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Abstract

This paper investigates the problem of allocating two types of indivisible objects
among a group of agents when a priority-order must be respected and when only
restricted monetary transfers are allowed. Since the existence of a fair allocation
not generally is guaranteed due the the restrictions on the money transfers, the
concept of fairness is weakened, and a new concept of fairness is introduced. This
concept is called weak fairness. We define an allocation rule that implements
weakly fair allocations and demonstrate that it is coalitionally strategy-proof. In
fact, it is the only coalitionally strategy-proof allocation rule that implements a
weakly fair allocation.

JEL Classification: C71; C78; D63; D71; D78.
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1 Introduction

The problem of allocating a set of indivisible objects among a number of agents was

analyzed in the pioneering work of Shapley and Scarf (1974). In their study, private
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ownership of the objects was presumed and the core of the economy was analyzed. More

recently, a modification of this allocation problem, where the objects are regarded as

a social endowment, has received considerable attention, see, e.g., Abdulkadiroğlu and

Sönmez (1999,2003), Ehlers (2002), Pápai (2000) and Svensson (1999). Taking social

endowments as a point of departure also reflects many real-life allocation problems, for

example, housing allocation among students on college campuses and assignment of

public schools to children. In many of these problems, the goods cannot be allocated

arbitrarily among the agents due to that a priority or queue-order must be respected.

For example, in school choices, students who live closer to a school and/or have sib-

lings attending at a school may be given a higher priority, by state or local laws, see

Abdulkadiroğlu and Sönmez (2003).1 The main reason for adopting a priority-order is

to avoid an allotment of the goods under market-like conditions. This is, in particu-

lar, true when the goods are regarded as a social endowment. Consider, for example,

the problem of allocating public schools to students. In this case, “the education of

students is not and should probably not be organized in a market-like institution”, as

concluded by Abdulkadiroğlu and Sönmez (2003,p.731). A priority-order is respected,

at a given allocation, if no agent envies some other agent with a lower priority (for

receiving a better object). However, an agent with a lower priority may envy an agent

with a higher priority. Hence, envy is the cost of accepting a priority-order and not

organize the allocation on a market. In this paper, we investigate how, at least, some of

this envy can be reduced when a priority-order must be respected, but when restricted

monetary compensations are allowed.

We investigate as, e.g., Ohseto (2006), an allocation problem with a finite number

of agents and two types of objects. There are more than one object of each type,

but exactly as many objects as there are agents. The basic problem is to allocate the

objects among the agents under the restrictions that each agent must consume exactly

one object, each object must be consumed by exactly one agent and the resulting

allocation must be consistent with a given priority-order. This may, for example, be a

problem of allocating public schools to children in a small town with only two schools,

where, e.g., priority is given to children with siblings attending at a specific school.

If monetary compensations not are allowed, the existence of a fair (as in envy-free)

allocation is not generally guaranteed. If, on the other hand, it is possible to attach an

arbitrary monetary compensation to each good, it is well-known that fair allocations

1See also Balinski and Sönmez (1999), Ehlers and Klaus (2007), Roth et al. (2004) and Svensson
(1994) and additional examples therein.
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exists under very general assumptions on individual preferences.2 The basic idea in this

paper is that by allowing for restricted monetary compensations, at least some envy can

be reduced. However, we do not wish to consider negative compensations (i.e., prices),

because then some agents may be worse-off when the compensations are introduced.3

That is, the main reason for introducing money transfers is to compensate agents that

not are assigned their best object, it is not to punish the agents that are assigned their

top-object. For example, if the most preferred public school not is assigned to a child,

then his/her family should receive some money as a compensation, but the children

that are assigned their top-choices should not be punished by means of a fee.

Hence, in the first major step, we restrict the monetary compensations to be non-

negative. This defines lower limits on the compensations. However, by imposing such

a bound, the set of fair allocations that satisfy this lower compensation limit may be

empty. For this reason, we need to weaken the concept of fairness. We first require

that the objects are allotted efficiently according to the priority-order, i.e., that there

is no way to reduce envy by reallocating only the objects and at the same time respect

the priority-order. Recall now that the main reason for introducing money in the

assignment model is to reduce envy. Given this observation, we then require that

agent i can never envy some other agent k with a higher priority (for receiving a

better object), at an efficient allocation, when the compensation for the object that

is assigned to agent k exceeds zero, because if this is that case, there is no reason to

transfer a positive amount of money to agent k, since this will only increase the envy

further. Hence, a natural weakening of the concept of fairness, when a priority-order

and a lower compensation limit must be respected, is the following; an allocation is

said to be weakly fair if the objects are allocated efficiently, the compensations do not

fall short of the minimum compensation limits and where no agent envies any other

agent except, possibly, in the bounding case when (a) the money compensation of each

top-object of the agent equals the lower compensation limit and (b) each top-object

is assigned to some other agent with a higher priority. Note first that in the case

when the compensation for all objects exceeds the lower compensation limits, then the

weakly fair allocation is also a fair allocation. Hence, the main difference between the

2See, e.g., Alkan et al. (1991), Maskin (1987), Svensson (1983) and Tadenuma and Thomson
(1991).

3Non-negativity is not a crucial assumption. In fact, all results are valid even if this assumption is
relaxed. If, for example, one of the goods is a “bad object” (e.g., dangerous missions or toxic waste),
it is possible to allow for a negative compensation. That is, agents who receive the “good object” may
pay a price for not receiving the “bad object”.
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concepts of fairness and weak fairness is properties (a) and (b), i.e., the weakening of

the no-envy condition. In the bounding case when no monetary transfers are allowed,

so the compensations equal the lower limits, an allocation is weakly fair if the objects

are allocated efficiently and the priority-order is respected.

In the second major step, the mechanism designer specifies the budget that can

be used in order to reduce envy. More specifically, the mechanism designer speci-

fies a maximal compensation that can be attached to each good. This compensation

may, for example, correspond to the travel costs for a child that is assigned a public

school that not is located in the neighborhood. This defines, in addition to the lower

non-negative limit, an upper limit on the compensations. Given these restrictions on

the compensations, we demonstrate that the set of restricted compensation vectors,

which are consistent with weak fairness, is non-empty. Moreover, there exists a unique

compensation vector in this set that is optimal from the perspective of the agents, in

the sense that the compensation for each good in this vector is weakly higher than

the compensation for each good in an arbitrary compensation vector in this set. This

compensation vector is called the weakly fair and optimal compensation vector. By

regarding this compensation vector as mechanism for allocating the indivisible goods,

it is demonstrated that it is not possible for any agent or any coalition of agents to

manipulate the outcome by reporting false preferences. Such an allocation rule is said

to be coalitionally strategy-proof. In the problem of assigning public schools to chil-

dren, for example, this property means that children (and their parents) do not need

to worry about receiving a less attractive school seat as a consequence of reporting

their preferences over the schools truthfully. Given a mild regularity condition, we also

demonstrate that this allocation rule is, in fact, the only strategy-proof allocation rule

that implements a weakly fair allocation.

To the best of our knowledge, this is the first paper that analyzes an allocation

problem where only restricted compensations are allowed, i.e., where the allowable

monetary compensations are restricted by both an upper and a lower limit. The in-

vestigated allocation rule is very appealing, because it always eliminates envy when

possible and if it not is possible to eliminate envy, it reduces the envy, by means of

monetary compensations. In the seminal article by Demange and Gale (1985) there

are also upper and lower limits, given by the sellers and the buyers reservation prices.

Consequently, in their multi-item auction model, the upper and lower limits are de-

termined endogenously by the preferences of the sellers and buyers. In our model, the

restrictions are not related to the preferences of the agents.

Strategy-proofness has been investigated earlier by, e.g., Abdulkadiroğlu and Sönmez
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(1999,2003), Ehlers (2002), Pápai (2000) and Svensson (1999), when no monetary trans-

fers are allowed, and by, e.g., Demange and Gale (1985) and Tadenuma and Thomson

(1995), when monetary transfers are allowed, but when no exogenous restrictions are

imposed on the monetary compensations. In recent papers by Anderson and Svensson

(2006), Sun and Yang (2003) and Svensson (2006), an allocation problem, where the

monetary transfers are restricted by an upper compensation limit is analyzed. There

are, however, three major differences between this paper and the papers mentioned

above. First, they do not have a lower bound on the monetary compensations. Sec-

ond, fair allocations always exists in their models, so there is no need to weaken the

concept of fairness. Last, they do not have a priority-order and even if a priority-order

is introduced, it would be of no importance, because fair allocations always exists and

a fair allocation always satisfy any given priority-order, by definition. In our allocation

model, the priority-order is very important, because we need it when it is impossible

to avoid an unenvious outcome due to the restrictions on the monetary compensations.

Finally, Ohseto (2006) considers an allocation model with money and two types of

indivisible goods (like the model in this paper) and identifies the Pareto undominated

subset in the set of strategy-proof and fair allocation rules. Even if it is not explicitly

stated, one can see that the derived compensation functions also satisfy an exogenous

upper bound. However, no lower bound is introduced.

The paper is outlined as follows. In Section 2, we describe the basic model and

introduce some useful notation. The concept of weak fairness is introduced in Section

3. Section 4 presents the weakly fair and optimal allocation rule and prove that it is

coalitionally strategy-proof. In Section 5, it is shown that the introduced upper limits

on the compensations are necessary for coalitionally strategy-proofness. Some of the

proofs are collected in the Appendix.

2 The model and basic definitions

Let N = {1, ..., n} be the set of agents and n ≥ 2. There are two types of indivisible

objects, denoted by 0 and 1, but no initial property rights. We assume that there are

h0 ∈ {1, ..., n − 1} units of object 0 and h1 = n − h0 units of object 1. There is also

some maximal amount of money that can be assigned to the agents, m ∈ R+. When

monetary transfers not are allowed, we let m = 0. A consumption bundle is a pair

(j, m) ∈ {0, 1} × R+, and it is assumed that each agent consumes exactly one object

together with some non-negative amount of money. An allocation (a, x) is a list of n

5



consumption bundles, where a : N → {0, 1} is a mapping assigning an object ai to

agent i ∈ N , and where x ∈ R
2
+ distributes the non-negative amount xj of money to

objects of type j ∈ {0, 1}.4 An allocation (a, x) is said to be feasible if Σi∈Nai = h1 and

Σi∈Nxai
≤ m. The latter condition is a resource constraint. If no monetary transfers

are allowed, then xai
= m = 0 for all i ∈ N , so it is trivially satisfied. The set of

feasible allocations is denoted by A.

Each agent i ∈ N has preferences over consumption bundles, represented by a

continuous utility function ui : {0, 1} × R
2 → R. Here, ui(j, x) is the utility agent

i ∈ N obtains, at distribution x, if he is allocated an object of type j ∈ {0, 1} and

the quantity xj of money. The utility function is assumed to be strictly increasing in

money, i.e., ui(j, x) > ui(j, y) if xj > yj. A list of utility functions u = (u1, ..., un) is a

(preference) profile. We also adopt the notational convention of writing u = (uC , u−C)

for C ⊂ N . The set of profiles with utility functions having the above properties is

denoted by U .

An allocation rule is a non-empty correspondence ϕ, that, for each profile u ∈ U ,

selects a set of allocations, ϕ(u) ⊂ A, such that ui(bi, y) = ui(ai, x) for all i ∈ N

if (a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(u). Hence, the various outcomes in the set ϕ(u) are

utility equivalent, and such a correspondence is called essentially single-valued (ESV).

Working with correspondences instead of functions, ESV is a necessary assumption for

an allocation rule to be strategy-proof (as defined in Sections 4 and 5). This does,

however, not exclude that the allocation rule is single-valued.

Finally, let π : N → N be a bijection that determines a priority-order among the

agents. The agent i ∈ N with π(i) = 1 has the highest priority. For simplicity, and

without loss of generality, we suppose that π(i) = i for all i ∈ N . The priority-order is

respected, at a given allocation (a, x), if and only if ui(ai, x) ≥ ui(ak, x) for all i, k ∈ N

where k > i.

3 Weak fairness

If no monetary compensations are allowed and the objects are allotted according to

the priority-order, an envy-free outcome can not be guaranteed for all profiles u ∈ U .

4A more general formulation of an allocation (a, x) is obtained if x ∈ R
n. In that case, agents

that are allocated the same type of objects can be allocated different (and even negative) amounts of
money. However, such a more general approach would not add anything to the results of this paper,
see Ohseto (2006,p.114).
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In this sense, envy is the cost of not allocating the objects on a market. The basic

idea in this paper is that, at least, some of this envy can be reduced when restricted

monetary compensations are allowed. However, we do not wish to punish agents, by

introducing monetary compensations. For this reason, we restricted the compensation

vector to be non-negative in Section 2. This restriction guarantees that no agent will

be worst-off when money is introduced in the model. The compensation vector (0, 0)

will be denoted by x, henceforth.5

In our analysis, the set of envy-free allocations will be of primary importance.

Formally, for a given profile u ∈ U , an allocation (a, x) is said to be fair if it is envy-

free, i.e., if ui(ai, x) ≥ ui(aj, x) for all i, j ∈ N . A distribution x is said to be fair if

there is an assignment a such that allocation (a, x) is a fair allocation. For a given

profile u ∈ U , the set of fair allocations is denoted by Φ(u) and the corresponding set

of fair distributions is denoted by F (u), i.e.:

F (u) = {x ∈ R
2 | (a, x) ∈ Φ(u) for some assignment a}.

Note that for some profiles u, the the set F (u) ∩ R
2
+ may not have any feasible dis-

tributions. For this reason, we need to weaken the concept of fairness. To achieve

this objective, we first require that the objects are allotted efficiently according to

the priority-order, i.e., that there is no way to reduce envy, by reallocating only the

objects, and at the same time respect the priority-order. This property is known as

object-efficiency, see, e.g., Svensson and Larsson (2002). Recall now that the main rea-

son for introducing money in the assignment model is to reduce envy. Hence, it is also

natural to require that agent i can never envy agent k, at an efficient allocation (a, x),

when xak
> 0, because if agent i envies agent k, there is no reason to transfer a positive

amount of money to agent k. This will only increase the envy further. Thus, we only

allow for envy when the compensation for an object equals the minimum compensation

limit. Formally, our weakening of the no-envy criterion is defined as follows.

Definition 1 For a given profile u ∈ U , an allocation (a, x) is said to be weakly fair

(WF) if x ≥ x, the priority-order is respected and:

(i) ui(bi, x) ≥ ui(ai, x) for all i ∈ N for some assignment b imply that ui(bi, x) =

ui(ai, x) for all i ∈ N ,

(ii) ui(ai, x) ≥ ui(ak, x) for all i ∈ N if xak
> 0.

5This is not a crucial assumption. Our results hold for an arbitrary vector x ∈ R
2.
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Note also that in the special case when no compensation is at the minimum level,

the WF allocation is also a fair allocation. In that case, the priority-order is of no

importance, because it is always respected, by definition. In the bounding case when

x = x = (0, 0), i.e., when no monetary transfers are allowed, an allocation is weakly

fair if the objects are allocated efficiently and the priority-order is respected.

For a given profile u ∈ U , the set of WF allocations is denoted by Ψ(u), and the

corresponding set of WF distributions is denoted by WF (u), i.e.:

WF (u) = {x ∈ R
2
+ | (a, x) ∈ Ψ(u) for some assignment a}.

We next illustrate the set WF (u) in a simple economy with three agents, that all have

quasi-linear utility functions. Suppose also that there is one object of type 0 and two

objects of type 1. In Figure 1, the curve ûi represents all distributions where agent

i ∈ {1, 2, 3} is indifferent between receiving object 0 and 1. Because utility is increasing

in money, it is clear that agent i strictly prefers object 0 (object 1) at any distribution

that is located below (above) the indifference curve. If no monetary compensations

are allowed, so the distribution is given by x = (0, 0), object 0 is the most preferred

object for all agents, but agent 1 is assigned object 0, by the priority-order. Hence, the

allocation will not be envy-free. If arbitrary monetary compensations are allowed, any

distribution that is located on or between the two indifference curves û1 and û2 is fair,

since two of the agents must be assigned an object of type 1, so if in addition x ≥ x,

then the distribution belongs to WF (u). However, the distributions that are located

on the line segment zx also belong to WF (u). To see this, note first that z ∈ F (u).

Note next that if we pick an arbitrary distribution on the line zx (not equal to z),

at least two agents strictly prefer object 0 over object 1. But then we can identify a

WF allocation by assigning object 0 to the agent with the highest priority, i.e., agent

1. The resulting allocation is weakly fair, by Definition 1, since x0 = 0 along this line

segment, but it will not be envy-free. However, envy is reduced due to that agents 2

and 3 receive a monetary compensation. Hence, the set of weakly fair distributions,

WF (u), is given by the line segment zx plus the area that is bounded by x ≥ x and

the two indifference curves û1 and û2.

[FIGURE 1 ABOUT HERE]
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4 Weakly fair and optimal allocations

The first main objective of this paper is to weaken the concept of fairness when re-

stricted monetary compensations are allowed and when a priority-order must be re-

spected. The second main objective of this paper is to analyze strategy-proof allocation

rules that implement WF allocations. Since the concept of fairness was weakened in

the previous section, we next focus on strategy-proof implementation. Suppose now

that the mechanism designer have m monetary units that (at most) can be used to

reduce envy and that he specifies a maximal compensation that can be attached to

each good. This maximum amount is denoted by xj for j ∈ {0, 1} and we suppose

that x > x. Note that the maximum compensations can be chosen arbitrarily as long

as h0x0 + h1x1 ≤ m. This maximum compensations may, for example, correspond to

the travel costs for a child that is assigned a public school that not is located in the

neighborhood. The vector x = (x0, x1) defines, in addition to the lower limit, an upper

limit on the compensations.

We are primarily interested in a compensation vector that is optimal for the agents

in the sense that the compensation for each good in this vector is weakly higher than the

compensation for each good in an arbitrary compensation vector in the set of weakly

fair distributions, WF (u). The reason for this is that if the compensation vector is

optimal for the agents, in the above sense, then envy is reduced as much as possible.

This compensation vector is said to be WF and optimal6 with respect to x (w.r.t. x,

henceforth).

Definition 2 For a given profile u ∈ U , a distribution x ∈ R
2
+ is said to be weakly fair

and optimal w.r.t. x if:

(i) x ≤ x and x ∈ WF (u),

(ii) x ≤ y ≤ x and y ∈ WF (u) imply that y = x.

We also say that an allocation (a, x) is weakly fair and optimal w.r.t. x if the distri-

bution x is weakly fair and optimal w.r.t. x.

The first part of the definition requires that the distribution x is WF and does not

exceed the given upper bound. The second part of the definition is a (constrained)

efficiency requirement. It means that there is no WF distribution that dominates x and

6This concept of optimality was introduced by Sun and Yang (2003) for fair allocations.
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at the same time satisfies the upper bound on the compensation vector. The definition

does not, á priori, exclude the possibility of none or several optimal distributions. But

our next proposition will show the existence, as well as, the uniqueness of a distribution

that is WF and optimal w.r.t. x. Furthermore, efficiency is satisfied to that extent

that at least one of the object types achieve maximum compensation.

Proposition 1 For each vector x ∈ R
2
++ and for each profile u ∈ U , (i) there exists

a distribution x that is weakly fair and optimal w.r.t. x, (ii) for a distribution x that

is weakly fair and optimal w.r.t. x, it holds that xk = xk for some k ∈ {0, 1} and (iii)

the distribution that is weakly fair and optimal w.r.t. x is unique.

Proof. (i) Let R = {x ∈ R
2
+ | x ≤ x ≤ x}. Obviously, the set R ∩ WF (u) is

compact, since preferences are continuous, and it is non-empty, since x ∈ R ∩WF (u).

Then there is a maximal element x ∈ R∩WF (u) with respect to the order relation ≥.

The allocation (a, x) is WF and optimal if the assignment a is defined in the following

way. Let C = {i ∈ N | ui(0, x) = ui(1, x)}, where x is the maximal element. Then let

agents i ∈ N −C first choose objects and the associated compensations in accordance

with the priority-order, and then assign the remaining objects to C arbitrarily.

(ii) Suppose that an allocation (a, x) is WF and optimal, but that xk < xk for all k ∈
{0, 1}. If x ∈ F (u), then there is arbitrarily small ε > 0 such that (x0+ε0, x1+ε1) is fair,

by the perturbation lemma in Alkan et al. (1991,p.1029). But this is a contradiction

to optimality. Suppose instead that x /∈ F (u). Then object-efficiency requires that:

ui(l, x) > ui(k, x) for all i ∈ N with ai = l �= k when xl = 0.

To see this, note that since x /∈ F (u), there is j ∈ N such that aj = k and uj(l, x) >

uj(k, x), and if the inequality above not is satisfied, there is a Pareto improving change

of the assignment. Let now y ∈ R
2
+ for yl = 0 and yk = xk + ε. From the inequality

above, it is clear that (a, y) is WF for a sufficiently small ε > 0 when xk < xk, which

contradicts that x is WF and optimal w.r.t. x. Hence, xk = xk.

(iii) If x ∈ WF (u), then x is fair and the only distribution that is WF and optimal.

Suppose now that allocations (a, x) and (b, y) both are WF and optimal w.r.t. x and

that x �= x, y �= x and x �= y. According to part (ii) above, we can, without loss of

generality, assume that (a) x1 = x1 and y0 = x0 or (b) x1 = y1 = x1 and y0 > x0.

In case (a), for all i ∈ N with ai = 0:

ui(0, x) ≥ ui(1, x) ⇒ ui(0, y) > ui(1, y) ⇒ bi = 0.

10



The first inequality follows from the definition of WF since x1 = x1 > 0. The second

inequality follows from monotonicity. Further, bi = 0, by WF since y0 = x0 > 0. But

then bi = 0 if ai = 0. Hence, a = b. But then allocation (a, x) is fair, which is a

contradiction.

In case (b) y0 > x0 ≥ 0, so y is fair. But then x cannot be optimal, which is a

contradiction.

In conclusion, x = y must be the case.

We next illustrate the results in Proposition 1 with the aid of two simple examples.

Again, we assume that there are three agents with quasi-linear preferences and that

there is one object of type 0 and two objects of type 1. We must now introduce the

maximum compensation limit, x. In Figure 2, we see that all distributions in the region

xzstx∗z satisfy the first requirement in Definition 2, i.e., they are all WF and none of

them exceed the maximum compensation limit. The unique distribution that is WF

and optimal w.r.t. x is given by x∗. Note also that x1 = x1 at this distribution, so

one of the compensations is given by the maximal amount, as predicted in Proposition

1(ii). Finally, in this example, envy is eliminated, at cost x∗
0h0 + x∗

1h1 < m. However,

the lowest cost at which the envy is eliminated is given by z0h0 + z1h1, but as we later

demonstrate, the reason for selecting distribution x∗ is that it is the only distribution

that guarantees a strategy-proof outcome, given the upper limit x. In Figure 3, a

somewhat different case is illustrated. Here, the only distributions that satisfy the

first criterion of Definition 2, are the distributions that are located along the line

segment xx∗. Note that none of these distributions are fair, and among these non-fair

distributions, the unique distribution that is WF and optimal w.r.t. x is given by x∗,

and again x1 = x1. In this case, it is not possible to eliminate all envy, it will only

be reduced, because the envious agents (i.e., agents 2 and 3) will obtain a monetary

compensation.

[FIGURE 2 ABOUT HERE]

[FIGURE 2 ABOUT HERE]

In accordance with our definition of a WF and optimal allocation, we define an al-

location rule ϕ to be WF and optimal w.r.t. x if for each profile u ∈ U and for all

(a, x) ∈ ϕ(u), allocation (a, x) is WF and optimal w.r.t. x. If we let:

ϕ(u) = {(a, x) ∈ A | (a, x) is WF and optimal w.r.t. x} ,

Part (i) of Proposition 1 shows that the set ϕ(u) is non-empty for all profiles u, so

there exists a WF and optimal allocation rule. Note also that ϕ defined in this way is
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an allocation rule, because ϕ is essentially single-valued. Moreover, from Part (iii) of

Proposition 1, we know that each profile u ∈ U is uniquely mapped on a distribution

by a WF and optimal allocation rule. This part of an allocation rule is called the

distribution rule. Hence, if ϕ is WF and optimal w.r.t. x and if f is the corresponding

distribution rule, then f(u) = x precisely when (a, x) ∈ ϕ(u) for some assignment a.

Our first main theorem establishes that no agent or no coalition of agents can obtain

a higher utility by manipulating an allocation rule that is WF and optimal w.r.t. x.

The following definition of strategy-proofness will be employed.

Definition 3 An allocation rule ϕ is manipulable at a given profile u ∈ U by a coalition

C ⊂ N if there is a profile v ∈ U and two allocations (a, x) ∈ ϕ(u) and (b, y) ∈
ϕ(vC , u−C) such that ui(bi, y) > u(ai, x) for all i ∈ C. If the allocation rule is not

manipulable by any coalition at any profile, it is said to be coalitionally strategy-proof

(CSP).

This means that in order to manipulate, it is sufficient that there is some profile u ∈ U
and some coalition C such that by reporting preferences vi for all i ∈ C, instead of ui,

the coalition can find some allocation (b, y) ∈ ϕ(vC , u−C) that makes all of its members

better off.

Theorem 1 An allocation rule ϕ that is weakly fair and optimal w.r.t. x is coalition-

ally strategy-proof.

Proof. Let ϕ be an allocation rule that is WF and optimal w.r.t. x, and suppose

that it is manipulable by a coalition C ⊆ N at a profile u ∈ U . Then there is a profile

v ∈ U and two allocations (a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(vC , u−C), such that:

ui(bi, y) > ui(ai, x) for all i ∈ C. (1)

Now xk = xk for k = 0 or k = 1, according to Part (ii) of Proposition 1. Suppose that

x1 = x1. If x = x, then x is fair and condition (1) cannot be satisfied. Hence, x0 < x0

must be the case.

We first show that bi = 0 if i ∈ C. Suppose that bi = 1 for some i ∈ C. Then

by condition (1) and WF, ui(1, y) > ui(ai, x) ≥ ui(1, x), since x1 = x1 > 0. This is a

contradiction to monotonicity since y1 ≤ x1 = x1. Hence, bi = 0 if i ∈ C.

We next demonstrate that y0 > x0. Suppose that y0 ≤ x0. If x0 > 0, then x is fair

and, according to condition (1), fairness and monotonicity:

ui(0, y) > ui(ai, x) ≥ ui(0, x) ≥ ui(0, y) for all i ∈ C,
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which is a contradiction. If x0 = 0, then y0 = 0. Hence, y = x = (0, x1). But this is

not consistent with condition (1) since the priority-order is exogenously given and then

the utility distribution is unique, by the optimality requirement. Hence, y0 > x0.

We will now show that a = b. Note first that for all i ∈ C with ai = 0, it is also

true that bi = 0, by the above conclusion. Consider now some i ∈ N − C with ai = 0.

Then by monotonicity and WF:

ui(0, y) > ui(0, x) ≥ ui(1, x) ≥ ui(1, y),

since x1 = x1 > 0. But y ∈ F (vC , u−C), so the inequality above implies that bi = 0,

because y0 > 0. Thus, for all i ∈ N with ai = 0, it holds that bi = 0. Hence, a = b.

Finally, we show that x is not optimal. Let x′ = (x0 + ε, x1) for ε > 0 and small.

Then x′ ∈ F (u) because:

for all i ∈ N with ai = 0 : ui(0, x
′) > ui(0, x) ≥ ui(1, x) = ui(1, x

′),

by WF, since x1 > 0. Moreover:

for all i ∈ N with ai = 1 : ui(1, x) ≥ ui(1, y) ≥ ui(0, y) > ui(0, x),

by WF and monotonicity, since x1 = x1 ≥ y1 and y0 > x0 ≥ 0. But then, ui(1, x
′) >

ui(0, x
′) for all i ∈ N with ai = 1, for a sufficiently small ε > 0. Thus, x′ ∈ F (u).

This means that x cannot be optimal, which is a contradiction. Hence, ϕ cannot be

manipulable.

5 The class of weakly fair and coalitionally strategy-

proof allocation rules

Theorem 1 shows the existence of a coalitionally strategy-proof allocation rule that im-

plements weakly fair allocations. A more general problem is, of course, to characterize

all weakly fair and coalitionally strategy-proof allocation rules that are available to a

mechanism designer when the monetary compensations are restricted. In this section,

this class of allocation rules is characterized, given a mild regularity condition. We

demonstrate that all weakly fair and coalitionally strategy-proof allocation rules, in

fact, are optimal w.r.t. some quantity restriction x.

Our point of departure is a finite amount of money and a regularity condition

that implies that all available money is distributed by the allocation rule for some
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preference profile (this is not a crucial assumption, see footnote 7). Moreover, we

restrict the manipulation possibilities of the agents, by only considering quasi-linear

utility functions. One could expect that by narrowing the domain of the allocation

rule, the class of strategy-proof allocation rules should increase. As Theorems 2 and 3

(below) demonstrate, this is, however, not the case. Formally, we restrict our attention

to a class of utility functions where the utility of agent i ∈ N when he is assigned object

j ∈ {0, 1} and xj units of money is given by: uij +xj. For notational simplicity, we will

often describe the (quasi-linear) preferences for agent i ∈ N as: ui = (ui0, ui1) ∈ R
2.

The set of profiles with quasi-linear utility functions is denoted by U q ⊂ U .

In Theorem 2, we investigate allocation rules that are Pareto indifferent (PI). This

means that if an allocation belongs to the outcome of the allocation rule, at some

profile, then every allocation that all agents are indifferent between, also belong to

the outcome of the allocation rule. An example of such a rule is the WF and optimal

allocation rule, defined in the previous section:

ϕ(u) = {(a, x) ∈ A | (a, x) is WF and optimal w.r.t. x} .

PI correspondences are obviously interesting from a welfarist point of view, because

every allocation that all agents are indifferent between are treated equally. If, on the

other hand, the allocation rule is used to choose exactly one particular outcome, a

tie-breaking rule is necessary. Such a rule may influence the strategic behavior of the

agents. In Theorem 3 we, therefore, drop the PI assumption and characterize the class

of essentially single-valued (ESV) allocation rules, a class that also includes single-

valued allocation rules (recall also that an allocation rule is ESV, by definition). We

restrict, however, our attention to allocation rules that are said to be fairness selective.

This condition is in the spirit of point (ii) in the definition of weak fairness, i.e., the

allocation rule selects fair allocations when possible. It means that if the outcome x

is fair at a profile and an agent changes his preferences so that x is still fair, then the

outcome at the new profile, not necessarily equal to x, is fair. The formal definition

is given below. The theorems are given in this section while the proofs are delegated

to the Appendix. In both theorems, we assume that all available money is distributed

among the agents for some profile in U q.7 Such an allocation rule is called regular.

7We need not assume that all available money is distributed among the agents for some profile.
To prove Theorems 2 and 3, it suffices that there is a finite upper bound on how much money that
can be distributed by a particular distribution rule, and that this bound is attained for some profile
in Uq. This bound need not equal m.
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Definition 4 An allocation rule ϕ : U q → 2A is:

(i) Pareto indifferent (PI) if (a, x) ∈ ϕ(u) and ubi
+ ybi

= uai
+xai

for all i ∈ N imply

that (b, y) ∈ ϕ(u),

(ii) Fairness selective (FS) if for all u, v ∈ U q and i ∈ N, f(u) ∈ F (u) ∩ F (vi, u−i)

implies that f(vi, u−i) ∈ F (vi, u−i),

(iii) Regular if for some u ∈ U q there is an allocation (a, x) ∈ ϕ(u) where h0x0 +

h1x1 = m.

Theorem 2 A weakly fair, regular and Pareto indifferent allocation rule ϕ : U q → 2A

is coalitionally strategy-proof if and only if it is optimal w.r.t. some distribution x ∈
R

2
++ where h0x0 + h1x1 = m.

Note that a weakly fair and optimal allocation rule is fairness selective (see Lemma

3 in the Appendix), so, in this case, fairness selection is an implication of the other

conditions.

We next consider the case that includes single-valued allocation rules. That means

that the assumption of Pareto indifference has to be dropped. But let us first introduce

a weaker form of strategy-proofness.

Definition 5 An allocation rule ϕ is strongly manipulable at a given profile u ∈ U by

a coalition C ⊂ N if there is a profile v ∈ U such that ui(bi, y) > u(ai, x) for all i ∈ C

for all allocations (a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(vC , u−C). If the allocation rule is not

strongly manipulable by any coalition at any profile, it is said to be weakly coalitionally

strategy-proof (WCSP).

Note that this definition of manipulation is rather demanding. To manipulate, it is

necessary that there is some profile u and some coalition C such that by reporting

preferences vi for all i ∈ C, instead of ui, each allocation (b, y) ∈ ϕ(vC , u−C) is better

for all members of the coalition C than any allocation (a, x) ∈ ϕ(u). Of course, any

CSP allocation rule is also WCSP. However, even if the set of WCSP in general is larger

than the set of CSP allocation rules, there are cases when the two concepts coincide. If

the allocation rule is single-valued this is obviously the case. We next prove that this

also is the case when the allocation rule is ESV and weakly fair.

Proposition 2 A weakly fair and essentially single-valued allocation rule ϕ : U q → 2A

is coalitionally strategy-proof if it is weakly coalitionally strategy-proof and fairness

selective.
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A close consequence of Proposition 2 and Theorem 2 is our last theorem.

Theorem 3 A fairness selective, weakly fair, essentially single-valued and regular al-

location rule ϕ : U q → 2A is coalitionally strategy-proof if and only if it is optimal w.r.t.

some distribution x ∈ R
2
++ where h0x0 + h1x1 = m.

A Appendix: Proofs

A.1 The proof of Theorem 2

We first note that the “if” part of the theorem follows directly from Theorem 1. In order

to prove the “only if” part of the theorem, we specify and prove a series of lemmas. In

these lemmas, we suppose that the assumptions from Theorem 2 hold. The following

lemma will be useful in the analysis.8

Lemma 1 Suppose that u ∈ U q, and let x, y ∈ F (u) be two fair distributions and

(a, x) ∈ Φ(u) a fair allocation. Then (a, y) ∈ Φ(u) is also a fair allocation.

Let now u ∈ U q and (a, x) ∈ ϕ(u) for some assignment a and some distribution x ∈ R
2
++

where h0x0 + h1x1 = m. Such a profile exists since ϕ is regular. The existence of a

profile at which the outcome of the allocation rule is efficient is shown in the following

lemma.

Lemma 2 If v ∈ U q and vi = −x for all i ∈ N , then f(v) = x.

Proof. Let v ∈ U q and vi = −x for all i ∈ N , and suppose that (a, x) ∈ ϕ(v)

and f(v) = x �= x. If x < x, then the entire coalition N can manipulate and achieve

x, by reporting the profile u. This is not consistent with CSP. Hence, by the resource

constraint, we need only consider the case when xk ≥ xk and xl < xl for l, k ∈ {0, 1}
and l �= k. However:

vik + xk = −xk + xk ≥ 0 > −xl + xl = vil + xl for all i ∈ N,

which contradicts that (a, x) is WF, i.e., all agents with ai = l envies the agents with

ai = k, and this cannot be the case because xk > 0. Thus, x = x.

Our next lemma shows that if there, for a certain profile, is a fair distribution satisfying

the upper bound and lower limit, the outcome of the allocation rule must also be a fair

8The proof can be found in, e.g., Svensson (2006).
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distribution. Hence, a consequence of strategy-proofness is that fairness has a priority

to non-fairness in the definition of weak fairness.

Lemma 3 Let u ∈ U q and R = {x ∈ R
2
+ | x ≤ x ≤ x}. If R ∩ F (u) �= ∅, then f(u) ∈

F (u).

Proof. Suppose that R ∩ F (u) �= ∅, but x = f(u) �∈ F (u). In this case, xk ≥ xk

for some k ∈ {0, 1}, because x < x is not consistent with CSP (see the proof of

Lemma 2). Moreover, xl = 0 for l �= k, since x /∈ F (u). Let now (a, x) ∈ ϕ(u) and

C = {i ∈ N | ai = l}. Since x �∈ F (u), it follows from the definition of WF that:

uil + xl > uik + xk for some j ∈ N − C. Moreover, uil + xl > uik + xk for all i ∈ C,

by object-efficiency, otherwise there is a Pareto improving change of the assignment.

Because R ∩ F (u) �= ∅, there is a distribution y ∈ R ∩ F (u) and, consequently, an

assignment b such that (b, y) ∈ Φ(u). This observation, monotonicity and WF yield:

uil + yl ≥ uil + 0 = uil + xl > uik + xk ≥ uik + xk ≥ uik + yk for all i ∈ C.

Hence, bi = ai if i ∈ C, because (b, y) ∈ Φ(u), and, as a consequence, b = a. Moreover:

uik + xk ≥ uik + xk ≥ uik + yk ≥ uil + yl ≥ uil + 0 = uil + xl for all i ∈ N − C.

by monotonicity and fairness. But this contradicts that there is an agent j ∈ N − C,

as defined above. Hence, x = f(u) ∈ F (u).

We next establish that if the distribution is fair, then the compensation cannot exceed

the upper bound and, moreover, the compensation for (at least) one of the object types

must equal the upper bound.

Lemma 4 Let u ∈ U q. If f(u) ∈ F (u), then f(u) ≤ x and fk(u) = xk for some

k ∈ {0, 1}.

Proof. Suppose that x = f(u) ∈ F (u) and, consequently, that (a, x) ∈ ϕ(u) and

(a, x) ∈ Φ(u) for some assignment a. If x = x, we are done, and x < x is not consistent

with CSP (see the proof of Lemma 2). For this reason, we assume that x0 < x0 and

x1 ≥ x1. Hence, it remains only to prove that x1 = x1.

Let now v ∈ U q be defined as in Lemma 2 and C = {i ∈ N | ai = 0}. Since

(a, x) ∈ Φ(u), it follows from monotonicity that:

ui0 + x0 > ui0 + x0 ≥ ui1 + x1 ≥ ui1 + x1 for all i ∈ C,

vi1 + x1 = vi0 + x0 = 0 for all i ∈ N − C.
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From these inequalities, it is clear that (a, x) ∈ Φ(uC , v−C). Hence, if we can prove

that (a, x) ∈ ϕ(uC , v−C), we are done, because if this is the case, then (a, x) ∈ ϕ(u) and

(a, x) ∈ ϕ(uC , v−C), so vi1 + x1 ≥ vi1 + x1 or, equivalently, x1 ≤ x1, by CSP. The latter

inequality, in combination with the assumption x1 ≥ x1, gives x1 = x1, as desired. The

remaining part of the proof demonstrates that (a, x) ∈ ϕ(uC , v−C).

Suppose now that (b, y) ∈ ϕ(uC , v−C) and note that x ∈ R ∩ F (uC , v−C) be-

cause (a, x) ∈ Φ(uC , v−C). Consequently, y ∈ F (uC , v−C), by Lemma 3, and (a, y) ∈
Φ(uC , v−C), by Lemma 1. But ϕ is PI and, therefore, (a, y) ∈ ϕ(uC , v−C), so it remains

only to prove that y = x. Because v ∈ U q is defined as in Lemma 2, it is clear that

(a, x) ∈ ϕ(v). Then, since ϕ is CSP, there are agents i, j ∈ C such that:

ui0 + y0 ≥ ui0 + x0 and vj0 + x0 ≥ vj0 + y0.

These inequalities give y0 = x0. Thus, y1 ≤ x1, by the resource constraint. Suppose

now that y1 < x1. In this case:

ui0 + y0 = ui0 + x0 ≥ ui1 + x1 > ui1 + y1 for all i ∈ C,

vi0 + y0 = vi0 + x0 = vi1 + x1 > vi1 + y1 for all i ∈ N − C

But this is a contradiction to (a, y) ∈ Φ(uC , v−C). Hence, y1 = x1 and, therefore,

y = x, which concludes the proof.

We next demonstrate that if the distribution is WF, but not fair, then the compensation

that is associated with one of the objects must be given by the minimum compensation

limit and, moreover, that the compensation for the other object must equal the upper

bound.

Lemma 5 Let u ∈ U q. If f(u) /∈ F (u), then xl = 0 and xk = xk for some l, k ∈ {0, 1}
and l �= k.

Proof. Suppose that x = f(u) /∈ F (u), so (a, x) ∈ ϕ(u) for some assignment

a. Then xl = 0 for some l ∈ {0, 1}, say l = 0, by the definition of WF. But then

x1 ≥ x1, because x1 < x1 is not consistent with CSP (see the proof of Lemma 2).

Hence, it remains only to prove that x1 = x1. In the remaining part of this proof, we

let C = {i ∈ N | ai = 1}.
To obtain a contradiction, suppose that x1 > x1. Consider now the profile v ∈ U q,

where vi = −(0, x1) for all i ∈ N , and the allocation (b, y) ∈ ϕ(vC , u−C). We need

to demonstrate that a = b and y = (0, x1), because if this is the case, then coalition
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C can manipulate at the profile (vC , u−C) and achieve x1 instead of x1, which is not

consistent with CSP, i.e., the assumption x1 > x1 cannot hold.

We first demonstrate that a = b. By WF and x0 = 0, it follows that (0, x1) ∈
R ∩ F (vC , u−C), because:

vi1 + x1 = vi0 + 0 = 0 for all i ∈ C,

ui0 + 0 = ui0 + x0 ≥ ui1 + x1 > ui1 + x1 for all i ∈ N − C.

Hence, R ∩ F (vC , u−C) �= ∅ and, therefore, y = f(vC , u−C) ∈ F (vC , u−C), by Lemma

3, and also y ≤ x and yk = xk for some k ∈ {0, 1}, by Lemma 4. Moreover, (b, y) ∈
Φ(vC , u−C), because y ∈ F (vC , u−C). These observations, WF and monotonicity then

gives:

ui0 + y0 ≥ ui0 + 0 = ui0 + x0 ≥ ui1 + x1 > ui1 + x1 ≥ ui1 + y1 for all i ∈ N − C.

Hence, bi = ai if i ∈ N −C, because (b, y) ∈ Φ(vC , u−C), and, as a consequence, b = a.

We next demonstrate that y = (0, x1). From the above observation that (b, y) ∈
Φ(vC , u−C), it follows that:

vi1 + y1 ≥ vi0 + y0 ⇒ y1 − x1 ≥ y0 for all i ∈ C.

A consequence of the fact that y ≤ x is that y1 − x1 ≤ 0, so y0 ≤ y1 − x1 ≤ 0, by the

above inequality. But then y0 = 0, and, as a consequence, y1 = x1. Hence, y = (0, x1).

We have now proved two important properties of the WF and CSP allocation rule, the

first is valid in the case when the distribution is fair (Lemma 4), and the second is valid

in the case when the distribution is WF, but not fair (Lemma 5). Given these results,

we can prove Theorem 2. In order to do so, it remains only to prove that the allocation

rule is optimal w.r.t. x. This result is formally provided in the following lemma.

Lemma 6 Let u ∈ U q and y ∈ R ∩ WF (u). Then y ≤ f(u).

Proof. Suppose that y ∈ R∩WF (u) and (a, x) ∈ ϕ(u). We first consider the case

when x = f(u) �∈ F (u). By Lemma 5, we can, without loss of generality, assume that

x = (0, x1). Suppose now that y �= x, but that y ≤ x is not true. Then y0 > x0 = 0

and y1 ≤ x1 = x1, because y ∈ R. By the definition of WF, it follows that for all i ∈ N

with ai = 0 and some i ∈ N with ai = 1 it holds that:

ui0 + y0 > ui0 + 0 ≥ ui1 + x1 ≥ ui1 + y1.
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But this cannot be true since y ∈ WF (u) and y0 > 0. Hence, y ≤ x.

Consider now the case when x ∈ F (u). Then, according to Lemma 4, we can,

without loss of generality, assume that x1 = x1. If x0 = x0 we are done, so let instead

x0 < x0. Suppose again that y �= x, but that y ≤ x is not true. Then y0 > x0 and

y1 ≤ x1 = x1, because y ∈ R. If y �∈ F (u), then y1 = 0 and:

ui0 + y0 > ui0 + x0 ≥ ui1 + x1 ≥ ui1 + y1 for all i ∈ N with ai = 0.

But this is a contradiction to WF, since y �∈ F (u) and y1 = 0. Hence, the case when

y �∈ F (u) can be excluded, and we only have to consider the case when x, y ∈ F (u),

y0 > x0and y1 ≤ x1. Let now C = {i ∈ N | ai = 0} and v ∈ U q, where vi = −y for

all i ∈ N. Then y ∈ F (vC , u−C) since vi0 + y0 = vi1 + y1 = 0 for all i ∈ C. But then

y ∈ R ∩ F (vC , u−C) �= ∅. This means that there is a distribution z = f(vC , u−C) ∈
F (vC , u−C), by Lemma 3, where, in addition, z ∈ R, by Lemma 4. From PI it then

follows that (a, z) ∈ ϕ(vC , u−C). We next observe that z0 > x0. To see this, note

that zj = xj for some j ∈ {0, 1}, since z = f(vC , u−C). Hence, if z0 = x0, then

z0 > x0, because x0 = 0. Suppose instead that z1 = x1, and recall that x1 = x1. Since

z ∈ F (vC , u−C), it follows that:

vi0 + z0 ≥ vi1 + z1 ⇔ z0 − y0 ≥ z1 − y1 for all i ∈ C,

and hence:

z0 ≥ z1 + y0 − y1 > z1 + x0 − x1 = x0.

We conclude that z0 > x0. But then the coalition C can manipulate at the profile u

and achieve z0 instead of x0, which contradicts that ϕ is CSP. Hence, y ≤ x also in

this case.

A.2 The proof of Proposition 2 and Theorem 3

To prove Proposition 2 the following lemma will be useful.

Lemma 7 Let ϕ : U q → 2A be a weakly fair, fairness selective and weakly coalitionally

strategy-proof allocation rule, u ∈ U q and (a, x) ∈ ϕ(u). Then, for each coalition

C ⊂ N and for any positive number ε > 0, there is a profile v ∈ U q such that for all

(b, y) ∈ ϕ(vC , u−C),

bi = ai and yai
≥ xai

− ε for all i ∈ C.
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Proof. Let (a, x) ∈ ϕ(u) and C ⊂ N. If x /∈ F (u) then the assignment a is unique

(see the proof of Part (i) of Proposition 1). In that case, let v = u to complete the

proof. Consider x ∈ F (u) and let ε > 0 be an arbitrary positive number. Suppose next

that (b, y) ∈ ϕ(vC , u−C), and define v ∈ U q as:

viai
= −xai

+ ε/2 and vij = −xj if j �= ai for all i ∈ N.

Note first that for all i ∈ C, f(u) ∈ F (u) ∩ F (vi, u−i) and, hence, by FS, f(vi, u−i) ∈
F (vi, u−i), i.e., the outcome f(vi, u−i) is fair. If we repeat the substitution of ui with

vi for all i ∈ C, we obtain y ∈ F (vC , u−C).

Now (a, x) ∈ ϕ(u) implies that (a, x) ∈ Φ(vC , u−C), by construction of v. If (a′, x) ∈
Φ(vC , u−C), but a′

i �= ai for some i ∈ C, then:

via′
i
+ xa′

i
≥ viai

+ xai
,

by fairness and, as a consequence, 0 ≥ ε/2, by construction of v, which is a contradic-

tion. Hence, if (a′, x) ∈ Φ(vC , u−C), then a′
i = ai for all i ∈ C. But (b, y) ∈ Φ(vC , u−C),

because y ∈ F (vC , u−C), and, therefore, bi = ai for all i ∈ C, by Lemma 1. From

fairness, it now follows that:

viai
+ yai

≥ vij + yj for all j ∈ {0, 1} and all i ∈ C

By applying the definition of v, this condition can be rewritten to:

yai
− xai

+ ε/2 ≥ yj − xj for all j ∈ {0, 1} and all i ∈ C. (2)

Moreover, by WCSP, there is an agent l ∈ C and an allocation (a′, x) ∈ ϕ(u) such

that:

vlal
+ yal

≥ vla′
l
+ xa′

l
.

Then, by construction of v:

yal
− xal

+ ε/2 ≥ 0. (3)

From conditions (2) and (3), it now follows that yai
− xai

≥ −ε for all i ∈ C. Hence,

yai
≥ xai

− ε, as desired.

Proof of Proposition 2. WCSP is implied by CSP. To prove the converse suppose

that ϕ is WCSP, but not CSP. Then there are two profiles u, v ∈ U , a non-empty

coalition C ⊂ N, and two allocations (a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(vC , u−C), such that
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uibi
+ ybi

> uiai
+ xai

for all i ∈ C. Define now ε > 0 so that: uibi
+ ybi

> uiai
+ xai

+ ε

for all i ∈ C. By Lemma 7 there is a profile v′ ∈ U such that:

if (c, z) ∈ ϕ(v′
C , u−C), then ci = bi and zbi

> ybi
− ε for all i ∈ C.

Thus, for each (c, z) ∈ ϕ(v′
C , u−C), the following holds:

uici
+ zci

= uibi
+ zbi

> uibi
+ ybi

− ε > uiai
+ xai

for all i ∈ C.

This shows that ϕ is strongly manipulable, which is a contradiction.

Proof of Theorem 3. The first part of the theorem follows from Theorem 1. Suppose

now that ϕ is CSP. Let ϕ̃ be an induced allocation rule that, for all u ∈ U , is defined

as follows:

(b, x) ∈ ϕ̃(u) ⇔ there is (a, x) ∈ ϕ(u) and uibi
+ xbi

= uiai
+ xai

for all i ∈ N.

Note that ϕ̃ is well-defined, because ϕ is ESV. Clearly, ϕ̃ is a PI and fair allocation

rule; the correspondence ϕ̃ is ESV and PI, by definition, and ϕ̃ is WF since ϕ is WF.

The allocation rule ϕ̃ is obviously WCSP, because ϕ is CSP. Then by Proposition 2,

the allocation rule ϕ̃ is also CSP. It is also regular since ϕ is regular. But then ϕ̃ is

optimal w.r.t. some vector x ∈ R
2
++, by Theorem 2, and, hence, ϕ is also optimal w.r.t.

some vector x ∈ R
2
++.
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Abdulkadiroğlu A, Sönmez T (2003). School choice: A mechanism design approach.

American Economic Review 93, 727-747.

Andersson T, Svensson L-G (2006). Non-manipulable assignment of individuals

to positions revisited. Working Paper 2006:11, Department of Economics, Lund

University.

Alkan A, Demange G, Gale D (1991). Fair allocation of indivisible goods and criteria

of justice. Econometrica 59, 1023-1039.

22



Balinski M, Sönmez T (1999). A tale of two mechanisms: Student placement.

Journal of Economic Theory 84, 73-94.

Demange G, Gale D (1985). The strategy structure of two-sided matching markets.

Econometrica 53, 873-888.

Ehlers L (2002). Coalitional strategy-proof house allocation. Journal of Economic

Theory 105, 298-317.

Ehlers L, Klaus B (2007). Consistent house allocation. Economic Theory 30, 561-

574.

Maskin E (1987). On the fair allocation of indivisible goods. In: Feiwell G (Ed),

Arrow and the foundations of the theory of public policy. MacMillan Press:

London, pp. 342-349.

Ohseto S (2006). Characterizations of strategy-proof and fair mechanisms for allo-

cating indivisible goods. Economic Theory 29, 111-121.
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Figure 1 The set of WF distributions
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Figure 2 A first example of a distribution
that is WF and optimal w.r.t. x
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û3

•x

•z

•x•s
•
t

•
x∗

25



Figure 3 A second example of a distribution
that is WF and optimal w.r.t. x
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