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COMPUTATIONAL ASPECTS OF A CLASS OF IDENTIFICATION PROBLEMS

1. Introduction

In practically all computational problems, there is a possibility to trade
computing time against storage and also to reduce both computing time and storage
by exploiting particular structural properties of the problem. In this note, we
will look into these questions for a class of nonlinear identification problems.

We will consider the identification of the parameter a in a system described by

the equations

dx
(1'1) dt—f(x,u,t,a),
(1‘2) Y=g(x,u,t,a),

where u is the control variable and y the output. The identification problem is

formulated as an optimization problem in Sec. 2 by introducing the loss function

(1.3) via) =

™ |

t
[yt =y (01 aF(s)lyis) = v, ()],
0

where Nl is the measured output signal. Different algorithms for minimizing
the loss function are discussed in Sec. 3. Section 4 deals with the trade-off
between computing time and storage when evaluating the gradient of the loss
function.

The particular case of linear systems with constant coefficients and
observations with equal spacing is discussed in Sec. 5. Section 6 is devoted to
linear systems with a particular (companion) structure which leads to a

significant reduction in computing time.

2. Formulation of the Problem

Consider a system described by the equations

dx

(2.1) e

f(X’ u, t7a)!

(2.2) v

g(X’ u’ t,a‘),




where x is an n-dimensional state vector, u an r-dimensional vector of
control variables, y a p-dimensional vector of output variables. The functions

f and g depend on a set of parameters o = colla ,a_,... ,OLm] whose values are

1’72
unknown. The initial state of (2.1) is

(2. 3) x(0) = c.

It is assumed that c is known, and that the solution of (2. 1) with initial
value (2. 3) exists over (0,t). It is desired to estimate the unknown parameter
0. on the basis of measurements made during experiments of the system.

In an experiment an arbitrary control signal is chosen. The output of the
system is measured continuously or at discrete times. The measured outputs
are denoted by ym(t).

The parameter o should be determined in such a way that the following

criterion is minimized,

t
1 T
2.4 == — -
(2.4) vi@) =5 [ [yls) =y, ()1 aF(s)y(s) = y_(s)],
0
where F is a symmetric matrix. The difference F(t) — F(s), t> s, determines
the weight given to the measurements over the interval (t,s). We illustrate the

physical interpretation of the function F by two examples,

Example 1. Consider the case of two outputs. If both outputs are measured
continuously in time and the measurement of y is twice as accurate as YZ’

we have

4 07

(2.5) F(t) = 0 1J°

Example 2. If measurements are available at discrete times t =0,1,2,...,

only, and all measurements are equally important, we have

(2.6) F(t) = [(1) Cl)], integer part of t.
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The criterion (2.4) is chosen rather arbitrarily. It can, however, be given
a nice stochastic interpretation in the case when there are no disturbances acting

on the system and the measurement errors are independent with a normal

distribution.

3., OQOutline of Solution

The solution of the optimization problem will now be discussed. As the
problem is nonlinear, it is necessary to use numerical methods. There are many
algorithms available to find the maximum of a function of several variables. A
large class of algorithms can be described by the recursive equation

+ - -
(3.1) a” 1 =F[0Ln,onn 1,...,V(onn),V(onn l),...,Va(cxn),...,an(an),...],

where CLl,OLZ, ..., denotes the successive iterates, Vq is the gradient of V with

respect to «Q, ch denotes the matrix of second-order partial derivatives, etc.
Some methods require only the evaluation of the function V itself, other

methods require evaluation of the gradient Va, and sophisticated methods like

the Newton-Raphson method [5],

n+l n -1 n n
3.2 = +V V (o
(3.2) a a OLOL(on ) OL( )

require evaluation of the matrix of second-order derivation. In return for this,
the Newton-Raphson method gives quadratic convergence near the extremum.
There are also other methods, e.g., the Fletcher-Powell method, which give
quadratic convergence without requiring evaluation of second-order derivatives.
Due to the particular structure of the loss function (2. 4), it seems
attractive to use a method which involves gradients to solve the identification

problem. In the next section, we will discuss different methods to evaluate the

gradients.

4. Evaluation of Derivatives of the Loss Function

In this section, we will discuss the evaluation of the gradient of the loss

function. The same approach can also be used to evaluate derivatives of higher

order. A straightforward method to evaluate the derivatives of the function V
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defined by (2.4) has been described in [2] and [ 3]. The procedure is as follows.

Differentiation of (2. 4) with respect to a gives

t
(4.1) v = [ Tyls) =y, ()1 aF(s)y, (o).
0

To obtain Y, differentiate (2.2). Hence,
4.2 = + .

( ) V(I gd. gXXCI,
Differentiation of (2.1) finally gives

d
4.3 e =f +f .
( ) dta  xa o«
Combination of (4. 1), (4.2), and (4. 3) now gives a procedure for
evaluating the gradient ch. . The main burden in this computation is the integra-
tion of the differential equation (4.3). Each parameter a, requires the integration
of a system of n first-order differential equations. The evaluation of X thus

requires the solution of m n-dimensional differential equations.

A Different Method. We will now show that there is an alternative method of

evaluating the gradient Va which only requires the integration of one
n-dimensional differential equation. This method will, however, require more
storage. To obtain the alternative method, we will consider the differential
equation (2.1) as a constraint which we take care of by the standard technique of
Lagrangian multipliers. Let A be an n-vector of continuously differentiable
functions. As x satisfies the equation (2. 1), the function V can be written as

t

(4.4) V@) =3 [ Tyls) =y, ()17 aF () y(s) ~ v, (5)]
0
A

- jt T(s)[%— f(x,u, s,a)_\ds.
0

Partial integration gives
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t
(4.5) V@) =5 [ Uyts) = y_ ()1 aF(s)ly(s) = y_(s)]
0

t T
— 2 Te)x(e) + 1 T (0)x(0) + J“ [dT"s x + fo]ds.

0
Differentiation with respect to « gives
rt T . T
(4.6) Vo =) Iyle) = y_(s)] dF (s)g_(s) +j Cy(s) =y, (s)] "dF(s)g x_
0 0
t T
T dA T
— + — .
A (t)xoa(t) j[ ds Xoc A fxxa:\lds
0

Up to now A has been arbitrary. Now choose A such that

(4.7) Alt) =0,
dA T T dF d¥F
— + + Rl —_ = ==l :
at ka gx at ly—y_1=0 when 3t exists,

A(t+) — A(t) + gz[F(tH — F(t)1Ly(t) — ym(t)] at discontinuities of F.
It then follows from (4. 6) that the gradient Va can be written as

¢ T tr
(4.8) v o= J [y(s) =y, ()] dF(s)g_ + j A £ ds.
0 0
We thus get the following procedure for calculating the gradient:
(1) Integrate (2.1) in the forward direction with initial condition.
(2) Integrate the differential equation (4. 7) for A backwards starting with
A(t) = 0 and taking into account the jumps which occur at the jumps
of F.
(3) Evaluate the gradient by quadrature using (4. 8).
With this approach, it is thus sufficient to integrate one n-dimensional

differential equation in order to obtain the gradient. Notice, however, that it is

reguired to store both {x{s), 0 <s< t} and {\(s), 0<s < t}.
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5. Linear Systems with Observations at Equally Spaced Instants of Time

We will now turn to linear systems with constant coefficients, i.e, N

systems described by

dx

(5.1) at

Ax + By,

(5.2) y = cx,
where A, B, and C are matrices with constant elements. The matrix A is
nxn, B is nxr, and C is pxn. Itis also assumed that the output is
observed at discrete instants of time. The unit of time is chosen so that observa-
tions are made at t =0,1,2,..,. It is also assumed that the control signal is
kept constant over the intervals (n,n +1). The control signal might change
discontinuously at the observation intervals. The identification problem now has
a particular structure which can be exploited in order to reduce the computations
required. See [4]. We will illustrate the possible savings by considering the
case when a is a scalar only. The equation for the derivative of x with respect

to & now becomes

dx(1
(5.3) —— - Ax + A x+B u.
dt o o4 o

In order to evaluate X, we thus have to integrate the equations

o ATVl AR

As this equation is linear with constant coefficients, and as the control signal is

kept constant over the intervals (n,n + 1], we get

(5.5) z(t + 1) = &z(t) + Tu(t),

where




(5.6) z=[:§:i,

(5.7) ®

A 0
epr:A A] .
a

The matrix T will depend on the way in which the control signal u is changed.
In drug kinetics experiments, the injection can often be considered as

instantaneous. In such a case the control signal is zero except at the injection

instant and the state variable will make a jump equal to [Ea] times the injection

amount. The situation can be modelled by (5. 5) if we choose

(5. 8) r=@[§ ]
(o

and let u(t) denote the amount of drug which is injected at time t.
In problems where the control signal is kept constant over the sampling
interval and is allowed to a finite jump at the sampling points, the model (5.5)

is still valid if we choose

_ t A 0 B
(5.9) L= {({ eXp[Aa A] Sds}[Ba_l’

and let u(t) denote the actual value of the control signal at time t.
By exploiting equation (5.5) the amount of computation required to
evaluate the gradient can be reduced considerably. The matrices & and T ecan

be computed once and for all by using the series expansion
1 2
(5.10) e =I+A+— A +....|.n—A +..-’

or by integrating the equation (5.4) over the interval (0,1). The values of x
and the gradient x are then obtained simply by ite rating (5. 5).

As an alternative we could also dispose of the differential equation
entirely and identify the coefficients of the difference equation (5.5). This is

Perfectly reasonable to do if the model will be used to design control strategies

Where the control actions will be taken onlyat t=0,1,2,..., andif we are




satisfied by knowing the state of the system at the sampling intervals only. If we
are satisfied with a sampled model we can also use the discrete version at the
computational scheme discussed in Sec. 4 in order to reduce the number o’
computations further. This would appear particularly attractive in the case of

systems with long observation intervals.

6. Linear Systems of Companion Form

We will now specialize even further to linear systems with a particular
structure. It is assumed that the matrix A is a companion form. The system

can then be represented by the eruation

,'—aZ o 1 =--- 0 :bZ
(6.1) =N b0,
. 0 )
an-l 0 . n-1
—a 0O O 0 b
. n . n
(6.2) y=[1 0 0 --- 0lx.

For simplicity, we consider the case of one input and one output only.
Taking Laplace transforms we find that the input- output relation of the system
given by (6. 1) and (6.2) can be described by

+b x (0)s™ ! + XZ(O)sn'2 +o +x (0)

n-1 n-2
+ .
s 1

bls +b2 .

(6.3)  Y(s) = 2 U(s) +
n n-1 n n-1

s ta.s +--- +a s +a_s +-- +a

1 n 1 n

where Laplace transforms are denoted by capitals, i.e.,

@

(6.4) Y(s) = X & ry(E)dt.
0

To evaluate the gradient of the loss function (2.4), we need the derivatives

BY/’Bai and BY/Bbi. This can be done as follows. Differentiation of (6. 3) gives




n-i
(6.5) aaa.Y:_ n Sn 1 bl
i s +a.s  +-:--+a
1 n

This input-output relation can be represented by the state ecuation

— - - . 1
1 T % *n-1 anI |
i 0 0 | l o
: r
dz | 0 | 0 0 ! Lo
(6.6) dt -: :Z+i Y’
0 0 1 0 )
O e
da. 2y
1
z(0) = 0.
Similarly, we find
n-i
d
R B: B n ls Jeks
i s +as +---+2
1 n

This input-output relation can be represented by the state ecuation

!—al _aZ —an-l —an} fli
(o1 0 0 Lo
| 1 P
dz | © 1 0 0 { 01
(68) E_; !Z‘l’:l ‘;U-,

0 0 1 0 0

2y _,

db, i’

1
z(0) = 0.

Hence, by expleoiting the particular structure of the system we find that all

derivatives with respect to the parameters bi can be obtained from one single
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differential ecuation. A comparison with Sec. 4 shows that in the general case
it is necessary to integrate n eruations.

If the observations are obtained at discrete times only, it is also possible
to integrate over the interval (0, 1) only and then use the recursive ecuation
developed in Sec. 5.

The ideas given in this section can also be exploited to calculate

derivatives of higher order. See [1].
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