
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

TrueTime 1.2 - Reference Manual

Henriksson, Dan; Cervin, Anton

2004

Link to publication

Citation for published version (APA):
Henriksson, D., & Cervin, A. (2004). TrueTime 1.2 - Reference Manual. Department of Automatic Control, Lund
Institute of Technology (LTH).

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d4968d34-26ae-4ce5-adee-84453a359be4

TRUETIME 1.2—Reference Manual

Dan Henriksson
Anton Cervin

Department of Automatic Control
Lund Institute of Technology

October 2004

Contents

1. Introduction . 7

2. Getting Started . 7

2.1 Software Requirements . 7

2.2 Installation . 8

3. Using the Simulator . 9

4. Writing Code Functions . 9

4.1 Writing a MATLAB Code Function 10

4.2 Writing a C++ Code Function 11

4.3 Calling Simulink Block Diagrams 11

5. Initialization . 12

5.1 Writing a MATLAB Initialization Script 12

5.2 Writing a C++ Initialization Script 13

6. Compilation . 14

7. The TrueTime Network . 14

7.1 CSMA/CD (Ethernet) . 16

7.2 CSMA/AMP (CAN) . 16

7.3 Round Robin (Token Bus) . 16

7.4 FDMA . 16

7.5 TDMA (TTP) . 17

7.6 Switched Ethernet . 17

8. Examples . 18

8.1 PIDcontrol of a DCservo . 18

8.2 Task Scheduling and Control 21

8.3 Distributed Control System . 21

8.4 Deadline Overrun Handling 22

8.5 Task Synchronization Using Monitors 23

9. Implementation Details . 25

9.1 Kernel Data Structures . 25

9.2 Task Model . 27

9.3 The Kernel Function . 28

9.4 Timing . 30

3

10. TrueTime Command Reference 30

ttAnalogIn (TH) . 33

ttAnalogOut (TH) . 34

ttAttachDLHandler (I) . 35

ttAttachHook (C++ only) (I) . 36

ttAttachPrioFcn (C++ only) (I) 37

ttAttachWCETHandler (I) . 38

ttCallBlockSystem (TH) . 39

ttCreateEvent (I) . 40

ttCreateExternalTrigger (I) . 41

ttCreateInterruptHandler (I) . 42

ttCreateJob (ITH) . 43

ttCreateLog (I) . 44

ttCreateMailbox (I) . 46

ttCreateMonitor (I) . 47

ttCreatePeriodicTask (I) . 48

ttCreatePeriodicTimer (ITH) . 49

ttCreateTask (I) . 50

ttCreateTimer (ITH) . 51

ttCurrentTime (ITH) . 52

ttEnterMonitor (T) . 53

ttExitMonitor (T) . 54

ttGetMsg (TH) . 55

ttGetX (ITH) . 56

ttInitKernel (I) . 58

ttInitNetwork (I) . 59

ttInvokingTask (H) . 60

ttKillJob (TH) . 61

ttLogNow (T) . 62

ttLogStart (T) . 63

ttLogStop (T) . 64

ttNonPreemptable (I) . 65

ttNoSchedule (I) . 66

4

ttNotify (TH) . 67

ttNotifyAll (TH) . 68

ttRemoveTimer (TH) . 69

ttSendMsg (TH) . 70

ttSetNextSegment (TH) . 71

ttSetX (ITH) . 72

ttSleep (TH) . 74

ttSleepUntil (TH) . 75

ttTryFetch (TH) . 76

ttTryPost (TH) . 77

ttWait (TH) . 78

11. References . 79

5

6

1. Introduction

This manual describes the use of the MATLAB/Simulinkbased [The Mathworks,
2001] simulator TRUETIME, which facilitates cosimulation of controller task ex
ecution in realtime kernels, network transmissions, and continuous plant dy
namics. The simulator is presented in [Henriksson et al., 2003; Cervin et al.,
2003; Henriksson et al., 2002], but several differences from these papers exist.

The manual describes the fundamental steps in the creation of a TRUETIME sim
ulation. This include how to write the code that is executed during simulation,
how to configure the kernel and network blocks, and what compilation that must
be performed to get an executable simulation. The code functions for the tasks
and the initialization commands may be written either as C++ functions or as
MATLAB mfiles, and both cases are described.

Five tutorial examples are provided, treating standard and distributed PID
control, scheduling, overrun handling, and synchronization, respectively. In the
first example a DCservo is controlled by a controller task implemented in a
TRUETIME kernel block and four different implementations of the controller task
are demonstrated. This example is extended in the second example to the case
of three PIDtasks running concurrently on the same CPU controlling three dif
ferent servo systems. The third example treats networked control. Finally, the
last two examples deal with deadline overrun handling and task synchronization
using TRUETIME overrun handlers and monitors, respectively.

The manual also includes a section describing some of the internal workings of
TRUETIME, including the task model, implementation details, and timing details.
A TRUETIME command reference with detailed explanations of all functionality
provided by the simulator is given at the end of the manual.

For questions and bug reports, please direct these issues to

truetime@control.lth.se

2. Getting Started

2.1 Software Requirements

TRUETIME currently supports MATLAB 7.0 (R14) with Simulink 6.0, MATLAB
6.5 (R13) with Simulink 5.0, and MATLAB 6.1 (R12.1) with Simulink 4.1.

A C++ compiler is required to run TRUETIME in the C++ version. For the MAT
LAB version, precompiled files can be downloaded from the TRUETIME web site.
The following compilers are currently supported (it may, of course, also work
using other compilers):

• Visual Studio C++ 6.0 (for all supported MATLAB versions) and 7.0 (for
MATLAB 6.5 (R13) and MATLAB 7.0 (R14)) for Windows

• gcc, g++ GNU project C and C++ Compiler (gcc3.3.2) for LINUX and
UNIX

7

Figure 1 The TRUETIME block library.

2.2 Installation

Download the compressed files (truetime-1.2.zip) available at:

http://www.control.lth.se/∼dan/truetime/

and extract the files to any suitable directory $DIR.

Before starting MATLAB, you must set the environment variable TTKERNEL to
point to the directory with the TRUETIME kernel files, $DIR/kernel. This is typ
ically done in the following manner:

• Unix/Linux: export TTKERNEL=$DIR/kernel

• Windows: use Control Panel / System / Advanced / Environment Variables

Then add the following lines to your MATLAB startup script. This will set up
all necessary paths to the TRUETIME kernel files.

addpath(getenv(’TTKERNEL’))

init_truetime;

After starting MATLAB and before running TRUETIME for the first time, you
must compile the TRUETIME blocks and the MEXfunctions for the TRUETIME
commands (unless you have downloaded the archive with precompiled files).
This is done by issuing the command

>> make_truetime

from the MATLAB prompt. This performs all necessary compilation needed to
run the MATLAB version of TRUETIME. For instructions on how to compile indi
vidual simulations in the C++ case, see Section 6.

Issuing the command

>> truetime

from the MATLAB prompt will open the TRUETIME block library, see Figure 1.

8

3. Using the Simulator

The TRUETIME blocks are connected with ordinary Simulink blocks to form a
realtime control system, see Figure 2. Before a simulation can be run, however,
it is necessary to initialize kernel blocks and the network block, and to create
tasks, interrupt handlers, timers, events, monitors, etc for the simulation.

The initialization code as well as the code that is executed during simulation
may be written either as C++ code or as MATLAB mfiles. The former is faster
but the latter is probably more convenient. How the code functions are defined
and what must be provided during initialization will be described below. It will
also be described how the code is compiled to executable MATLAB code.

we

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

TrueTime Kernel

Schedule

1

s +−12

Pendulum

Figure 2 A TRUETIME kernel block connected to a continuous pendulum process.

4. Writing Code Functions

The execution of tasks and interrupt handlers is defined by code functions. A
code function is further divided into code segments according to the execution
model in Figure 3. All execution of user code is done in the beginning of each
code segment. The execution time of each segment should be returned by the
code function.

1 2 3

Simulated execution time

Execution of user code

Figure 3 The execution of user code is modeled by a sequence of segments executed in
order by the kernel.

9

4.1 Writing a MATLAB Code Function

The syntax of a MATLAB code function implementing a simple Pcontroller is
given by Listing 1.

The variable segment determines which segment that should be executed, and
data is a userdefined data structure that has been associated with the task when
it was created, see ttCreateTask and ttCreatePeriodicTask in the command
reference. The data is updated and returned by the code function. The code
function also returns the execution time of the executed segment.

In this example, the execution time of the first segment is 2 ms. This means
that the delay from input to output for this task will be at least 2 ms. However,
preemption from higher priority tasks may cause the delay to be longer. The
second segment returns a negative execution time. This is used to indicate end
of execution, i.e. that there are no more segments to execute.

ttAnalogIn and ttAnalogOut are realtime primitives used to read and write
signals to the environment. Detailed descriptions of these functions can be found
in the command reference at the end of this manual.

Listing 1 Example of a Pcontroller code function written in MATLAB code.

function [exectime, data] = Pcontroller(segment, data)

switch segment,

case 1,

r = ttAnalogIn(1);

y = ttAnalogIn(2);

data.u = data.K * (r-y);

exectime = 0.002;

case 2,

ttAnalogOut(1, data.u);

exectime = -1; % finished

end

Listing 2 The C++ version of the code function in Listing 1.

double Pcontroller(int segment, void* data) {

Task_Data* d = (Task_Data*) data;

switch (segment) {

case 1:

double r = ttAnalogIn(1);

double y = ttAnalogIn(2);

d->u = d->K*(r-y);

return 0.002;

case 2:

ttAnalogOut(1, d->u);

return FINISHED; // end of execution

}

}

10

Figure 4 Controllers represented using ordinary discrete Simulink blocks may be called
from within the code functions. The only requirement is that the blocks are discrete with
the sample time set to one.

4.2 Writing a C++ Code Function

Writing a code function in C++ follows a similar pattern as the code function
described in Listing 1. The corresponding C++ syntax for the Pcontroller code
function is given in Listing 2. We here assume the existence of a data structure
Task_Data that contains the control signal u and the controller gain, K .

4.3 Calling Simulink Block Diagrams

Whether implemented in C++ code or as mfiles, it is possible to call Simulink
block diagrams from within the code functions. This is a convenient way to im
plement controllers. Listing 3 shows an example where the discrete PIcontroller
in Figure 4 is used in a code function.

See the command reference at the end of this manual for further explanation of
the command ttCallBlockSystem.

Listing 3 Simulink block diagrams are called from within code function using the TRUE
TIME function ttCallBlockSystem.

function [exectime, data] = PIcode(segment, data)

switch (segment),

case 1,

inp(1) = ttAnalogIn(1);

inp(2) = ttAnalogIn(2);

outp = ttCallBlockSystem(2, inp, ’PI_Controller’);

data.u = outp(1);

exectime = outp(2);

case 2,

ttAnalogOut(1, data.u);

exectime = -1; % finished

end

11

5. Initialization

Initialization of a TRUETIME kernel block involves specifying the number of in
puts and outputs of the block, defining the scheduling policy, and creating tasks,
interrupt handlers, events, monitors, etc for the simulation. This is done in an
initialization script for each kernel block.

The TRUETIME kernel block takes one parameter. This parameter is the name
of the initialization script without extension. In the examples given below, this
parameter should be example_init, both in the MATLAB and C++ cases.

5.1 Writing a MATLAB Initialization Script

The initialization code in Listing 4 shows the minimum of initialization needed
for a TRUETIME simulation. The kernel is initialized by providing the number of
inputs and outputs and the scheduling policy using the function ttInitKernel.
A periodic task is created by the function ttCreatePeriodicTask. This task uses
the code function Pcontroller that was defined in Listing 1. See the command
reference for further explanation of the functions.

Listing 4 Example of a TRUETIME initialization script in the MATLAB version. The
kernel is initialized using the function ttInitKernel, and a periodic task is created that
uses the Pcontroller code function from Listing 1.

function example_init

ttInitKernel(2, 1, ’prioFP’);

data.u = 0;

data.K = 2;

offset = 0;

period = 0.005;

prio = 5;

ttCreatePeriodicTask(’ctrl’, offset, period, prio, ’Pcontroller’, data);

Listing 5 Template for writing initialization scripts in C++. The final script is actu
ally a complete MATLAB Sfunction, since the included file, ttkernel.cpp, contains the
Simulink callback functions that implement the kernel.

#define S_FUNCTION_NAME filename

#include "ttkernel.cpp"

// insert your code functions here

void init() {

// perform the initialization

}

void cleanup() {

// free dynamic memory allocated in this script

}

12

5.2 Writing a C++ Initialization Script

An initialization script in C++ must follow a certain format given by the tem
plate in Listing 5.

The included file ttkernel.cpp contains the Simulink callback functions that
implement the TRUETIME kernel, meaning that the initialization script is actually
a complete MATLAB Sfunction. filename should be the name of the source file,
e.g. if the source file is called example_init.cpp, S_FUNCTION_NAME should be
defined to example_init.

The init()function is called at the start of simulation (from the Simulink call
back function mdlInitializeSizes), and it is here all initialization should be
performed. Any dynamic memory allocated from the init()function can be deal
located from the cleanup()function, which is called at the end of simulation
(from mdlTerminate).

The C++ version of the MATLAB initialization script of Listing 4 is given in
Listing 6.

Listing 6 Example of a TRUETIME initialization script in the C++ version. Corresponds
to the MATLAB version from Listing 4.

#define S_FUNCTION_NAME example_init

#include "ttkernel.cpp"

#include "Pcontroller.cpp" // P-controller code funtion

class Task_Data {

public:

double u;

double K;

};

Task_Data* data; // pointer to local memory for the task

void init() {

ttInitKernel(2, 1, FP);

data = new Task_Data;

data->u = 0.0;

data->K = 2.0;

double offset = 0.0;

double period = 0.005;

double prio = 5.0;

ttCreatePeriodicTask("ctrl", offset, period, prio, Pcontroller, data);

}

void cleanup() {

delete data;

}

13

6. Compilation

Having run the script make_truetime.m as described in Section 2, no further
compilation is required in the MATLAB case. This script compiles the kernel
and network Sfunctions and the MEXfiles for the TRUETIME primitives once
and for all.

In the C++ case, the initialization script (example_init.cpp in the example
from the previous section) must be compiled to produce a MATLAB MEXfile for
the simulation. This is done by the command:

>> ttmex example_init.cpp

This file also needs to be recompiled each time changes are made to the code
functions or to the initialization script.

Note: The ttmex command is the same as the ordinary mex command but includes
the path to the kernel files (ttkernel.cpp) automatically.

In the MATLAB case, you may experience that nothing changes in the simula
tions, although changes are being made to the code functions or the initialization
script. If that is the case, type the following at the MATLAB prompt

>> clear functions

To force MATLAB to reload all functions at the start of each simulation, issue
the command (assuming that the model is named servo)

>> set_param(’servo’, ’StartFcn’, ’clear functions’)

7. The TrueTime Network

The TRUETIME network block simulates medium access and packet transmission
in a local area network. When a node tries to transmit a message (using the
primitive ttSendMsg, a triggering signal is sent to the network block on the
corresponding input channel. When the simulated transmission of the message
is finished, the network block sends a new triggering signal on the output channel
corresponding to the receiving node. The transmitted message is put in a buffer at
the receiving computer node. A message contains information about the sending
and the receiving computer node, arbitrary user data (typically measurement
signals or control signals), the length of the message, and optional realtime
attributes such as a priority or a deadline.

Six simple models of networks are supported: CSMA/CD (e.g. Ethernet), CSMA/
AMP (e.g. CAN), Round Robin (e.g. Token Bus), FDMA, TDMA (e.g. TTP), and
Switched Ethernet. The propagation delay is ignored, since it is typically very
small in a local area network. Only packetlevel simulation is supported—it is
assumed that higher protocol levels in the kernel nodes have divided long mes
sages into packets, etc.

The network block is configured through the block mask dialog, see Figure 5.
The following network parameters are common to all models:

14

Figure 5 The dialog of the TRUETIME network block.

Network number The number of the network block. The networks must be
numbered from 1 and upwards.

Number of nodes The number of nodes that are connected to the network.
This number will determine the size of the Snd, Rcv and Schedule input
and outputs of the block.

Data rate (bits/s) The speed of the network.

Minimum frame size (bytes) A message or frame shorter than this will be
padded to give the minimum length. Denotes the minimum frame size, in
cluding any overhead introduced by the protocol. E.g., the minimum Eth
ernet frame size, including a 14byte header and a 4byte CRC, is 64 bytes.

Preprocessing delay (s) The time a message is delayed by the network in
terface on the sending end. This can be used to model, e.g., a slow serial
connection between the computer and the network interface.

Postprocessing delay (s) The time a message is delayed by the network in
terface on the receiving end.

Loss probability (0–1) The probability that a network message is lost during
transmission. Lost messages will consume network bandwidth, but will
never arrive at the destination.

15

7.1 CSMA/CD (Ethernet)

CSMA/CD stands for Carrier Sense Multiple Access with Collision Detection. If
the network is busy, the sender will wait until it occurs to be free. A collision
will occur if a message is transmitted within 1 microsecond of another (this
corresponds to the propagation delay in a 200 m cable; the actual number is not
very important since collisions are only likely to occur when two or more nodes
are waiting for the cable to be idle). When a collision occurs, the sender will back
off for a time defined by

tbackoff = minimum frame size / data rate � R

where R = rand(0, 2K − 1) (discrete uniform distribution) and K is the number
of collisions in a row (but maximum 10—there is no upper limit on the number of
retransmissions, however). Note that for CSMA/CD, minimum frame size cannot
be 0.

After waiting, the node will attempt to retransmit. In an example where two
nodes are waiting for a third node to finish its transmission, they will first collide
with probability 1, then with probability 1/2 (K = 1), then 1/4 (K = 2), and so
on.

7.2 CSMA/AMP (CAN)

CSMA/AMP stands for Carrier Sense Multiple Access with Arbitration on Mes
sage Priority. If the network is busy, the sender will wait until it occurs to be
free. If a collision occurs (again, if two transmissions are being started within
1 microsecond), the message with the highest priority (the lowest priority num
ber) will continue to be transmitted. If two messages with the same priority
seek transmission simultaneously, an arbitrary choice is made as to which is
transmitted first. (In real CAN applications, all sending nodes have a unique
identifier, which serves as the message priority.)

7.3 Round Robin (Token Bus)

The nodes in the network take turns (from lowest to highest node number) to
transmit one frame each. Between turns, the network is idle for a time

tidle = minimum frame size / date rate,

representing the time to pass a token to the next node.

7.4 FDMA

FDMA stands for Frequency Division Multiple Access. The transmissions of the
different nodes are completely independent and no collisions can occur. In this
mode, there is an extra attribute

Bandwidth allocations A vector of shares for the sender nodes which must
sum to at most one.

The actual bit rate of a sender is computed as (allocated bandwidth � data rate).

16

7.5 TDMA (TTP)

TDMA stands for Time Division Multiple Access. Works similar to FDMA, except
that each node has 100 % of the bandwidth but only in its scheduled slots. If a
full frame cannot be transmitted in a slot, the transmission will continue in the
next scheduled slot, without any extra penalty. Note that overhead is added to
each frame just as in the other protocols. The extra attributes are

Slot size (bytes) The size of a sending slot. The slot time is hence given by

tslot = slot size / data rate.

Schedule A vector of sender node ID’s (1 . . . nbrOfNodes) specifying a cyclic
send schedule. A zero is also an allowed node ID, meaning that noone is
allowed to transmit in that time slot.

7.6 Switched Ethernet

In Switched Ethernet, each node in the network has its own, fullduplex con
nection to a central switch. Compared to an ordinary Ethernet, there will never
be any collisions on the network segments in a Switched Ethernet. The switch
stores the received messages in a buffer and then forwards them to the correct
destination nodes. This common scheme is known as store and forward.

If many messages in the switch are destined for the same node, they are trans
mitted in FIFO order. There can be either one queue that holds all the messages
in the switch, or one queue for each output segment. In case of heavy traffic and
long message queues, the switch may run out of memory. The following options
are associated with the Switched Ethernet:

Total switch memory (bytes) This is the total amount of memory available
for storing messages in the switch. An amount of memory equal to the
length of the message is allocated when the message has been fully received
in the switch. The same memory is deallocated when the complete message
has reached its final destination node.

Switch buffer type This setting describes how the memory is allocated in the
switch. Common buffer means that all messages are stored in a single FIFO
queue and share the same memory area. Symmetric output buffers means
that the memory is divided into n equal parts, one for each output segment
connected to the switch. When one output queue runs out of memory, no
more messages can be stored in that particular queue.

Switch overflow behavior This options describes what happens when the
switch has run out of memory. When the complete message has been re
ceived in the switch, it is deleted. Retransmit means that the switch then
informs the sending node that it should try to retransmit the message.
Drop means that no notification is given—the message is simply deleted.

17

8. Examples

The directory $DIR/examples contains five example directories treating standard
and distributed PIDcontrol, scheduling, overrun handling, and synchronization,
respectively. In the first example a DCservo is controlled by a controller task
implemented in a TRUETIME kernel block and four different implementations of
the controller task are demonstrated. This example is extended in the second
example to the case of three PIDtasks running concurrently on the same CPU
controlling three different servo systems. The third example treats networked
control. Finally, the last two examples are dealing with deadline overrun han
dling and task synchronization using TRUETIME overrun handlers and monitors,
respectively.

Three of the examples are provided in both MATLAB and C++ versions. How
ever, the descriptions below will only treat the MATLAB case. For detailed in
structions on how to compile the examples, see the READMEfiles in the corre
sponding example directories.

8.1 PIDcontrol of a DCservo

Introduction The first example considers simple PID control of a DCservo
process, and is intended to give a basic introduction to the TRUETIME simulation
environment. The process is controlled by a controller task implemented in a
TRUETIME kernel block. Four different implementations of the controller task
are provided to show different ways to implement periodic activities. The files
are found in the directory $DIR/examples/simple_pid/matlab.

Process and Controller The DCservo is described by the continuoustime
transfer function

G(s) =
1000

s(s + 1)
(1)

The PIDcontroller is implemented according to the following equations

P(k) = K ⋅ (r(k) − y(k))

I(k + 1) = I(k) +
Kh

Ti
(r(k) − y(k))

D(k) = ad D(k − 1) + bd(y(k − 1) − y(k))

u(k) = P(k) + I(k) + D(k)

(2)

where ad = Td

Nh+Td
and bd = N KTd

Nh+Td
, see [Åström and Hägglund, 1995]. The

controller parameters were chosen to give the system a closedloop bandwidth,
ω c = 20 rad/s, and a relative damping, ζ = 0.7.

Simulation Files The initialization script (servo_init.m) is given in an ab
breviated version in Listing 7. As seen in the initialization script, it is possible
to choose between four different implementations of the periodic control task:

• Implementation 1a: Uses the TRUETIME builtin support for periodic tasks,
and the code function is given in the file pidcode1.m.

18

• Implementation 1b: Also uses the TRUETIME builtin support for periodic
tasks, but the computation of the control signal in each sample is done by
calling a Simulink block diagram. The code function is given in the file
blockcode.m. Since all the controller parameters and states are contained
in the Simulink block, the task data (data2) only consist of the control
signal, u.

• Implementation 2: Implements the periodic task by using the TRUETIME

primitive ttSleepUntil. The code function is given in the file pidcode2.m.

• Implementation 3: Implements the periodic task by using a periodic timer.
The associated interrupt handler samples the process and triggers task
jobs. The handler and controller task communicate using a mailbox. The
code functions for the handler and controller are given in the files sampler

code.m and pidcode3.m, respectively.

Listing 7 The initialization script for the PIDcontrol example.

function servo_init

ttInitKernel(2, 1, ’prioFP’); % nbrOfInputs, nbrOfOutputs, fixed priority

period = 0.006;

deadline = period;

offset = 0.0;

prio = 1;

data.K = 0.96;

... % more task data

% IMPLEMENTATION 1a: using the built-in support for periodic tasks

%

ttCreatePeriodicTask(’pid_task’,offset,period,prio,’pidcode1’,data);

% IMPLEMENTATION 1b: calling Simulink block within code function

%

% data2.u = 0;

% ttCreatePeriodicTask(’pid_task’,offset,period,prio,’blockcode’,data2);

% IMPLEMENTATION 2: sleepUntil and loop back

%

% data.t = 0;

% ttCreateTask(’pid_task’,deadline,prio,’pidcode2’,data);

% ttCreateJob(’pid_task’);

% IMPLEMENTATION 3: sampling in timer handler, triggers task job

%

% hdl_data.yChan = 2;

% ttCreateInterruptHandler(’timer_handler’,prio,’samplercode’,hdl_data);

% ttCreatePeriodicTimer(’timer’,offset,period,’timer_handler’);

% ttCreateMailbox(’Samples’,10);

% ttCreateTask(’pid_task’,deadline,prio,’pidcode3’,data);

19

Figure 6 The TRUETIME model of the DCservo system.

Simulations The Simulink model is called servo.mdl and is given in Figure 6.
Open the Simulink model and try the following

• Run a simulation and verify that the controller behaves as expected. No
tice the computational delay of 2 ms in the control signal. Compare with
the code function, pidcode1.m. Study the schedule plot (high=running,
medium=ready, low=idle).

• Try changing the execution time of the first segment of the code function,
to simulate the effect of different inputoutput delays.

• Change the sampling period and study the resulting control performance.

• A PIDcontroller is implemented in the Simulink block controller.mdl.
Change the initialization file (servo_init) so that it uses implementation
1b instead. Study the corresponding code function, blockcode.m. This code
function is using the Simulink block to compute the control signal in each
sample.

• Change to implementation 2 and run a simulation. Study the code function,
pidcode2.m.

• Change to implementation 3 and run a simulation. Study the code func
tions, samplercode.m and pidcode3.m. Notice the inclusion of the handler
in the schedule plot.

20

8.2 Task Scheduling and Control

Introduction This example extends the simple PID control example from the
previous section to the case of three PIDtasks running concurrently on the same
CPU controlling three different DCservo systems. The effect of the scheduling
policy on the global control performance is demonstrated. The files are found in
the directory $DIR/examples/threeservos/matlab.

Simulations Open the Simulink model threeservos.mdl and try the following

• Make sure that ratemonotonic scheduling is specified by the function
ttInitKernel in the initialization script (threeservos_init.m) and simu
late the system. Study the computer schedule and the control performance.
Task 1 will miss all its deadlines and the corresponding control loop is un
stable.

• Change the scheduling policy to earliestdeadlinefirst (change ’prioRM’ to
’prioEDF’) and run a new simulation. Again study the computer schedule
and the control performance. After an initial transient all tasks will miss
their deadlines, but still the overall control performance is satisfactory.

8.3 Distributed Control System

Introduction This example simulates distributed control of the DCservo of
Equation (1). The example contains four computer nodes, each represented by a
TRUETIME kernel block. A timedriven sensor node samples the process periodi
cally and sends the samples over the network to the controller node. The control
task in this node calculates the control signal and sends the result to the actu
ator node, where it is subsequently actuated. The simulation also involves an
interfering node sending disturbing traffic over the network, and a disturbing
highpriority task executing in the controller node. The files are found in the
directory $DIR/examples/distributed/matlab.

Simulations The Simulink model is called distributed.mdl and is given in
Figure 7. Open the Simulink model and try the following

• Study the initialization scripts and code functions for the different nodes.
The eventdriven nodes contain interrupt handlers, which are activated as
messages arrive over the network. The handler then triggers the task that
will read and process the message.

• Run a first simulation without disturbing traffic and without interference in
the controller node. This is obtained by setting the variable BWshare in the
code function of the interfering node (interfcode.m) to zero, and by com
menting out the creation of the task ’dummy’ in controller_init. In this
case we will get a constant roundtrip delay and satisfactory control per
formance. Study the network schedule (high=sending, medium=waiting,
low=idle) and the resulting control performance.

• Switch on the disturbing node and the interfering task in the controller
node. Set the variable BWshare to the percentage of the network bandwidth
to be used by the disturbing node. Again study the network schedule and
the resulting control performance. Experiment with different network pro
tocols and different scheduling policies in the controller node.

21

Figure 7 The TRUETIME model of the distributed control system.

8.4 Deadline Overrun Handling

Introduction This example will show how to use the TRUETIME overrun han
dling functionality. TRUETIME provides two types of overrun handlers; deadline
and worstcase execution time overrun handlers. The example again considers
PIDcontrol of the DCservo described by Equations (1) and (2). However, now
the controller task is having a stochastically varying execution time that oc
casionally will exceed the sampling interval. Two approaches to deal with the
period overruns are evaluated in the simulation. The first allows the task to
continue into next sample (no overrun handler is attached), whereas the sec
ond uses an overrun handler that terminates the current job if the deadline is
exceeded. The files are found in the directory $DIR/examples/overrun.

Simulations Open the Simulink model overrun.mdl and try the following

• Study the code function pidcode.m, then run a simulation. The period of
the controller task is 6 ms, and the execution time is modeled as C =
5 + U(0, 2) ms. Consequently, the task will experience overruns. The bad
control performance is due to the long delays and the sampling period jitter
induced by the overruns.

• Uncomment the last two lines of the initialization file (overrun_init.m).
This will create an interrupt handler and attach it to the controller task
as a deadline handler. Study the code executed by the overrun handler
(hdlcode.m).

• Run a simulation to evaluate the performance obtained by terminating jobs
at the deadline (is this a good approach?). Studying the control signal, one
can notice that it often remains constant over several samples.

22

Figure 8 The ball and beam laboratory process.

8.5 Task Synchronization Using Monitors

Introduction This example shows how to use monitors to obtain mutual ex
clusion in TRUETIME. A cascaded controller for a ballandbeam process is imple
mented using separate tasks for the two loops in the cascade. The output from
the outer controller is used as input to the inner controller and is communicated
using a global variable. This variable is a shared resource, and mutual exclu
sion is achieved by a TRUETIME monitor. The files are found in the directory
$DIR/examples/synch.

Process and Controller The ball and beam laboratory process is shown in
Figure 8. The horizontal beam is controlled by a motor, and the objective is to
balance the ball along the beam. The measurement signals from the system are
the beam angle, denoted by φ , and the ball position on the beam, denoted by x.
A linearized model of the system is given by

G(s) = Gφ (s)Gx(s) (3)

where

Gφ (s) =
kφ
s

(4)

is the transfer function between the motor input and the beam angle, and

Gx(s) = −
kx

s2 (5)

is the transfer function between the beam angle and the ball position. The gains
of the systems are given by kφ � 4.4 and kx � 9.

The cascaded controller is shown in Figure 9. The outer controller is a PID
controller (implemented according to Equation (2)) and the inner controller is a
simple Pcontroller.

23

xr φ r

PIDctrl Pctrl Gφ (s) Gx(s)
xφu

Figure 9 The cascaded controller structure for the ball and beam process.

Figure 10 The TRUETIME model of the ball and beam system.

Simulations The Simulink model is called synch.mdl and is given in Fig
ure 10. Open the Simulink model and try the following

• Study the initialization function (synch_init.m). This creates two tasks for
the outer and inner loop, respectively. A global variable, outerU, is used for
task communication. This variable is the output from the outer controller
(thus its name) and is used as reference for the inner controller (it is
denoted φ r in Figure 9). Finally, a TRUETIME monitor is created.

• Study the code functions for the controller tasks (outercode.m and inner

code.m). To ensure that no further instructions are executed in the case
that ttEnterMonitor fails, this primitive needs to be called from its own
segment (since all code of a TRUETIME segment is executed at once before
scheduling decisions are made). The same holds for ttExitMonitor to make
sure that no further code is executed in the case a context switch will occur
when the monitor is released.

• Run a simulation and study the monitor graph. This graph displays when
the various tasks have been holding the monitor during the simulation.

• Try modifying the periods of the tasks to change the phasing and to see
which loop that is most sensitive to slower sampling.

24

9. Implementation Details

This section will give a brief description of the implementation of the TRUETIME

kernel. The main data structures will be described as well as the kernel imple
mentation. It will also be described how the eventbased kernel simulation is
achieved in Simulink, using the zerocrossing detection mechanism.

9.1 Kernel Data Structures

The main data structure of the TRUETIME kernel is a C++ class called RTsys,
see $DIR/kernel/ttkernel.h. An instance (rtsys) of this class is created in the
initialization step of the kernel Sfunction. The rtsys object is stored in the
UserData field of the kernel block between simulation steps. Among others, the
RTsys class contains the following attributes:

class RTsys {

public:

double time; // Current time in simulation

double* inputs; // Vector of input port values

double* outputs; // Vector of output port values

Task* running; // Currently running task

List* readyQ; // usertasks and handlers ready for execution, prio-sorted

List* timeQ; // usertasks and timers waiting for release, time-sorted

List* taskList; // A list containing all created tasks

List* handlerList;

List* monitorList;

List* eventList;

double (*prioFcn)(Task*); // Priority function

};

The ready queue and time queue are sorted linked list. The elements in the time
queue (tasks and timers) are sorted according to release times and expiry times.
A timer in the time queue is actually represented by its corresponding han
dler. The tasks in the ready queue are sorted according to the priority function
prioFcn, which is a function that returns a (possibly dynamic) priority number
from a Task instance, see the description of ttAttachPrioFcn in the command
reference.

The Task class ($DIR/kernel/task.h) inherits from the node class of the linked
list ($DIR/kernel/linkedlist.h) and contains the following basic attributes:

class Task : public Node {

public:

char* name;

int segment; // the current segment of the code function

double execTime; // the remaining execution time of the current segment

void *data; // task data (C++ case)

char* dataMATLAB; // name of global variable for task data (MATLAB case)

25

double (*codeFcn)(int, void*); // Code function (C++ case)

char* codeFcnMATLAB; // Name of m-file code function (MATLAB case)

};

The exectime of the running task is updated each time the kernel executed,
see Listing 8. When it has reached zero, the next segment of the code function
is executed. The task data in the MATLAB case is represented as a name of a
unique global variable. The code function of a task is represented either as a
function pointer in the C++ case or the name of a MATLAB mfile.

User tasks and interrupt handlers are both subclasses to Task and contain
the attributes given below, among others. See $DIR/kernel/usertask.h and
$DIR/kernel/handler.h for complete descriptions.

class UserTask : public Task {

public:

double priority;

double wcExecTime;

double deadline;

double absDeadline;

double release; // task release time if in timeQ

double budget;

int state; // Task state (IDLE; WAITING; SLEEPING; READY; RUNNING)

double tempPrio; // temporarily raised prio value

List *pending; // list of pending jobs

InterruptHandler* deadlineORhandler; // deadline overrun handler

InterruptHandler* exectimeORhandler; // execution-time overrun handler

int nbrOfUserLogs; // Number of user-created log entries

Log* logs[NBRLOGS];

void (*arrival_hook)(UserTask*); // hooks

void (*release_hook)(UserTask*);

void (*start_hook)(UserTask*);

void (*suspend_hook)(UserTask*);

void (*resume_hook)(UserTask*);

void (*finish_hook)(UserTask*);

};

The kernel implements priority inheritance to avoid priority inversion. Therefore
each task has a dynamic priority value that may be raised while executing inside
a monitor. Pending jobs are stored in the job queue of the task sorted by release
time. See $DIR/kernel/log.h for the contents of the Log class.

class InterruptHandler : public Task {

public:

double priority;

int type; // {UNUSED, OVERRUN, TIMER, NETWORK, EXTERNAL}

26

UserTask *usertask; // if overrun handler to task

Timer* timer; // if associated with timer interrupt

Network* network; // if associated with network receive interrupt

Trigger* trigger; // if associated with external interrupt

int pending; // list of pending invocations, if new external

// interrupt occurs before the old is served

};

See the corresponding header files in $DIR/kernel for the specifications of the
classes Timer, Network, and Trigger.

9.2 Task Model

TRUETIME user tasks may be periodic or aperiodic. Aperiodic tasks are triggered
by the creation of task jobs, using the command ttCreateJob. All pending jobs
are inserted in a job queue of the task sorted by release time. For periodic task
(created by the command ttCreatePeriodicTask), an internal timer is set up to
periodically create jobs for the task.

Apart from its code function, each task is characterized by a number of attributes.
The static attributes of a task include

• a relative deadline

• a priority

• a worstcase execution time

• a period (if the task is periodic)

These attributes are kept constant throughout the simulation, unless explicitly
changed by the user (see ttSetX in the command reference).

In addition to these attributes, each task job has dynamic attributes associated
with it. These attributes are updated by the kernel as the simulation progresses,
and include

• an absolute deadline

• a release time

• an execution time budget (by default equal to the worstcase execution time
at the start of each task job)

• the remaining execution time

These attributes (except the remaining execution time) may also be changed by
the user during simulation. Depending on the scheduling policy, the change of an
attribute may lead to a context switch. E.g., if the absolute deadline is changed
and earliestdeadlinefirst scheduling is simulated.

In accordance with [Bollella et al., 2000] it is possible to associate two inter
rupt handlers with each task: a deadline overrun handler (triggered if the task

27

τ

t

Arrival, Release
hooks

Start
hook

Suspend
hook

Resume
hook

Finish
hook

Figure 11 Scheduling hooks.

misses its deadline) and an execution time overrun handler (triggered if the
task executes longer than its worstcase execution time). These handlers can be
used to experiment with dynamic compensation schemes, handling missed dead
lines or prolonged computations. Overrun handlers are attached to tasks with
the commands ttAttachDLHandler and ttAttachWCETHandler. See Section 8.4
for an example on how to use overrun handlers.

Furthermore, to facilitate arbitrary dynamic scheduling mechanisms, it is possi
ble to attach small pieces of code (hooks) to each task. These hooks are executed
at different stages during the simulation, as shown in Figure 11. Usually the
arrival and release of a task job coincide. The exception is when a job is created
while previous jobs have yet to finish. In that case, the arrival hook is executed
immediately (at the call of ttCreateJob) and the release hook is called when the
job is subsequently released from the job queue.

The hooks can, e.g., be used to monitor different scheduling schemes and keep
track of context switches and deadline overruns. By default, the hooks implement
logging, simulation of context switching, and contain code to trigger the worst
case execution time and deadline overrun handlers possibly associated with the
different tasks. For the default hook implementation, see $DIR/kernel/default

hooks.cpp.

9.3 The Kernel Function

The functionality of the TRUETIME kernel is implemented by the function
runKernel located in $DIR/kernel/ttkernel.cpp. This function manipulates the
basic data structures of the kernel, such as the ready queue and the time queue,
and is called by the Simulink callback functions at appropriate times during
the simulation. See Section 9.4 for timing implementation details.

It is also from this function that the code functions for tasks and interrupt
handlers are called. The kernel keeps track of the current segment and updates
it when the time associated with the previous segment has elapsed. The hooks
mentioned above are also called from this function.

A simple model for how the kernel works is given by the pseudo code in Listing 8.
This code focuses on user tasks. See $DIR/kernel/ttkernel.cpp for the complete
implementation.

28

Listing 8 Pseudo code for the TRUETIME kernel function.

double runKernel(void) {

timeElapsed = rtsys->time - rtsys->prevHit; // time since last invocation

rtsys->prevHit = rtsys->time; // update previous invocation time

nextHit = 0.0;

while (nextHit == 0.0) {

// Count down execution time for current task

// and check if it has finished its execution

if (there exists a running task) {

task->execTime -= timeElapsed;

if (task->execTime == 0.0) {

task->segment++;

task->execTime = task->codeFcn(task->segment, task->data);

if (task->execTime < 0.0) {

// Negative execution time = task finished

task->execTime = 0.0;

task->segment = 0;

Remove task from readyQ;

task->finish_hook(task);

if (job queue is non-empty)

Release next job and execute release-hook ;

}

}

} // end: counting down execution time of running task

// Check time queue for possible releases (user tasks or timers)

for (each task) {

if ((release time - rtsys->time) == 0.0) {

Move task to ready queue

}

} // end: checking timeQ for releases

// Determine task with highest priority and make it running task

newrunning = rtsys->readyQ->getFirst();

oldrunning = rtsys->running;

if (oldrunning is being suspended) {

oldrunning->suspend_hook(oldrunning);

}

if (newrunning is being resumed or started) {

if (newrunning->segment == 0) {

newrunning->start_hook(newrunning);

} else {

newrunning->resume_hook(newrunning);

}

} // end: task dispatching

// Determine next invocation of kernel function

time1 = remaining execution time of current task;

time2 = next release time of a task from the time queue

nextHit = min(time1, time2);

} // end: loop while nextHit == 0.0

return nextHit;

}

29

9.4 Timing

The TRUETIME blocks are eventdriven and support external interrupt handling.
Therefore, the blocks have a continuous sample time. Discrete (i.e., piecewise
constant) outputs are obtained by specifying FIXED_IN_MINOR_STEP_OFFSET:

static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, FIXED_IN_MINOR_STEP_OFFSET);

}

The timing of the block is implemented using a zerocrossing function. As we
saw above, the next time the kernel should wake up (e.g., because a task is to
be released from the time queue or a task has finished its execution) is denoted
nextHit. If there is no known wakeup time, this variable is set to infinity. The
basic structure of the zerocrossing function is

static void mdlZeroCrossings(SimStruct *S) {

Store all inputs;

if (any interrupt input has changed value) {

nextHit = ssGetT(S);

}

ssGetNonsampledZCs(S)[0] = nextHit - ssGetT(S);

}

This will ensure that mdlOutputs executes every time an internal or exter
nal event has occurred. Since several kernel and network blocks may be con
nected in a circular fashion, direct feedthrough is not allowed. We exploit the
fact that, when an input changes as a step, mdlOutputs is called, followed by
mdlZeroCrossings. Since direct feedthrough is not allowed, the inputs may only
be checked for changes in mdlZeroCrossings. There, the zerocrossing function
is changed so that the next major step occurs at the current time. This scheme
will introduce a small timing error (< 10−10).

The kernel function (runKernel()) is only called from mdlOutputs since this is
where the outputs (D/A, schedule, network) can be changed. The timing imple
mentation implies that zerocrossing detection must be turned on (this is default,
and can be changed under Simulation Parameters/Advanced).

10. TrueTime Command Reference

The available TRUETIME commands are summarized in Tables 1–3, and the rest
of the manual contains detailed descriptions of their functionality. The commands
are categorized according to their intended use (I; initialization script, T; task
code function, and H; interupt handler code function). Note that the set and get
primitives are collected under the headings ttSetX and ttGetX, respectively.

By typing help command, where command is the name of a TRUETIME function, in
the MATLAB command window, the syntax of the various TRUETIME functions
will be displayed.

30

Command Description

ttInitKernel Initialize the kernel.
ttInitNetwork Initialize the network interface.
ttCreateTask Create a task.

ttCreatePeriodicTask Create a periodic task.
ttCreateInterruptHandler Create an interrupt handler.
ttCreateExternalTrigger Associate a interrupt handler with an

external interrupt channel.

ttCreateMonitor Create a monitor.
ttCreateEvent Create an event.
ttCreateLog Create a log structure and specify data to

log.
ttCreateMailbox Create a mailbox for intertask

communication.

ttNoSchedule Switch off the schedule generation for a
specific task or interrupt handler.

ttNonPreemptable Make a task nonpreemptable.
ttAttachDLHandler Attach a deadline overrun handler to a task.

ttAttachWCETHandler Attach a worstcase execution time overrun
handler to a task.

ttAttachPrioFcn (C++ only) Attach an arbitrary priority function to be
used by the kernel.

ttAttachHook (C++ only) Attach a runtime hook to a task.

Table 1 Commands used to create and initialize TRUETIME objects.

Command Description

ttSetDeadline Set the relative deadline of a task.

ttSetAbsDeadline Set the absolute deadline of a task job.
ttSetPriority Set the priority of a task.
ttSetPeriod Set the period of a periodic task.
ttSetBudget Set the execution time budget of a task job.

ttSetWCET Set the worstcase execution time of a task.
ttGetRelease Get the release time of a task job.
ttGetDeadline Get the relative deadline of a task.
ttGetAbsDeadline Get the absolute deadline of a task job.

ttGetPriority Get the priority of a task.
ttGetPeriod Get the period of a periodic task.
ttGetBudget Get the execution time budget of a task job.
ttGetWCET Get the worstcase execution time of a task.

Table 2 Commands used to set and get task attributes.

31

Command Description

ttCreateJob Create a job of a task.
ttKillJob Kill the running job of a task.

ttEnterMonitor Attempt to enter a monitor.
ttExitMonitor Exit a monitor.
ttWait Wait for an event.

ttNotify Notify the highestpriority task waiting for an
event.

ttNotifyAll Notify all tasks waiting for an event.
ttLogNow Log the current time.

ttLogStart Start a timing measurement for a log.
ttLogStop Stop a timing measurement and save in the log.
ttTryFetch Fetch a message from a mailbox.
ttTryPost Post a message to a mailbox.

ttCreateTimer Create a oneshot timer and associate an
interrupt handler with the timer.

ttCreatePeriodicTimer Create a periodic timer and associate an interrupt
handler with the timer.

ttRemoveTimer Remove a specific timer.
ttCurrentTime Get the current time in the simulation.
ttSleepUntil Put a task to sleep until a certain point in time.

ttSleep Put a task to sleep for a certain time.
ttAnalogIn Read a value from an analog input channel.
ttAnalogOut Write a value to an analog output channel.
ttSetNextSegment Set the next segment to be executed in the code

function (to implement loops and branches).
ttInvokingTask Get the name of the task that invoked a task

overrun handler.

ttCallBlockSystem Call a Simulink block diagram from within a code
function.

ttSendMsg Send a message over a TRUETIME network.

ttGetMsg Get a message that has been received over a
TRUETIME network.

Table 3 Realtime primitives.

32

ttAnalogIn (TH)

Purpose

Read a value from an analog input channel.

Matlab syntax

value = ttAnalogIn(inpChan)

C++ syntax

double ttAnalogIn(int inpChan)

Arguments

inpChan The input channel to read from.

Description

This function is used to read an analog input from the environment. The input
channel must be between 1 and the number of input channels of the kernel block
specified by ttInitKernel.

See Also

ttInitKernel, ttAnalogOut

33

ttAnalogOut (TH)

Purpose

Write a value to an analog output channel.

Matlab syntax

ttAnalogOut(outpChan, value)

C++ syntax

void ttAnalogOut(int outpChan, double value)

Arguments

outpChan The output channel to write to.
value The value to write.

Description

This function is used to write an analog output to the environment. The output
channel must be between 1 and the number of output channels specified by
ttInitKernel.

See Also

ttInitKernel, ttAnalogIn

34

ttAttachDLHandler (I)

Purpose

Attach a deadline overrun handler to a task.

Matlab syntax

ttAttachDLHandler(taskname, handlername)

C++ syntax

void ttAttachDLHandler(char* taskname, char* handlername)

Arguments

taskname Name of a task.
handlername Name of an interrupt handler.

Description

This function is used to attach a deadline overrun handler to a task. The inter
rupt handler is activated if the task executes past its deadline.

See Also

ttAttachWCETHandler, ttSetDeadline

35

ttAttachHook (C++ only) (I)

Purpose

Attach a runtime hook to a task.

C++ syntax

void ttAttachHook(char* taskname, int ID, void (*hook)(UserTask*))

Arguments

taskname Name of a task.
ID An identifier for when the hook should be called during

simulation. Possible values are ARRIVAL, RELEASE, START,
SUSPEND, RESUME, and FINISH.

hook The hook function to be attached.

Description

This function is used to attach a runtime hook to a specific task. The hook
identifier determines at which times during the simulation the hook will be
called. It is possible to attach hooks that are called when a task job arrives,
when the task is released, when the task starts to execute, when the task is
suspended, when the task resumes after being suspended, and when the task
finishes execution. Usually the arrival and release of a task job coincide. The
exception is when a job is created while previous jobs have yet to finish. In
that case, the arrival hook is executed immediately (at the call of ttCreateJob)
but the job is queued. The release hook is called when the job is subsequently
released from the job queue.

The input to the hook function is a pointer to a UserTask object. UserTask inherits
from the superclass Task. See $DIR/kernel/usertask.hand $DIR/kernel/task.h

for the definitions. The kernel uses hooks internally to implement logging, trig
gering of task overrun handlers, and simulation of context switching. These
hooks are contained in the file $DIR/kernel/defaulthooks.cpp and should be
included in the userdefined hooks (see the example below).

Example

The example below shows a custom finish hook that estimates the execution time
of the task using a firstorder filter:

void myFinishHook(UserTask* task) {

// Compute execution time (the initial budget of a task job is the WCET)

double exectime = task->wcExecTime - task->budget;

// Update estimate

double lambda = 0.5;

task->data->Chat = lambda*task->data->Chat + (1.0-lambda)*exectime;

// Execute default finish hook

default_finish(task);

}

36

ttAttachPrioFcn (C++ only) (I)

Purpose

Attach an arbitrary priority function to be used for task scheduling.

C++ syntax

void ttAttachPrioFcn(double (*prioFcn)(UserTask*))

Arguments

prioFcn The priority function to be attached.

Description

This function is used to attach an arbitrary priority function to the kernel. The
priority function returns a number that will be used by the kernel for task
scheduling. The lower the number, the higher the priority of the task. The input
to the priority function is a pointer to a UserTask object. UserTask inherits from
the superclass Task. See $DIR/kernel/usertask.h and $DIR/kernel/task.h for
the definitions.

Example

As two examples, the priority functions implementing fixedpriority scheduling
and earliestdeadlinefirst scheduling are given below:

double prioFP(UserTask* task) {

return task->priority;

}

double prioEDF(UserTask* task) {

return task->absDeadline;

}

37

ttAttachWCETHandler (I)

Purpose

Attach a worstcase execution time overrun handler to a task.

Matlab syntax

ttAttachWCETHandler(taskname, handlername)

C++ syntax

void ttAttachWCETHandler(char* taskname, char* handlername)

Arguments

taskname Name of a task.
handlername Name of an interrupt handler.

Description

This function is used to attach a worstcase execution time overrun handler to
a task. The interrupt handler is activated if the task executes longer than its
associated worstcase execution time.

See Also

ttAttachDLHandler, ttSetWCET

38

ttCallBlockSystem (TH)

Purpose

Call a Simulink block diagram from within a code function.

Matlab syntax

outp = ttCallBlockSystem(nbroutp, inp, blockname)

C++ syntax

void ttCallBlockSystem(int nbroutp, double *outp, int nbrinp,

double *inp, char *blockname)

Arguments

nbrinp Number of inputs to the block diagram.
nbroutp Number of outputs from the block diagram.

inp Vector of input values.
outp Vector of output values.
blockname The name of the Simulink block diagram.

Description

This function is used to call a Simulink block diagram from within a code func
tion. At each call, a onesecond simulation of the block is performed, using the
old states as initial values. The states of the block diagram are stored internally
by the kernel between calls. Consequently, the block diagrams may only contain

discrete blocks and the sampling times should be set to one. The inputs and
outputs are defined by Simulink inports and outports, see the figure below.

Example

Here follows an example using the Simulink diagram in the figure:

function [exectime, data] = PIcontroller(segment, data)

switch segment,

case 1,

inp(1) = ttAnalogIn(1);

inp(2) = ttAnalogIn(2);

outp = ttCallBlockSystem(2, inp, ’PI_Controller’);

data.u = outp(1);

exectime = outp(2);

case 2,

ttAnalogOut(1, data.u);

exectime = -1;

end

39

ttCreateEvent (I)

Purpose

Create a TRUETIME event.

Matlab syntax

ttCreateEvent(eventname)

ttCreateEvent(eventname, monitorname)

C++ syntax

void ttCreateEvent(char *eventname)

void ttCreateEvent(char *eventname, char *monitorname)

Arguments

eventname Name of the event. Must be a unique, nonempty string.
monitorname Name of an already created monitor to which the event is to

be associated.

Description

This function is used to create an event in the TRUETIME kernel. Events may be
free, or associated with a monitor.

See Also

ttWait, ttNotify, ttNotifyAll

40

ttCreateExternalTrigger (I)

Purpose

Associate an interrupt handler with an external interrupt channel.

Matlab syntax

ttCreateExternalTrigger(handlername, latency)

C++ syntax

void ttCreateExternalTrigger(char *handlername, double latency)

Arguments

handlername Name of the interrupt handler to be associated with the
external interrupt.

latency The time interval during which the interrupt channel is
insensitive to new invocations.

Description

This function is used to associate an interrupt handler with an external interrupt
channel. The size of the external interrupt port will be decided depending on the
number of created triggers. The interrupt handler is activated when the signal
connected to the external interrupt port changes value. If the external signal
changes again within the interrupt latency, this interrupt is ignored.

See Also

ttCreateInterruptHandler

41

ttCreateInterruptHandler (I)

Purpose

Create a TRUETIME interrupt handler.

Matlab syntax

ttCreateInterruptHandler(name, priority, codeFcn)

ttCreateInterruptHandler(name, priority, codeFcn, data)

C++ syntax

void ttCreateInterruptHandler(char *name, double priority,

double (*codeFcn)(int, void*))

void ttCreateInterruptHandler(char *name, double priority,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the handler. Must be a unique, nonempty string.
priority Priority of the handler. This should be a value greater than zero,

where a small number represents a high priority.

codeFcn The code function of the handler, where codeFcn is a string
(name of an mfile) in the MATLAB case and a function pointer
in the C++ case.

data An arbitrary data structure representing the local memory of the
handler.

Description

This function is used to create a handler that will be executed in response to in
terrupts. Interrupt handlers may be associated with timers, the network receive
channel, external interrupt channels, or attached to tasks as overrun handlers.
Each handler may only be associated with one interrupt source.

See Also

ttCreateTimer, ttCreatePeriodicTimer, ttCreateExternalTrigger,
ttInitNetwork, ttAttachDLHandler, ttAttachWCETHandler

42

ttCreateJob (ITH)

NOTE: The syntax has been changed since TrueTime 1.13.

Purpose

Create a job of a task.

Matlab syntax

ttCreateJob(taskname)

C++ syntax

void ttCreateJob(char *taskname)

Arguments

taskname Name of a task.

Description

This function is used to create job jobs of tasks. If there already is a job active for
the task, the job is queued and served as soon as possible. ttCreateJob must be
called to activate aperiodic tasks, i.e., tasks created using ttCreateTask. A call
to ttCreateJob will trigger the arrival hook of the task. If there are no active
jobs the release hook will be called as well. Otherwise, the release hook will be
called when the job is later activated from the job queue.

See Also

ttCreateTask, ttKillJob

43

ttCreateLog (I)

Purpose

Create a log structure and specify attribute to log.

Matlab syntax

ttCreateLog(taskname, logtype, variable, size)

C++ syntax

void ttCreateLog(char* taskname, int logtype, char* variable, int size)

Arguments

taskname Name of a task.

logtype The log type (see description below).
variable The name of the variable in MATLAB workspace to which the log

will be written after the simulation.
size The maximum number of elements in the log.

Description

This function is used to create logs for individual tasks. Five predefined log
types exist to log response time, release latency, start latency, execution time,
and context switch instances. These are obtained by setting the variable logtype

to any of the constants one to five, respectively. It is also possible to create five
additional log structures for each task (by specifying log type number six). These
usercontrolled logs are written to from the code functions using the primitives
ttLogStart, ttLogStop, and ttLogNow. After the simulation the logged attributes
can be found in MATLAB workspace, having the name specified by variable.

Example

Logging of response time and inputoutput latency

% In initialization script

% Automatic log of response time (type 1)

ttCreateLog(’ctrl_task’, 1, ’Responsetime’, 100);

% User log #1 (type 6) for logging of I/O latency

ttCreateLog(’ctrl_task’, 6, ’IOlatency’, 100);

% Code function

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,

ttLogStart(1); % start I/O logging in user log #1

y = ttAnalogIn(1); % Input

data.u = calculateOutput(y);

exectime = 0.003;

case 2,

44

ttLogStop(1); % stop and write log entry in user log #1

ttAnalogOut(1, data.u); % Output

exectime = -1;

end

See Also

ttLogNow, ttLogStart, ttLogStop

45

ttCreateMailbox (I)

Purpose

Create a TRUETIME mailbox for intertask communication.

Matlab syntax

ttCreateMailbox(mailboxname, maxsize)

C++ syntax

void ttCreateMailbox(char *mailboxname, int maxsize)

Arguments

mailboxname Name of the mailbox. Must be a unique, nonempty string.
maxsize The size of the buffer associated with the mailbox.

Description

This function is used to create a mailbox for communication between tasks.
The TRUETIME mailbox implements asynchronous message passing with indirect
naming. A buffer is used to store incoming messages, and the size of this buffer
is specified by maxsize.

See Also

ttTryFetch, ttTryPost

46

ttCreateMonitor (I)

Purpose

Create a TRUETIME monitor.

Matlab syntax

ttCreateMonitor(name, display)

C++ syntax

void ttCreateMonitor(char *name, bool display)

Arguments

name Name of the monitor. Must be a unique, nonempty string.
display To indicate if the monitor should be included in the monitor graph

generated by the simulation.

Description

This function is used to create a monitor for task synchronization. Condition
variables for the monitor can be created using ttCreateEvent. The kernel block
has a monitor output that will display a graph showing when the various tasks
have access to the monitors.

See Also

ttEnterMonitor, ttExitMonitor, ttCreateEvent

47

ttCreatePeriodicTask (I)

Purpose

Create a periodic TRUETIME task.

Matlab syntax

ttCreatePeriodicTask(name, offset, period, priority, codeFcn)

ttCreatePeriodicTask(name, offset, period, priority, codeFcn, data)

C++ syntax

void ttCreatePeriodicTask(char* name, double offset, double period,

double priority, double (*codeFcn)(int, void*))

void ttCreatePeriodicTask(char *name, double offset, double period,

double priority, double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the task. Must be a unique, nonempty string.
offset Release time for the first job of the periodic task.
period Period of the task.
priority Priority of the task. This should be a value greater than zero,

where a small number represents a high priority. Only relevant
for fixedpriority scheduling.

codeFcn The code function of the task, where codeFcn is a string (name of
an mfile) in the MATLAB case and a function pointer in the
C++ case.

data An arbitrary data structure representing the local memory of the
task.

Description

This function is used to create a periodic task to run in the TRUETIME kernel. The
periodicity is implemented internally by the kernel using a periodic timer. See
the simple PIDcontrol example in $DIR/examples/simple_pid for other ways
to implement periodic activities. The deadline and worstcase execution time of

the task are by default set equal to the task period. This may be changed by a
suitable setfunction.

See Also

ttCreateTask, ttSetX

48

ttCreatePeriodicTimer (ITH)

Purpose

Create a periodic timer and associate an interrupt handler with the timer.

Matlab syntax

ttCreatePeriodicTimer(timername, start, period, handlername)

C++ syntax

void ttCreatePeriodicTimer(char *timername, double start, double period,

char *handlername)

Arguments

timername Name of the timer. Must be unique, nonempty string.
start The time for the first expiry of the timer.
period The period of the timer.
handlername Name of interrupt handler associated with the timer.

Description

This function is used to create a periodic timer. Each time the timer expires the
associated interrupt handler is activated and scheduled for execution.

See Also

ttCreateInterruptHandler, ttCreateTimer, ttRemoveTimer

49

ttCreateTask (I)

Purpose

Create a TRUETIME task.

Matlab syntax

ttCreateTask(name, deadline, priority, codeFcn)

ttCreateTask(name, deadline, priority, codeFcn, data)

C++ syntax

void ttCreateTask(char* name, double deadline, double priority,

double (*codeFcn)(int, void*))

void ttCreateTask(char *name, double deadline, double priority,

double (*codeFcn)(int, void*), void* data)

Arguments

name Name of the task. Must be a unique, nonempty string.
deadline Relative deadline of the task.
priority Priority of the task. This should be a value greater than zero,

where a small number represents a high priority. Only relevant
for fixedpriority scheduling.

codeFcn The code function of the task, where codeFcn is a string (name of
an mfile) in the MATLAB case and a function pointer in the
C++ case.

data An arbitrary data structure representing the local memory of the
task.

Description

This function is used to create a task to run in the TRUETIME kernel. Note that no
task job is created by this function. This is done by the primitive ttCreateJob.
The worstcase execution time of the task is by default set equal to the task

deadline. This may be changed by a suitable setfunction.

See Also

ttCreatePeriodicTask, ttCreateJob, ttSetX

50

ttCreateTimer (ITH)

Purpose

Create a oneshot timer and associate an interrupt handler with the timer.

Matlab syntax

ttCreateTimer(timername, time, handlername)

C++ syntax

void ttCreateTimer(char *timername, double time, char *handlername)

Arguments

timername Name of the timer. Must be unique, nonempty string.
time The time when the timer is set to expire.

handlername Name of interrupt handler associated with the timer.

Description

This function is used to create a oneshot timer. When the timer expires the
associated interrupt handler is activated and scheduled for execution.

See Also

ttCreateInterruptHandler, ttCreatePeriodicTimer, ttRemoveTimer

51

ttCurrentTime (ITH)

Purpose

Get the current time in the simulation.

Matlab syntax

time = ttCurrentTime

C++ syntax

double ttCurrentTime(void)

Description

This function returns the current time in the simulation, in seconds.

52

ttEnterMonitor (T)

Purpose

Attempt to enter a monitor.

Matlab syntax

ttEnterMonitor(monitorname)

C++ syntax

void ttEnterMonitor(char *monitorname)

Arguments

monitorname Name of a monitor.

Description

This function is used to attempt to enter a monitor. If the attempt fails, the task
will be removed from the ready queue and inserted in the waiting queue of the
monitor (the waiting queue is sorted using the priority function in the same way
as the ready queue). This will also trigger the suspend hook of the task.

When the task currently holding the monitor exits, the first task in the waiting
queue will be moved to the ready queue and is now holding the monitor. Execu
tion will then resume in the segment after the call to ttEnterMonitor. To ensure
that no further instructions are executed in the case that ttEnterMonitor fails,
it needs to be called from its own segment (since all code of a TRUETIME seg
ment is executed at once before scheduling decisions are made). See the example
below.

To avoid priority inversion, standard priority inheritance is used if a task tries
to enter a monitor currently held by a lower priority task.

Example

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,

ttEnterMonitor(’mutex’);

exectime = 0;

case 2,

criticalOperation;

exectime = 0.001;

case 3,

ttExitMonitor(’mutex’);

exectime = -1;

end

See Also

ttCreateMonitor, ttExitMonitor

53

ttExitMonitor (T)

Purpose

Exit a monitor.

Matlab syntax

ttExitMonitor(monitorname)

C++ syntax

void ttExitMonitor(char *monitorname)

Arguments

monitorname Name of a monitor.

Description

This function is used to exit a monitor. The function can only be called by the task
currently holding the monitor. The call will cause the first task in the waiting
queue of the monitor to be moved to the ready queue. To ensure that no further
instructions are executed in the case that a context switch should occur when
the monitor is released, ttExitMonitor needs to be called from its own segment
(since all code of a TRUETIME segment is executed at once before scheduling
decisions are made).

Example

See ttEnterMonitor.

See Also

ttCreateMonitor, ttEnterMonitor

54

ttGetMsg (TH)

Purpose

Get a message that has been received over a network.

Matlab syntax

msg = ttGetMsg

msg = ttGetMsg(network)

C++ syntax

void *ttGetMsg(void)

void *ttGetMsg(int network)

Arguments

network The network interface from which the message should be received.
The default network number is 1.

Description

This function is used to retrieve a message that has been received over the
network. Typically, you have been notified that a message exists in the net
work interface input queue by an interrupt, but it is also possible to poll for
new messages. If no message exists, the function will return NULL (C++) or
an empty matrix (MATLAB). The network interface must have been initialized
using ttInitNetwork before any messages can be received.

Example

% Task that waits for and reads messages

function [exectime, data] = receiver(seg, data)

switch seg,

case 1,

ttWait(’message’);

exectime = 0;

case 2,

msg = ttGetMsg;

disp(’I got a message!’);

exectime = 0.001;

case 3,

ttSetNextSegment(1); % loop back and wait for new message

exectime = 0;

end

% Interrupt handler that is called by the network interface

function [exectime, data] = msgRcvhandler(seg, data)

ttNotifyAll(’message’);

exectime = -1;

See Also

ttInitNetwork, ttSendMsg

55

ttGetX (ITH)

Purpose

Get a specific task attribute.

Matlab syntax

value = ttGetX

value = ttGetX(taskname)

C++ syntax

double ttGetX(void)

double ttGetX(char *taskname)

Arguments

taskname Name of a task.

Description

These functions are used to retrieve values of task attributes. There exist func
tions for the following attributes (with the true function name in parenthesis):

• release (ttGetRelease)

• relative deadline (ttGetDeadline)

• absolute deadline (ttGetAbsDeadline)

• priority (ttGetPriority)

• period (ttGetPeriod)

• worstcase execution time (ttGetWCET)

• execution time budget (ttGetBudget)

Use the ttGetX functions to retrieve the current attributes of a task. All the
functions exist in overloaded versions as shown by the syntax above. If the ar
gument taskname is not specified, the call will affect the currently running task.
Below follow some special notes on the individual functions:

ttGetRelease: Returns the time when the current task job was released. An error
will occur if the task has no running job.

ttGetDeadline: Returns the relative deadline of the task.

ttGetAbsDeadline: Returns the absolute deadline of the current task job. An error
will occur if the task has no running job.

ttGetPriority: Returns the assigned base priority of the task.

ttGetPeriod: Returns the period of a periodic task. An error will occur if the task
is not periodic.

ttGetWCET: Returns the worstcase execution time of a task.

56

ttGetBudget: Returns the remaining execution time budget of the current task
job. The execution time budget is decreased each time a new segment of the code
function is executed, as well as when the task is suspended by another task. The
execution time budget is reset to the worstcase execution time at the start of
each task job.

See Also

ttSetX

57

ttInitKernel (I)

Purpose

Initialize the TRUETIME kernel.

Matlab syntax

ttInitKernel(nbrInp, nbrOutp, prioFcn)

ttInitKernel(nbrInp, nbrOutp, prioFcn, cs_oh)

C++ syntax

void ttInitKernel(int nbrInp, int nbrOutp, int prioFcn)

void ttInitKernel(int nbrInp, int nbrOutp, int prioFcn, double cs_oh)

Arguments

nbrInp Number of input channels, i.e. the size of the A/D port of the
kernel block.

nbrOutp Number of output channels, i.e. the size of the D/A port of the
kernel block.

prioFcn The scheduling policy used by the kernel.
cs_oh The overhead time for a full context switch. Unless specified, zero

overhead will be associated with context switches.

Description

This function performs necessary initializations of the kernel block and must be
called first of all in the initialization script. The priority function should be any of
the following in the MATLAB case; ’prioFP’, ’prioRM’, ’prioDM’, or ’prioEDF’.
The corresponding constants in the C++ case are; FP, RM, DM, and EDF. To define
an arbitrary priority function and attach it to the kernel, see ttAttachPrioFcn.

See Also

ttAttachPrioFcn

58

ttInitNetwork (I)

Purpose

Initialize the TRUETIME network interface. If the kernel should be connected to
several networks, this function must be called several times.

Matlab syntax

ttInitNetwork(nodenumber, handlername)

ttInitNetwork(network, nodenumber, handlername)

C++ syntax

void ttInitNetwork(int nodenumber, char *handlername)

void ttInitNetwork(int network, int nodenumber, char *handlername)

Arguments

network The number of the TRUETIME network block. The default
network number is 1.

nodenumber The address of the node in the network. Must be a number
between 1 and the number of nodes as specified in the dialog
of the corresponding TRUETIME network block.

handlername The name of an interrupt handler that should be invoked
when a message arrives over the network.

Description

The network interface must be initialized using this command before any mes
sages can be sent or received. The initialization will fail if there are no TRUETIME

network blocks in the Simulink model.

See Also

ttSendMsg, ttGetMsg

59

ttInvokingTask (H)

Purpose

Get the name of the task that invoked an overrun handler.

Matlab syntax

task = ttInvokingTask

C++ syntax

char *ttInvokingTask(void)

Description

This function returns the name of the task that has invoked an overrun han
dler. This facilitates the use of generic code functions for interrupt handlers
associated with task overruns (deadline, WCET). In the cases when the in
terrupt was generated externally or by the expiry of a timer, this function re
turns NULL (C++) or an empty matrix (MATLAB). See the overrun example
in $DIR/examples/overrun.

See Also

ttAttachDLHandler, ttAttachWCETHandler

60

ttKillJob (TH)

Purpose

Kill the current job of a task.

Matlab syntax

ttKillJob(taskname)

C++ syntax

void ttKillJob(char *taskname)

Arguments

taskname Name of a task.

Description

This function is used to kill the current active job of a task. The finish hook of
the task will be called as the job is killed. If there exist pending jobs for the task
that should be released, the first job in the queue will be scheduled for execution
and the release hook will be called.

See Also

ttCreateJob

61

ttLogNow (T)

Purpose

Log the current time in a usercontrolled log.

Matlab syntax

ttLogNow(logID)

C++ syntax

void ttLogNow(int logID)

Arguments

logID The identifier of the usercontrolled log.

Description

This function is used to write the current time in usercontrolled logs, i.e., logs
that have been created using ttCreateLog and logtype = 6. logID should be a
number between and one and five that identifies which log to write to. The logs
are numbered in order of creation.

See Also

ttCreateLog, ttLogStart, ttLogStop

62

ttLogStart (T)

Purpose

Start a timing measurement in a usercontrolled log.

Matlab syntax

ttLogStart(logID)

C++ syntax

void ttLogStart(int logID)

Arguments

logID The identifier of the usercontrolled log.

Description

This function is used to start timing measurements in usercontrolled logs, i.e.,
logs that have been created using ttCreateLog and logtype = 6. logID should
be a number between and one and five that identifies which log to write to. The
logs are numbered in order of creation. Note that nothing is written in the log
until a subsequent call to ttLogStop.

Example

See the example in the description of ttCreateLog that shows how to use ttLog-

Start and ttLogStop to log inputoutput latency in a code function.

See Also

ttCreateLog, ttLogStop, ttLogNow

63

ttLogStop (T)

Purpose

Stop a timing measurement in a usercontrolled log.

Matlab syntax

ttLogStop(logID)

C++ syntax

void ttLogStop(int logID)

Arguments

logID The identifier of the usercontrolled log.

Description

This function is used to stop timing measurements in usercontrolled logs, i.e.,
logs that have been created using ttCreateLog and logtype = 6. logID should
be a number between and one and five that identifies which log to write to.
The logs are numbered in order of creation. When this function is called, the
difference between the current time and the time of the associated ttLogStart

will be written in the log.

Example

See the example in the description of ttCreateLog that shows how to use ttLog-

Start and ttLogStop to log inputoutput latency in a code function.

See Also

ttCreateLog, ttLogStart, ttLogNow

64

ttNonPreemptable (I)

Purpose

Make a task nonpreemptable.

Matlab syntax

ttNonPreemptable(taskname)

C++ syntax

void ttNonPreemptable(char* taskname)

Arguments

taskname Name of a task.

Description

Tasks are by default preemptable. Use this function to specify that a task can
not be preempted by other tasks. Nonpreemptable tasks may, however, still be
preempted by interrupts.

65

ttNoSchedule (I)

Purpose

Switch off the schedule generation for a specific task or interrupt handler.

Matlab syntax

ttNoSchedule(name)

C++ syntax

void ttNoSchedule(char* name)

Arguments

name Name of a task or interrupt handler.

Description

This function is used to switch off the schedule generation for a specific task or
interrupt handler. The schedule is generated by default and this function must
be called to turn it off. This function can only be called from the initialization
script.

66

ttNotify (TH)

Purpose

Notify the highestpriority task waiting for an event.

Matlab syntax

ttNotify(eventname)

C++ syntax

void ttNotify(char *eventname)

Arguments

eventname Name of an event.

Description

This function is used to notify the first task in the waiting queue associated with
an event. The waiting queue is sorted according to the priority function of the
kernel (in the same way as the ready queue). If the event is associated with a
monitor, ttNotify must be performed inside a ttEnterMonitor-ttExitMonitor

construct. The highestpriority waiting task will be moved to the waiting queue
of the associated monitor, or directly to the ready queue if it is a free event.

See Also

ttCreateEvent, ttWait, ttNotifyAll

67

ttNotifyAll (TH)

Purpose

Notify all tasks waiting for an event.

Matlab syntax

ttNotifyAll(eventname)

C++ syntax

void ttNotifyAll(char *eventname)

Arguments

eventname Name of an event.

Description

This function is used to notify all tasks waiting for an event. If the event is asso
ciated with a monitor, ttNotifyAll must be performed inside a ttEnterMonitor-

ttExitMonitor construct. The call will cause all tasks waiting for the event to
be moved to the waiting queue of the associated monitor, or directly to the ready
queue if it is a free event.

See Also

ttCreateEvent, ttWait, ttNotify

68

ttRemoveTimer (TH)

Purpose

Remove a specific timer.

Matlab syntax

ttRemoveTimer(timername)

C++ syntax

void ttRemoveTimer(char *timername)

Arguments

timername Name of the timer to be removed.

Description

This function is used to remove timers. Both oneshot and periodic timers can
be removed by this function. Using this function on a periodic timer will remove
the timer completely, and not only the current job.

See Also

ttCreateTimer, ttCreatePeriodicTimer

69

ttSendMsg (TH)

Purpose

Send a message over a network.

Matlab syntax

ttSendMsg(receiver, data, length)

ttSendMsg(receiver, data, length, priority)

ttSendMsg([network receiver], data, length)

ttSendMsg([network receiver], data, length, priority)

C++ syntax

void ttSendMsg(int receiver, void *data, int length)

void ttSendMsg(int receiver, void *data, int length, int priority)

void ttSendMsg(int network, int receiver, void *data, int length)

void ttSendMsg(int network, int receiver, void *data, int length, int priority)

Arguments

network The network interface on which the message should be sent. The
default network number is 1.

receiver The number of the receiving node (a number between 1 and the
number of nodes). It is allowed to send messages to oneself.
Specify receiver number 0 to broadcast a message to all nodes in
the network.

data An arbitrary data structure representing the contents of the
message.

length The length of the message, in bytes. Determines the time it will
take to transmit the message.

priority The priority of the message (relevant only for CSMA/AMP
networks). If not specified, the priority will be given by the
number of the sending node, i.e., messages sent from node 1 will
have the highest priority by default.

Description

The network interface(s) must have been initialized using ttInitNetwork before
any messages can be sent.

See Also

ttInitNetwork, ttGetMsg

70

ttSetNextSegment (TH)

Purpose

Set the next segment to be executed in the code function.

Matlab syntax

ttSetNextSegment(segment)

C++ syntax

void ttSetNextSegment(int segment)

Arguments

segment Number of the segment.

Description

This function is used to set the next segment to be executed, overriding the
normal execution order. This can be used to implement conditional branching
and loops (see, e.g., the description of ttWait). The segment number should be
between 1 and the number of segments defined in the code function.

71

ttSetX (ITH)

Purpose

Set a specific task attribute.

Matlab syntax

ttSetX(value)

ttSetX(value, taskname)

C++ syntax

void ttSetX(double value)

void ttSetX(double value, char *taskname)

Arguments

value Value to be set.
taskname Name of a task.

Description

These functions are used to manipulate task attributes. There exist functions
for the following attributes (with the true function name in parenthesis):

• relative deadline (ttSetDeadline)

• absolute deadline (ttSetAbsDeadline)

• priority (ttSetPriority)

• period (ttSetPeriod)

• worstcase execution time (ttSetWCET)

• execution time budget (ttSetBudget)

Use the ttSetX functions to change the default attributes defined by ttCreateTask

and ttCreatePeriodicTask. All these functions exist in overloaded versions as
shown by the syntax above. If the argument taskname is not specified, the call
will affect the currently running task. Below follow some special notes on the
individual functions:

ttSetDeadline: Changing the relative deadline of a task will only affect subse
quent task jobs and not the absolute deadline of the currently running task job.
If deadlinemonotonic scheduling is used, a call to this function may lead to a
context switch, or a reordering of the ready queue.

ttSetAbsDeadline: A call to this function will only affect the absolute deadline for
the current task job. If a deadline overrun handler is attached to the task, this
will be triggered based on the new absolute deadline. Using earliestdeadlinefirst
scheduling, a call to this function may cause a context switch, or a reordering
of the ready queue. An error will occur if the task has no running job.

ttSetPriority: Priority values for tasks should be positive. In the case of fixed
priority scheduling a call to this function may lead to a context switch, or a
reordering of the ready queue.

72

ttSetPeriod: This function is only applicable to periodic tasks. Assuming a period
h1 before the call, task jobs are created at times h1, 2h1, 3h1, etc. If the call
is executed at time h1 + τ , new task jobs will be created at the times h1 + h2,
h1 + 2h2, h1 + 3h2, etc., where h2 is the new period of the task. Using rate
monotonic scheduling, a call to this function may cause a context switch, or a
reordering of the ready queue. An error will occur if the task is not periodic.

ttSetWCET: Changes the worstcase execution time of the task. Each new task
job will get an execution time budget equal to the worstcase execution time
associated with task. A call to this function will not influence the execution time
budget of the currently running task job.

ttSetBudget: This call is used to dynamically change the execution time budget
of a running task job. When a task job is created, the execution time budget is
set to the worstcase execution time of the task. A call to this function will only
have effect if there is a worstcase execution time overrun handler attached to
the task. This handler is activated when the budget is exhausted, and will be
triggered based on the new execution time budget.

See Also

ttCreateTask, ttCreatePeriodicTask, ttGetX

73

ttSleep (TH)

Purpose

Put a task to sleep for a certain time.

Matlab syntax

ttSleep(duration)

ttSleep(duration, taskname)

C++ syntax

void ttSleep(double duration)

void ttSleep(double duration, char *taskname)

Arguments

duration The time that the task should sleep.
taskname Name of a task.

Description

This function is used to make a task sleep for a specified amount of time. If the ar
gument taskname is not specified, the call will affect the currently running task.
This function is equivalent to ttSleepUntil(duration + ttCurrentTime()). A
call to this function will trigger execution of the suspendhook of the task. When
the task wakes up, the resumehook will be executed.

See Also

ttSleepUntil

74

ttSleepUntil (TH)

Purpose

Put a task to sleep until a certain point in time.

Matlab syntax

ttSleepUntil(time)

ttSleepUntil(time, taskname)

C++ syntax

void ttSleepUntil(double time)

void ttSleepUntil(double time, char *taskname)

Arguments

time The time when the task should wake up.
taskname Name of a task.

Description

This function is used to make a task sleep until a specified point in time. If the
argument taskname is not specified, the call will affect the currently running
task. A call to this function will trigger execution of the suspendhook of the
task.

See Also

ttSleep

75

ttTryFetch (TH)

Purpose

Fetch a message from a mailbox.

Matlab syntax

msg = ttTryFetch(mailboxname)

C++ syntax

void* ttTryFetch(char* mailboxname)

Arguments

mailboxname Name of a mailbox.

Description

This function is used to fetch messages from a mailbox. If successful, the function
returns the oldest message in the buffer of the mailbox. Otherwise, it returns
NULL (C++) or an empty matrix (MATLAB).

See Also

ttCreateMailbox, ttTryPost

76

ttTryPost (TH)

Purpose

Post a message to a mailbox.

Matlab syntax

ok = ttTryPost(mailboxname, msg)

C++ syntax

bool ttTryPost(char* mailboxname, void* msg)

Arguments

mailboxname Name of a mailbox.
msg An arbitrary data structure representing the contents of the

message to be posted.

Description

This function is used to post messages to a mailbox. If successful, the message is
put in the buffer of the mailbox, and the function returns true. Otherwise, the
function returns false.

See Also

ttCreateMailbox, ttTryFetch

77

ttWait (TH)

Purpose

Wait for an event.

Matlab syntax

ttWait(eventname)

C++ syntax

void ttWait(char *eventname)

Arguments

eventname Name of an event.

Description

This function is used to wait for an event. If the event is associated with a
monitor, the call must be performed inside a ttEnterMonitor-ttExitMonitor

construct. The call will cause the task to be moved from the ready queue to
the waiting queue of the event (the waiting queue is sorted using the priority
function in the same way as the ready queue). When the task is later notified, it
will be moved to the waiting queue of the associated monitor, or directly to the
ready queue if it is a free event. A call to this function will cause the suspend
hook of the task to be executed.

Example

Example of an eventdriven code function:

function [exectime, data] = ctrl(seg, data)

switch seg,

case 1,

ttWait(’Event1’);

exectime = 0.0;

case 2,

performCalculations;

exectime = 0.001;

case 3,

ttSetNextSegment(1); % loop and wait for new event

exectime = 0.0;

end

The event above may, e.g., be notified from an interrupt handler associated with
an external interrupt channel or the network receive channel of the kernel block.

See Also

ttCreateEvent, ttNotify, ttNotifyAll

78

11. References

Åström, K. J. and T. Hägglund (1995): PID Controllers: Theory, Design, and
Tuning. Instrument Society of America, Research Triangle Park, North
Carolina.

Bollella, G., B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull
(2000): The RealTime Specification for Java. AddisonWesley.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.E. Årzén (2003): “How
does control timing affect performance?” IEEE Control Systems Magazine,
23:3, pp. 16–30.

Henriksson, D., A. Cervin, and K.E. Årzén (2002): “TrueTime: Simulation of
control loops under shared computer resources.” In Proceedings of the 15th
IFAC World Congress on Automatic Control. Barcelona, Spain.

Henriksson, D., A. Cervin, and K.E. Årzén (2003): “TrueTime: Realtime control
system simulation with MATLAB/Simulink.” In Proceedings of the Nordic
MATLAB Conference. Copenhagen, Denmark.

The Mathworks (2001): Simulink: A Program for Simulating Dynamic Systems
– User’s Guide. The MathWorks Inc., Natick, MA.

79

