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APPROXIMATIONS FOR THE NUMERICAL SOLUTION OF A
FOKKER-PLANCK EQUATION WITH REFLECTING BOUNDARY
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Abstract

The parabolic equation is approximated by a set of ordinary

differential equations and by finite difference equations. Special
attention is given to the approximation of the boundary condition.
Some identities suitable to check numerical ¢alculations are also

derived.
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1. INTRODUCTION

In TN 18.057 a first order non-linear system with stochastic disturbances
was discussed. It was shown that under certain assumptions the problem

could be reduced to the solution of the parabolic equation

2
l1.1. of d A7t
-1 3 " oox &) A

dx
with the initial condition
(1.2.) f(t,x) = °@x) as t { o

and the reflecting boundary condition

(1.3.) g~f+A-§f§—>0 as } x|} } a

Some methods for the numerical solution of this problem will be discussed

in this report.

By approximating the derivatives with respect to x by differences (1.1)
is approximated by a set of ordinary differential equations with constant

coefficients which can be solved on an analog computer.

For solutions on a digital computer we proceed by a straightforward
difference approximation technique. To obtain an explicit difference
formula special attention is given to the approximation of the boundary
condition. It is shown that these are uniquely given by requiring that
the approximated equations can be interpreted as the Kolmogorov

equations for a Markov process with discreet states,
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i\z+ol+l i = - m, ,m - 1
k 2k
(2.1.7) c, =
i
.0 i = m
Initial condition
(2.1.8) £.(0) = f°(ik) i= -m,...,m

It is not obvious how the equations for i = f m were obtainzd from
the boundary conditions. This will, however, be discussed in

section 2. 2.

2.2, A physical interpretation of the approximations

The variables k . fi(t) can be interpreted as the probability that the

state variable x belongs to the set Ei
(2.2.1) B = dxi -tk xa (14d)y
-2 i e 7 Z)k

The approximation (2. 1.4) of the Fokker-Planck equation can thus be
interpreted physically as the Kolmogorov forward equation for a Markov
process with the states Ei' This Markov process obviously has a

finite number of states and continuous time. The transition probabilities
(2.2.2) p;; # P { Transition E, -’EJ. during (t,t + At) }

are given by
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A DIFFERENCE - DIFFLDRENTIAL A "2ROXIM 2 TION

2l Inireoduction

Introduce t:e following difference approximations of the cerivatives

it the x- dircction.

- 2k

2 2 dzf f'+1 - Zfi i
dx kz

where

(2.1. 3) fi = f(t, ik)

The equation (1.1) is then approximated by the following set of

ordinary differential equations

df.
i , L
(2.1.4) ¥ T & fi-l + bi £+ fi+1’ i=-m,...,0,...,m
where
0 1 = - 1
g,
(2.1.5) a; = éz _ Bl i = -m4+l.....m
k 2k
(
- (.éz. = __8_m) i = -m
k 2k
(2.1.6) bi= { -Zéz- i = -m+1,...,m-1
k
g
= (iz + .ﬂ) 1 = m
k 2k
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A &
Pi(i+l) (;z-;l:)m + of(at)
g,
A i
.7 +— )At + o(at
p1(1-1) (;2- Zk) (at)
A
1 - 24t + ofat)
k
Pii ~ A &
Il - (—+—)at + ofat)
;2- 2k
Bin = o(At) all other indices

-m+l,...,m-1

i=-m+l,...,m-1

i=-m and i=m

If p should be a transition matrix it must be required that

(2.2.4)

and

(2.2.5)

0 ¢ p..(t) <1

1]

Zpij(t) =1
j

The first condition is satisfied if k is chosen sufficiently small.

The second condition is satisfied due to the special approximation chosen

for the boundary conditions.

Conversely if the condition (2.2.5) is

postulated the approximation for the reflecting boundary condition is

uniquely given.

The equation (2.1.4) can be written as

(2.1.4%)

df.
—d-tl— = Z g.. fi

where— Q= {qlJ } is-the matrix




TN 18.072

=7 =
b
m
3 _m+l
Sl
(2.2.6) Q = bi
141 T
> “m-1
b
m
Further is
dp..(t)
= 1)
(2.2.7) qij = [T—]
t=0

m
(2.2.8) 2_ q, =0
j=-m Y
qij 2 0 i ;é j
2.2.9
( ) qii < 0

from which it follows that

1. All solutions of (2.1.4) with £(0) * 0 nave £(t) * 0
for all t > 0,

2. The solutions of (2.1.4) have the property

I [50-50] =0

i=-m
3 3. All the eigenvalues of O lie within the circle

A A
l A +Z—Z- =4—-2-
k k
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Compare the Figure below

®

As one eigenvalue of Q is zero (2.2.8) the equation (2.1.4) has a
nontrivial stationary solution which is proportional to the corresponding
right eigenvector of QT. Due to the property 3 above this stationary
solution to (2.1.4) converges exponentially to this indep=ndant of the

initial conditions.

2.3, Check conditions

There are several identities which can be used to check the accuracy

of the calculations. !

The determination of the elements in the Q matrix can be tested by

the identity (2. 2. 8) which also can be written as

(2.3.1) a + b+ . = 0

i+l i-1

1

‘We also have the following identity

X
2 :
df af ] . =
(2.3.2) § tt,x)ax - j)l[ gf + A ] + {gf+A& }dt_ 1
Xl (o] X1 XZ
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which follows from (l.1) and which can be interpreted as an equation
of continuity for the probability mass of the Markov process with
continuous states, -which says that the sum of the probability mass
within (xl, XZ) and the time integral of the probability flux over the’
boundaries XX, equals unity. Using (2.2.3) we can write down
the mathematical equivalence of this for the Markov process with

discreet states and we obtain

2 ¢
A
(2.3.3) k fi(t)-kS[Iz-(fi - f ) -f ) 4
i=1i

1 (o]

1
t2x (fil g 8 8, e 8 )]dt e

which obviously is a formal difference approximation of (2. 3. 2).

2.4, An example

T o .
If g(x) is an odd function and if the initial distribution f (x) is an

even function, the solutions to (2. 1.4) will obviously have the property

(2.4.1) f. = £,

It is then sufficient to consider only nonnegative values of i.

The equation (2. 1.4) then becomes

df.
i -
(2.4.2) - = & fp bt iy i=0,...,m
where
0 i=20
(2.4.3) a.i — gl-l
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Compare the Example 5.2 of TN 18.057. Introducing the notations

2
T:i.
A |
ak’
8 = e
2A
and
k*-m = 3a

the coefficients a; bi and 5 become

~

0 i=0
2
i i=1
9T
2
2 o(1-32) i=2,...,14
(2.4.9) a; =Y 9T m
mZ
-;—-T-- 1=i°+1
2
'r'n—(1+3rin') i=io+2,...,rn
9T :
-
i 2
.22 i=0, ,m-1
9T
(2.4.10) bi=4
- (1-32) i=m
9T
||-
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A
- 2= i=0, ,m-1
e
(2.4.4) b, = 1 N
= (A + _DE ) i=m
L B &
( g
A 1
2 ( + —) i=0
;2- 2k
- g
R (et
k 2k
, O i=m
The initial condition is
(2.4.6) £(0) = £°(ik)

The equation (2. 1.4) thus reauces to an equation of the order m+l,
which means that a synmetric initial condition cannot excite all the
eigenfunctions of (2.1.4). The eigenvalues of the system matrix of
(2.4.2) obviously have the properties as those of the matrix Q of
section 2.2. Especially one eigenvalue is zero which is highly
undesirable from computational point of view. This can be avoided
by deleting one of the equations in (2.4.2) and computing the

corresponding function fi(t) from

(2.4.7) f.(t) - £(0) + 2 5 L0 -50] =0
i=1

Assume that g(x) is given by
(2.4.8) g(x) = k’sgn (x+a) - k’sgnx +ksgn (x - a)) ixl £ 3a

and the inifial condifion by

°x) = § (x)
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. 2
22 (1+43=) i=0
9T
2
—(1+32) i=1,...,i-2
9T
2
(2.4.11) c, = 4 m~ P o)
9T
2 o
E‘__(l-z%) i=1, ,m-1
9T
L 0 i=m

where io is the smallest integer equal to or less than - m.

The check condition (2. 3. 3) runs

i1 t
(&) 2 .
(2.4.12) kf + 2k Z £, -k, [(1-3_—)f. - 1, ]dt = 1
o} i m 71 -1 i
=1 9T 2 o o

. . . 1 . 1
where the interval (xl,xz) is chosen as ( - ( i+ ) k, ( it ) k).
Compare the equation (E.25) of TN 18.057.

]
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3 FINITE DIFFERENCE APPROXIMATION

3.1. Explicit formulas

Approximate the time derivative by the forward difference

G.1.1) Fi:fn+1_fn
ot h

where

(3.1.2) % = f(nh,x)

/
and the space derivatives by (2.1.1) and (2.1.2).

The Fokker-Planck equation (1. 1) with the reflecting boundary

condition then reduces to

n
(3.1.3) Ao AP LB Pt
i i7i-1 11 i1

n=20,1,2,.,.

i=-m, » M
where
(3.1.4) £ = f(nh,ik)
and
( Ai = hai
(3.1.5) ﬁ B, = (1+hbi)
\ Ci = hc1

The coefficients a;, b, and ¢, aregiven by (2.1.5), (2.1.6) and (2.1.7).
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The boundary conditions are handled in the same way as in section 2.

Compare also section 3.2,

Due to the properties of the coefficients a;, bi and ¢, the characteristic

roots of the difference equation (3.1.3) all lie within the circle.

Q&

The stability condition for the difference approximation is thus

- Ah 1
. (3.1.6) ;2_ < =
3.2, Physical interpretations of the approximations

The equation (3.1.3) can be interpreted as the equation for the
probabilities of a Markov process with finite states Ei and discreet

time, whose transition probabilities

(3.2.1) P = P { xn+1) € Ej | x(n) € Ei}

are given by |
i
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p.,. h('ﬂl’ - il—)
i(i+1) E?' 2k
i= -m+l,...,m-1
A 34
— 1
PiGi-1) I(EZ z.k)
(1 - n (3 - 5 i=-m
< k™
(3.2.2)
P = 1 - ZAh i= -m+l m-1
i1 _1:_7: T Tt
1 - h(éz + —12-) i=m
k Kk
pij = 0 other indices

If P should be a probability matrix it must be required that

< <
(3.2.3) 0 ¢ p €1
m
(3.2.4) Pagn
J—-m

The first condition is satisfied if k and h are sufficiently small and if

(3.2.5) 280 <1
K

which is the stability condition for the difference approximation.

The second condition is satisfied due to the special approximation

chosen for the reflecting boundary condition. Compare section 2.2.

Thus if we choose a finite difference approximation of the Fokker-Planck
equation which is the Kolmogorov equation of a Markov process, we
obtain a unique way of approximating the reflecting boundary condition.

The approximation is also a stable difference approximation.
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This approximation may also be used to prove the existence of a

stable stationary solution to the Fokker-Planck equation.

S sxlir. Check conditions

Using (3.1.5) the identity (2. 3. 1) runs

(3.3.1) A, + B,
1 1

+ C. = 1

1

Further, using (3.2.2) the identity (2.3, 3) becomes

z N el A n n
(3.3.2) k X -kZ[—Z(fi Lo f - f )+
. k 1 2 1 2
i=1, n=0
1 n
+ (f. g +f, - Q. -f. g. -f. g. )l = 1
2% i L 11-1 11-1 i, e’12‘ 12+1 12+l ]

This approximation can also be obtained by approximating the integral

in (2.3.3) by the tangent-formula.

3.4, An example

As an illustration we will analyse the problem of section 2.4,

An explicit finite difference approximation to this problem is

Ml s m g +C. - . ; n=0,1, ;oi=1,
i 17i-1 171 i i+1
(3.4.1)
m
fn+1 - O ZZ(Fn<f0]
o o . 1 1
i=1
where
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0 =0
L“f.-h &1
9 T
2 I s
=2 (1-32) = 2,00
(3.4.2) 9 T
2
__.._m 'E =io+l
9 T
LI
m h s .
.9_. ;(1+3ﬁ') ~1o+2,...,m
2
1-22—-'—}1— :0,~ .,m—l
9 T
(3.4.3)
2
1_m___1’_1_ (1-3% = m
9 T
2
zm_-il..(1+3%) =0
9 T
2
m LB n+3l) =1,...,i -2
9 T ™
7
(3.4.4) m- h =i -1
9 T
2
E‘_.ﬁ.(1_3?sn_ =i, ,m-1
9 T
0 = m
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The check condition (3. 3. 2) becomes

i-1 » N-1
N N m s, n n _
(3.4.5) K+ 2k f -k; z:[(1-3ﬁ)f1_i-fi ] = 1
i=1 n=0 N 2

The stability condition (3.2.5) runs

h 9
(3.4.6) - <& —
T 2m

According to the equation (E.24) of TN 18.057 the stationary values

are approached exponentially with the time constant

(3.4.7) T, ®

£
2
s
k2
Using the maximum steplength required for stability (i.e. h =2 )
we obtain a crude estimate on the number of steps required 24

to reach the stationary values within 1% as follows

T1 2
N~4,6 — ~ m

h s
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4, CONCLUSIONS

The equation (1.1) is the Fokker-Planck equation for a Markov process

with continuous time and continuous states. By approximating the
derivatives by differences (1.1) can be approximated either by a set of
ordinary differential equations or a set of difference equations. By
approximating the boundary conditions (1. 3) in a suitable way it can be
achieved that the approximations can be interpreted as the Kolmogorov
equations for a Markov process with discreet states and continuous or
discreet time. The conditions which guaranties the physical interpretations

also implies that the approximations are stable.

Solna, February 7, 1962
Kal pluace. Tottiren

K.J. Astrém

Approved by:

C i

C. Kinberg
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APPIENDIX

Iterative calculation of the stationary solution - ]

The stationary solutions of (2.1.4) and (3.1, 3) are given by
(A1) Gt o= 0

where f 1s a vector and Q a matrizx, 1
Write this as

(A.2) f = (hQ+ 1)

Due to the properties of the Q matrix the eigenvalues of
(A.3) hQ +1

has all its eigenvalues within *he unit circle if

The sequence of vectors ' obtained by
(A.4) 5 = (hQ + 1)fF

will then converge to the solution of (A.2) and (A.4) can thus be used

for an iterative determination of the solution.
Writing (A.4) in components we get

(A.5) £ = A7 7 4 B! f] + c! o

where
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o
1

hbi+1 = B

The iterative solution of the stationary solution is thus equivalent
to the solution of the difference approximation to the partial

differential equation as shown in section 3.




