
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Experiences of a CPS Course on Embedded Control

Årzén, Karl-Erik

Published in:
[Host publication title missing]

2013

Link to publication

Citation for published version (APA):
Årzén, K.-E. (2013). Experiences of a CPS Course on Embedded Control. In [Host publication title missing]
National Science Foundation.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/a1757099-6fe4-4fd2-bef3-96edb468a4a4

Experiences of a CPS course on
Embedded Control

Karl-Erik Årzén
Department of Automatic Control

Lund University
Lund, Sweden

Email: karlerik@control.lth.se

Abstract: The paper presents a CPS-oriented course that
integrates control theory and embedded computing. The course
combines concurrent real-time programming and analysis with
discrete-time sampled control theory and real-time networking.
The contents of course, including the course projects are
described in the paper as well as the experiences with the course.

Keywords: cyber-physical systems, education, embedded
systems, real-time systems, control

I. INTRODUCTION

Cyber-Physical Systems (CPS) are systems consisting of
cyber components and physical components that are
tightly integrated and networked at all scales and levels.
The physical and cyber components interact through
sensors and actuators allowing the cyber components to
monitor and control the behavior of the physical
components. The networking is a consequence of
geographical and/or logical distribution and may be
realized as physical networks, communication networks,
and/or social networks. Hence, the combination of
computing, control, and networking is essential for CPS.

Control and embedded systems are both disciplines in
which tight interaction with the physical environment is
necessary. In traditional control the computing system
implementing the controller is viewed as a machine that
is able to realize the abstraction of a discrete-time
difference equation in an ideal way. The fact that
computations take time, which in many cases is not
constant, and the fact that the amount of computations
that can be performed in parallel is limited by the
amount of processors available is often disregarded. A
similar situation holds for networked control where
control loops are closed over a communication network
which is often idealized as a constant delay, although for
most network protocols this delay is far from being
constant, and, in particular for wireless networks, can
even be infinite due to lost packets. In a CPS-based
approach to control the temporal non-determinism
caused by the implementation platform and its effect on

the control performance should be taken into account in
the analysis and design.

The Department of Automatic Control has pioneered the
teaching of real-time systems and control at Lund
University, starting already in the mid-1970s. The
current course – Real-Time Systems – has been given in
its present form since 2007. The course contains many of
the aspects that are currently the focus in CPS
curriculum development, e.g., modeling of physical
systems, control analysis and design, real-time networks,
simulation, and system implementation. However, since
the course was developed before the CPS boom reached
Europe, the term CPS is not used explicitly in the course
name.

The paper is organized as follows. In Section II the
overall situation at Lund University is presented
including a description of the background knowledge
that the students have when they come to the course. The
course contents are described in Section III. The course
contains a project. Examples of recent projects are given
in Section IV. Finally, in Section V, the experiences of
the course are discussed.

II. STUDENT BACKGROUND

Lund University offers a five year integrated engineering
education. However, during the last two years the
students follow a specialization which is very similar to
a Master’s programme. The Real-Time Systems is an
elective course that may be taken in year four or five. It
is followed by students from several education
programmes, although the majority comes from
Computer Engineering, Electrical Engineering,
Engineering Physics, and Mechanical Engineering. The
course is part of several specializations including
Signals, Systems and Control; Control and Automation,
Embedded Systems, Software Systems, and
Mechatronics. Since the course is elective the number of

students varies from year to year, with an average of
around 80. Around 50% of these are Computer
Engineering students. The course runs over a full
semester and corresponds to 10 ECRTS credits (the
normal course load during a semester is 30 credits).

At Lund University all the students that may sign up for
this course have taken the same mandatory basic course
in control. This course is based on continuous-time and
cover both state-space and input-output (transfer
function) modeling formalisms. However, the
mathematics background is not the same among the
students. The engineering physics students, who also
have the best grades from high school, takes more and
more advanced mathematics courses.

The fact that the computer engineering students have
taken the same control course as the other students is
very important. In addition to this the computer
engineering students also have a mandatory course on
concurrent real-time programming. This has, however,
proved to be of less important with respect to how well
these students perform in this course.

III. COURSE CONTENTS

Real-time systems is an area that is of vital importance
to all control engineers. All control systems are real-time
systems. It is therefore essential for control engineers to
have a thorough understanding of computers and real-
time systems. It is also important for computer engineers
to understand the control theory in order to implement
`controllable' systems. Concepts that are important are,
e.g., feedback, stability, delays and dynamics.

The aim of the course in Real-Time Systems is to study
methods for design and implementation of computer
control systems with the focus on embedded systems.
The course consists of two main parts: Real-Time
Programming and Computer-Controlled Systems. After
the course the students should have sufficient knowledge
to implement small embedded control systems on their
own, and also have a thorough understanding of the
system aspects of large control systems.

The course runs over one semester (14 weeks). The first
half of the course consists of 17 90-minute lectures, 5
computer-based exercises, 6 problem-solving exercises
and three 4-hour laboratory exercises. Seven of the
lectures are focused on real-time programming and
embedded systems covering topics such as concurrent
programming, real-time kernels, inter-process

communication mechanisms, priority inversion and
inheritance, interrupts, time handling, fixed-point
arithmetic, real-time scheduling theory, and real-time
networks.

Six of the lectures are focused on sampled control theory
including zero-order-hold sampling, aliasing, sampling
period selection, the z-operator, pulse transfer functions,
PID, state feedback, observer design, discretization of
continuous-time controllers, controller implementation
techniques, and discrete event-based control using
Statecharts and Grafcet.

The remaining lectures focus on the interaction between
control and scheduling. Here the Jitterbug toolbox that
allows analysis of how delays caused by, e.g., network
communication and task preemptions, effect the control
performance, is used [1]. Also the TrueTime simulation
toolbox, [1] is used to study how task scheduling effects
control performance. TrueTime makes it possible to
simulate multi-tasking real-time kernels and real-time
networks embedded as S-functions within Simulink.
Tasks, representing, e.g., controllers, are implemented as
Matlab m-files or C-code, communicating with the
continuous-time Simulink blocks modeling the physical
system under control using simulated AD and DA
converters.

During the computer exercises, the students learn
concurrent and real-time programming using Java on a
standard desktop Linux PC as the programming
environment. The students implement small multi-
threaded Java-based control systems including graphical
user interfaces. The developed controllers are used to
control virtual processes. The virtual processes are real-
time simulation models that include an animated user
interface. One example of a virtual process is a virtual
ball and beam process that is controlled by cascade-
connected PID controllers, see Fig. 1.

Figure 1: GUI for the virtual ball and beam process.

In the exercises the students can see how context
switches and priority settings effect the timing of the
controller task, and how that in turn effect control
performance. The problem-solving exercises are more

traditional in nature, in the sense that the students solve
control analysis and design problems and scheduling
problems using pen and paper, possibly supported by
Matlab.

During the first laboratory exercise the task is to take the
previously developed Java-based control system for the
virtual ball and beam process, and instead apply that to a
real ball and beam process, see Fig. 2.

Figure 2. Ball and Bean Process

Depending on the background of the students they either
continue to use standard Java or they use LJRT, a Java to
C compilation framework [2]. This laboratory normally
goes quite smoothly. The reason for the Java-focus is
mainly that Java is the programming language that all
the students coming to the course know beforehand.
Using Java of course does not give any hard real-time
guarantees. However, modern hardware is so fast that
Java works very well in practice for all our laboratory
processes. In the case hard real-time guarantees are
important; the Java-to-C approach can provide this.

The topic of the second laboratory is sequential discrete-
event control. JGrafchart, an in-house developed
programming environment for graphical programming
and execution of IEC 61131-3 Sequential Function
Charts (Grafcet) is used. The task is to implement a
sequential control program for sorting and sequencing
differently colored beads in a physical bead-sorter
process. In the third laboratory the topic is fixed-point
implementation of a state-feedback controller for a
mechanical servo process in C. The platform used is an
ATMEL AVR Mega16 microcontroller with PWM-
based signal output.

IV. COURSE PROJECTS
During the second half of the course the main activity is
a project. The projects are performed in teams of 2-4
students. Often the students in a group come from

different education programmes, but it is not required.
The size of the projects corresponds to approximately
2.5 full weeks of work. Normally the students have 30-
40 different projects to choose among. In most projects
the task is to implement a particular controller for one of
the laboratory processes available, e.g., a Furuta-type
inverted pendulum, a linear inverted pendulum, a
helicopter dynamics process, a quadcopter, different
versions of ball and beam processes, flexible servos,
tank processes etc. The type of controller is tailored to
which other control courses the students have taken or

currently are taking in parallel
with this course. Some
examples are PID control, state
feedback control, adaptive
control, and model-predictive
control (MPC). Most of the
projects also involve some type
of modeling and identification.
The implementation platform is
either Java on a standard
desktop PC, C on a
microcontroller such as ATMEL
AVR or Raspberry Pie; or Lego
Mindstorm NXT programmed
either in Java or in a subset of
C. In the Lego case the actual
design and construction of the
process to be controlled is also a
part of the project. In many
cases these projects are focused
on various types of mini-
Segways, e.g. the double-
pendulum Segway shown in
Fig. 3. In case the students

choose ATMEL AVR as the implementation platform
the controller is implemented using fixed point
arithmetic and the built-in support for timers, counters,
and interrupts. Serial communication is used between the
AVR and a PC, where the GUI is implemented. In many
cases the projects involve networked control loops,
closed over Bluetooth, Wifi, or 4G/LTE. Sometimes the
controller is implemented in a smartphone, utilizing the
screen for the GUI and the build-in IMU sensors to
implement gesture-based operator interaction.

In some cases also pure real-time programming projects
are allowed, not including any control part. Some
examples of projects of this type that have been
performed are implementation of a kernel supporting
EDF (Earliest Deadline First) scheduling on an AVR

Figure 3: Double-
pendulum mini-
Segway

Mega8 microcontroller, and implementation of the
priority ceiling protocol.

The course is examined through a 5 hour open-book
exam. The exam is a mixture of control-oriented
problems, real-time oriented problems, and problems
that combine real-time and control issues. The course is
based on two text books: an in-house text on Real-Time
Computing and a slightly expanded educational version
of [3].

V. EXPERIENCES

The course is quite popular among the students, to a
large extent due to the fact that the course includes a
practical project where the students are allowed to
design and implement a controller for a real physical
plant. The course fulfills most of the characteristics to be
part of a CPS curriculum. For example, it combines
control theory with embedded computing and real-time
networks. It also looks upon the interference between
task scheduling and control performance and gives the
students experience of modeling physical systems.

The experience from the course shows that it is possible
to teach multi-thread programming using only a few
lectures, providing that these are combined with hands-
on exercises and laboratories. It also shows that it is
possible to include relatively advanced level discrete-
time control topics, in a course for students specializing
in embedded systems or software systems. Here,
however, we have a large advantage at Lund University
by the fact that the CS students and the EE students all
have taken the same mandatory continuous-time basic
control course.

One would believe that the computer engineering
students should perform best in the course since they

already have taken a mandatory course in real-time
programming when they begin. This is, however, not the
case. The better grades of the Engineering Physics
students more than well compensate for this. Also the
Mechanical Engineering students perform as well as, or
sometimes better, than the Computer Engineering
students. However, at the same time the top students in
the course are often Computer Engineering students, so
the variation is large.

Although the course works well in its current shape there
are certain parts that one would like to include. One
example is to consider multi-core platforms in the
concurrent programming and scheduling lectures.
Currently the course mostly covers the uniprocessor
case. Another issue that would be natural to have is a
modeling module based on Modelica [4], in particular
since our department has a substantial Modelica activity
at the research level. A possibility in this case would be
to also include automatic controller code synthesis.

More information about the course can be found at the
home-page

http://www.control.lth.se/Education/EngineeringProgram/FRTN01.ht
ml

[1] Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, Karl-Erik

Årzén: "How Does Control Timing Affect Performance? Analysis and
Simulation of Timing Using Jitterbug and TrueTime." IEEE Control
Systems Magazine, 23:3, pp. 16–30, June 2003.

[2] Anders Nilsson: “Tailoring native compilation of Java for real-time
systems”, Doctoral Dissertation, Department of Computer Science, Lund
Univiversity, 2006

[3] Wittenmark, B., Åström, K. J., Årzén K. E. (2002), Computer Control:
An Overview, IFAC Professional Briefs, freely available from
http://www.ifac-control.org/

[3] Mattsson, S.E., Elmqvist, H., Otter, M., Physical system modeling with
Modelica. Control Engineering Practice, vol. 6, pp. 501-510, 1998

	I. Introduction
	II. Student Background
	III. Course Contents
	IV. Course Projects
	V. Experiences

