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APPROXIMATIONS FOR THE NUMERICAL SOLUTION OT' A
FOKKER-PLANCK EQUATTON W'ITH RE¡'LECTING BOUNÐARY

CONDITIONS

K. J. Åström

Abstract

The parabolic equation is approximated by a set of ord.inary
differential equatione and by finite d,ifference equatione. special
attention is given to the approximation of the boundary cond.ition.
Some identitiee suitable to check numerical calculations are aleo
derived.
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FOKKER-PLANCK EQUATION W'TTH REFLECTING BOUNDARY

CONDÏTÏONS
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K. J. Aströrn

Abstract

The parabolic equation is approxirnated by a set of ordinary
differential equations and by finite difference equations. Special
attention is given to the approximation of the boundary condition.
Some identities suitable to check numerical calculations are also
derived.
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as

in TN 18.057 a first order non-linear system with stochastic disturbances
w'as discussed. It was shown that uncler certain assumptions the problem
could be reduced to the solution of the parabolic equation

(r. l.) òr
ãt (er) + A ò2t

æ
ò

-ffi

with the initial condition

(1. 2.) r(t, x) --+ ro(*)

and the reflecting boundary condition

(r 3. ) g'f. + A ðf
æ

Some methods for the numerical solution of this pro,blem will be discussed
in this report.

By approximating the derivatives with respect to x by differences (l,l)
is approximated by a set of ordinary differential equations r,vitir constant
coefficients which can be solved on an analog computer.

For solutions on a digital computer we proceed by a straightíorward
difference approximation technique. To obtain an explicit difference
formula specíal attention is given to the approxirnation of the boundary
condition. It is shown that these are uiriquely given try requiring that
the approxirnated equations can be interpreted as the Kolmogoïov
equations for a Markov process witl"r cliscreet states.
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0

+

rolL¡

8i+ t
)1-¿Á

1: - mr... rm - .l

(z.L.7l .i

Initial condition

m

(2. l. B) fi(o) I = - mr.,. rlll

ït is not obvious how the equations for i = I m
the boundary conditions. This wiì.l, however,
section 2.2.

were obtained f rom
be discussed in

z,z. A physical interpretation of the approxirnations

The variables k
state variable x

fi(t) can be interpreted as the probability that the
belongs to the set E

(?.2. t) Et = {

are given by

x; (i - .å.) k (i+å)r.

The approxirnation (2. I.4l or the Foklcer-planck equation can thus be
interpreted physically as the Kolmogorov forward equation for a Markov
process with the states Ei. This Markov process obviously has a
finite number of states and. continuous time. The transition probabilities

(2. z.z) Pij " t 
transition Ei *Ej during (t,t+at) l



1

2

TN 18.072
-5-

A DIIiFIiRENCE - Ðil-FIlRliliTL-'L A. ':PROXIM'r,TTON

Inl roiu.ction

IntroCuce t :e following cifference approximations of the cerivatives
ir the x- dircction.

f f.

( .1.1) ôf
-

i+1 - i-l
2k

Iò2t
--- É
òxo

- zf .

1+
Í

1
+- f

1(z )."?)

(?. t.41

where

(?.. L .5)

zk

r,vhe re

(2. l. 3) fi = f (t, ik)

The equatioir (t.l)is then approximated by the following set of
ordinary differential equations

df

1

-dr = a.f.., +
I 1- I b. f.11

a 8i- t

g_m

?,k

2

m

0

A
2k

+ .i fi+l ; i = -m,,. -.,0,,..,m

I = -m

i = -m*I,...,m

) i = -rn

i = -m*I,...,rn-l

zk

(2. r.6) b.

A
2k

A
-̂

A.

-K

(

)i+
zk

rn
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(2,.2.3)

and

(2. t.4')

Pi(i+t¡

Þ..'11

= -llt

Pili- r¡

(+-1¡o, * o(at)
1-- )1-
^&Ã

tår*tt ¡o, * o(at)
k- 2k

i = -mtl,... rrn-I

o(st) i = -m and i -- m

AI z At + o(at) i=-rr¡*1,...,m-l2k

- (+*1¡o, +
k' 2k

Ð..^U o(a t) all other indices

If p should be a transition matrix it must be required that

(?..2.4) 0* pij(t)+ I

(z.z.5l f n,,(t) I

The first condition is satisfied iÍ k is chosen sufficiently small.

The second condition is satisfied due to the special approximation chosen
for the boundary conditions. conversery if the condition (2,2,5) is
postulated the approximation for the reflecting boundary condition is
uniquely given.

The equation (2. 1.4) can be written as

j

df.I Isí ¡

J1

m

rr
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t=0

/

lTl

a ti- l

Ii+

(2.?.61 a

Further is

(z . z.7l q

1
b

a

The matrix O has the properties

(2.2.8) L

c-rn- I

bm

fi(o) > 0 trave f, (t) 0¡

r.J

dPij(t)
--ãi-

m

qij

(?,.2. e')

j =-m

qijào
o.. É o
^L1{

j1

frorn which it follows that

I All solutions of (2,1.4) with
forall t > 0.

Z, The so.!.utions of (2,1.4) have the property
m
tr, I r,(t) - ri(o) J

1-.- -ITl
=Q

-À A.
3
.t<

À +z A.
2k
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Cpmpare the F-igure below

As one eigenvalue of A is zero (Z.Z.B) the equation (2,I.4) has a
ncntrivial stationary solution which is proportional to the correspondíng
right eigenvector of QT. D¡-ie to the property 3 above this statioilary
solution to (?.I.4) converges exponentially to this indepen,iant oi rhe
initial conditio:rs.

2.3, Check conditions

There are severai identities which can be used to check the accuracy
of the calculations

The determination of the elernents in tjre e matrix can be testecl by
the identity (2.2. 8) which also can be wrítten as

(?.. 3 . r) ti+i + bi * .i- r 0

so o ow

x

Jx

g1 ntity

z

I
[ør*"*] )

(2.3.2)

ve

f(t, x)dx itt sf * A* I *l
+

*z
dr=l
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wirich follows from (t.I)and which can be interpreted as an equation

of continuity for the probabilì.ty m¿]ss of the Markov process with
continuous states,'which says that the sum of the probability mass

within (x'x2) and the time integral of the probability flux over the'

boundarie" *1,*Z equals unity. Using (2.2.3) we can write down

the mathernatical equivalence of this for the Markov process with

discreet states and we obtain

tz
(?,.3.3') k E

, rir

fi (t) -itå(',,*',,
o

- f.. s..

'z "'z

f.tr tz+r)+

Íir*t rrr*, üu'

fI
1=1 t

+
I

m 8i C¿ri* ttr-t III I

which obviously is a formal difference approximation of (2,3.?1.

¿. 4. An example

if g(x) is an odd function and if the initial distribution fo(t) is an

even function, the solutions to (2.I,4) will obviously have the property

(2.4.1) fi
-1

It is then sufficient to consider only nonnegative values of i
The equation (2. 1.4) then becomes

-î

df
(?" 4.2') ãr +b.f.*c.f.1,. I .

1 1- I i+1
i=0,...rm

i=0
where

1

0

A" 9i- t(2" 4.3\ a

k zk
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Compare the Example 5.2 of TN 18.057. Introducing the notations

ak'g=
2A

and

k. rn = 3a

the coefficients "i bl and c. become

T

CL,
1

?,

=à
A

1

zm

9T

0

m

9T

i=0

i=l

i = 2r...,i o

i=io*I

1=1 +2,...,mo

i = 0r... rm-l

l=m

z
s
tñ-(1-3 )

(z.4.el
a(¿

m

9T

2* lt+¡a)
9T

z
,m

9T
(2.4. l0) bi =

2

9T
(1-3 s

iñ' )
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(2. 4" 4) bi =
çJ0m

zk

zk

¡\--z
t-t\

A
2k

z (+

z

r"1il.i

6 (")

+

8i+ i
t1-

i = 0r...rm-l

i=0

)( + fn

81

(2. 4.5) c

The initial condition is

A
?
0

1 + i= lr...,m-l

1=rn

(2" 4.6) fi(o)

The equation (2. t.4) thus reriuces to an equation of the order m*1,
which rneans that a synmetric initial condition cannot excite all the
eigenfunctions of (?. 1.4). The eigenvalues of the system matrix of
(2.4.2) obviously have the properties as those of the matrix 0 of
section 2.2. Especially one eigenvalue is zero which is highly
undesirable from computational point of view. This can be avoided
by deleting one of the equations in (?.4.2') and computing the--

ccrrespoirding function fi(t) frorn

lTl
(2.4.7) fo(r) - fo(o) + z, Ir,(t) -fi(0) ] = 0

1=I

A.ssume that g(*) is given by

(2.4.8) e(x) k'sgn (x + a) - k'sgn x * k sgn (x - a), txt

Itl

ro(*)
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2
zm lt+¡i-'l

9T' m' i=0

i -- i ,l
o

1=m

o

--ll+34ì
9T rÍr ' i = l, .,.,ío-Z

a
L

2

9T

7.

9T

0

i -lo

(2.4. l l) "i m

I
mzIm

( ) i = io,...rm-l

wlrere i
o is the smallest integer equal to or less than I -5

The check conditior., (2.3.3) runs

z.rn
-l<.-.

9T
(2.4.r2',) kfo + ,k r fi. t (l-3å-)fi _r - fi dt t

+

J
o o li=l

where the interval (x' x¿) is chosen as ( -
Compare rhe equation (8.25) of TN lB.05Z.

(i.+å)u,(io+|lol.
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FiNITE DIFT'ERENCE APPROXIM-AT ION

3.1 Explicit forrnulas

Approximate the time derivative by the forward clifference

(3.1.1) ft*i - ft

where

(3. r. z) rn f (nh, x)

and the space derivariv"" ty Q.L.t) and (Z.L.Z).

The Fokker-Planck equation (l.l) with the reflecting boundary
condition then reduces to

h

òf
òr

(3.1.3) tl*t = Aifl_l + rifl +c
n

. f .11

n = 0, lr2

where

(3. r.4) fl

1=-m¡...¡fIl

f(nh, ik)

and

(3.1.5) Bi = (l+hbi)

Ç
1

haA..
1

hc
1

The coefficients .i, bi ancl c. are given by (?. 1.5) , (2.1.6) and (2,1.7).
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The boundary conditions are handled in the same way as in section Z.

Compare also section 3.2.

Due to the properties of the coefficients .i, bi and "i the characteristic
roots of the ,lifference equatio,l (3. t.3) all lie within the circle.

I 4

I

Ah
't.Lk

The stability condition for the djfference approximation is thus

3.2, Physical inte rpretations of the approximations

The equation (3.I.3) can be interpreted as the equation for the
probabiJ.ities of a Markov process with finite states Ei and discreet
time, whose transition probabilities

Ah
:Tk

(3.1.6)

(3. z. l) ptj {x(n+r)é"jl*(o)."r}P

are given by
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Pilr+ r ¡

,)4 .):

lt(jz--'-)
k"' 2t<

Prii-r¡

(3.2.2)

D..
' tl

m
(3 . ?,.4) r

h(+
k"

n.)i

h
2k

i= -mfl,,..,m-l

i=-m

i=-m-l-l,...rrû-l

A
h ($i

t{. )1-

)

I ZA

h(+
I\

ryei

t(
+ 1=tT)

p 0 other indices
U

If P should be a probability matrix it must be required that

(3.2.3) 0<pijt I

t)..
^rJ

I
j =-m

The first condrtio:r is satisfiecl if lc and h are sufficiently smali and ii'

h
1-"

(3 .2,5) 2A 3l

wirich is the stability condition for the difference approxim.rtion

The second conclition is satislied Cue to the special approximation
a condition. Com are section 2.2.

Thus if we choose a finite difference appro;<imation of the Fol<ker-Planck

erluation which is the Kolmogcrov equation of a Markov process' we

ol:tain a unique way of approximatin3 the reflecting boundary condition.

The approxi;nation is also a stable difference approxirn¿r.iion.
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This approximation may also be used to prove the existence of a
stable srationary solution to the lrokker_planck equation.

3.3. Check cond.itio¡r S

(3.3. r)

(3.4.r)

Using (3. I.5) the iclentity (2.3. t) runs

Ftrrther, using (3.2.2) tine idenrity (2.3,3) becomes

z2

s. +f. -. ry"tl tl-l oil-l
-fIt.
I

A.+ +
1

n=0t=t l

(

B C t

N N-l2(3.3.2) kr î kz Iå.'î I''r- tI

lf.
1

This approximation can also be obtained by approximating the i'tegrar
ín (2.3,3) by the tangent_formula.

1 I

)t-
2
+t 8i

z

3.4, An exam ple

As an illustration we w'r analyse the probrem of section 2.4,
An explicít finite difference approrimatio* to this problem is

f.
I

1
C
15

f:',z

tt.
1

+

t
+

+l)

.n* I
1.
I r-ì

l.o
o

tl_, + ts r: *c:.rl+,, n=0, 1,,.. :-ll - rr. ., , m

,n* I
o Ii"-iiJ7

mr
i=l
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U

)
m

zrn

z

1t-
m

L

0

I
9

.(r - 3

þ
T

!
T

!
T

h

1
s
m

):
Q1 t . r 2 L

(3.4.2) Ai =
o

9

m

9

zm h

i = i *l
o

i=m1r -:ft)

1r+rft) i = io*Z, .

i=Or.".,fn-l

m
9T

7,

L - lr]3
9

h

T

(3. 4. 3) Bi

(3.4"4) ci

)fi1

t
9T

2
h

1 0

9T

9

zrn

7
m LIT

h tr+¡i-)
T ' '''

i = 1, ...,ro-2

i = i -l
9T o

I ,... rffl-lo

zm h I(1 -3 s
;ñ9T

0 1=m



h

T

ifrif

iI

i.i

l,!

;,i

iji,l

il
;li
i',x

i,1

ttr

',,â

,1

.1

i

rl

i
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(3. 4. 5)

The check condition (3.3.2) becomes

1 I
o

kftt + zufoe
i=l

The stability condition (3.2.5) runs

9

, N-l
rN-r*- f f tr-¡.atrl -#l, o.r ¿ß-- L m, I _l t JaL n=0 o o

(3.4.6)

(3. 4.7) r r

-
¿rn

Ta
s

According ro the equation (8. z+) or TN lB. 05? the stationary values
are approached exponentially rvith the time constant

using the maximum steplength required for stability (i.e. h = 
u' 

)
we obtain a crude estimate on the number of steps required zA

to reach the stationary values within L% as follows

T, 2
N ¡,4.6 t 

- 
mhv
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A.* CONCLUSIONS

The equation (l.l) is the Fokker-Planck equation for a Markov Process
with continuous time and continuous states. By approximating the

derivatives by differences (l.l) can be approximated either by a set of

ordinary ciifferential equations or a set qf difference equations. By

approximating the boundary conditions (1.3) in a suitable way it can be

achieved that the approxirnations can be interþreted as the Koknogorov

equations for a Markov process with discreet states and continuous or

discreet time. The conditions which guaranties the physical interpretations
also implies that the approximations are stable.

Solna, February 7, 1962

YoAtWî"für^
'oK. J. Aström

Approved by:

c t{il
C. Kinberg
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API]:iiiDIX

Iterative calculation of the s tationary solution :

The stationary sclutions of (?.1,4) and (3.1.3) are given by

(¡. 1) (\î 0

where f rsavectorand e amatri:<.

1¡1¡ rite thi s a s

(A.z') (rrO + r)rf
1

-Due to the properties of the 0 matrix the eigenvalues of

(A.3) hQ+I

has ali its eigenvarues within lhe unit circre if
2't-

h
ZA

-Ihe seguence of vectors fr obtained by

(4.4) fr = (he+r)fr

will then converge to the sorution of (A,?.) ancl (A..4) can thus be usecrfor an iterative deterrnination of the sclution.

\'fritin,3 (4.4) in components we get

(A.5) .rt.
1

A:
1

^!t.
1- II B: f:11

+ ¡rti+I
(-+

where



.A. = hå.

TN t8,072
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A.
1

B

1 1

B

c:
1

= hb.+1
I

The iterative solution of the stationary solution is thus equivalent
to the solution of the difference approximation to the partial
differential equation as shown in section 3.

hc
I I


