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Weakly Fair Allocations and Strategy-Proofness*

Tommy Andersson’ and Lars-Gunnar Svensson?

This version: 3 July, 2007

Abstract

This paper investigates the problem of allocating two types of indivisible objects
among a group of agents when a priority-order must be respected and when only
restricted monetary transfers are allowed. Since the existence of a fair allocation
not generally is guaranteed due the the restrictions on the money transfers, the
concept of fairness is weakened, and a new concept of fairness is introduced. This
concept is called weak fairness. We define an allocation rule that implements
weakly fair allocations and demonstrate that it is coalitionally strategy-proof. In
fact, it is the only coalitionally strategy-proof allocation rule that implements a

weakly fair allocation.

JEL Classification: C71; C78; D63; D71; DT78.
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1 Introduction

The problem of allocating a set of indivisible objects among a number of agents was
analyzed in the pioneering work of Shapley and Scarf (1974). In their study, private
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ownership of the objects was presumed and the core of the economy was analyzed. More
recently, a modification of this allocation problem, where the objects are regarded as
a social endowment, has received considerable attention, see, e.g., Abdulkadiroglu and
Sonmez (1999,2003), Ehlers (2002), Pépai (2000) and Svensson (1999). Taking social
endowments as a point of departure also reflects many real-life allocation problems, for
example, housing allocation among students on college campuses and assignment of
public schools to children. In many of these problems, the goods cannot be allocated
arbitrarily among the agents due to that a priority or queue-order must be respected.
For example, in school choices, students who live closer to a school and/or have sib-
lings attending at a school may be given a higher priority, by state or local laws, see
Abdulkadiroglu and Sénmez (2003).! The main reason for adopting a priority-order is
to avoid an allotment of the goods under market-like conditions. This is, in particu-
lar; true when the goods are regarded as a social endowment. Consider, for example,
the problem of allocating public schools to students. In this case, “the education of
students is not and should probably not be organized in a market-like institution”, as
concluded by Abdulkadiroglu and Sénmez (2003,p.731). A priority-order is respected,
at a given allocation, if no agent envies some other agent with a lower priority (for
receiving a better object). However, an agent with a lower priority may envy an agent
with a higher priority. Hence, envy is the cost of accepting a priority-order and not
organize the allocation on a market. In this paper, we investigate how, at least, some of
this envy can be reduced when a priority-order must be respected, but when restricted
monetary compensations are allowed.

We investigate as, e.g., Ohseto (2006), an allocation problem with a finite number
of agents and two types of objects. There are more than one object of each type,
but exactly as many objects as there are agents. The basic problem is to allocate the
objects among the agents under the restrictions that each agent must consume exactly
one object, each object must be consumed by exactly one agent and the resulting
allocation must be consistent with a given priority-order. This may, for example, be a
problem of allocating public schools to children in a small town with only two schools,
where, e.g., priority is given to children with siblings attending at a specific school.

If monetary compensations not are allowed, the existence of a fair (as in envy-free)
allocation is not generally guaranteed. If, on the other hand, it is possible to attach an

arbitrary monetary compensation to each good, it is well-known that fair allocations

!See also Balinski and Sénmez (1999), Ehlers and Klaus (2007), Roth et al. (2004) and Svensson
(1994) and additional examples therein.



exists under very general assumptions on individual preferences.? The basic idea in this
paper is that by allowing for restricted monetary compensations, at least some envy can
be reduced. However, we do not wish to consider negative compensations (i.e., prices),
because then some agents may be worse-off when the compensations are introduced.?
That is, the main reason for introducing money transfers is to compensate agents that
not are assigned their best object, it is not to punish the agents that are assigned their
top-object. For example, if the most preferred public school not is assigned to a child,
then his/her family should receive some money as a compensation, but the children
that are assigned their top-choices should not be punished by means of a fee.

Hence, in the first major step, we restrict the monetary compensations to be non-
negative. This defines lower limits on the compensations. However, by imposing such
a bound, the set of fair allocations that satisfy this lower compensation limit may be
empty. For this reason, we need to weaken the concept of fairness. We first require
that the objects are allotted efficiently according to the priority-order, i.e., that there
is no way to reduce envy by reallocating only the objects and at the same time respect
the priority-order. Recall now that the main reason for introducing money in the
assignment model is to reduce envy. Given this observation, we then require that
agent i can never envy some other agent k with a higher priority (for receiving a
better object), at an efficient allocation, when the compensation for the object that
is assigned to agent k exceeds zero, because if this is that case, there is no reason to
transfer a positive amount of money to agent k, since this will only increase the envy
further. Hence, a natural weakening of the concept of fairness, when a priority-order
and a lower compensation limit must be respected, is the following; an allocation is
said to be weakly fair if the objects are allocated efficiently, the compensations do not
fall short of the minimum compensation limits and where no agent envies any other
agent except, possibly, in the bounding case when (a) the money compensation of each
top-object of the agent equals the lower compensation limit and (b) each top-object
is assigned to some other agent with a higher priority. Note first that in the case
when the compensation for all objects exceeds the lower compensation limits, then the

weakly fair allocation is also a fair allocation. Hence, the main difference between the

2See, e.g., Alkan et al. (1991), Maskin (1987), Svensson (1983) and Tadenuma and Thomson
(1991).

3Non-negativity is not a crucial assumption. In fact, all results are valid even if this assumption is
relaxed. If, for example, one of the goods is a “bad object” (e.g., dangerous missions or toxic waste),
it is possible to allow for a negative compensation. That is, agents who receive the “good object” may

pay a price for not receiving the “bad object”.



concepts of fairness and weak fairness is properties (a) and (b), i.e., the weakening of
the no-envy condition. In the bounding case when no monetary transfers are allowed,
so the compensations equal the lower limits, an allocation is weakly fair if the objects
are allocated efficiently and the priority-order is respected.

In the second major step, the mechanism designer specifies the budget that can
be used in order to reduce envy. More specifically, the mechanism designer speci-
fies a maximal compensation that can be attached to each good. This compensation
may, for example, correspond to the travel costs for a child that is assigned a public
school that not is located in the neighborhood. This defines, in addition to the lower
non-negative limit, an upper limit on the compensations. Given these restrictions on
the compensations, we demonstrate that the set of restricted compensation vectors,
which are consistent with weak fairness, is non-empty. Moreover, there exists a unique
compensation vector in this set that is optimal from the perspective of the agents, in
the sense that the compensation for each good in this vector is weakly higher than
the compensation for each good in an arbitrary compensation vector in this set. This
compensation vector is called the weakly fair and optimal compensation vector. By
regarding this compensation vector as mechanism for allocating the indivisible goods,
it is demonstrated that it is not possible for any agent or any coalition of agents to
manipulate the outcome by reporting false preferences. Such an allocation rule is said
to be coalitionally strategy-proof. In the problem of assigning public schools to chil-
dren, for example, this property means that children (and their parents) do not need
to worry about receiving a less attractive school seat as a consequence of reporting
their preferences over the schools truthfully. Given a mild regularity condition, we also
demonstrate that this allocation rule is, in fact, the only strategy-proof allocation rule
that implements a weakly fair allocation.

To the best of our knowledge, this is the first paper that analyzes an allocation
problem where only restricted compensations are allowed, i.e., where the allowable
monetary compensations are restricted by both an upper and a lower limit. The in-
vestigated allocation rule is very appealing, because it always eliminates envy when
possible and if it not is possible to eliminate envy, it reduces the envy, by means of
monetary compensations. In the seminal article by Demange and Gale (1985) there
are also upper and lower limits, given by the sellers and the buyers reservation prices.
Consequently, in their multi-item auction model, the upper and lower limits are de-
termined endogenously by the preferences of the sellers and buyers. In our model, the
restrictions are not related to the preferences of the agents.

Strategy-proofness has been investigated earlier by, e.g., Abdulkadiroglu and Sénmez



(1999,2003), Ehlers (2002), Pépai (2000) and Svensson (1999), when no monetary trans-
fers are allowed, and by, e.g., Demange and Gale (1985) and Tadenuma and Thomson
(1995), when monetary transfers are allowed, but when no exogenous restrictions are
imposed on the monetary compensations. In recent papers by Anderson and Svensson
(2006), Sun and Yang (2003) and Svensson (2006), an allocation problem, where the
monetary transfers are restricted by an upper compensation limit is analyzed. There
are, however, three major differences between this paper and the papers mentioned
above. First, they do not have a lower bound on the monetary compensations. Sec-
ond, fair allocations always exists in their models, so there is no need to weaken the
concept of fairness. Last, they do not have a priority-order and even if a priority-order
is introduced, it would be of no importance, because fair allocations always exists and
a fair allocation always satisfy any given priority-order, by definition. In our allocation
model, the priority-order is very important, because we need it when it is impossible
to avoid an unenvious outcome due to the restrictions on the monetary compensations.
Finally, Ohseto (2006) considers an allocation model with money and two types of
indivisible goods (like the model in this paper) and identifies the Pareto undominated
subset in the set of strategy-proof and fair allocation rules. Even if it is not explicitly
stated, one can see that the derived compensation functions also satisfy an exogenous
upper bound. However, no lower bound is introduced.

The paper is outlined as follows. In Section 2, we describe the basic model and
introduce some useful notation. The concept of weak fairness is introduced in Section
3. Section 4 presents the weakly fair and optimal allocation rule and prove that it is
coalitionally strategy-proof. In Section 5, it is shown that the introduced upper limits
on the compensations are necessary for coalitionally strategy-proofness. Some of the

proofs are collected in the Appendix.

2 The model and basic definitions

Let N = {1,...,n} be the set of agents and n > 2. There are two types of indivisible
objects, denoted by 0 and 1, but no initial property rights. We assume that there are
hy € {1,...,n — 1} units of object 0 and hy = n — hy units of object 1. There is also
some maximal amount of money that can be assigned to the agents, m € R,_. When
monetary transfers not are allowed, we let m = 0. A consumption bundle is a pair
(4,m) € {0,1} x R, and it is assumed that each agent consumes exactly one object

together with some non-negative amount of money. An allocation (a,x) is a list of n



consumption bundles, where a : N — {0,1} is a mapping assigning an object a; to
agent i € N, and where x € R% distributes the non-negative amount x; of money to
objects of type j € {0,1}.* An allocation (a, ) is said to be feasible if ;. ya; = h; and
YienT,, < m. The latter condition is a resource constraint. If no monetary transfers
are allowed, then z,, = m = 0 for all i« € N, so it is trivially satisfied. The set of
feasible allocations is denoted by A.

Each agent ¢ € N has preferences over consumption bundles, represented by a
continuous utility function u; : {0,1} x R*? — R. Here, u,(j, z) is the utility agent
i € N obtains, at distribution z, if he is allocated an object of type j € {0,1} and
the quantity z; of money. The utility function is assumed to be strictly increasing in
money, i.e., u;(j, z) > u;(j,y) if x; > y;. A list of utility functions u = (uy,...,u,) is a
(preference) profile. We also adopt the notational convention of writing u = (ue, u_o)
for C' C N. The set of profiles with utility functions having the above properties is
denoted by U.

An allocation rule is a non-empty correspondence ¢, that, for each profile u € U,
selects a set of allocations, p(u) C A, such that w;(b;,y) = u;(a;,x) for all i € N
if (a,z) € p(u) and (b,y) € p(u). Hence, the various outcomes in the set p(u) are
utility equivalent, and such a correspondence is called essentially single-valued (ESV).
Working with correspondences instead of functions, ESV is a necessary assumption for
an allocation rule to be strategy-proof (as defined in Sections 4 and 5). This does,
however, not exclude that the allocation rule is single-valued.

Finally, let 7 : N — N be a bijection that determines a priority-order among the
agents. The agent i € N with 7(i) = 1 has the highest priority. For simplicity, and
without loss of generality, we suppose that 7(i) =i for all i € N. The priority-order is
respected, at a given allocation (a, ), if and only if u;(a;, x) > u,(a;, ) for all i, k € N
where k > 1.

3 Weak fairness

If no monetary compensations are allowed and the objects are allotted according to

the priority-order, an envy-free outcome can not be guaranteed for all profiles u € U.

4A more general formulation of an allocation (a,x) is obtained if z € R™. In that case, agents
that are allocated the same type of objects can be allocated different (and even negative) amounts of
money. However, such a more general approach would not add anything to the results of this paper,
see Ohseto (2006,p.114).



In this sense, envy is the cost of not allocating the objects on a market. The basic
idea in this paper is that, at least, some of this envy can be reduced when restricted
monetary compensations are allowed. However, we do not wish to punish agents, by
introducing monetary compensations. For this reason, we restricted the compensation
vector to be non-negative in Section 2. This restriction guarantees that no agent will
be worst-off when money is introduced in the model. The compensation vector (0,0)
will be denoted by x, henceforth.’

In our analysis, the set of envy-free allocations will be of primary importance.
Formally, for a given profile u € U, an allocation (a,z) is said to be fair if it is envy-
free, i.e., if u;(a;, x) > w;(a;, z) for all i,j € N. A distribution z is said to be fair if
there is an assignment a such that allocation (a,z) is a fair allocation. For a given
profile u € U, the set of fair allocations is denoted by ®(u) and the corresponding set
of fair distributions is denoted by F(u), i.e.:

F(u) = {r € R*| (a,z) € ®(u) for some assignment a}.

Note that for some profiles u, the the set F(u) N R% may not have any feasible dis-
tributions. For this reason, we need to weaken the concept of fairness. To achieve
this objective, we first require that the objects are allotted efficiently according to
the priority-order, i.e., that there is no way to reduce envy, by reallocating only the
objects, and at the same time respect the priority-order. This property is known as
object-efficiency, see, e.g., Svensson and Larsson (2002). Recall now that the main rea-
son for introducing money in the assignment model is to reduce envy. Hence, it is also
natural to require that agent i can never envy agent k, at an efficient allocation (a, x),
when z, > 0, because if agent 7 envies agent £, there is no reason to transfer a positive
amount of money to agent k. This will only increase the envy further. Thus, we only
allow for envy when the compensation for an object equals the minimum compensation

limit. Formally, our weakening of the no-envy criterion is defined as follows.

Definition 1 For a given profile w € U, an allocation (a,x) is said to be weakly fair

(WF) if x > z, the priority-order is respected and:

(i) w;(b;,x) > w;(a;, ) for all t € N for some assignment b imply that u;(b;, x) =
w;(a;, ) for alli € N,

(i) w;(a;,x) > w;(ay, x) for alli € N ifz, > 0.

5This is not a crucial assumption. Our results hold for an arbitrary vector x € R2.



Note also that in the special case when no compensation is at the minimum level,
the WF allocation is also a fair allocation. In that case, the priority-order is of no
importance, because it is always respected, by definition. In the bounding case when
x =z = (0,0), i.e., when no monetary transfers are allowed, an allocation is weakly
fair if the objects are allocated efficiently and the priority-order is respected.

For a given profile u € U, the set of WF' allocations is denoted by W(u), and the
corresponding set of WF distributions is denoted by W F(u), i.e.:

WFE(u) ={zr € R% | (a,z) € ¥(u) for some assignment a}.

We next illustrate the set W F(u) in a simple economy with three agents, that all have
quasi-linear utility functions. Suppose also that there is one object of type 0 and two
objects of type 1. In Figure 1, the curve u,; represents all distributions where agent
i € {1,2,3} is indifferent between receiving object 0 and 1. Because utility is increasing
in money, it is clear that agent 7 strictly prefers object 0 (object 1) at any distribution
that is located below (above) the indifference curve. If no monetary compensations
are allowed, so the distribution is given by x = (0,0), object 0 is the most preferred
object for all agents, but agent 1 is assigned object 0, by the priority-order. Hence, the
allocation will not be envy-free. If arbitrary monetary compensations are allowed, any
distribution that is located on or between the two indifference curves u, and u, is fair,
since two of the agents must be assigned an object of type 1, so if in addition x > =z,
then the distribution belongs to W F(u). However, the distributions that are located
on the line segment zz also belong to W F'(u). To see this, note first that z € F(u).
Note next that if we pick an arbitrary distribution on the line zz (not equal to z),
at least two agents strictly prefer object 0 over object 1. But then we can identify a
WEF allocation by assigning object 0 to the agent with the highest priority, i.e., agent
1. The resulting allocation is weakly fair, by Definition 1, since x, = 0 along this line
segment, but it will not be envy-free. However, envy is reduced due to that agents 2
and 3 receive a monetary compensation. Hence, the set of weakly fair distributions,
W F(u), is given by the line segment zz plus the area that is bounded by x > z and

the two indifference curves 4, and u,.

[FIGURE 1 ABOUT HERE]



4 Weakly fair and optimal allocations

The first main objective of this paper is to weaken the concept of fairness when re-
stricted monetary compensations are allowed and when a priority-order must be re-
spected. The second main objective of this paper is to analyze strategy-proof allocation
rules that implement WF allocations. Since the concept of fairness was weakened in
the previous section, we next focus on strategy-proof implementation. Suppose now
that the mechanism designer have m monetary units that (at most) can be used to
reduce envy and that he specifies a maximal compensation that can be attached to
each good. This maximum amount is denoted by T; for j € {0,1} and we suppose
that © > x. Note that the maximum compensations can be chosen arbitrarily as long
as hyTy + h;x; < m. This maximum compensations may, for example, correspond to
the travel costs for a child that is assigned a public school that not is located in the
neighborhood. The vector T = (T, T;) defines, in addition to the lower limit, an upper
limit on the compensations.

We are primarily interested in a compensation vector that is optimal for the agents
in the sense that the compensation for each good in this vector is weakly higher than the
compensation for each good in an arbitrary compensation vector in the set of weakly
fair distributions, W F(u). The reason for this is that if the compensation vector is
optimal for the agents, in the above sense, then envy is reduced as much as possible.
This compensation vector is said to be WF and optimal® with respect to T (w.r.t. T,
henceforth).

Definition 2 For a given profile u € U, a distribution x € R% is said to be weakly fair

and optimal w.r.t. T if:
(i) <7 and x € WF(u),
(ii)) 2 <y <7 and y € WF(u) imply that y = x.

We also say that an allocation (a,x) is weakly fair and optimal w.r.t. T if the distri-

bution x is weakly fair and optimal w.r.t. 7.

The first part of the definition requires that the distribution z is WF and does not
exceed the given upper bound. The second part of the definition is a (constrained)

efficiency requirement. It means that there is no WF distribution that dominates z and

6This concept of optimality was introduced by Sun and Yang (2003) for fair allocations.



at the same time satisfies the upper bound on the compensation vector. The definition
does not, & priori, exclude the possibility of none or several optimal distributions. But
our next proposition will show the existence, as well as, the uniqueness of a distribution
that is WF and optimal w.r.t. . Furthermore, efficiency is satisfied to that extent

that at least one of the object types achieve maximum compensation.

Proposition 1 For each vector T € R, and for each profile u € U, (i) there exists
a distribution x that is weakly fair and optimal w.r.t. T, (ii) for a distribution x that
is weakly fair and optimal w.r.t. T, it holds that x,, = T, for some k € {0,1} and (iii)

the distribution that is weakly fair and optimal w.r.t. T is unique.

Proof. (i) Let R = {z € R |z < <Z}. Obviously, the set R N WF(u) is
compact, since preferences are continuous, and it is non-empty, since x € RN W F(u).
Then there is a maximal element € RN W F(u) with respect to the order relation >.
The allocation (a,z) is WF and optimal if the assignment a is defined in the following
way. Let C' = {i € N | v;(0,2) = u,;(1,2)}, where x is the maximal element. Then let
agents ¢ € N — C first choose objects and the associated compensations in accordance
with the priority-order, and then assign the remaining objects to C' arbitrarily.

(ii) Suppose that an allocation (a, z) is WF and optimal, but that =, < 7, for all k €
{0,1}. If z € F(u), then there is arbitrarily small € > 0 such that (zy+¢y, x,+¢,) is fair,
by the perturbation lemma in Alkan et al. (1991,p.1029). But this is a contradiction
to optimality. Suppose instead that ¢ F'(u). Then object-efficiency requires that:

w;(l,x) > u;(k,x) for all i € N with a; =1 # k when x; = 0.

To see this, note that since x ¢ F(u), there is j € N such that a; = k and u;(l,r) >
uj(k;, x), and if the inequality above not is satisfied, there is a Pareto improving change
of the assignment. Let now y € R2 for y;, = 0 and y, = x;, + . From the inequality
above, it is clear that (a,y) is WF for a sufficiently small € > 0 when z; < T}, which
contradicts that x is WF and optimal w.r.t. @. Hence, z;, = 7.

(iii) If 7 € W F(u), then 7 is fair and the only distribution that is WF and optimal.
Suppose now that allocations (a,x) and (b,y) both are WF and optimal w.r.t. T and
that © # T, y # T and = # y. According to part (ii) above, we can, without loss of
generality, assume that (a) z; =T, and y, =T, or (b) z; = y; = T, and y, > x,.

In case (a), for all i € N with a; = 0:

u;(0,2) > u,(1,2) = u;(0,y) > v, (1,y) = b; = 0.

10



The first inequality follows from the definition of WF since x; = 7; > 0. The second
inequality follows from monotonicity. Further, b, = 0, by WF since y, = 7, > 0. But
then b, = 0 if a; = 0. Hence, a = b. But then allocation (a,Z) is fair, which is a
contradiction.

In case (b) y, > x, > 0, so y is fair. But then z cannot be optimal, which is a
contradiction.

In conclusion, x = y must be the case. m

We next illustrate the results in Proposition 1 with the aid of two simple examples.
Again, we assume that there are three agents with quasi-linear preferences and that
there is one object of type 0 and two objects of type 1. We must now introduce the
maximum compensation limit, . In Figure 2, we see that all distributions in the region
xzstx®z satisfy the first requirement in Definition 2, i.e., they are all WF and none of
them exceed the maximum compensation limit. The unique distribution that is WF
and optimal w.r.t. 7 is given by z*. Note also that z; = &, at this distribution, so
one of the compensations is given by the maximal amount, as predicted in Proposition
1(ii). Finally, in this example, envy is eliminated, at cost z{h, + x7hy < M. However,
the lowest cost at which the envy is eliminated is given by zyhg + 2, h, but as we later
demonstrate, the reason for selecting distribution z* is that it is the only distribution
that guarantees a strategy-proof outcome, given the upper limit z. In Figure 3, a
somewhat different case is illustrated. Here, the only distributions that satisfy the
first criterion of Definition 2, are the distributions that are located along the line
segment xx*. Note that none of these distributions are fair, and among these non-fair
distributions, the unique distribution that is WF and optimal w.r.t. T is given by z*,
and again z; = T;. In this case, it is not possible to eliminate all envy, it will only
be reduced, because the envious agents (i.e., agents 2 and 3) will obtain a monetary

compensation.

[FIGURE 2 ABOUT HERE]
[FIGURE 2 ABOUT HERE]

In accordance with our definition of a WF and optimal allocation, we define an al-
location rule ¢ to be WF and optimal w.r.t. 7 if for each profile u € U and for all
(a,z) € p(u), allocation (a,z) is WF and optimal w.r.t. Z. If we let:

o(u) ={(a,z) € A| (a,z) is WF and optimal w.r.t. T},

Part (i) of Proposition 1 shows that the set ¢(u) is non-empty for all profiles u, so

there exists a WF and optimal allocation rule. Note also that ¢ defined in this way is

11



an allocation rule, because ¢ is essentially single-valued. Moreover, from Part (iii) of
Proposition 1, we know that each profile u € U is uniquely mapped on a distribution
by a WF and optimal allocation rule. This part of an allocation rule is called the
distribution rule. Hence, if ¢ is WF and optimal w.r.t. T and if f is the corresponding
distribution rule, then f(u) = x precisely when (a,z) € ¢(u) for some assignment a.
Our first main theorem establishes that no agent or no coalition of agents can obtain
a higher utility by manipulating an allocation rule that is WF and optimal w.r.t. z.

The following definition of strategy-proofness will be employed.

Definition 3 An allocation rule ¢ is manipulable at a given profileuw € U by a coalition
C C N if there is a profile v € U and two allocations (a,x) € @(u) and (b,y) €
o(ve,u_e) such that u;(b;,y) > u(a;,z) for all i € C. If the allocation rule is not
manipulable by any coalition at any profile, it is said to be coalitionally strategy-proof

(CSP).

This means that in order to manipulate, it is sufficient that there is some profile u € U
and some coalition C' such that by reporting preferences v; for all © € C, instead of u,,
the coalition can find some allocation (b, y) € ¢(ve, u_) that makes all of its members
better off.

Theorem 1 An allocation rule ¢ that is weakly fair and optimal w.r.t. T is coalition-

ally strategy-proof.

Proof. Let ¢ be an allocation rule that is WF and optimal w.r.t. =, and suppose
that it is manipulable by a coalition C' C N at a profile u € U. Then there is a profile
v € U and two allocations (a,x) € p(u) and (b,y) € ¢(ve, u_¢), such that:

u;(b;,y) > w;(a;,x) for all i € C. (1)

Now z;, = T, for k =0 or k = 1, according to Part (ii) of Proposition 1. Suppose that
x, = T;. If © =7, then z is fair and condition (1) cannot be satisfied. Hence, z, < T,
must be the case.

We first show that b, = 0 if © € C. Suppose that b, = 1 for some i € C'. Then
by condition (1) and WF, u,;(1,y) > w;(a;,z) > u,;(1,z), since x; = Z; > 0. This is a
contradiction to monotonicity since y; < x; = ;. Hence, b, =01if i € C.

We next demonstrate that y, > x,. Suppose that y, < x,. If 2, > 0, then z is fair

and, according to condition (1), fairness and monotonicity:

w;(0,y) > w;(a;,x) > u;(0,2) > u;(0,y) for all i € C,
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which is a contradiction. If z, = 0, then y, = 0. Hence, y = x = (0,7;). But this is
not consistent with condition (1) since the priority-order is exogenously given and then
the utility distribution is unique, by the optimality requirement. Hence, y, > x.

We will now show that a = b. Note first that for all + € C with a; = 0, it is also
true that b, = 0, by the above conclusion. Consider now some ¢ € N — C with a; = 0.

Then by monotonicity and WEF:
ui(0,9) > (0, 7) = uy(1, 2) = ui(1,y),

since x; = T; > 0. But y € F(vs,u_c), so the inequality above implies that b, = 0,
because y, > 0. Thus, for all : € N with a;, = 0, it holds that b; = 0. Hence, a = 0.

Finally, we show that x is not optimal. Let 2’ = (z, + ¢,7;) for ¢ > 0 and small.
Then 2’ € F(u) because:

for all i € N with a; = 0 : u;(0,2") > u;(0,2) > u;(1,2) = u;(1,2"),
by WF, since x; > 0. Moreover:
for all i € N with a; =1 : u;(1,2) > w;(1,y) > v;(0,y) > u;(0, x),

by WF and monotonicity, since z; = T; > y; and y, > x, > 0. But then, u,(1,2") >
u;(0,2") for all i € N with a; = 1, for a sufficiently small ¢ > 0. Thus, 2’ € F(u).
This means that x cannot be optimal, which is a contradiction. Hence, ¢ cannot be

manipulable. m

5 The class of weakly fair and coalitionally strategy-

proof allocation rules

Theorem 1 shows the existence of a coalitionally strategy-proof allocation rule that im-
plements weakly fair allocations. A more general problem is, of course, to characterize
all weakly fair and coalitionally strategy-proof allocation rules that are available to a
mechanism designer when the monetary compensations are restricted. In this section,
this class of allocation rules is characterized, given a mild regularity condition. We
demonstrate that all weakly fair and coalitionally strategy-proof allocation rules, in
fact, are optimal w.r.t. some quantity restriction .

Our point of departure is a finite amount of money and a regularity condition

that implies that all available money is distributed by the allocation rule for some
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preference profile (this is not a crucial assumption, see footnote 7). Moreover, we
restrict the manipulation possibilities of the agents, by only considering quasi-linear
utility functions. One could expect that by narrowing the domain of the allocation
rule, the class of strategy-proof allocation rules should increase. As Theorems 2 and 3
(below) demonstrate, this is, however, not the case. Formally, we restrict our attention
to a class of utility functions where the utility of agent ¢ € N when he is assigned object
j €{0,1} and z; units of money is given by: u,; + ;. For notational simplicity, we will
often describe the (quasi-linear) preferences for agent i € N as: u; = (u;, u;;) € R2.
The set of profiles with quasi-linear utility functions is denoted by U? C U.

In Theorem 2, we investigate allocation rules that are Pareto indifferent (PI). This
means that if an allocation belongs to the outcome of the allocation rule, at some
profile, then every allocation that all agents are indifferent between, also belong to
the outcome of the allocation rule. An example of such a rule is the WF and optimal

allocation rule, defined in the previous section:
o(u) ={(a,z) € A| (a,z) is WF and optimal w.r.t. T}.

PI correspondences are obviously interesting from a welfarist point of view, because
every allocation that all agents are indifferent between are treated equally. If, on the
other hand, the allocation rule is used to choose exactly one particular outcome, a
tie-breaking rule is necessary. Such a rule may influence the strategic behavior of the
agents. In Theorem 3 we, therefore, drop the PI assumption and characterize the class
of essentially single-valued (ESV) allocation rules, a class that also includes single-
valued allocation rules (recall also that an allocation rule is ESV, by definition). We
restrict, however, our attention to allocation rules that are said to be fairness selective.
This condition is in the spirit of point (ii) in the definition of weak fairness, i.e., the
allocation rule selects fair allocations when possible. It means that if the outcome x
is fair at a profile and an agent changes his preferences so that x is still fair, then the
outcome at the new profile, not necessarily equal to x, is fair. The formal definition
is given below. The theorems are given in this section while the proofs are delegated
to the Appendix. In both theorems, we assume that all available money is distributed

among the agents for some profile in ¢9.” Such an allocation rule is called regular.

"We need not assume that all available money is distributed among the agents for some profile.
To prove Theorems 2 and 3, it suffices that there is a finite upper bound on how much money that
can be distributed by a particular distribution rule, and that this bound is attained for some profile

in Y9. This bound need not equal m.
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Definition 4 An allocation rule ¢ : UT — 24 is:

(i) Pareto indifferent (PI) if (a,x) € p(u) and wy,, +y,. = u,, +, for alli € N imply
that (b,y) € o(u),

(ii) Fairness selective (FS) if for all u,v € U? and i € N, f(u) € F(u) N F(v;,u_;)
implies that f(v;,u_;) € F(v;,u_;),

(iii) Regular if for some uw € U7 there is an allocation (a,z) € p(u) where hyxy +

hlxl =m.

Theorem 2 A weakly fair, reqular and Pareto indifferent allocation rule ¢ : U? — 24
15 coalitionally strategy-proof if and only if it is optimal w.r.t. some distribution T €

Note that a weakly fair and optimal allocation rule is fairness selective (see Lemma
3 in the Appendix), so, in this case, fairness selection is an implication of the other
conditions.

We next consider the case that includes single-valued allocation rules. That means
that the assumption of Pareto indifference has to be dropped. But let us first introduce

a weaker form of strategy-proofness.

Definition 5 An allocation rule ¢ is strongly manipulable at a given profile u € U by
a coalition C' C N if there is a profile v € U such that u;(b;,y) > u(a;, x) for alli e C
for all allocations (a,x) € p(u) and (b,y) € ¢(va,u_c). If the allocation rule is not
strongly manipulable by any coalition at any profile, it is said to be weakly coalitionally
strategy-proof (WCSP).

Note that this definition of manipulation is rather demanding. To manipulate, it is
necessary that there is some profile v and some coalition C' such that by reporting
preferences v; for all i € C, instead of w;, each allocation (b,y) € ¢(vs,u_) is better
for all members of the coalition C' than any allocation (a,z) € ¢(u). Of course, any
CSP allocation rule is also WCSP. However, even if the set of WCSP in general is larger
than the set of CSP allocation rules, there are cases when the two concepts coincide. If
the allocation rule is single-valued this is obviously the case. We next prove that this

also is the case when the allocation rule is ESV and weakly fair.

Proposition 2 A weakly fair and essentially single-valued allocation rule ¢ : U? — 24
s coalitionally strategy-proof if it is weakly coalitionally strategy-proof and fairness
selective.
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A close consequence of Proposition 2 and Theorem 2 is our last theorem.

Theorem 3 A fairness selective, weakly fair, essentially single-valued and regular al-
location rule o : U — 24 is coalitionally strategy-proof if and only if it is optimal w.r.t.

some distribution T € R?, where hyTy + h T, = .

A Appendix: Proofs

A.1 The proof of Theorem 2

We first note that the “if” part of the theorem follows directly from Theorem 1. In order
to prove the “only if” part of the theorem, we specify and prove a series of lemmas. In
these lemmas, we suppose that the assumptions from Theorem 2 hold. The following

lemma will be useful in the analysis.?

Lemma 1 Suppose that v € U?, and let x,y € F(u) be two fair distributions and
(a,z) € ®(u) a fair allocation. Then (a,y) € ®(u) is also a fair allocation.

Let now u € U and (a,T) € ¢(u) for some assignment a and some distribution 7 € R?
where hoT, + hyZ; = m. Such a profile exists since ¢ is regular. The existence of a
profile at which the outcome of the allocation rule is efficient is shown in the following

lemma.
Lemma 2 Ifv e U? and v, = =7 for alli € N, then f(v) =T.

Proof. Let v € U? and v; = —7 for all i € N, and suppose that (a,z) € ¢(v)
and f(v) =z # Z. If v <7, then the entire coalition N can manipulate and achieve
T, by reporting the profile . This is not consistent with CSP. Hence, by the resource
constraint, we need only consider the case when z, > 7, and x; < 7, for [,k € {0,1}
and [ # k. However:

Uik—l-l’k:—fk—l—aikZO>—fl—|—Jlevil—|—$l fOI"&HiEN,

which contradicts that (a,z) is WF, i.e., all agents with a; = [ envies the agents with

a; = k, and this cannot be the case because z;, > 0. Thus, z =7. =

Our next lemma shows that if there, for a certain profile, is a fair distribution satisfying

the upper bound and lower limit, the outcome of the allocation rule must also be a fair

8The proof can be found in, e.g., Svensson (2006).
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distribution. Hence, a consequence of strategy-proofness is that fairness has a priority

to non-fairness in the definition of weak fairness.

Lemma 3 Letu e U? and R={zx € R} |z <z <T}. If RN F(u) # @, then f(u) €

Proof. Suppose that RN F(u) # @, but © = f(u) ¢ F(u). In this case, z;, > T,
for some k € {0,1}, because # < T is not consistent with CSP (see the proof of
Lemma 2). Moreover, z; = 0 for [ # k, since z ¢ F(u). Let now (a,z) € p(u) and
C=1{ie N |a =1} Since z € F(u), it follows from the definition of WF that:
u; + x; > u,y, + x, for some 5 € N — C. Moreover, u,; + x; > u, + x;, for all © € C|
by object-efficiency, otherwise there is a Pareto improving change of the assignment.
Because RN F(u) # @, there is a distribution y € RN F(u) and, consequently, an
assignment b such that (b,y) € ®(u). This observation, monotonicity and WF yield:

uil+yl Z uil—l-():uil—i—xl > Uzk+xk Zuzk—i‘fk Zulk—i‘yk fOI' aHZG C
Hence, b; = a; if i € C, because (b,y) € ®(u), and, as a consequence, b = a. Moreover:
Uy + T 2> Ui, + T 2> Uiy + Y S Uy 4y > Uy +0=u;+x, foralli e N —-C.

by monotonicity and fairness. But this contradicts that there is an agent j € N — C,
as defined above. Hence, x = f(u) € F(u). m

We next establish that if the distribution is fair, then the compensation cannot exceed
the upper bound and, moreover, the compensation for (at least) one of the object types

must equal the upper bound.

Lemma 4 Let w € U?. If f(u) € F(u), then f(u) < T and f,(u) = T, for some
ke {0,1}.

Proof. Suppose that x = f(u) € F(u) and, consequently, that (a,z) € ¢(u) and
(a,z) € ®(u) for some assignment a. If x = 7, we are done, and x < T is not consistent
with CSP (see the proof of Lemma 2). For this reason, we assume that x, < T, and
x, > 7. Hence, it remains only to prove that z; = 7.

Let now v € U? be defined as in Lemma 2 and C = {i € N | ¢; = 0}. Since

(a,z) € ®(u), it follows from monotonicity that:

Uyp + Ty > Uyg + Ty > Uy + 21 > uy + T foralli € C,
vy +%, =v9+T,=0forallie N—-C.
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From these inequalities, it is clear that (a,T) € ®(uq,v_¢). Hence, if we can prove
that (a,T) € p(uc, v_¢), we are done, because if this is the case, then (a, z) € ¢(u) and
(a,T) € p(ug,v_g), SO V;1 + Ty > vy + oy or, equivalently, z; < T, by CSP. The latter
inequality, in combination with the assumption z; > ¥, gives x; = ¥, as desired. The
remaining part of the proof demonstrates that (a,7) € ¢(ue, v_¢).

Suppose now that (b,y) € ¢(uq,v_r) and note that T € R N F(ug,v_¢) be-
cause (a,T) € P(ug,v_¢). Consequently, y € F(ug,v_¢), by Lemma 3, and (a,y) €
O (ue,v_p), by Lemma 1. But ¢ is PI and, therefore, (a,y) € ¢(ues, v_¢), so it remains
only to prove that y = Z. Because v € U? is defined as in Lemma 2, it is clear that

(a,T) € p(v). Then, since ¢ is CSP, there are agents i,j € C such that:
Uio + Yo = Ui + T and v;g + Ty = v + Yo-

These inequalities give y, = T,. Thus, y; < T;, by the resource constraint. Suppose

now that y; < 7;. In this case:

uio_‘_yO:uio_l_f()Zuil +§1 >ui1+y1 for aHZGC,
Ui0+y0:UiO+E0:Ui1+fl>/U,L‘1+y1 fOl“ aHZEN_O

But this is a contradiction to (a,y) € ®(ugs,v_). Hence, y; = T; and, therefore,

y = T, which concludes the proof. m

We next demonstrate that if the distribution is WF', but not fair, then the compensation
that is associated with one of the objects must be given by the minimum compensation

limit and, moreover, that the compensation for the other object must equal the upper
bound.

Lemma 5 Letw € U?. If f(u) ¢ F(u), then x; =0 and z;, = T, for some I,k € {0,1}
and | # k.

Proof. Suppose that © = f(u) ¢ F(u), so (a,z) € ¢(u) for some assignment
a. Then z; = 0 for some [ € {0,1}, say [ = 0, by the definition of WF. But then
xr, > T, because x; < T, is not consistent with CSP (see the proof of Lemma 2).
Hence, it remains only to prove that x; = 7. In the remaining part of this proof, we
let C={ieN|aq =1}

To obtain a contradiction, suppose that x; > 7;. Consider now the profile v € U9,
where v; = —(0,7;) for all i € N, and the allocation (b,y) € p(ve,u_g). We need

to demonstrate that a = b and y = (0,7,), because if this is the case, then coalition
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C' can manipulate at the profile (vs,u_) and achieve z, instead of Z;, which is not
consistent with CSP, i.e., the assumption x; > T; cannot hold.

We first demonstrate that a = b. By WF and z, = 0, it follows that (0,7;) €
RN F(vg,u_q), because:

’Uil‘i‘Tl:Uio"_O:OforaHiGC,

Hence, RN F(vq,u_g) # @ and, therefore, y = f(vo,u_g) € F(ve, u_¢), by Lemma
3, and also y < T and y,, = T, for some k € {0,1}, by Lemma 4. Moreover, (b,y) €
O (ve, u_¢), because y € F(ve,u_q). These observations, WF and monotonicity then

gives:
Ui + Yo = Uig + 0 = o + 29 > uyy + 2y > uy +7 > uy +y, foralli e N —-C.

Hence, b; = a; if i € N — C, because (b,y) € ®(vs, u_), and, as a consequence, b = a.
We next demonstrate that y = (0,7;). From the above observation that (b,y) €
O (ve,u_e), it follows that:

Vi Y1 > Vo + Yo = Yy — Ty >y forall i € C.

A consequence of the fact that y < 7 is that y; — 7, <0,s0 y, <y, —7; <0, by the
above inequality. But then y, = 0, and, as a consequence, y;, = T,. Hence, y = (0, 7).
[ ]

We have now proved two important properties of the WFE and CSP allocation rule, the
first is valid in the case when the distribution is fair (Lemma 4), and the second is valid
in the case when the distribution is WF, but not fair (Lemma 5). Given these results,
we can prove Theorem 2. In order to do so, it remains only to prove that the allocation

rule is optimal w.r.t. . This result is formally provided in the following lemma.
Lemma 6 Letu € U? andy € RNWFE(u). Then y < f(u).

Proof. Suppose that y € RNW F(u) and (a,z) € ¢(u). We first consider the case
when z = f(u) ¢ F(u). By Lemma 5, we can, without loss of generality, assume that
x = (0,7;). Suppose now that y # x, but that y < z is not true. Then y, > x, = 0
and y; < x; =T, because y € R. By the definition of WF, it follows that for all 7 € N
with a; = 0 and some ¢ € N with a; = 1 it holds that:

Uio + Yo > g + 0 = uyy +T1 = Uy + Yy
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But this cannot be true since y € WF(u) and y, > 0. Hence, y < z.

Consider now the case when = € F(u). Then, according to Lemma 4, we can,
without loss of generality, assume that z; = 7,. If x, = T, we are done, so let instead
xy < Ty. Suppose again that y # z, but that y < x is not true. Then y, > x, and
y; < xy =7y, because y € R. If y & F(u), then y; = 0 and:

ui0+y0>ui0+x02ui1+x1zui1+y1 for aHZENWIth CLi:O.

But this is a contradiction to WF, since y ¢ F(u) and y; = 0. Hence, the case when
y & F(u) can be excluded, and we only have to consider the case when z,y € F(u),
Yo > zoand y; < 1. Let now C' = {i € N | a; = 0} and v € U?, where v; = —y for
all i € N. Then y € F(vg,u_c) since vy + yy = v;; +y; = 0 for all i € C. But then
y € RN F(vo,u_o) # @. This means that there is a distribution z = f(ve,u_¢) €
F(ve,u_g), by Lemma 3, where, in addition, z € R, by Lemma 4. From PI it then
follows that (a,z) € ¢(vo,u_r). We next observe that z, > x,. To see this, note
that z; = T, for some j € {0,1}, since z = f(vo,u_¢). Hence, if z; = Z;, then
2y > Ty, because x, = 0. Suppose instead that z; = 7, and recall that x; = z,. Since
z € F(vg,u_g), it follows that:

Viot+ 20 >V +2 S 25— Yy > 2 —y foralli e C

and hence:

202 2 T Yo — Y1 > 2 T Ty — Ty = Xy

We conclude that z, > z,. But then the coalition C' can manipulate at the profile u
and achieve z, instead of z, which contradicts that ¢ is CSP. Hence, y < x also in

this case. m

A.2 The proof of Proposition 2 and Theorem 3

To prove Proposition 2 the following lemma will be useful.

Lemma 7 Let o : U — 24 be a weakly fair, fairness selective and weakly coalitionally
strategy-proof allocation rule, u € U? and (a,z) € p(u). Then, for each coalition

C C N and for any positive number € > 0, there is a profile v € U? such that for all
(ba y) S QO(UCHU—C)a

b; =a; and y, > x, —¢ for alli e C.
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Proof. Let (a,z) € p(u) and C' C N. If x ¢ F(u) then the assignment a is unique
(see the proof of Part (i) of Proposition 1). In that case, let v = u to complete the
proof. Consider z € F(u) and let € > 0 be an arbitrary positive number. Suppose next
that (b,y) € ¢(ve,u_e), and define v € U? as:

Vig, = —T,, +€/2 and v;; = —x; if j # a, for all i € N.

144

Note first that for all i € C, f(u) € F(u) N F(v;,u_;) and, hence, by FS, f(v;,u_;) €
F(v;,u_;), i.e., the outcome f(v;,u_;) is fair. If we repeat the substitution of u; with
v; for all i € C, we obtain y € F(ve,u_¢).

Now (a,x) € ¢(u) implies that (a,z) € ®(ve, u_e), by construction of v. If (a/, x) €
O (v, u_e), but a; # a; for some ¢ € C, then:

via; + l‘a; Z Uiai + waﬂ

by fairness and, as a consequence, 0 > /2, by construction of v, which is a contradic-
tion. Hence, if (d/, ) € ®(vp, u_), then a) = a, for all i € C. But (b,y) € ®(ve,u_q),
because y € F(vg,u_¢), and, therefore, b, = a, for all i € C, by Lemma 1. From

fairness, it now follows that:
Vi, + Yo, > vy; +y; forall j € {0,1} and all i € C'
By applying the definition of v, this condition can be rewritten to:
Yoy — Lo, +/2>y; —x; forall j € {0,1} and all i € C. (2)

Moreover, by WCSP, there is an agent [ € C' and an allocation (a',x) € ¢(u) such
that:

Vigy + Yoy = Vtag + Ty
Then, by construction of v:

Yo — Ta, +€/220. (3)
From conditions (2) and (3), it now follows that y, — x, > —¢ for all i € C. Hence,

Ya; = Ta, — €, as desired. m

Proof of Proposition 2. WCSP is implied by CSP. To prove the converse suppose
that ¢ is WCSP, but not CSP. Then there are two profiles u,v € U, a non-empty
coalition C' C N, and two allocations (a,z) € ¢(u) and (b,y) € ¢(vs,u_¢), such that
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Ugp, + Yp, > Uy, + T, for all i € C. Define now € > 0 so that: uy, + v, > w;,, +2,, +¢€
for all i € C. By Lemma 7 there is a profile v" € U such that:

if (c,2) € (v, u_¢), then ¢; = b; and z, >y, —e for all i € C.
Thus, for each (c, z) € p(vp, u_e), the following holds:

Wie, + 2o, = Uy, + 2y, > Uy, + Yy, — € > Uy, + 7, forall i € C.

1

This shows that ¢ is strongly manipulable, which is a contradiction. m

Proof of Theorem 3. The first part of the theorem follows from Theorem 1. Suppose
now that ¢ is CSP. Let ¢ be an induced allocation rule that, for all © € U, is defined

as follows:
(b,x) € p(u) < there is (a,z) € p(u) and uy, + z;,, = Uy, +x,, forall i € N.

Note that ¢ is well-defined, because ¢ is ESV. Clearly, ¢ is a PI and fair allocation
rule; the correspondence ¢ is ESV and PI, by definition, and ¢ is WF since ¢ is WEF.
The allocation rule ¢ is obviously WCSP, because ¢ is CSP. Then by Proposition 2,
the allocation rule ¢ is also CSP. It is also regular since ¢ is regular. But then ¢ is
optimal w.r.t. some vector T € R? ,, by Theorem 2, and, hence, ¢ is also optimal w.r.t.

some vector T € R ,. m

References

Abdulkadiroglu A, Sénmez T (1999). House allocation with existing tenants. Jour-
nal of Economic Theory 88, 233-260.

Abdulkadiroglu A, Sénmez T (2003). School choice: A mechanism design approach.
American Economic Review 93, 727-747.

Andersson T, Svensson L-G (2006). Non-manipulable assignment of individuals
to positions revisited. Working Paper 2006:11, Department of Economics, Lund

University.

Alkan A, Demange G, Gale D (1991). Fair allocation of indivisible goods and criteria
of justice. Econometrica 59, 1023-1039.

22



Balinski M, Sénmez T (1999). A tale of two mechanisms: Student placement.
Journal of Economic Theory 84, 73-94.

Demange G, Gale D (1985). The strategy structure of two-sided matching markets.
Econometrica 53, 873-888.

Ehlers L (2002). Coalitional strategy-proof house allocation. Journal of Economic
Theory 105, 298-317.

Ehlers L, Klaus B (2007). Consistent house allocation. Economic Theory 30, 561-
574.

Maskin E (1987). On the fair allocation of indivisible goods. In: Feiwell G (Ed),
Arrow and the foundations of the theory of public policy. MacMillan Press:
London, pp. 342-349.

Ohseto S (2006). Characterizations of strategy-proof and fair mechanisms for allo-
cating indivisible goods. Economic Theory 29, 111-121.

Pépai S (2000). Strategyproof assignment by hierarchical exchange. Econometrica
68, 1403-1433.

Roth A, Sénmez T, Unver M. (2004) Kideny exchange. Quarterly Journal of Eco-
nomics 119, 457-488.

Shapley L, Scarf H (1974). On cores and indivisibility. Journal of Mathematical
Economics 1, 23-37.

Sun N, Yang Z (2003). A general strategy proof fair allocation mechanism. Eco-
nomics Letters 81, 73-79.

Svensson L-G (1983). Large indivisibles: An analysis with respect to price equilib-
rium and fairness. Econometrica 51, 939-954.

Svensson L-G (1994). Queue allocation of indivisible goods. Social Choice and
Welfare 11, 323-330.

Svensson L-G (1999). Strategy-proof allocation of indivisible goods. Social Choice
and Welfare 16, 557-567.

Svensson L-G, Larsson B (2002). Strategy-proof and nonbossy allocation of indi-
visible goods and money. Economic Theory 20, 483-502.

23



Svensson L-G (2006). Coalition strategy-proofness and fairness. Working Paper
2006:10, Department of Economics, Lund University.

Tadenuma K, Thomson W (1991). No-envy and consistency in economies with
indivisible goods. Econometrica 59, 1755-1767.

Tadenuma K, Thomson W (1995). Games of fair division. Games and Economic
Behavior 9, 191-204.

24



Figure 1 The set of WF distributions
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Figure 2 A first example of a distribution
that is WF and optimal w.r.t. T
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Figure 8 A second example of a distribution

that is WF and optimal w.r.t. @
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