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Abstract: Machining processes in the industry of today are rarely performed using industrial
robots. In the cases where robots are used, machining is often performed using position control
with a conservative feed-rate, to avoid excessive process forces. There is a great benefit in
controlling the process forces instead, so as to improve the time-efficiency by applying the
maximum allowed force, and thus removing the maximum amount of material per time unit.
This paper presents a novel adaptive force controller, based on a derived model of the machining
process and an identified model of the robot dynamics. The controller is evaluated in both
simulation and an experimental setup. Further, industrial robots generally suffer from low
stiffness, which can cause the robot to deviate from the desired path because of strong process
forces. The present paper solves this by employing a stiffness model to continuously modify the
robot trajectory to compensate for the deviations. The adaptive force controller in combination
with the stiffness compensation is evaluated in experiments, with satisfying results.

Keywords: Industrial robots, robot control, force control, adaptive control, machining

1. INTRODUCTION

Machining processes in the industry of today, such as
milling, grinding, and deburring, are for the most part
performed using dedicated machine-tools, which are both
stiff and accurate, although expensive. In some plants,
manual machining is performed. The usage of industrial
robots for machining tasks has been limited because of
their insufficient stiffness and accuracy, in the context of
machining tolerances. This is unfortunate since industrial
robots offer a cost-effective and flexible solution.

In machining processes, the robot is required to come into
physical contact with the work object. If the contact force
is too strong, either the tool or the workpiece may break.
Conversely, if the force is too weak, the task will not be
performed time-efficiently. Traditionally, robotic machin-
ing tasks have been performed using position control with
a conservative machining speed so as not to exceed the
maximum allowed force, e.g., defined by the tool breaking
or scorching the material. The time-efficiency of machining
can be increased by utilizing force control, i.e., controlling
the applied force by adjusting the desired velocity of the
robot, so that the maximum amount of material is removed
per time unit.

! The research leading to these results has received funding from
the Swedish Foundation for Strategic Research within the program
ProViking, under grant ProFlexA PV08-0036, the Swedish Research
Council through the LCCC Linnaeus Center VR 2007-8646, and
the European Union’s seventh framework program (FP7/2007-2013)
under grant agreement #258769 COMET.

This paper considers the problem of time-efficiently ma-
chining a workpiece with unknown surface, to a given
desired surface with hard accuracy specifications. The
problem is divided into two parts; the control problem
of removing maximum material per time unit in the feed
direction, and the control problem which arises when the
robot deviates from the desired path, because of strong
process forces and the comparably low robot stiffness.

The first control problem can be reformulated as adjusting
the feed-rate of the workpiece in order to achieve the
maximum allowed force. The machining process forces are
a nonlinear function of several parameters, such as spindle
speed, machining tool, depth of cut, and material stiffness.
Since some of these parameters are likely to change during
the process, it is desirable to continuously adapt the force
controller. The use of a fixed controller may result in loss
of time-efficiency or stability problems.

Force control for industrial manipulators performing
contact-tasks is discussed in (Hogan and Buerger, 2005). It
was shown that the environment, i.e., the work object, can
be modeled as an admittance, whereby it follows that the
robot should act as an impedance in the closed kinematic
chain. Hence, the aim of impedance control for robots is
to control the dynamic relation between the force and the
position.

A self-tuning PI controller for controlling machining forces
was presented in (He et al., 2007), where the machining
force is modeled as a static nonlinear relation between the
feed-rate and the depth of cut. In (Liu et al., 2001), an
adaptive control constraint is considered, based on several
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control structures such as PID control, neural network
control, and fuzzy control. An overview of force control
technologies in machining is provided in (Wang et al.,
2008). One established method is the maximum material
removal controller, which switches between discrete feed-
rate levels in order to maintain an approximate force ref-
erence. In contrast, it should be noted that the controller
presented in this paper continuously adapts the feed-rate
in order to achieve the desired force reference value.

The problem of stiffness compensation concerns machin-
ing operations where strong process forces are required.
Industrial robots generally suffer from low stiffness, e.g.,
because of their serial structure and weak gear-boxes,
which can cause the robot to deviate from its desired
path as a result of the process forces. Since the robot only
has position measurements on the motor side of the gear-
boxes as opposed to the arm side, the robot cannot by
itself measure and compensate for any possible deviations
caused by process forces.

An approach to solving the stiffness problem was presented
in (Olofsson et al., 2011), where an external micro ma-
nipulator is used in a closed kinematic chain with the
robot. The path deviations of the robot are measured by
an optical tracking system and compensated online by the
micro manipulator. This method can compensate not only
for limited stiffness, but also accuracy deficiencies of the
robot. However, it requires an expensive piece of extra
hardware in addition to the robot. Stiffness modeling and
compensation is discussed in (Zhang et al., 2005), where
a stiffness model of the robot in joint space is identified
through load experiments. It was shown in a milling pro-
cess that the accuracy of the surface was improved.

In this paper, a novel model-based adaptive force con-
troller for machining processes, in combination with an on-
line Cartesian stiffness compensation scheme, is presented.
The machining force is modeled as a linear system with a
time-varying parameter, estimated such that the proposed
controller is adapted to different machining conditions.

This paper is organized as follows. Modeling and control
design of the feed-rate controller and the stiffness compen-
sation scheme are described in Sec. 2. Section 3 presents
results from simulations with the proposed control scheme.
The experimental setup is described in Sec. 4, as well as
the results of experimental milling. Finally, conclusions are
drawn in Sec. 5.

2. MODELING AND CONTROL DESIGN

2.1 Feed-rate controller

Along the feed direction of the machining, the aim is to
control the milling force by adjusting the feed-rate, which
in robotic machining corresponds to the velocity of the
robot end-effector. A model with velocity reference vr as
input, and actual velocity v in the Cartesian space as out-
put, was identified from experimental data from the robot,
using subspace-based system identification methods (van
Overschee and De Moor, 1994). The model is given by the
continuous-time transfer function

Gv(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

. (1)

Fig. 1. The experimental setup for performing milling with
an ABB IRB2400 robot.

The milling process forces depend on several parameters,
as mentioned earlier. These parameters exhibit a nonlinear
relationship with the process force and may change over
time, thus making the process difficult to model. In this
paper, a first-order model is derived, with a time-varying
parameter for the purpose of capturing the nonlinear
properties and changes in the process parameters. By
assuming that the machined material is linear-elastic and
isotropic, the model is derived using Hooke’s law

f(t) = Kfxp(t), (2)

where f(t) is the force,Kf the material stiffness, and xp(t)
the depth of the deformation into the material. Since the
material is assumed to be isotropic, the material stiffness
Kf is constant throughout the workpiece. By assuming
that material is removed at a rate proportional to the
integral of the applied force, the following relation holds

f(t) = Kf

(

xp(t)−

∫ t

0
Df

−1f(τ) dτ

)

, (3)

where Df denotes the material removal parameter. It is
obvious from (3), that a large value of Df will result in
a slow material removal rate and thus a large machining
force.

Transforming (3) to the frequency-domain and substitut-
ing position for velocity gives

F (s) =
KfDfs

sDf +Kf
Xp(s) =

KfDf

sDf +Kf
︸ ︷︷ ︸

Gf (s)

V (s), (4)

where the transfer function from v to f is denoted Gf (s).
The complete transfer function Gf (s)Gv(s), from velocity
reference to force is now given by a fourth-order system. A
linear-quadratic (LQ) optimal control scheme (Zhou and
Doyle, 1998) is proposed, which is superior to a standard
PID controller in its robustness to process variations. In
addition, the LQ control scheme can effectively attenuate
resonances which are likely to be present in the robot
dynamics. The robot dynamics Gv(s) can be expressed
as a state-space model of the innovations form

ẋ(t) = Ax(t) +Bvr(t) +Ke(t) (5)
v(t) = Cx(t) + e(t), (6)
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where K is the Kalman gain which is provided by the
system identification algorithm and e(t) is white noise.
Since the states of the robot dynamics are not measurable,
a Kalman filter (KF) is introduced in order to estimate the
states, based on the measured velocity and the identified
model. The Kalman filter is given by (Åström and Wit-
tenmark, 1997)

˙̂x(t) = Ax̂(t) +Bvr(t) +K(v(t)− Cx̂(t)) (7)
v̂(t) = Cx̂(t). (8)

Since the model is identified with experimental data with
subtracted mean, the filter is extended with a constant
disturbance state (Åström and Wittenmark, 1997) in order
to achieve the correct static gain.

The complete model for the system is obtained by aug-
menting the state-space model in (5)–(6) with the force
dynamics given in (4). Since the force can be measured, it
is favorably chosen as a state. By introducing xf (t) = f(t)
and differentiating (3), the following relation is obtained

ẋf (t) = −KfDf
−1xf (t) +Kfv(t). (9)

Further, the input v(t) is given by the output from the
robot dynamics in (6), which inserted into (9) gives

ẋf (t) = −KfDf
−1xf (t) +KfCx(t) +Kfe(t). (10)

By defining the new output as the force and the extended
state vector as xe(t), the augmented state-space model can
be written as

ẋe(t) =

[

ẋ(t)
ẋf (t)

]

=

[

A 0
KfC −KfDf

−1

] [

x(t)
xf (t)

]

+

[

B
0

]

vr(t) +

[

K
Kf

]

e(t) (11)

f(t) = [ 0 0 0 1 ]

[

x(t)
xf (t)

]

+ w(t), (12)

where w(t) is white noise.

The state feedback control law is given by

vr(t) = −L

[

x̂(t)
xf (t)

]

+ lrfr(t), (13)

where fr(t) is introduced as the desired force and lr is the
feedforward gain. The gain vector L is determined by LQ
optimal control, i.e., by minimizing the cost function

J(vr) =

∫
∞

0
xe(t)

TQxe(t) + vr(t)
TRvr(t) dt, (14)

where Q and R are user-defined weights. The optimal
value of L is calculated by solving the algebraic Riccati
equation (Zhou and Doyle, 1998).

In order to eliminate possible stationary errors, integral
action is introduced by extending the state vector with
the integral state

xi(t) =

∫ t

0
(fr(τ)− f(τ)) dτ. (15)

With this extra state, the gain vector L has to be extended
as well. Hence, Le = [L li], where li is the integral state
gain, is defined.

The controller has so far been derived assuming a constant
Df . As discussed earlier, the material removal parame-
ter Df is likely to be time-varying and should thus be
estimated continuously. This is accomplished by utilizing

lr Gv(s) Gf(s)

KF RLS

-L

li
1
s

fr fvvr

Fig. 2. Block scheme for the closed-loop system using the
feed-rate controller.

Stiffness

model

zr

fz

Position

controller

z

zr

_

zr

Fig. 3. Block scheme for the closed-loop system with
stiffness compensation.

recursive estimation methods, such as the recursive least-
squares (RLS) algorithm or a Kalman filter (Johansson,
1993). In this paper, the RLS algorithm has been utilized.

When the covariance of the estimate passes below a desired
threshold, the controller is activated and the estimate of
Df can be used to continuously adapt the controller. This
is done by updating the model in (11) using the current
estimate of Df , and subsequently calculating the gain
vector of the LQ controller by minimizing (14) for the
new system. A block scheme for the complete closed-loop
system is displayed in Fig. 2.

2.2 Stiffness compensation

The aim of the stiffness compensation is to continuously
adjust the robot path, in order to suppress the deviations
in the actual traversed path, caused by machining process
forces. To do this, a stiffness model of the robot can be uti-
lized to translate the process force to a position deviation.
A local stiffness model is identified by applying a load on
the robot, measuring the applied force and the deviation
in robot position with an external measurement device,
at several different points in the machining workspace. It
is assumed that the stiffness is linear, and consequently,
the stiffness in each point is determined by (2), and values
for intermediate points are determined by interpolation
between measurements.

The online compensation uses the current position, as
measured by the robot, to determine the current stiffness
from the model. A modified desired position is calculated
from the measured process force, in the same direction as
the force. Since a positive force will result in a deflection
in the same direction, the modified position should be
actuated in the opposite direction of the force. A block
scheme for the stiffness compensation is displayed in Fig. 3,
where zr denotes the current desired position, fz the
measured process force, z the measured robot position,
∆zr the position deviation determined by the stiffness
model, and z̄r the modified position reference.
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v

Fig. 4. The peripheral milling scenario with a varying
depth of cut.

3. SIMULATION RESULTS

Simulations were performed using Matlab Simulink, by
discretizing and implementing the models and control
scheme described in the previous section. The feed-rate
controller is tuned by adjusting the weights Q and R
in (14), so that the cost will be high if the machining
force deviates from the desired value, resulting in a fast
force response. For the simulations, a material stiffness
Kf of 50 N/mm was assumed, and the initial value for
the material removal parameter Df was set to 1. In order
to obtain a feasible estimate of Df before the adaptive LQ
controller is activated, the velocity reference is initially
set to a constant speed so as to provide excitation for
the estimation algorithm. Once the estimation covariance
passes below a threshold, the velocity reference is switched
to the now activated adaptive controller.

The material removal is set to be time-varying, both with
step changes in Df and continuously decreasing Df . The
scenario can be considered to resemble a milling experi-
ment with a varying depth of cut. A possible scenario is
illustrated in Fig. 4.

This scenario is considered in a milling simulation with the
force control loop active, using an initial speed of 6 mm/s
and a force reference of 20 N. The result of the simulation
is displayed in Fig. 5. The activation of the controller is
indicated by the force reference (dashed blue line) being
set to the given value. It is evident from Fig. 5 that the
adaptive controller can compensate for step changes inDf ,
as well as a continuously decreasing Df , in a fast, well-
damped manner.

4. EXPERIMENTAL RESULTS

Experiments were performed using an ABB IRB2400-
robot with an S4Cplus-controller, using an open robot
control extension called ORCA (Blomdell et al., 2010),
running at 250 Hz. The Matlab Simulink models were
translated to C and compiled using Real-Time Workshop
in order to run them on the robot system. The robot was
equipped with a flange-mounted JR3 force/torque sensor,
measuring forces and torques in the Cartesian directions
at a sampling rate of 8 kHz. A CimCore measurement arm
of model Stinger II, as seen in Fig. 1, was used to obtain
position measurements with an accuracy of approximately
50 µm.

Peripheral milling experiments were performed using a
workpiece of Cibatool material, attached to the robot end-
effector. A Teknomotor spindle was rigidly attached to the
base, with a 14 mm milling tool running at 24 000 rpm.
The experimental setup is displayed in Fig. 1.

0 2 4 6 8 10 12
0

10

20

0 2 4 6 8 10 12
0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12
5

10

15

20

F
or
ce

(N
)

D̂
f

v
r
(m

m
/s
)

Time (s)

Time (s)

Time (s)

Fig. 5. Milling simulation using adaptive force control,
with a time-varying Df .

0 0.5 1 1.5 2 2.5 3 3.5 4

0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

10

15

20

25

F
or
ce

(N
)

D̂
f

v
r
(m

m
/s
)

Time (s)

Time (s)

Time (s)

Fig. 6. Experimental peripheral milling using adaptive
force control, with a time-varying depth of cut.

In the experiments, the material stiffness Kf was inter-
preted as the interaction stiffness, due to the fact that the
machining force not just depends on the material proper-
ties, but on the combined stiffness of the workpiece, the
tool, and the robot. It is to be noted that the stiffness of the
robot in this context refers to the perceived robot stiffness,
as determined from the robot position measurements. It
is further assumed that the interaction stiffness is con-
stant within the limited workspace of the milling process.
By measuring force and position of the robot during a
simple contact experiment, the interaction stiffness was
determined to 85 N/mm.

In order to emulate the milling scenario described in Sec. 3,
the workpiece was manually prepared so as to resemble
the profile illustrated in Fig. 4. The milling was performed
with an initial vr of 10 mm/s, a force reference of 10 N
and an initial value of Df set to 1. The result is displayed
in Fig. 6. As in the simulation, the experimental force
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Fig. 7. Force controlled peripheral milling without adapta-
tion for material removal, with a time-varying depth
of cut. The middle panel shows the nominal Df (blue)
vs. the estimated Df (red).

response is fast and robust to both step changes in Df

as well as to a continuously decreasing Df .

To demonstrate the benefit and necessity of adapting the
force controller, the milling experiment described above
was repeated with a force controller with fixed parameters,
disabling the estimation of Df and assuming it to be
constant with a value of 1. The results in Fig. 7 clearly
show that the system becomes slow for a Df not close to
the assumed value, and does not handle step changes in
Df satisfactory.

In order to further test the flexibility of the controller,
face milling experiments were performed in aluminium (Al
7075), where the interaction stiffness Kf was significantly
higher than in Cibatool, with a value of 143 N/mm. The
result of a face milling with a depth of cut of 1 mm and
a force reference of 50 N is displayed in Fig. 8. It is noted
that the estimation of Df requires slightly more time to
pass the estimation variance threshold. Furthermore, the
steady-state value of Df is much higher and the force
response is faster than in the Cibatool material, which is
to be expected since aluminium is significantly stiffer.

As mentioned earlier, the robot position is calculated from
the joint angles on the motor side of the gear-box, and
it is therefore unable to measure possible deviations on
the arm side. By rigidly attaching the measurement arm
to the robot end-effector, and calibrating it to the robot
coordinate system, the actual position of the robot can
be obtained. The same milling experiment as described
above was performed once again, with the measurement
arm attached. The resulting process force in the direction
perpendicular to the milling direction and the surface nor-
mal, as well as the robot deflection in the same direction,
are displayed in Fig. 9. It is evident from the figure that
there is a significant discrepancy between the position
measured by the robot and the position measured by the
measurement arm. It is also noted that the robot position
is oscillating during the milling process.
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Fig. 8. Force controlled face milling in aluminium, with a
constant depth of cut.
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Fig. 9. Force controlled face milling in aluminium. The
upper panel displays position measured by robot (red)
vs. measurement arm position (blue), in the direction
perpendicular to the milling direction and the surface
normal. The lower panel shows the process force in
the same direction.
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Following the method described in Sec. 2, a local stiffness
model was identified experimentally, and a subset of the
stiffness measurements is shown in Fig. 10.
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Fig. 11. Force controlled face milling in aluminium,
with stiffness compensation. The upper panel dis-
plays robot position (red), measurement arm position
(blue), and desired position (black), in the direction
perpendicular to the milling direction and the surface
normal. The green line indicates when the stiffness
compensation is activated. The lower panel shows the
process force in the same direction as the position.

Table 1. Maximum error em and standard
deviation σe of milling profile.

em (µm) σe (µm)
Uncompensated 273.9 37.9
Compensated 51.4 18.6

The control scheme for stiffness compensation was imple-
mented, utilizing the identified stiffness model. A milling
experiment identical to the uncompensated case was per-
formed with stiffness compensation activated, and the
result is shown in Fig. 11. The figure clearly demonstrates
that the stiffness compensation is successful in suppressing
the influence of process forces, since the measurement arm
position is kept close to the desired position throughout
the milling. Table 1 shows the maximum position error
as well as the standard deviations of the position errors,
calculated in stationarity, for the uncompensated and com-
pensated case.

It is to be noted that the stiffness compensation was chosen
not to start until the feed-rate controller is activated, in or-
der to clearly demonstrate the effect of the compensation.
To avoid position deviations during the feed-rate controller
estimation phase, the stiffness compensation should be
activated as soon as contact is achieved.

5. CONCLUSIONS

This paper describes a method for ensuring time-efficiency
and improving accuracy of robotic machining processes,
removing the maximum amount of material per time
unit by adaptively controlling the applied force, as well
as continuously compensating for the path deviations
caused by process forces. It was shown in two different
milling processes and materials, that the proposed control
scheme performs satisfactory, and that the adaptation of
the controller for time-varying machining parameters is
essential for good performance. With a non-adaptive force
controller, a conservative force reference would have to be

used in order not to exceed the maximum allowed force,
because of the large overshoots that occur at abrupt depth
of cut changes. This will in turn result in a slower feed-rate,
and thus loss of time-efficiency.

Furthermore, it was shown in face milling experiments
that the stiffness compensation scheme, in combination
with the feed-rate controller, effectively increased the
surface accuracy by real-time modification of the robot
path. It was noted in the experiments that a larger
force reference in the feed-rate direction, resulted in a
larger perpendicular process force, and thus, a larger
deviation of the robot position. Consequently, the benefit
of utilizing the stiffness compensation will be even greater
for high-speed machining processes, but will increase the
requirements on the accuracy of the stiffness model, since
model errors will be magnified with strong process forces.
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