABB Rapid Reference Version 3.2, RAPID Summary(n.d.).

ABB RAP Protocol Specification 1.05(n.d.).

ABB RAP Service Specification 1.05(n.d.).

Adolfsson, J., Ng, A., Olofsgård, P., Moore, P., Pu, J. and Wong, C.-B. (2002),
‘Design and simulation of component-based manufacturing machine sys-
tems’,Mechatronics12, 1239–1258.

AIX Version 4.3 Communications Programming Concepts(1997).

Andersson, C. (2003), Register Allocation by Optimal GraphColoring, in ‘Com-
piler Construction: 12th International Conference, CC 2003, held as part of
the Joint European Conferences on Theory and Practice of Software, ETAPS
2003. Proceedings’, Springer-Verlag Heidelberg, Warsaw,Poland, pp. 33 –
45.

AWS, ed. (1976),American Welding Society Welding Handbook, Section 1: Fun-
damentals of welding, Palgrave Macmillan, New York, NY.

Barraquand, J., Langlois, B. and Latombe, J.-C. (1992), Numerical potential field
techniques for robot path planning,in ‘Proceedings of IEEE Transaction on
Systems, Man and Cybernetics’, Vol. 22, pp. 224–241.

Barraquand, J. and Latombe, J.-C. (1991), ‘Robot motion planning: A dis-
tributed representation approach’,International Journal of Robot Research
10(6), 628–649.

Blomdell, A., Bolmsjö, G., Brogårdh, T., Cederberg, P., Isaksson, M., Johansson,
R., Haage, M., Nilsson, K., Olsson, M., Olsson, T., Robertsson, A. and

112 Bibliography

Wang, J. J. (2004), ‘Extending an industrial robot controller with a fast open
sensor interface – implementation and applications’. To appear in IEEE
Robotics and Automation Magazine., 2004.

Blume, C. and Jakob, W. (1986),Programmiersprachen für Industrieroboter, Ber-
lin ; New York : Springer Verlag. ISBN 0387163190.

Boddy, M. and Dean, T. L. (1989), Solving Time-Dependent Planning Problems,
in ‘Proceedings of 11th Int. Joint Conf. on Artificial Intelligence’, pp. 979–
984.

Bohlin, R. and Kavraki, L. (2000), Path planning using lazy PRM, in ‘Proceed-
ings of the International Conference on Robotics and Automation’, Vol. 1,
pp. 521–528.
URL: citeseer.nj.nec.com/bohlin00path.html

Bolmsjö, G., Olsson, M. and Brink, K. (1999),Increased autonomy in indus-
trial robotic systems: A framework, Kluwer Academic Publishers, Hingham,
MA, USA, chapter 2. ISBN 0-7923-5580-6.

Bolmsjö, G., Olsson, M. and Cederberg, P. (2002), ‘Robotic Arc Welding - Trends
and Developments for Higher Autonomy’,Industrial Robot29(2), 98–104.

Boving, K., ed. (1989),NDE Handbook: Non-destructive Examination Methods
for Condition Monitoring, Woodhead-publishing.
URL: http://www.woodhead-publishing.com

Brady, J. (1989), ‘Special issue on sensor data fusion’,International Journal of
Robotics Research7(6), 1–161.

Brink, K., Olsson, M., and Bolmsjö, G. (1995), Event Based Robot Control,
Focusing on Sensors,in ‘Proceedings of the International Symposium on
Measurement and Control in Robotics’, Bratislava, Slovakia, pp. 507–512.

Brooks, R. R. and Iyengar, S. S. (1997). OE Reports 164.
URL: http://www.spie.org/web/oer/august/aug97/sensor.html

Brunner, B. et al. (1993), Multisensory shared autonomy andtele-sensor-
programming – key issues in the space robot technology experiment RO-
TEX, in ‘Proceedings of the 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems’, IEEE/RSJ, pp. 2123–2139.

Brunner, B. et al. (1995), Tele Sensor Programming - A task-directed program-
ming approach for sensor-based space robots,in ‘International Conference
on Advanced Robotics)’, ICAR.

Bibliography 113

Brunner, B. et al. (1999), A Universial Task-Level Ground Control and Pro-
gramming System for Space Robot Applications,in ‘5th International Sym-
posium in Artificial Intelligence, Robotics and Autonmation in Space’,
SAIRAS.

Bruyninckx, H., Soetens, P., Issaris, P. and Leuven, K. U. (2002), ‘The OROCOS
Project’.
URL: http://www.orocos.org/

Burdea, G. C. (1999), ‘Invited Review: The Synergy Between Virtual Reality and
Robotics’,IEEE Transactions on Robotics and Automation15(3), 400–410.

Canny, J. F. (1989), On Computability of Fine Motion Plans,in ‘Proceedings
of IEEE Int. Conf. on Robotics and Automation’, Scottsdale,AZ, USA,
pp. 177–182.

Cary, H. B. (1997),Modern Welding Technology (4th Edition), Prentice Hall; 4
edition (June 30, 1997), Stanford, CA, USA. ISBN 0132418037.

Cederberg, P., Olsson, M. and Bolmsjö, G. (1999), A Generic Sensor Interface in
Robot Simulation and Control,in ‘Proceedings of Scandinavian Symposium
on Robotics 99’, Oulu, Finland, pp. 221–230.

Cederberg, P., Olsson, M. and Bolmsjö, G. (2001), ‘Virtual Triangulation Sensor
Simulation Integrated in a CAR Environment’, Digitally recorded by the
Division of Robotics, 2001-12-18.

Cederberg, P., Olsson, M. and Bolmsjö, G. (2002a), Remote control of a standard
ABB robot system in real time using the Robot Application Protocol (RAP),
in ‘Proceedings of the International Symposium on Robotics, ISR2002’,
IFR, Stockholm. paper No. 113.

Cederberg, P., Olsson, M. and Bolmsjö, G. (2002b), ‘Virtual triangulation sensor
development, behavior simulation and CAR integration applied to robotic
arc-welding’,Journal of Intelligent and Robotic Systems35(4), 365–379.

Cederberg, P., Olsson, M. and Bolmsjö, G. (2004), ‘A semiautomatic task oriented
programming system for sensor-controlled robotised smallbatch and one-off
manufacturing’. Submitted to Robotica at the time of printing of this thesis.

Chen, C. and Trivedi, M. (1994), ‘Simulation and animation of sensor-driven ro-
bots’, IEEE Transactions on Robotics and Automation10(5), 684–704.

114 Bibliography

Chen, J. and McCarragher, B. J. (1998), Robot Programming byDemonstration-
Selecting Optimal Event Paths,in ‘Proceedings of the IEEE Intl. Conf. on
Robotics and Automation (ICRA ’98)’, ICRA, pp. 518–523.

Chen, J. and McCarragher, B. J. (2000), Programming by Demonstration - Con-
structing Task Level Plans in a Hybrid Dynamic Framework,in ‘Proceedings
of the IEEE Intl. Conf. on Robotics and Automation (ICRA ’00)’, ICRA,
pp. 1402–1407.

Chen, J. and Zelinsky, A. (2001a), Generating a Configuration Space Represent-
ation for Assembly Tasks from Demonstration,in ‘Proceedings of the IEEE
Intl. Conf. on Robotics and Automation (ICRA ’01’, ICRA, pp.1530–1536.

Chen, J. and Zelinsky, A. (2001b), Programming by Demonstration: Remov-
ing Suboptimal Actions in a Partially Known Configuration Space,in ‘Pro-
ceedings of the IEEE Intl. Conf. on Robotics and Automation (ICRA ’01)’,
ICRA, pp. 4096–4103.

Chester, R. (2004), ‘Introduction to arc welding’.
URL: http://www.aussieweld.com.au/arcwelding/

Chou, J. C. K. (1992), ‘Quaternion kinematic and dynamic differential equations’,
IEEE Trans. of Robotics and Automation1(8), 53–64.

Chou, J. C. K. and Kamel, M. (1988), Quaternions Approach to Solve the Kin-
ematic Equation of Rotation AaAx = AxAb of a Sensor Mounted Robotic
Manipulator,in ‘Proceedings of the IEEE International Conference on Ro-
botics and Automation’, Philadelphia, PA, USA, pp. 656–662.

Corke, P. (1996), ‘A Robotics Toolbox for MATLAB’,IEEE Robotics and Auto-
mation Magazine3(1), 24–32.

Crowe, D. (2001), ‘Designing for successful robotic arc welding automation’.
URL: http://www.thefabricator.com

DaCosta, F., Hwang, V., Khosla, P. and Lumina, R. (1992), An integrated proto-
typing environment for programmable automation,in ‘SPIE/OE92 Interna-
tional Symposium on Intelligent Robot in Space’, SPIE.

Dai, W. and Kampker, M. (2000), User oriented integration ofsensor operations
in a offline programming system for welding robots,in ‘Proceedings of the
IEEE Intl. Conf. on Robotics and Automation (ICRA ’00)’, Vol. 2, IEEE,
pp. 1563–1567.

Bibliography 115

DeepBlue(2004).
URL: http://www.research.ibm.com/deepblue/

Denavit, J. and Hartenberg, R. (1955), ‘A kinematic notation for lower pair mech-
anisms based on matrices’,ASME Journal of Applied Mechanicspp. 215–
221.

Dyson, J. (2004), ‘Welding Certification, A Basic Guide’.
URL: http://www.gowelding.com/

Eckart, F. and Francoeur, M. (2002), ‘Welding Techniques’.
URL: http://www.sensorsmag.com

Ernst, H. A. (1961), A Computer-Controlled Mechanical Hand, PhD thesis, Mas-
sachusetts Institute of Technology, Camebridge, MA. Sc.D.thesis.

Fahim, A. and Choi, K. (1998), ‘The UNISET approach for the Programming
of Flexible Manufacturing Cells’,Robotics and Computer-Integrated Man-
ufacturing14(1), 69–78.

Farson, D. and Duhamel, R. F. (2001), ‘Taking advantage of laser welding’.
URL: http://www.thefabricator.com

Feldman, J. (1971), The Stanford Hand-Eye Project,in ‘First International Con-
ference on Artificial Intelligence’, London, England, pp. 350–358.

Finkel, R., Taylor, R., Bolles, R., Paul, R. and Feldman, J. (1974), ‘A Program-
ming System for Automation’. Stanford AI Memo 177, StanfordUniversity,
Stanford, CA 94305.

Flaig, T., Grefen, K. and Neuber, D. (1996), Interactive graphical planning and
design of spacious logistic environments,in ‘Proceedings of the Conference
FIVE Working Group’, Scuola Superiore S. Anna, Italy, pp. 10–17.

Freund, E., Ludemann-Ravit, B., Stern, O. and Koch, T. (2001), Creating the
architecture of a translator framework for robot programming languages,in
‘Proceedings of the IEEE Intl. Conf. on Robotics and Automation (ICRA
’01’, Vol. 1, ICRA, pp. 187–192.

Fridenfalk, M. (2003), Development of intelligent robot systems based on sensor
control, PhD thesis, Lund University, Lund, Sweden. ISBN 91-628-5550-6.

Friedrich, H., Holle, J. and Dillmann, R. (1998), Interactive generation of flexible
robot programs,in ‘Proceedings of the IEEE/RSJ Intl. Conf. on Robotics
and Automation’, Vol. 1, IEEE, pp. 538–543.

116 Bibliography

Fuller, J. L. (2004), ‘Introduction to Robotics Programming’.
URL: http://www.tvcc.cc/staff/fuller/cs281/cs281.htm

Gopel, W., Hesse, J. and Zemel, J. N. (1997),Sensors - A Comprehensive Survey,
Wiley. ISBN: 3-527-26538-4, Hardcover.

Gourdeau, R. (1997), ‘Object Oriented Programming for Robotic Manipulators
Simulation’,IEEE Robotics and Automation Magazine4(3), 21–29.

Hall, D. and Linas, J. (2001), Handbook of Multisensor Data Fusion, in ‘CRC
Press’.

Halperin, D., Kavraki, L. E. and Latombe, J.-C. (1999), Robot Algorithms, in
M. Attalah, ed., ‘Algorithms and Theory of Computation Handbook’, CRC
Press, Boca Raton, NY, chapter 21.

Helms, E., Schraft, R. D. and Hagele, M. (2002), rob@work: Robot Assistant
in Industrial Environments,in ‘In Proc. of the 11th IEEE Int. Workshop
on Robot and Human interactive Communication, ROMAN2002’,pp. 399–
404.

Hicks, J. (2000),Welded Joint Design (3rd Edition), Industrial Press, New York,
NY, USA. ISBN 0132418037.

Hirzinger, G., Albu-Schäffer, A., Hähnle, M., Schäfer, I. and Sporer, N. (2001),
On a new generation of torque controlled light-weight robots, in ‘Proceed-
ings of the IEEE Int. Conference on Robotics and Automation’, Seoul,
Korea, pp. 1087–1093.

Hirzinger, G., Brunner, B., Koeppe, R. and Vogel, J. (1997),Advanced Telero-
botics, in ‘Advanced Research Workshop “Autonomous Robotic Systems”,
ARS 97’, Universidade de Coimbra, Portugal.

Hissam, S. A. and Klein, M. (2004), ‘A Model Problem for an Open Robot-
ics Controller’. Carnegie Mellon Software Engineering Institute, Technical
Note CMU/SEI-2004-TN-030.
URL: http://www.sei.cmu.edu/publications/

Hoppe, H., Kuebler, C., Raczkowsky, J., Woern, H. and Hassfeld, S. (2002), A
Clinical Prototype System for Projector-Based Augmented Reality: Calib-
ration and Projection Methods,in ‘Proceedings of Computer Assisted Radi-
ology and Surgery (CARS)’, Paris, France, p. 1080.

Bibliography 117

Huissoon, J. P. (2002), ‘Robotic laser welding: Seam sensorand laser focal frame
registration’,Robotica20(3), 261–268.

Hwang, Y. K. and Ahuja, N. (1992), ‘Gross motion planning - a survey’, ACM
Comput. Surv.24(3), 219–291.

IRIX Network Programming Guide(n.d.).

Jacobsen, N. J. (2004), ‘Can CIM using robots fulfill its promise for flexible pro-
duction? Experience and visions for the first decade in “one of a kind steel
production”’. Odense Steel Shipyard Ltd., Denmark.

Johansson, R., Robertsson, A., Nilsson, K., Brogardh, T., Cederberg, P., Olsson,
M., Olsson, T. and Bolmsjö, G. (2004), ‘Sensor Integration in Task-Level
Programming and Industrial Robotic Task Execution Control’, Industrial
Robot31(3), 95–102.

Korein, J. U. and Ish-Shalom, J. (1987), ‘Robotics’,IBM Systems Journal
26(1), 55–95.

Landzettel, K., Brunner, B., Hirzinger, G., Lampariello, R., Schreiber, G. and
Steinmetz, B. (2000), A Unified Ground Control and Programming Meth-
odology for Space Robotics Applications – Demonstrations on ETS-vii, in
‘31st International Symposium on Robotics’, Montreal, Canada.

Landzettel, K., Brunner, B., Schreiber, G., Steinmetz, B. and Dupuis, E. (2001),
MSS Ground Control Demo with MARCO,in ‘i-SAIRAS 6th International
Symposium on Artificial Intelligence, Robotics and Automation in Space’,
Montreal, Canada.

Lapham, J. (1999), ‘Robotscript: the introduction of a universal robot program-
ming language’,Industrial Robot26(1), 17–25.

Legnani, G., Casolo, F., Righettini, P. and Zappa, B. (1996), ‘A Homogeneous
Matrix Approach to 3D Kinematics and Dynamics. Part 1: theory’, Mech-
anism and Machine Theory (the scientific journal of IFToMM).

Legnani, G., Casolo, F., Zappa, B. and Righettini, P. (1996), ‘A Homogeneous
Matrix Approach to 3D Kinematics and Dynamics. Part 2: applications’,
Mechanism and Machine Theory (the scientific journal of IFToMM) .

Li, Y. F. and Wang, J. G. (1999), ‘Incorporating contact sensing in virtual envir-
onment for robotic applications’,IEEE Transactions on Instrumentation and
Measurement48(1), 102–107.

118 Bibliography

Li, Y. F., Wang, J. G. and Ho, J. K. L. (1998), Using physics based models in vir-
tual reality for dynamic emulation of robotic systems,in ‘Computer Graph-
ics International, 1998. Proceedings’, IEEE Computer Society, pp. 388–390.

Li, Z., Ring, P., MacRae, K. and Hinsch, A. (2003), ‘Control of Industrial Robots
for Meat Processing Applications’. Presented at the ACRA 2003 conference
in December 1-3 in Brisbane, Australia.

L.Lieberman and Wesley, M. (1977), ‘AUTOPASS: An AutomaticProgramming
System for Computer Controlled Mechanical Assembly’,IBM J. Res. Dev
21(4).

Lozano-Perez, T. (1987a), AI in the 1980s and Beyond: An MIT Survey, The MIT
Press, Cambridge, MA.

Lozano-Pérez, T. (1987b), An algorithm for planning collision free paths among
polyhedral obstacles,in ‘Communications of the ACM’, Vol. 22, pp. 560–
570.

Lozano-Pérez, T. and Winston, P. H. (1987), LAMA: A Languagefor Automatic
Mechanical Assembly,in ‘International Joint Conference’, Artificial Intelli-
gence.

M. A. Lavin, L. I. L. (1982), ‘AML/V: An Industrial Machine Vision Program-
ming System’,Intl. J. Robotics Research1(3), 42–56.

McCabe, R. (2003), ‘Robotic Welding’.
URL: http://www.weldingengineer.com/

McHaney, B. (2001), ‘Automated welding for job shops’.
URL: http://www.thefabricator.com

Merriam-Webster’s Collegiate Dictionary, 11th Edition(2003). Merriam-
Webster, Springfield, MA 01102, USA. ISBN 0877798087.

Meyer, J. (1981), ‘An emulation system for programmable sensory robots’,IBM
Journal of Research and Development25(6), 955–962.

Meynard, J. P. (2000), Control of industrial robots throughhigh-level task pro-
gramming, PhD thesis, Linköping Studies in Science and Technology,
Linkp̈ing University, Sweden. Tech. Lic. ISBN 91-7219-701-3, ISSN 0280-
7971.

Bibliography 119

Miller, A., Knopp, S., Christensen, H. and Allen, P. (2003),Automatic Grasp
Planning Using Shape Primitives,in ‘Intl Conf on Robotics and Automa-
tion’, IEEE, Taipai, Taiwan.

Mosemann, H. and Wahl, F. M. (2001), ‘Automatic Decomposition of Planned
Assembly Sequences Into Skill Primitives’,IEEE Transactions on Robotics
and Automation17(5).

Mujtaba, S. and Goldman, R. (1979), ‘AL User’s Manual’. Stanford AI Memo
323, Stanford University, Stanford, CA 94305.

Munoz, M. A., Rodriguez, M., Favela, J., Martinez-Garcia, A. I. and Gonzalez,
V. M. (2003), ‘Context-Aware Mobile Communication in Hospitals’, IEEE
Computer36(9), 38–46. ISSN 0018-9162.

Myers, B. A. and Beigl, M. (2003), ‘Handheld Computing’,IEEE Computer
36(9), 27–29. ISSN 0018-9162.

Nilsson, K. (1996),Industrial Robot Programming, Dept. of Automatic Control,
Lund University, Lund, Sweden. Ph.D. Thesis.

Nilsson, N. J. (1980),Principles of Artificial Intelligence, Tioga Publishing Co.,
Palo Alto, CA.

Nitzan, D. (1990),Encyclopedia of Artificial Intelligence, John Wiley & Sons,
New York.

Nnaji, B. O. (1993),Theory of automatic robot assembly and programming, Chap-
man & Hall. ISBN 0-412-39310-7.

Nourbakhsh, I. R. (1996), Interleaving, Planning and Execution, PhD thesis, Dept.
of Computer science, Stanford University, Stanford, CA, USA.

Olsson, M. (2002), Simulation and execution of autonomous robot systems, PhD
thesis, Division of Robotics, Department of Mechanical Engineering, Lund
University, Sweden. CODEN: LUTMDN/(TMMV-1051)/1-100/2002, ISBN
91-628-5120-9.

Olsson, M., Cederberg, P. and Bolmsjö, G. (1999a), Integrated system for sim-
ulation and real-time execution of industrial robot tasks,in ‘Proceedings of
Scandinavian Symposium on Robotics 99’, Oulu, Finland, pp.201–210.

Olsson, M., Cederberg, P. and Bolmsjö, G. (1999b), Tele-Robotics for Sensor
Driven Industrial Robot Tasks,in ‘Proceedings of Deneb User Conference
99’, Troy, MI, USA.

120 Bibliography

Olsson, M., Cederberg, P. and Bolmsjö, G. (2002), Integration of Simulation and
Execution in Industrial Robot Systems,in ‘Proceedings of the International
Symposium on Robotics, ISR2002’, IFR, Stockholm. paper No.112.

Onda, H., Suehiro, T. and Kitagakiand, K. (2002), Teaching by demonstration of
assembly motion in vr - non-deterministic search-type motion in the teaching
stage,in ‘Proceedings of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
System’, Vol. 3, IEEE/RSJ, pp. 3066–3072.

OROCOS(2004).
URL: http://www.orocos.org/

Park, F. C. and Martin, B. J. (1994), ‘Robot Sensor Calibration: Solving AX
equals XB on the Euclidean Group’,IEEE Transactions on Robotics and
Automation10(5), 717–721.

Patel, R. and Tebelius, U. (1987),Grundbok i forskningsmetodik, (In Swedish),
Studentlitteratur, Lund.

Paul, R. (1972), Modeling, Trajectory Calculation and Servoing of a Computer
Controlled Arm, PhD thesis, Stanford University, Stanford, CA 94305.

Paul, R. (1981),Robot Manipulators, MIT Press, Cambridge, MA.

Paul, R. P. (1977), ‘WAVE, A model based language for manipulation control’,
The Industrial Robot4(1), 10–17.

Pieper, D. L. (1968), The kinematics of manipulators under computer control,
PhD thesis, Stanford University, Stanford, CA 94305, Department of Mech-
anical Engineering.

Pires, J. N. and da Costa, J. M. G. S. (2000), ‘Object-oriented and distributed
approach for programming robotic manufacturing cells’,IFAC Journal Ro-
botics and Computer Integrated Manufacturing16(1), 29–42.

Popplestone, R., Ambler, A. and Bellos, I. (1980), ‘An Intepreter for a Lanugage
Describing Assemblies’,Artificial Intelligence14(1).

Raczkowsky, J., Däuber, S., Engel, D., Hoppe, H., Korb, W., Schorr, O., Hassfeld,
S. and Wörn, H. (2003), ‘Karlsruhe Surgical Robotics Research’. Presented
at the ACRA 2003 conference in December 1-3 in Brisbane, Australia.

Ránky, P. and Ho, C. (1985),Robot Modelling: Control and Applications with
Software, Kempston, Bedford, England : Berlin ; New York : IFS (Publica-
tions) ; Springer-Verlag. ISBN 0-903608-72-3.

Bibliography 121

Rehg, J. (1997),Introduction to Robotics in CIM Systems, Prentice-Hall, Upper
Saddle River, NJ.

Reif, J. H. (1979), Complexity of the Mover’s Problem and Generalizations,in
‘Proceedings of FOCS’, pp. 421–427.

Sacerdoti, E. D. (1977),A Structure for Plans and Behavior, Elsevier/North-
Holland, New York.

Schaeffer, J. and Plaat, A. (1997), ‘Kasparov versus Deep Blue: The Re-match’,
ICCA Journal20(2), 95–102.

Sedlenieks, M. (2004), ‘MIG/MAG Welding’.
URL: http://www.linde-gas.com

Selman, B., Brooks, R. A., Dean, T., Horvitz, E., Mitchell, T. M. and Nilsson,
N. J. (1996), Challenge Problems for Artificial Intelligence, in ‘Proceed-
ings of AAAI-96, Thirteenth National Conference on Artificial Intelligence’,
AAAI, Menlo Park, California, pp. 1340–1345.

Shimano, B. E. (1979), VAL: A Versatile Robot Programming and Control Sys-
tem,in ‘COMPSAC 79’.

Shiu, Y. C. and Ahmad, S. (1989), ‘Calibration of Wrist-Mounted Robotic Sensors
by Solving Homogeneous Transform Equations of the Form AX = XB’,
IEEE Transactions on Robotics and Automation5(1), 16–29.

Steil, J., Heidemann, G., Jockusch, J., Rae, R., Jungclaus,N. and Ritter, H. (2001),
Guiding attention for grasping tasks by gestural instruction: the gravis-robot
architecture,in ‘Proceedings of the IEEE/RSJ Intl. Conf. on Intelligent Ro-
bots and System’, Vol. 3, IEEE/RSJ, pp. 1570–1577.

Steinberg, A. N., Bowman, C. L. and White, F. (1999), Revisions to the JDL
Data Fusion Model,in ‘Proceedings of SPIE AeroSense (Sensor Fusion:
Architectures, Algorithm and Applications III)’, SPIE, pp. 430–441.

Stork, D. G. (2001), ‘The end of an era, the beginning of another? HAL, DeepBlue
and Kasparov’.
URL: http://www.research.ibm.com/deepblue/

Strobel, M., Illmann, J., Kluge, B. and Marrone, F. (2002), Using spatial context
knowledge in gesture recognition for commanding a domesticservice robot,
in ‘Proceedings of the 11th IEEE Intl. Conf. on Robot and Human Interactive
Communication’, IEEE, pp. 468–473.

122 Bibliography

Strommer, W., Neugebauer, J. and Flaig, T. (1993), Transputer-based virtual real-
ity workstation as implemented for the example of industrial robot control,
in ‘Proceedings of the Interface Real Virtual Worlds Conference’, Montpel-
lier, France, pp. 137–146.

Taylor, R. H. (1979), ‘Planning and execution of straight line manipulator traject-
ories’, IBM Journal of Research and Development23(4), 424–436.

Taylor, R. H., Summers, P. D. and Meyer, J. M. (1982), ‘AML: A Manufacturing
Language’,Intl. J. Robotics Research1(3), 19–41.

Thomas, U. and Wahl, F. M. (2001), A System for Automatic Planning, Evalu-
ation and Execution of Assembly Sequences for Industrial Robots,in ‘Inter-
national Conference on Intelligent Robotics and Systems’,IEEE/JR.

Tsai, R. Y. and Lenz, R. K. (1989), ‘A New Technique for Fully Autonomous and
Efficient 3D Robotics Hand/Eye Calibration’,IEEE Transactions on Robot-
ics and Automation5(3), 345–357.

Ude, A. and Dillmann, R. (1995), ‘Robot motion specification: A vision-based
approach’,Surveys on Mathematics for Industry5, 109–131.

Udupa, S. M. (1977), Collision detection and avoidance in computer controlled
manipulators,in ‘Fifth International Joint Conference on Artificial Intelli-
gence, Camebridge, MA’, pp. 737–748.

United Nations, U., ed. (2003),World Robotics, United Nations. ISBN 92-1-
101059-4.

van der Smagt, P. P. (1994), ‘Simderella: a robot simulator for neuro-controller
design’,Neurocomputing6(2), 281–285.
URL: citeseer.ist.psu.edu/vandersmagt94simderella.html

Wahl, F. M. and Thomas, U. (2002), Robot Programming - From Simple Moves
to Complex Robot Tasks. Workshop.

Wei, G.-Q., Arbter, K. and Hirzinger, G. (1997), ‘Real-TimeVisual Servoing
for Laparoscopic Surgery’,IEEE Engineering in Medicine and Biology
4(16), 40–45.

Wu, H. (2003), Sensor Data Fusion for Context-Aware Computing Using
Dempster-Shafer Theory, PhD thesis, The Robotics Institute, Carnegie Mel-
lon University, USA. CMU-RI-TR-03-52.

Bibliography 123

Zhuang, H. and Shiu, Y. C. (1993), ‘A Noise-Tolerant Algorithm for Ro-
botic Hand-Eye Calibration with or without Orientation Measurement’,
23(4), 1168–1175.

Zollner, R., Rogalla, O., Dillmann, R. and Zollner, M. (2002), Understanding
users intention: programming fine manipulation tasks by demonstration,in
‘Proceedings of the IEEE/RSJ Intl. Conf. on Intelligent Robots and System’,
Vol. 2, IEEE/RSJ, pp. 1114–1119.

