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Abstract—We present a family of protograph based LDPC
codes that can be derived from permutation matrix based
regular (J, K) LDPC convolutional codes by termination. In the
terminated protograph, all variable nodes still have degree J but
some check nodes at the start and end of the protograph have
degrees smaller than K. Since the fraction of these stronger
nodes vanishes as the termination length L increases, we call the
codes asymptotically regular. The density evolution thresholds of
these protographs are better than those of regular (J, K) block
codes. Interestingly, this threshold improvement gets stronger
with increasing node degrees (at a fixed rate) and it does not
decay as L increases. Terminated convolutional protographs can
also be derived from standard irregular protographs and may
exhibit a significant threshold improvement.

I. INTRODUCTION

The performance of a belief propagation (BP) decoder for

LDPC codes [1] is strongly influenced by the degrees of the

different variable nodes and check nodes in the considered

Tanner graph representation [2]. The original ensembles intro-

duced by Gallager in [1] consisted of regular (J,K) LDPC

codes with fixed variable node degree J and check degree K.

One shortcoming of such regular ensembles is that a small

K, which leads to short parity-check equations and improves

the decoder performance, also implies a small J for a given

rate of the code. For this reason, irregular code ensembles

[3] [4] with a variety of different node degrees are usually

used in practice. In these ensembles, the degrees of variable

nodes and check nodes are considered as random variables

that are characterized by their degree distributions λ(x) and

ρ(x), respectively. Each coefficient in the polynomials λ(x)
and ρ(x) corresponds to the fraction of edges connected to

nodes of a certain degree. Gallager’s regular (J,K) LDPC

code ensembles correspond to the special case λ(x) = xJ−1

and ρ(x) = xK−1.

For the binary erasure channel (BEC), a density evolution

analysis of the BP decoder can be performed explicitly by

means of the equation

p(i) = ελ
(

1 − ρ
(

1 − p(i−1
))

, (1)

where ε denotes the erasure probability of the channel and

p(i) the probability that a variable to check node message

in decoding iteration i corresponds to an erasure, averaged

over all codes of the ensemble. Due to this averaging, the

message probabilities are equal for all edges in the graph.

The density evolution threshold of an ensemble, defined as

the maximal value of the channel parameter ε for which p(i)

converges to zero as i tends to infinity, directly follows from

(1). Equation (1) is also the key to the design of degree

distribution pairs (λ, ρ) for capacity achieving sequences of

codes with a vanishing gap between the threshold and the

Shannon limit εsh = 1 − R [5]. Check-concentrated or even

check-regular ensembles are known to provide a good trade-off

between complexity (measured by the average node degrees)

and gap to capacity.

A double exponential decrease of the decoding erasure prob-

ability with iterations implies that the probability of erased

frames also converges to zero [6]. The lower bounds in [7]

on the decoding complexity of general message passing de-

coders, obtained using sphere-packing arguments, also predict

a double exponential reduction of the error probability with

the number of iterations. A Taylor expansion of (1) reveals

that the message probability p(i) converges to zero at least

doubly exponentially with i if all nodes have a variable node

degree of at least three. An analysis by means of the messages’

Bhattacharyya parameter shows that this is also true for gen-

eral binary-input output-symmetric memory-less channels [6].

For generalized LDPC codes, where the parity-check equations

are replaced by stronger subcodes with minimum distance

greater than two, it can be shown that a minimal variable

node degree of two is sufficient. Unfortunately, unstructured

irregular LDPC ensembles with thresholds close to capacity

exhibit a non-vanishing fraction of degree two variable nodes.

LDPC code ensembles with a certain predefined structure

can be constructed by means of protographs [8]. It has been

observed that protograph ensembles often have better thresh-

olds than unstructured irregular random ensembles with the

corresponding degree distributions. Even codes with minimal

variable node degree three may provide a good trade-off

between distance and threshold [9]. Some codes that contain

degree two variable nodes can also have a linear asymptotic

minimum distance growth [10].

In this paper, we derive asymptotically regular protographs

from convolutional protographs by termination. These pro-

tographs, which are described in Section III, have a constant

variable node degree of at least three and at the same time
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Fig. 1. Example of a protograph with MP = 6 check nodes and NP = 8

variable nodes .

a threshold close to the Shannon limit. In Section IV we

generalize this approach to arbitrary irregular protographs.

Using an AR4JA code [10] as an example, we demonstrate

that a significant threshold improvement is also possible in the

irregular case. We begin in Section II with a description of the

density evolution equations for protograph based ensembles on

the BEC.

II. DENSITY EVOLUTION FOR PROTOGRAPH ENSEMBLES

A protograph [8] is a bipartite graph consisting of a set of

variable nodes Vn with degree Jn, n = 1, . . . , NP , a set of

check nodes Cm with degree Km, m = 1, . . . ,MP , and a set

E of edges that connect them. An example of a protograph is

shown in Fig. 1. The edges connected to a variable node Vn

or a check node Cm are labeled by ev
n,j or ec

m,k, respectively,

where j = 1, . . . , Jn and k = 1, . . . ,Km. It follows that the

j-th edge of Vn is connected to the k-th edge of Cm if ev
n,j =

ec
m,k. A protograph can be represented by means of an MP ×

NP bi-adjacency matrix B, which is called the base matrix

of the protograph. The entry in row m and column n of B

is equal to the number of edges that connect nodes Cm and

Vn. Note that the base matrix representation allows multiple

edges between a pair of nodes.

While a protograph is formally equivalent to a Tanner

graph [2], it actually represents a family of codes of different

lengths whose individual Tanner graphs are obtained from the

protograph by a copy-and-permute operation [8]. Then a size

M permutation matrix is associated with each edge in the

protograph and each node is replicated M times, resulting in

a derived graph that defines a code of length MNP . By this

procedure, the edges are permuted among these replica in such

a way that the structure of the original graph is preserved. As

a consequence, a density evolution analysis for the resulting

codes can be performed within the protograph.

We assume that belief propagation is used for decoding,

after transmission over a BEC with erasure probability ε. In

every iteration, first all check nodes and then all variable nodes

are updated. The messages that are passed between the nodes

represent either an erasure or the correct symbol values 0 or 1.

Let q(i)(ec
m,k) denote the probability that the check to variable

node message which is sent along edge ec
m,k in decoding

iteration i is an erasure. This is the case if at least one of

the incoming messages from the other neighboring nodes is

erased, i.e.,

q(i)(ec
m,k) = 1 −

∏

k′ 6=k

(

1 − p(i−1)(ec
m,k′)

)

, (2)

where p(i−1)(ec
m,k′), k, k′ ∈ {1, . . . ,Km}, denote the proba-

bilities that the incoming messages computed in the previous

iteration are erasures.

The variable to check node message sent along edge ev
n,j

is an erasure if all incoming messages from the channel and

from the other neighboring check nodes are erasures. Thus we

have

p(i)(ev
n,j) = ε

∏

j′ 6=j

q(i)(ev
n,j′) , (3)

where j, j′ ∈ {1, . . . , Jn}.

III. TERMINATED REGULAR LDPC

CONVOLUTIONAL CODES

A. LDPC convolutional codes

A rate R = b/c time-varying binary LDPC convolutional

(LDPCC) code [11] can be defined as the set of infinite se-

quences v = [. . . ,v0,v1, . . . ,vt, . . . ] satisfying the equation

vH
T = 0, where vt = [v

(1)
t , . . . , v

(c)
t ], v

(·)
t ∈ GF(2), and

H
T =



















. . .
. . .

H
T
0 (0) . . . H

T
ms

(ms)
. . .

. . .

H
T
0 (t) . . . H

T
ms

(t + ms)
. . .

. . .



















(4)

is an infinite transposed parity-check matrix, also called a

syndrome former. The elements H
T
i (t), i = 0, 1, . . . ,ms, in

(4) are binary c × (c − b) submatrices

H
T
i (t) =









h
(1,1)
i (t) · · · h

(1,c−b)
i (t)

...
...

h
(c,1)
i (t) · · · h

(c,c−b)
i (t)









, (5)

where H
T
ms

(t) 6= 0 for at least one t ∈ Z and H
T
0 (t) has full

rank for all t. We call ms the syndrome former memory and

νs = (ms + 1) · c the associated decoding constraint length.

These parameters determine the span of the nonzero diagonal

region of H
T. Sparsity of the syndrome former is ensured by

demanding that the Hamming weights of its columns are much

smaller than νs. The code is said to be regular if its syndrome

former H
T has exactly J ones in every row and K ones in

every column. The other entries are zeros. We will refer to a

code with these properties as a (J,K) LDPCC code.

B. LDPCC Codes from Fully Connected Protographs

The convolutional counterparts of the (J,K) LDPC block

code ensembles in [12], with syndrome formers H
T composed

of blocks of size M permutation matrices, have been consid-

ered in [13]. Analogously to block codes, these codes can

be represented by protographs. Let a = gcd(J,K) denote the

greatest common divisor of J and K. Then there exist positive

integers J ′ and K ′ such that J = aJ ′ and K = aK ′ and

gcd(J ′,K ′) = 1. The ensemble of rate R = Mb/(Mc) =
1 − J ′/K ′ convolutional codes considered in [13] can be
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Fig. 2. (a) The convolutional protograph of a regular (3,6) LDPCC code and (b) the protograph for termination after L = 10 time instants. If the symbols
at t = 1 and t = 10 are perfectly known, the edges connected to these nodes can be removed and the protograph becomes equivalent to that for L = 8.

described by infinite convolutional protograph base matrices

B[−∞,∞] =



















. . .
. . .

Bms
. . . B0

. . .
. . .

Bms
. . . B0

. . .
. . .



















, (6)

where ms = a−1 and Bi, i = 0, . . . ,ms, are K ′×J ′ identical

component base matrices with all entries equal to one. It

follows immediately that for ms = 0 we obtain a sequence

of disconnected block code protographs with base matrix B0.

From this point of view, block codes can be regarded as a

special case of convolutional codes. On the other hand, if we

start a convolutional code at time t = 1 and terminate it after

L time instants, we obtain an L times larger block code. We

denote the base matrix of such a block code by B[1,L].

Example 1: A (3,6) LDPC code can be represented by the

base matrix

B =





1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1



 . (7)

The corresponding ensemble in [13] is defined by component

base matrices B0 = B1 = B2 = [1 1]. For L = 4 the

protograph base matrix of the terminated codes is equal to

B[1,4] =

















1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1

















, (8)

which defines the protograph depicted in Fig. 1. The con-

volutional protograph with base matrix B[−∞,∞] and the

terminated graph with base matrix B[1,10] are illustrated in

Fig. 2. �

The protograph of the terminated code has NP = LK ′

variable nodes and MP = (L+ms)J
′ check nodes. The design

rate RL of the block code defined by B[1,L] is therefore equal

to

RL = 1 −

(

L + ms

L

)

J ′

K ′
= 1 −

(

1 +
ms

L

)

(1 − R) , (9)

where R = Mb/(Mc) = 1 − J ′/K ′ is the rate of the

convolutional code. The density evolution thresholds for the

protographs of terminated codes, defined by the base matrices

B[1,L], can be estimated by recursive application of (2) and (3)

for different channel parameters ε. For the codes considered

in Example 1, the estimated threshold values are equal to

ε∗ = 0.635 for L = 4 (where R4 = 1/4 and εsh = 0.75)

and ε∗ = 0.505 for L = 10 (where R10 = 2/5 and

εsh = 0.6), respectively. When L is further increased and the

rate approaches R∞ = b/c = 1/2, the threshold eventually

converges to a constant value ε∗ = 0.488. The Shannon limit

is equal to εsh = 0.5 for rate R∞ = 1/2.

The interesting phenomenon that the threshold does not

decay as L increases was first observed empirically in [14].

In [15] it was shown that this holds for arbitrarily large L. To

prove this result, a sliding window updating schedule can be

considered, where the decoder updates the nodes only within

a window of size W ≤ L, starting at time level t = 1.

Once the variable-to-check node message probabilities p(ev
n,j),

j = 1, . . . , Jn, are below some value ε0 for all nodes Vn at

time t, the window is shifted one time unit further. This leads

to the following theorem.

Theorem 1: Consider density evolution for the BEC with

erasure probability ε and the window updating schedule for an

arbitrary termination length L. Let the message probabilities at

times t < 1 be initialized by some value ε0 > 0. If, under these

conditions, the value ε0 is reached at time t = 1 after some

number of iterations, so that the window can be shifted one

step further, then, for the actual initial probabilities p(ev
n,j) =

0, j = 1, . . . , Jn, of nodes Vn at times t < 1, the value ε0 can

be reached at all times t, t = 1, . . . , L. �

Intuitively, one can explain the result as follows: during the

iterations, due to the lower check node degrees at the start

and end of the graph, the messages along edges at times

t = 1 and t = L will be the most reliable ones. Their

erasure probabilities have the potential to converge to zero

even for channel parameters ε beyond the threshold of the



corresponding regular code. But when the symbols at t = 1
and t = L are perfectly known, the connected edges can be

removed from the protograph, which results in the shortened

protograph B[2,L−1], as illustrated in Fig. 2(b). It follows now

by induction that the messages eventually converge to zero

at all times t = 1, . . . , L for arbitrary values L. A proof of

Theorem 1 can be found in [16].

C. Protograph LDPCC codes for arbitrary J and K

If we want to construct convolutional protographs for ar-

bitrary rates, we have to face the problem that, in the above

described construction, ms = a− 1 becomes zero if J and K
are relatively prime. This results in a sequence of disconnected

protographs B0, each defining a standard regular block code.

An essential property of a convolutional protograph is that

edges from variable nodes at time t are spread among check

nodes at different times t, t + 1, . . . , t + ms, as illustrated for

the case ms = 1 in Fig. 3. Starting from an arbitrary (J,K)
block protograph with base matrix B we can achieve such an

edge spreading by dividing the entries of B among various

matrices B0,B1, . . . ,Bms
. This procedure ensures that the

degrees of variable nodes and check nodes of the resulting

convolutional protograph are the same as those of the original

block protograph.

Example 2: Consider the construction of a convolutional

protograph from a (5, 6) LDPC block code, defined by a 5×6
all-one base matrix B. A convolutional protograph, defining a

rate R = Mb/(Mc) = 1/6 code with ms = 1, follows from

(6) with the component base matrices

B0 =













1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1













, B1 =













0 0 1 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 0 1
1 1 1 1 0 0













,

which can be obtained from B by edge spreading. The

threshold of the terminated protographs B[1,L] approaches

ε∗ = 0.829 as L increases. This value is remarkably close

to the Shannon limit εsh = 0.833 for rate R∞ = 1/6. �

The convolutional protograph in Fig. 2 can also be con-

structed using this procedure with

B0 =





1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1



 , B1 =





0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 0



 .

The convolutional code has now rate R = 3M/(6M) and

memory ms = 1 instead of R = M/(2M) and ms = 2. As a

consequence, the nodes of the two protographs have different

time instants associated with them, but otherwise the structure

of the two graphs is the same.

There are many ways of spreading the edges among com-

ponent base matrices, and different assignments can lead to

different thresholds. Even for ms > 0 there exist assignments

that result in a sequence of disconnected subgraphs, e.g., if all-

zero columns or rows exist in the component base matrices. A

good threshold value is expected when the checks at time t = 1

B0 B1

· · ·· · ·

· · ·

t

t t + 1

Fig. 3. The protograph connections from variable nodes at time t, represented
by the component base matrices B0 and B1 for the case ms = 1.

have low degree (but at least degree two). The convolutional

protograph in Example 2 is designed in such a way that

all rows in B0 have weight two and the entries are spread

among all rows and columns. Note that, by symmetry, if

we reverse the order of the component base matrices (e.g.,

exchanging B0 and B1 in Example 2), the convolutional

protograph is simply mirrored horizontally and the threshold

is consequently the same. Simple row or column permutations,

applied simultaneously to all component base matrices, also

do not affect the graph structure.

IV. IMPROVING THRESHOLDS OF IRREGULAR

PROTOGRAPHS

The edge spreading procedure described above is not re-

stricted to regular protographs, but can be applied to any

conventional protograph, including those with multiple edges

between a pair of nodes. Starting from an arbitrary block

protograph, defined by an MP × NP base matrix B, we

divide the edges among times t, t + 1, . . . , t + ms. For a

given target memory ms, any set of component base matrices

B0,B1, . . . ,Bms
which satisfies the condition

ms
∑

i=0

Bi = B (10)

corresponds to a possible assignment of edges, resulting in a

convolutional protograph with the same variable and check

node degrees as the original block protograph. The corre-

sponding convolutional base matrix B[−∞,∞] follows from

(6). Termination of such a convolutional protograph, after

an arbitrary number of time instants L, results in a block

protograph B[1,L] with LNP variable nodes and (L+ms)MP

check nodes, corresponding to a design rate

RL = 1−

(

L + ms

L

)

MP

NP

= 1−
(

1 +
ms

L

)

(1−RB) , (11)

where RB = 1−MP /NP is the design rate of codes obtained

from the original block protograph.

Example 3: Consider the protograph of an accumulate-

repeat-by-4-jagged-accumulate (AR4JA) code [10], as de-

picted in Fig. 4. The base matrix of this code is equal to

B =





1 2 0 0 0
0 3 1 1 1
0 1 2 1 2



 . (12)

The variable nodes corresponding to the second column in B



· · ·

· · ·

· · ·

Fig. 5. A terminated convolutional protograph obtained from the AR4JA code in Fig. 4.

Fig. 4. The protograph of an AR4JA code.

are punctured, resulting in a design rate equal to RB = 1/2
and a threshold of ε∗ = 0.4387. Using the edge spreading

procedure, we derive the base matrices

B0 =





1 1 0 0 0
0 1 1 0 0
0 0 0 1 1



 , B1 =





0 1 0 0 0
0 2 0 1 1
0 1 2 0 1



 .

The resulting terminated convolutional protograph B[1,L] is

illustrated in Fig. 5. Its threshold approaches ε∗ = 0.4996 as

L increases, which is very close to the Shannon limit εsh = 0.5
for rate R∞ = 1/2. �

V. CONCLUSION

We presented a technique for the construction of asymptoti-

cally regular protographs with thresholds close to the Shannon

limit. These protographs can be derived by termination from

convolutional protographs, which were obtained from regular

(J,K) protographs by means of an edge spreading technique,

where we assume that J > 2. Since all variable nodes have

degree greater than two, asymptotically the error probability

converges at least doubly exponentially with decoding itera-

tions and the minimum distance grows linearly with the length

of the codes. As a result we obtain sequences of asymptotically

good LDPC codes with fast convergence rates and thresholds

close to capacity. The construction can also be generalized

to arbitrary irregular protographs. Although we restricted the

discussion to the BEC, the results for (J, 2J) codes in [15]

indicate that a similar behavior can be expected for the additive

white Gaussian noise channel.
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