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COMPUTATIOI\IAL ASPECTS OT' A CLASS OF TDENTIFICATION PROBLEMTS

Introduction
In practicaLly all cornputatíonal problerns, there is a possibility to trade

cornputing tirne against storage and also to reduce both cornputing tirne and storage

by exploiting particular structural properties of the problern. In this note, we

will look into these questions for a class of nonlinear identification problerns.

Vle will consider the identification of the pararneter ct in a systern described by

the equations

(r.1)

(r.zl

(2. 1)

S=f(*,u,t,ct),ctt

w-here u is the control variable and y the output. The identification problern is

forrnulated as an optirnization problern in Sec. Z by íntroducing the loss function

Y = g(xr u, trct,),

(1. 3)

0

w-here y is the rneasured output signal. Different algorithrns for rninirnizing'rn
the loss function are discussed in Sec" 3. Section 4 deals with the trade-off

between cornputing tirne and storage when evaluating the gradient of the loss

function,

The particular case of linear systerns with constant coefficients and

observations w-ith equal spacing is discussed inSec. 5. Section 6 is devoted to

linear systerns w-ith a particular (cornpanion) stnrcture which leads to a

significant reduction in cornputing tirne.

Z. Forrnulation of the Problern

Consider a systern described by the equations

v(o) = f J*t"t") - rrrr(")lT¿r(s)[y(s) - rrrr{s)1,

* = r(*,u, t,ü),
clt

(z.z) y = g(x, u, tr 0),
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where x is an n-dirnensional state vector, u an r-dimensional vector of

control variables, y a p-dirnensional vector of output variables. The functions

f and g depend on a set of pararneters q, = col[o LrúZr... ro*] whose values are

unknown. The initial state of (?. 1) is

(2. 3l x(0) = ".

It is assurned that c is known, and that the solution of. (2.1) with initial
value (2.3) exists over (0,t). It is desired to estirnate the unknown pararneter

CI, on the basis of rneasurernents rnade during experirnents of the systern.

In an experirnent an arbitrary control signal is chosen. The output of the

systern is rneasured continuously or at discrete tirnes. The measured outputs

are denoted by yoo(t).

The pararneter ü should be deterrnined in such a \ñ¡ay that the following

crite rion is rninirnized,

t
(2. 4)

where I' i.s a syrnrnetric rnatrix. The difference F. (t) - F(s), t ) sr deterrnines

the weight given to the m.easurernerrts over the interval (t, s). Vr'e illustrate the

physical interpretation of the function F by two exarnples.

Exarnple 1. Consider the case of two outputs. If both outputs are ûIeasured

is twice as eccurate as yZ,

(2. sl

Exarnple 2. If rneasurernents are available at discrete tirrres

only, and all rrleasurernents are egually irnportant,, we have

v(o¡ = J' Iy(s) - yr=r(s )]T¿r{")[y{s} - rrrr{s )1,j
0

continuously in tirne and the rneasurernent of y

we have

0-l
rJ'rtt) = [ä

t=0, lr?,..,,

r(t) = [å
0-1

1J,
(2. 6\ integer part of t.
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The crite ríon (2.4) is chosen rather arbitrarily. It can, however, be given

a nice stochastic interpretation in the case when there are no disturbances actíng

on the systern and the rneasurernent errors are independent with a norrnal

distribution.

3 Outline of Solution

The solution of the optirnízatíon problern will now be discussed. As the

problern is nonlinear, it is necessary to use nutrlerical rnethods. There are rnany

algorithrns available to find the rnaxirnurn of a function of several variables. A

large class of algorithrns can be described by the recursive equation

(3. 1) on*l = r'Lcrn,ot-1,. . .,v(*n), v(ot-t), .. ., (ot),.. ., (cl't),...],V v
0s,

(3.2)
$ü,

require evaluation of the rnatrix of second-order derivatíon. In return for this,

the Newton-Raphson rnethod gives quadratic convergence near the extrernurn.

There are also other rnethods, e.9., the Fletcher-Powell rnethod, which give

quadratic convergence without requiring evaluation of second-order derivatives.

Due to the particular structure of the loss function (2 .4r, it seerns

attractive to use a rnethod which involves gradients to solve the identification
problern. In the next section, we will discuss different rnethods to evaluate the

gradients.

&

-12where cL ,ú ,. .. , denotes the successive iterates, to is the gradient of V with

respect to c[, too denotes the rnatrix of second-order partial derivatives, etc.

Sorne rnethods require only the ewal.uation of the function V itself, other

rnethods reguire evaluation of the gradient Vq,, and sophisticated rnethods like

the Newton-Raphson rnethod [5],

on*l = crn + v- I 1at)vo{o,t),

4.8 valuation of Derivatives of the Loss Function
In this section, w'e will discuss the evaluation of the gradient of the ioss

function. The sarne approach can also be used to evaluate derivatives of higher
order' A straightforward rnethod to evaluate the derivatives of the function V
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defined by (2.4) has been deecribed in [2] and [ 3]. The procedure is as follows.

Differentiation of (2.4) with respect to û, gives

(4.r)

14.31
d
ãi*o

t_
vo = J trt") - vrrr(s)l'¿r(s)ro(s).

0

To obtain yct, differentiate (2.21. Hence,

(4.21 Yo=go*g**o

Differentiation oî. lZ.1) finally gives

+xÍ
ü,x

f
cr

corrrbination of (4.L\, (4.21, and (4.3) now gives a procedure for

evaluating the gradient Vo . The rnain burden in this cornputation is the integra-

tion of the differential equation (4.3). Each pararneter Oi requires the integration

of a systern of n first-order differential eguations. The evaLuation of *o thus

requires the solution of rn n-dirnensional differential equations.

A Different Method. V¡-e will now show ttrat there is an alternative rnethod of

evaluating the gradient to which only requires the integration of one

n-dirnensional differential. equation. This rnethod will, however, reguire lrrore

storage. To obtain the alternative rnethod, we will consider the differential

equation (2.1) as a constraintwhich we take care of by the standard technique of

Lagrangian rnultipliers. Let I be an n-vector of continuously differentiable

functions. As x satisfies the equation (2. 1), the function V can be written as

t,

14. 4l v(o) =åJ

r0

-Jr
0

Iv{s) - yrrr(s)]T¿r(s)[y(s) - r,rrr(s]1

t," llji - f(x, .,, 
", 

cr,¡l d".
tos

Partial integration gives
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(4.51
t

v(a) = f J t"t") - y,=r(")lT¿r(s)[y(s) - r,=.(s)l
0

-yll1s)v(tst+Jt
0

x +rTr*l¿".q, xct. I

r(r+) - r(r-) * {trtr+) - F(f-)lIy(tl r,rrr(t)l

dr(s)go * 
J ^
0

T T
-¡. (r)x(r) + }. 0 )x

(s )l T

t _-T
o)+{'l-+x+Àrf

JLOS
0

ds.

T(s)l dF(s)g*x
q,

at discontinuities of F.

( ( I
J

Differentiation with respect to û, gives

(4.6)

À
T

)*o
ds

tt
vo = j f"t") - yrrr(")lT¿r(")

0

d
t

(t) + f'IJL
0

- lT(t

* {^ - uT #rr - r,,,1

= J tv(s)- v
0

cto0,

up to now l' has been arbitrary. Now choose À such that

(4.71 tr(t) = g,

dtr
dr = Q *h.rt dF

dr
exists,

It then follows frorn (4"61that the gradient V
û,

can be written as

(4. 8)
tt

rn
TV f ds"

c[

lÄre thus get the following procedure for calcr¡lating the gradient:
(1) Integrate (2. Ð in the forward direction with initial condition.
(Zl Integrate the differential equation (4.7) for tr backwards starting with

ì.(t) = 0 and taking into account the jurnps which occur at the jurnps
of tr..

(3) Evaluate the gradient by quadrature using Ø.g}.
V¡ith this approach, it is thus sufficient to integrate one n-dirnensional

differential eguation in order to obtain the gradient. Notice, however, that it is
¡^---i -^) L- -L a 'a C ¡ ¡fequiîeû Eo slofe boih tx(s), 0 < s < tj and [tr(s), 0 5 " 5 ti.

t
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5. Linear Systerns with Obse rvations at Equally Spaced Instants of Tirne
I¡i'e will now turn to linear systerns with constant coefficients, i. €. r f*-'.*!F

systerns described by

(5. 1)

(5.21 Y=CX,

where A, B, and C are rnatrices urith constant elernents. The rnatrix A is
nxn, B is nxr, and C is pxn. Itisalsoassurnedthattheoutputis
observed at discrete instants of tirne. The unit of time is chosen so that observa-
tions are rnade at t = 0, !,2r.,.. It is also assumed that the control signal is
kept constant over the intervals (nrn * 1]. The control signal might change
discontinuously at the observation intervals. The identification problern now has
a particular structure which can be exploited in order to reduce the computations
required. See Ia]. V,re will illustrate the possible savings by considering the
case when q. is a scalar on1y. The equationfor the derivative of x with respect
to ü now becomes

dx
i;=Ax*By,

dx
d,T-=Ax *Ax*Bu.crr q, cf, q,

trn order to evaluate xû, '*'e thus have to integrate the equations

rx
Iix*ct

(5. 3)

(s. 4l I - [å.,]".
0-i
A-.i

drx r rAt=tdtlx J Laocr

As this equation is linear with constant coefficients, and as the control signal is
kept constant over the intervals (n,n * l], we get

(5.s) z(t+ 1) = qz(t) *Iu(t),

where
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(5.6t

(5.7 )

(s. 8)

(5. 9)

Tx¡
" =L* 

-l '
ct

-rAe = exel-o o1
el

ct

The rnatrix r will depend on the way in w-hich the control signal u is changed.
In drug kinetics experirnents, the injection can often be considered as

instantaneous' In such a case the control signal is zero except at the injection
instant and the state variable will rnake a jurnp egual to tä] tirnes rhe injecrion
arnount' The situation can be rnodelled by (5. 5) if we .hooå

'='[l l,- c,-

and let u{t} denote the arnount of drug which is injected at tirne t.
In problerns where the control signal is kept constant over the sarnpling

interval and is allowed to a finite jurnp at the sarnpling points., the rnodel (5.5)
is still valid if we choose

t
r = {J.

0
"p[

c[

A
Ag ll "o"i[

B
B

-l

J

and let u(t) denote the actual value of the control signal at tirne t.
By exploiting equation (5.5) the arnount of cornputation required to

evaluate the gradient can be reduced considerably. The rnatrices Õ and r
be cornputed once and for ali by using the series expansion

can

A. =r*A r*o' +...+{ao+(5. 1o) e

or by integrating the equation (5.4') over the interval (0, l). The values of x
and the gradient -o are then obtained sirnply by iterating (5. 5).

As an alt'ernative v¿e could also dispose of the differential equation
entirely and identify the coefficients of the difference equation (5.5). This is
perfectly reasonable to do if the rnodel w-ill be used to design control strategies
w-here the control actions w'iil be taken only at t = 0, L,2,..., and if u,.e are
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satisfied by know'ing the state of the systern at the sarnpiing intervals only. If w-e

are satisfied with a sarnpled rnodei w'e can also use the discrete version at the
cornputational scherne discussed in Sec. 4 in order to reduce the nurrrber oi
cornputations further. This would appear particularLy attractive in the case of
systerns with long observation intervals.

6. Linear S ysterns of Cornpanion Forrn
'tl'e w-il1 no\M speciaLize even further to linear systerns with a particular

structure. It is assurrred that the rnatrix A is a cornpanion forrn. The systern
can then be represented by the e¡uation

dx
dr

s

d

d

d. 00
00

0

0

0

I

I

0

I

2

I

z

b
n-1

(6. 1)

(6.31 Y(s) =

+x

In-1
d

_11
0' 'bn

(6.2', y=[t 0 0 CIl*.

For sirnplicity, we consider the case of one input and one output only.
Taking Laplace transforrns we find that the input-output relation of the systern
given by (6. I) and (6.2) can be described by

n-l n-Z n-1 n-Zb
I

* brs +...+b x (o)s + x, (0)s +.'. *x (0)n I nU(s) +n n-ls *a-s +...+aln

v(s) = 
J
0

ns *a ê
n-l r... l^trdt n

where Laplace transforrns are denoted by capitals, i. e. ,

-st
e y(t)dt.

To evaluate the gradient of the loss function (2.41, w-e need the derivatives
anci òY/ðb.. This can be done as {ollows, Differentiation of (6. 3) gives

co

(6. 4t

o!- I oa.



I

(6. 5)

(6. B)

ðY n-1

òa n n-1*a s1S +... *a
Y(s).

0

0

9

I

n

0

0

I

I 1I

This input-output relation can be represented by the state eouation

I -az rr
0

(6.6) ðz 0

a -a _ -an-l I

0

0
dt

I
01

00

0 0

0
+z

00

Y,

-è¿
òa.

1

= 2.,
1

z(0) = g.

Similarly, we find

(6.71 òY
òb rr

ïr- 1
s

n-l U
1S +a s +... +aI

This input-output relation can be represented by the state eeuation

-ar -az 4aan-r n
I

01

00

0

I

0

0dz
dt

-è.¿
ðb.

I

z* u,

0 0

= z.t
1

z(0) = g.

Hence, by exploiting the particular structure cf the systern we finC that all
derivatives w-ith respect to the pararneters bi can be obtained frorn one single
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differential ecuation, .A. comparison with sec. 4 shows that in the general case

it is necessary to integrate n e.uations.
If the observations are obtained at discrete tirnes only, it is also possible

to integrate over the interval (0, 1) only and then use the recursive eouation

developed in Sec. 5.

The ideas given in this section can also be exploited to calculate

derivatives of higher order. See [ 1].
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