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1 Introduction

When tasks are specialized and interdependent, coordination becomes important for organizations
and the ability to facilitate coordination is often put forward as a major reason for their existence
(e.g. Simon, 1991; Grant, 1996). Consequently, understanding why groups of agents may or may
not be able to coordinate their actions, and how coordination mechanisms should be designed, is
one of the keys to explaining and improving organizational efficiency.1

Communication may seem as an obvious way to coordinate groups of agents by simply trans-
ferring information about what agents intend to do. However, when agents act strategically, com-
munication is not straightforwardly translated into efficient coordination as shown by experimental
results with communication in coordination games.2 Moreover, recent experiments indicate that
whereas costless communication and/or mandatory communication may produce efficient coordi-
nation in weakest-link games, costly communication is much less successful – even if the costs are
very small in relation to the potential gains of efficient coordination (Blume and Ortmann, 2007;
Kriss et al., 2012). As arguably all organizational communication takes time and is in some sense
costly, these results are important to understand.

We develop a model based on the weakest-link game that provides a theoretical explanation for
this phenomenon. Message costs, even very small ones, imply that agents have to consider whether
their message will change their colleagues’ course of action. There is thus a trade-off between
lowering the strategic uncertainty for the group and the costs of communicating, and also an in-
centive to free ride on other agents’ communication, despite the common interest in coordination.
Making communication mandatory removes the adverse incentives, and introducing a team leader
improves efficiency as long as the team leader has enough credibility. Thus, our results indicate
that organizations need to structure communication to achieve efficient coordination and suggest
a reason for why inter-organizational cooperation and new collaborations – where such structures
are often missing – frequently result in coordination failures (e.g. Hoopes and Postrel, 1999; Heath
and Staudenmeyer, 2000).

To build intuition for how communication affects coordination, we first develop a simple model
and solve for the stochastically stable states.3 While stochastically stable states can be interpreted
as the likely long-run state of a system or a process, related experimental studies use only a few
periods (8-10 periods are common). To compare the short-run properties of the model and to relax

1See Lawrence and Lorsch (1967), Sinha and Van de Ven (2005), Grandori and Soda (2006) and Sherman and
Keller (2011) for evidence of the difficulties in choosing appropriate coordination mechanisms.

2E.g. Cooper et al. (1992); Weber et al. (2001); Chaudhuri et al. (2009); Wilson (2012), and Andersson and
Holm (2013). See also Camerer (2003), Devetag and Ortmann (2007), and Camerer and Weber (2013) for reviews of
experiments with coordination games, including many using different forms of communication.

3See Freidlin and Wentzell (1984) for a general exposition of the theory of randomly perturbed dynamical systems,
and Foster and Young (1990), Kandori et al. (1993), and Young (1993, 1998) for the first developments of stochastic
stability in game theory.
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some of the simplifying assumptions, we run simulations. This exercise also allows us to use
parameter values that have not been used in experiments so far.

We think the highly interdependent actions in the weakest-link game capture the essence of or-
ganizational coordination problems where the lowest quality of individual inputs disproportionally
affects the quality of the output for the organization. This is for example the case in many types of
services.4 The experiments with communication in coordination games (and experimental results
from many other games), as well as careful studies of coordination in organizations (e.g. Heath and
Staudenmeyer, 2000), suggest that subjects may not be perfectly rational in terms of foresight and
in their use of available information. To capture this, agents in our model are boundedly rational.
As in Kandori et al. (1993), Robles (1997), and Riedl et al. (2012), our agents choose myopic best
replies, have limited information processing capabilities, and may occasionally experiment or make
mistakes. We believe these behavioral assumptions are a reasonable approximation of the behavior
of real world organizational members, as well as experimental subjects, in settings characterized
by high levels of strategic uncertainty. We stay close to how models without communication have
modelled actions to clearly illustrate the effect of communication. When agents are not allowed
to communicate, the results from our model – that all agents choosing the lowest ranked action is
the unique stochastically stable state – is also similar to earlier results (Robles, 1997; Riedl et al.,
2012).5

When agents can choose whether or not to communicate, we find that communication may
solve the coordination problem, but only if the costs of communication are small enough and the
incentives to coordinate on the efficient action are strong enough. The simulations furthermore
show that the stochastically stable states are not only long run phenomena. With the experimental
conditions used in Kriss et al. (2012), the least efficient state is stochastically stable, and the most
frequent outcome in the short run. Our simulation results with voluntary costly communication are
overall similar to the experimental results of Kriss et al. (2012), but with the difference that the
exact level of message costs seems less important in our model.

An organization may also have the authority to structure communication by imposing rules
or routines for how its members should communicate. We examine analytically how two simple
routines – making communication mandatory and assigning one agent to be the team leader –
change the outcome. In line with the experimental results in Blume and Ortmann (2007) and in
Kriss et al. (2012), all agents coordinating on the payoff dominant action is the unique stochastically
stable state with mandatory communication. A team leader may improve coordination, but the

4Security, safety, data collection or other general quality assurances are further examples. Camerer (2003) mentions
airplanes before departure, joint production of documents in law firms, accounting firms, and investments banks, and
that production functions like the Cobb-Douglas with large exponents or Leontief functions also have similar properties.

5Starting with Van Huyck et al. (1990), a large experimental literature shows that play in the weakest-link game
(or “minimum effort game”) with groups of more than three subjects almost invariably converges towards the least
efficient equilibrium when subjects are not helped by any coordination mechanism (Engelmann and Normann (2010)
is the single exception we have found).
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team leader must both expect other agents to choose the communicated action and have enough
authority or credibility for efficient coordination to occur. In accordance with intuition, the result
also indicates that this will become more difficult as the size of the group increases. While there
are no experiments that exactly match our setup for this routine, credibility influences the impact
of communication in the weakest-link experiments of Brandts et al. (2012), and Kriss and Eil
(2012). In the latter study, expectations are also important for efficiency: team leaders sometimes
fail to use costly communication that would help their groups. Regarding group size, free-form
and costless communication by a team leader improves efficiency when addressing groups of two,
but not groups of nine and ten subjects in Weber et al. (2001), and it improves but does not always
yield full efficiency when the leader addresses groups of four in Cooper (2006), Brandts and Cooper
(2007), and Brandts et al. (2012).

To the best of our knowledge, there are no similar theoretical models of communication in the
previous literature on organizational coordination. The cheap-talk literature examines the effects
of pre-play communication on outcomes in a variety of games (e.g. Crawford and Sobel, 1982;
Farrell and Rabin, 1996). Closest to our paper, Ellingsen and Östling (2010) model cheap-talk
by agents using level-k models of strategic thinking. They find that as long as truth-telling is
lexicographically preferred to lying, costless communication facilitates coordination in common
interest games with positive spillovers and strategic complementarities, such as the weakest-link
game.6 Models of costly communication mostly analyze sender-receiver games with perfectly
rational agents and examine how outcomes vary with the degree of private information and/or
conflicts of interest between sender and receiver (e.g. Austen-Smith, 1994; Dewatripont and Tirole,
2005; Gossner et al., 2006; Calvo-Armengol et al., 2009; Wilson, 2012). But as subjects have a
common interest in achieving efficient coordination and the parameters of the experimental game
are common knowledge, private information and conflicts of interests are unlikely explanations
of the coordination difficulties in the situations we are interested in. Our game is also repeated
in contrast to the one-shot settings typically used in the costly communication literature (Gossner
et al. (2006) is an exception). Compared to Dewatripont and Tirole (2005), Calvo-Armengol et al.
(2009) and Wilson (2012), we simplify and treat only the sending of information as costly.7

We proceed in the following way: section 2 outlines the model and presents the analytical
results. Section 3 describes the simulation model and results, while section 4 contains concluding
remarks.

6See also e.g. Crawford (2003) and Wengström (2008) for results with level-k models in hide-and-seek and price
competition games, respectively.

7There is also a related and recent literature in mechanism design that seeks to characterize feasible and optimal
mechanisms given incentive and communication constraints, see e.g. Van Zandt (2007) and Mookherjee and Tsumagari
(2012).
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2 The model

This section contains the model and analytical results. We start in section 2.1 with a description
of the weakest-link game and how agents choose messages and actions, while section 2.2 presents
results with and without communication as well as when simple routines are used to structure the
agents’ communication.

2.1 A model of communication in weakest-link games

We consider a finite set of agents N = {1,2, ...,n}, n≥ 2. Let Ai = {1,2, ...,K} be the set of actions
for agent i. Actions are represented by integers where 1 is the lowest ranked action and K is the
highest ranked. Let Mi = Ai ∪{∅} be the set of available messages, where the empty message
represents the case of no communication. The set of all possible combinations of messages is de-
noted M =∏i∈N Mi and the corresponding set of actions A=∏i∈N Ai. Agents’ tasks in every period
t = 1,2, ... of the infinitely repeated game are to choose a message mt

i ∈Mi in the communication
stage, and an action at

i ∈ Ai in the action stage.
We structure the communication and action stages in a way similar to the experimental con-

ditions of Blume and Ortmann (2007) and Kriss et al. (2012): each agent sends one message per
period and this message is sent to all other agents. Furthermore, messages are sent simultaneously
so agents do not learn the other agents’ messages before sending their own. After receiving mes-
sages, agents simultaneously choose an action in the action stage. Let mt = {mt

1,m
t
2, ...,m

t
n} be the

set of sent messages and let mt
−i denote agent i’s received messages in period t. The set of chosen

actions in period t are denoted at = {at
1,a

t
2, ...,a

t
n}. The cost of sending message mt

i is c(mt
i) and

we assume that c(mt
i) = c(mt

j)∀i, j ∈ N. Moreover, c(mt
i) = c > 0 in all periods and for all mt

i 6=∅,
while c(∅) = 0 (i.e. not communicating is costless). Receiving messages is not costly.

After the action stage, payoffs in the weakest-link game with costly communication are given
by a function π : M×A→ R, defined for each agent i in every period t as

πi(at ,mt
i) = αat−βat

i− c(mt
i) (1)

where α and β are parameters of the game, α > β > 0, and at ≡ min j∈N{at
j} is the lowest ranked

(minimum) action played by some j ∈ N. Thus, an agent’s payoff is increasing in the minimum
action and decreasing in the action chosen by the agent, and the higher the ratio of β to α the weaker
the incentives to choose a higher ranked action. The payoff function is common knowledge and the
same for all agents in every period. If the game is restricted to the action stage, the assumption that
α > β > 0 implies that the combinations where all players choose the same action constitute the
strict Nash equilibria of the game.

The next step is to describe how agents choose messages and actions. First, we assume that all
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agents follow the same decision-making process, characterized by myopic best replies, limited in-
formation processing, and mistakes and experiments. As in the experiments of Blume and Ortmann
(2007) and Kriss et al. (2012), we let agents observe all messages whereas they are only informed
about the minimum action in each period.8 Note that we do not assume that agents know they are
identical, or that the details of the decision-making process is common knowledge. To form their
expectations about play in the current period agents use information from the previous period; that
is, in t agent i uses the history of play in the form of received messages mt−1

−i and the minimum
action at−1 in period t−1.

Throughout, we use m and a to denote prospective messages and actions; that is, when agents
think about what message to send and what action to take. Starting with how expectations are
formed in the communication stage, we assume that the subjective probability of action a becoming
the minimum action in any period t, before any message is actually sent, is influenced by i) the
content of i’s own prospective message m; ii) other agents’ messages in the previous period mt−1

−i ;
and iii) if at−1 = a, i.e. if a was the minimum action in the previous period or not.

Let qt
i(a|m) ≡ Pr

(
at = a|m,mt−1

−i ,a
t−1
)

be i’s communication stage subjective probability of

a becoming the minimum action in period t, should i send mt
i = m (as mt−1

−i and at−1 are the same
regardless of which message is being contemplated, we leave them out of qt

i(a|m) to ease notation).
That is, qt

i(a|m) represents agent i’s subjective assessment, before any actual messages are sent, of
how likely it is that action a becomes the minimum action in period t, should i send mt

i = a. This
assessment is done such that, for each m ∈ Mi, ∑

K
a=1 qt

i(a|m) = 1. We make four more specific
assumptions about the qt

i(a|m), which are further discussed below:
Assumption 1: Agents form expectations based on a distribution they believe is stationary; i.e.

they expect the empirical frequencies of other agents’ messages in t−1 to be the same in period t.
Assumption 2: For t > 1 and all i ∈ N and all a,a′ ∈ Ai, if mt−1

j 6= a for all j and at−1 6= a, then
in t, qt

i(a|m =∅) = qt
i(a|m = a′) = 0. So, besides the initial period,9 if there is no indication of a,

either by communication or by earlier play, then agent i places probability 0 on action a being the
minimum in period t, unless agent i contemplates to send m = a.

Assumption 3: The subjective probabilities are influenced by the frequencies of messages, not
their labels. That is, if we for instance change the labels on messages and actions equal to a in t−1
to a′ and call this new history m̂t−1 and ât−1, then m = a given mt−1 and at−1 affect qt

i(a|m) exactly
as m = a′ affect qt

i(a
′|m) given m̂t−1 and ât−1.

Assumption 4: For all i, j ∈ N and all a ∈ Ai, qt
i(a|m) is non-decreasing in the number of

mt−1
j = a, if m = a, and if m =∅ and at−1 = a.

8That agents can only observe the minimum action and not individual actions of other agents is the most commonly
used informational condition also in the experimental literature without communication, but see Devetag and Ortmann
(2007) for some exceptions.

9Given the assumptions about the agents’ decision-making process, the initial expectations are of no consequence
for our first results, but we discuss this issue in section 3.2.
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The first two assumptions are relatively strong, but have counterparts in several other game-
theoretical learning models. Agents are assumed to treat the empirical distribution of play as
stationary in for example fictitious play (Fudenberg and Levine, 2009). Many models in which
expectations are based on empirical frequencies of past play include an assumption similar to the
second (e.g. Robles, 1997; Young, 1998; Riedl et al., 2012). Our results are however qualitatively
similar if we allow for a small, but larger than zero, subjective probability of actions not indicated
by messages or the previous minimum action (results available on request). As this complicates
both expressions and proofs without adding much intuition, we prefer to use assumption 2 to keep
the model simple. The third assumption states that there is nothing intrinsically special about cer-
tain actions in terms of how expectations change due to agent i’s own communication. If some
actions are focal points, so that messages indicating such actions are expected to influence other
agents’ choice of action more than others, this would be a violation of the assumption. The fourth
assumption implies that messages indicating a certain action never decrease agents’ expectations
of this action becoming the minimum action, and may increase these expectations. It also implies
that sending the empty message may increase, but not decrease, the subjective probability placed
on the last period’s minimum action.

Given these assumptions and the common knowledge of the payoff function, we formulate
the subjective expected payoff of action a in time t when contemplating which message to send
as (henceforth, h denotes actions higher or equally ranked, and l denotes lower ranked actions,
compared to some a):

E(πi(a,m)) =
K

∑
h=a

qt
i(h|m)a(α−β)+

a−1

∑
l=1

qt
i (l|m)(αl−βa)− c(m). (2)

Because the lowest ranked action played by any agent is always payoff-determining, the risk associ-
ated with playing a decreases when the subjective probabilities of a and all higher ranked actions in-
crease. Therefore, the expected payoff of a becoming the minimum increases with all qt

i(h|m), such
that h ≥ a; i.e. the term ∑

K
h=a qt

i(h|m) in equation (2). Consequently, E(πi(1,m)) = α−β− c(m),
regardless of the history of play. As all actions are higher ranked than 1, action 1 always determines
payoffs if played by any agent. For this reason, it can never be a best reply message to send mt

i = 1.
To determine a best reply message, we are interested in the total or aggregate expected payoff

conditional on a certain message, denoted E(πi(m)). What we have in mind is a procedure where
agents contemplate each possible message, compare the expected payoffs, and then choose the
message that yields the highest expected payoff. However, the expected payoffs for single actions
can be aggregated into E(πi(m)) in several different ways. For our first results, we assume the
following:

E(πi(m)) =
K

∑
a=1

E(πi(a,m)). (3)
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That is, the agent sums the expected payoffs for the individual actions. The best reply correspon-
dence for messages is then:

BRm
i = {m ∈Mi : E(πi(m))≥ E

(
πi(m′)

)
∀m′ ∈Mi}. (4)

If there is more than one message that is a best reply, we assume that the agents choose between
these messages by randomizing uniformly. Mistakes and experiments are also possible: agent i
chooses a best reply message according to the above procedure with probability 1− ε, and with a
(small) probability ε chooses a message in Mi by uniform randomization.10

In the action stage, we assume that agents best-reply to expectations given by the frequencies
of received messages and the minimum action in the previous period. When an agent receives
messages from some but not all other agents, agents assume that the non-communicating agents
will play the minimum action in the previous period. Let pt

i(a) denote the probability assigned by
agent i to a being the minimum action. The expected payoff of an action a in period t is then

E(πi(a)|mt ,at−1) =
K

∑
h=a

pt
i(h)a(α−β)+

a−1

∑
l=1

pt
i(l)(αl−βa). (5)

where pt
i(h) =

1
n ∑ j∈N pt

i j(h) and pt
i(l) =

1
n ∑ j∈N pt

i j(l), and

pt
i j(h) =


1 if mt

j = h

1 if mt
j =∅ and at−1 = h

0 otherwise

and

pt
i j(l) =


1 if mt

j = l

1 if mt
j =∅ and at−1 = l

0 otherwise.

That is, the subjective probabilities of each action being the minimum are equal to the frequencies
to which the action has been indicated by messages, or indicated by the combination of the empty
message and being the last period’s minimum action. The procedure implies that ∑

K
a=1 pt

i(a) = 1.
As in the communication stage, we assume that the expected payoff of any action a increases in
the sum of subjective probabilities put on all higher ranked actions and the action itself, i.e. the

10As discussed by for example Bergin and Lipman (1996), van Damme and Weibull (2002), and Blume (2003), the
assumption of a uniform distribution of mistakes/experiments need not be innocuous. We make it here for simplicity,
and test different distributions in section 3.
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term ∑
K
h=a pt

i(h) in equation (5). Agents thus use the frequencies of messages to determine the
subjective probabilities of actions, so again it is only the number of messages that counts, not their
labels. Note that agents do not expect others to always choose the action indicated by their message.
If so, then the best reply action would be a ≤ min(mt

j) and lower only if at least one other agent
send the empty message and the minimum action in period t−1 was some a′ < min(mt

j).
With probability 1− ε agents choose an action in the best reply correspondence for actions

BRa
i = {a ∈ Ai : E(πi(a)|mt ,at)≥ E(πi(a′)|mt ,at)∀a′ ∈ Ai} (6)

and with probability ε agents use a uniform randomization over all actions in Ai. We make the
following assumption about the probabilities of mistakes/experiments:

Assumption 5: ε = ε. That is, an agent is as likely to make a mistake or experiment in the
communication stage as in the action stage. Furthermore, we assume that both ε and ε are identical
for all agents and independent both across agents and over time.

This assumption is made for simplicity here, and we relax the equality between the probabil-
ity of mistakes and experiments in the communication and action stages in the simulations. The
decision-making process describes agents as myopic in that they choose best replies for just one
period at a time, i.e. they are not forward-looking. Agents are limited in their information process-
ing as we assume that they only use the previous period’s information to form their expectations
about communication and actions in the present period. The small probabilities of mistakes and
experiments represents another aspect of bounded rationality. The model is a variant of the adaptive
learning process first developed by Young (1993, 1998) and Kandori et al. (1993), and the decision-
making process forms what Young (e.g. 1993) calls a regular, perturbed Markov process. Without
communication, our model corresponds to one in Riedl et al. (2012), and is very similar to Robles
(1997). The difference to Robles, who considers not only the weakest-link game but order-statistic
games in general, is that agents in his model are informed of the whole empirical distribution of
chosen actions in the previous period, not only the minimum action.11

For the results in the next section, we first find the absorbing states of the process – states
that the process cannot leave without mistakes or experimentation – and second the stochasti-
cally stable states, which are roughly the absorbing states for which the minimum number of mis-
takes/experiments needed for the process to leave is the highest. Stochastically stable states can be
interpreted as the states where the process is most likely to be found in the very long run; they need
not be unique, but there is always at least one (Young, 1993). We describe this and related concepts

11We depart from Young (1993, 1998) and others that have used a similar framework (e.g. Jackson and Watts, 2002;
Goyal and Vega-Redondo, 2005) in that all agents choose an action in every period, instead of only one agent updating
at t. Kandori et al. (1993) and Robles (1997) also let all players update their strategies in every period. The agents in
Young (1993, 1998) furthermore use an individual random sample of the remembered history of play, which can be
longer than one period, whereas Robles (1997) and Riedl et al. (2012) also let their agents use only the previous period.
None of these models include communication between agents.
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more in detail in section A.1 in the Appendix.

2.2 Analytical results

To derive some benchmark results, we first assume that agents cannot communicate. Best reply
actions are then as defined by equations (5) and (6); i.e. since mt

i = ∅ for all i ∈ N, pt
i(h) = 1 if

at−1 = h and 0 otherwise, and pt
i(l) = 1 if at−1 = l and 0 otherwise. This yields a regular, perturbed

Markov process Pε on the state space A. As the game is restricted to the action stage, the assumption
that α > β > 0 implies that the combinations where all players choose the same action constitute
the strict Nash equilibria of the game. We call the set of strict Nash equilibria E = {E1,E2, ..,EK},
where 1, ...,K corresponds to the ranking of actions.

Without communication, our results in the weakest-game are the same as in Riedl et al. (2012)
and Robles (1997):12

Proposition 1: Let the agents’ decision-making process be defined by Pε and let the state space be
A. Then the unique stochastically stable state in the weakest-link game without communication is
E1.

As this result is not new, we omit an individual proof (it is included as a case of proposition 2, see
Appendix A for all proofs). The proposition indicates that the least efficient equilibrium, corre-
sponding to all agents choosing action 1, is the most likely long-run outcome of the weakest-link
game. While this is in line with much of the experimental evidence, note that the result holds re-
gardless of the number of players and of the incentives to choose the payoff dominant action (the
ratio of β to α). This seems intuitively less convincing and two-player experimental groups often
manage to achieve efficient coordination (Van Huyck et al., 1990; Camerer, 2003).

The relevant state space for the perturbed Markov process Pε,ε defined by the decision-making
procedure with communication is S = M×A, and we denote a strategy profile s ∈ S in period t as
st = (st

1,s
t
2, ...,s

t
n) where st

i = (mt
i,a

t
i). Let states where strategies are such that st

i = (∅,at
i)∀ i ∈ N

be denoted Ea and the set of such states be E, i.e. we use, hopefully without any risk of confusion,
the same notation for strategies corresponding to the strict Nash equilibria in the game without
communication. Recall also that qt

i(a|m) = qt
j(a|m) according to the stated assumptions so it suf-

fices to check whether the results hold for one agent. This yields the following proposition:

12See also Svejstrup Hansen and Kaarbøe (2002) for a discussion of results for order-statistic games in similar
models, and Crawford (1995) for a different model of adaptive learning without communication that matches the
short/medium run dynamics of the weakest-link and median action experiments run in Van Huyck et al. (1990) and
Van Huyck et al. (1991). See also Honda (2012) for an illuminating theoretical explanation of equilibrium selection in
the two-player version of the weakest-link game without communication and other coordination games.
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Proposition 2: Let the agents’ decision-making process be defined by Pε,ε and let the state space
be S. Then, Ea ∈ E are the only possible absorbing states. Suppose the process is in some Ea. If

(i) qt
i(h|m = h)< β

α
+ c

α(h−a) for every Ea ∈ E and all pairs a,h ∈ Ai such that h > a, and nβ

α
> 1,

then E1 is the unique stochastically stable state;

(ii) qt
i(h|m = h)< β

α
+ c

α(h−a) for every Ea ∈ E and all pairs a,h ∈ Ai such that h > a, and nβ

α
≤ 1,

then all Ea ∈ E are stochastically stable;

(iii) qt
i(h|m = h) ≥ β

α
+ c

α(h−a) for at least one Ea ∈ E and one pair a,h, then EK is the unique
stochastically stable state.

The proposition implies that only states where no agent communicates and all choose the same ac-
tion can be absorbing states. Conditions (ii) and (iii) indicate that communication may help agents
to avoid the least efficient (all agents play action 1) absorbing state. When agents’ expectations that
their message will sway the others to a higher ranked action, if “stuck” in some absorbing state,
are high enough, the only remaining absorbing state is the most efficient (all agents play action
K). A key to this result is that whenever the condition in (iii) holds for some h > a, it also holds
for K as sending K is always at least weakly preferred to any other message, except possibly the
empty message. In sum, although communication is not part of any stochastically stable state, the
possibility of communication may help coordinate play on more efficient actions.

However, comparing these results to the experimental results in Kriss et al. (2012), we can note
that only 4 out of 14 groups in their costly communication treatments manage to achieve a higher
ranked minimum action than 1 in the eighth and final round of the experiment. Of these, only one
group is coordinated on the highest ranked action. The threshold for qt

i(h|m = h) in the proposition
also indicates that it would be difficult: using the experimental parameters in Kriss et al. (2012)
implies that in E1 (which yields the lowest possible threshold for the condition in (iii)), qt

i(K|m =

K) = qt
i(7|m = 7)> 0.51 would be needed in the low cost treatment and qt

i(7|m = 7)> 0.54 in the
high cost treatment. That is, for the highest ranked action to be the stochastically stable state, an
agent must expect that there is a larger than 50 percent probability that the group will switch from
a minimum action of 1 to a minimum action equal to 7, should she send mt

i = 7. Furthermore, most
experimental subjects either send the empty message or mt

i = K = 7 when they can choose whether
to communicate or not, and the frequency of messages decline over the course of the experiment.
Both the decline of communication over periods seen in the experiment, and the dominance of
messages indicating the highest ranked action when the subjects communicate, are in line with
proposition 2.

We have so far not made any assumptions on how qt
i(a|m) depends on the number of agents.

It seems reasonable that more agents would make each agent less likely to expect that sending a
message would affect the minimum action. If we add an assumption that qt

i(a|m) is decreasing in

11



the number of agents (as we do in the simulations), the results and thresholds in proposition 2 still
hold, but EK would be less likely to be the stochastically stable state when the group is larger. As
n = 9 in Kriss et al.’s experiments, using communication to break out of an inefficient state can be
expected to be difficult. However, as the proposition should be interpreted as the likely long-run
state and Kriss et al.’s experiment runs for eight periods, we should perhaps not make too much of
this quantitative comparison. We return to the short run properties of our model in section 3.

Proposition 2 implies that just allowing agents to communicate may not be enough to induce
coordination on efficient states. One of Kriss et al.’s conclusions is that “in some cases, commu-
nication may be effective only if its use by employees is mandatory” (p. 21). Our next result
shows that making communication mandatory will help agents solve the coordination problem in
our model as well. To create the routine mandatory communication, restrict the choice of messages
to be mt

i ∈ Ai for all i ∈ N; that is, the empty message is not an option any more.13 Choices of ac-
tions are made simultaneously as described by equations (5) and (6), and assumptions 1-5 still hold.

Proposition 3: If mandatory communication is in place and messages affect subjective probabil-
ities, then the unique stochastically stable state in the weakest-link game with communication is
s = ((K,K)1, ...,(K,K)n).

The stated assumptions do not imply that agents must expect a message to have an effect on the
subjective probabilities in the communication stage, but if it does, then proposition 3 implies that
we are most likely to see agents coordinate on the highest ranked action. This is in line with the ex-
perimental results of Blume and Ortmann (2007) and Kriss et al. (2012), a pronounced majority of
players both indicate by message and subsequently choose the highest ranked action. The intuition
for the result is that once the empty message is no longer available, message costs are not important
because of the assumption that they are equal, and the highest ranked action K is always one of
the best reply messages. Thus, agents do not risk getting stuck on lower ranked actions and once
the minimum action in period t− 1 is K, mt

i = K is the unique best reply message for all agents
onwards. That is, the trade-off between lowering the strategic uncertainty for the group and costs
of sending messages that exists when communication is voluntary disappear as soon as messages
become mandatory.

Another way to coordinate agents is to impose restrictions on who gets to communicate. As
tried experimentally in different ways by for instance Weber et al. (2001) and Brandts and Cooper
(2007), an agent may therefore be assigned to the role of communicator (interpreted as a manager
or a team leader). These two studies (and others mentioned in the introduction) use more free-form
communication, so we do not exactly match the set-up in their experiments but model the routine
team leader as follows: let the team leader be agent 1 and let the communication stage consist of

13It does not matter for this result whether the empty message still can be sent by mistake or not.
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agent 1 sending mt
1 ∈A1, while no other agent communicates. Agent 1 chooses a best reply message

according to equations (2) and (4). Mistakes and experiments are still possible and equally probable
in both stages of the game but only agent 1 can make them in the communication stage. As only
agent 1 sends messages, assumption 1 about agents’ messages is not in play any more, whereas we
assume that agent 1’s expectations in the communication stage follow assumptions 2-4.

A team leader can have different levels of authority or credibility. We incorporate this notion by
making the following assumption. Let wt

i1(a|mt
1 = a) ∈ [1,n] and wt

i1(a|mt
1 6= a) = 0 be the weights

assigned by agent i to action a due to the team leader’s message, if the team leader sends or does
not send message a, respectively. Again, wt

i1(a|mt
1 = a) is not influenced by the labels of messages,

so that mt
1 = a has the same influence on wt

i1(a|mt
1 = a) as mt

1 = a′ has on wt
i1(a

′|mt
1 = a′) for all

a,a′ ∈ Ai and all t. Furthermore, let pt
i(a) =

1
n

(
wt

i1(a|mt
1)+∑ j>1 pt

i j(a)
)

and let ∑
K
a=1 pt

i(a) = 1
for all i ∈ N.

These assumptions imply that if wt
i1(a|mt

1 = a) = n, then pt
i j(a
′) = 0 for all j > 1 and all a′ 6= a.

That is, when wt
i1(a|mt

1 = a) = n, the team leader has absolute authority and the previous period’s
minimum action does not influence the expectations of the other agents. If wt

i1(a|mt
1 = a) = 1

agent i does not assign a higher probability to the team leader’s message than to the actions of other
agents, which can be interpreted as the team leader having no more authority or credibility than any
other agent. In the action stage, all agents choose actions simultaneously: agent 1 chooses at

1 = mt
1

and agents i ∈ {2, ...,n} choose actions according to the modified equations (5) and (6), where wt
i1

take the place of pt
i1.

Proposition 4: Let the routine team leader be in place. If (i) qt
1(K|m = K) ≥ β/α and (ii)

wt
i1(K|mt

1 = K)≥ nβ/α, then s = ((K,K)1,(∅,K)2, ...,(∅,K)n) is the unique stochastically stable
state. If qt

1(K|m = K)< β/α and/or wt
i1(K|mt

1 = K)< nβ/α, then s = ((1,1)1,(∅,1)2, ...,(∅,1)n)

is the unique stochastically stable state.

For the routine to induce coordination on the highest ranked action, the team leader must both
expect a message to result in the indicated action and have enough credibility/authority. As men-
tioned in the introduction, credibility and expectations matter in the experiments of Brandts et al.
(2012), and Kriss and Eil (2012). Here, we also have the intuitive result that with the same level of
credibility, it is more difficult for a team leader to lead a larger group to an efficient outcome. This
is consistent with the difference between results in smaller and larger groups found in Weber et al.
(2001); Cooper (2006); Brandts and Cooper (2007), and Brandts et al. (2012).
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3 Simulation

To examine the short-run properties of the model and to relax some of the assumptions, we run
simulations. However, there is a trade-off in this latter regard, as the simulations require that we
determine how agents’ own messages, and the previous period’s minimum action and messages,
affect expectations in the communication stage in exact terms. In the next section 3.1, we present
the version of the model used in the simulation. Section 3.2 describes the parameter configurations
and the results.

3.1 Model of communication for simulation

The model of communication described in section 2.1 assumes certain properties about the condi-
tional expectations of agents, i.e. we assign probabilities to actions given messages and minimum
actions in the form of qt

i(a|m), but the model is otherwise silent about how agents reason to reach
these expectations. Here, we describe a process where agents reason about how other agents would
react to their messages, which we then use in the simulations. Intuitively, each agent i first forms
an expectation about what other agents’ would believe under different messages sent by i. Second,
agent i then computes the expected payoff for each of the other agents, thereby learning which mes-
sage by i would trigger what payoff-maximizing action by any other agent. This results in a best
reply correspondence for each agent. In this formulation, assumptions 1-4 still hold, but the effect
of the agent’s own message and previous period’s messages and minimum action is embodied in
equations rather than the general terms of assumption 4. We relax assumption 5 and assumptions
about the distribution of mistakes/experiments when we run the simulations.

Let qt
i j(a|m)≡ Pri j

(
a = at |m,mt−1,at−1), so i, as before, uses i’s own prospective message in

period t, and the empirical distribution of messages and the minimum action in t−1 but this time
to form expectations of j’s subjective probabilities in t. More specifically, let

qt
i j(a|m) =

1
n

(
1(m = a)+ ∑

j∈N\{i}
1
(

mt−1
j = a

)
+ |∅|×1(at−1 = a)

)
(7)

be i’s expectation over j’s subjective probability of action a becoming the minimum in period t in
the case i should send message m. 1(·) are indicator functions equal to 1 whenever the conditions
in parentheses hold. Unless agent i contemplates to make a change from communication to non-
communication or the other way around, the term |∅| is just the number of empty messages sent in
the previous period. If i contemplates a change from sending a substantive to the empty message
(or from the empty to a substantive message), |∅| decreases (increases) by one. That is, if, for some
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a ∈ Ai

m = a and mt−1
i =∅⇒ |∅|=

n

∑
j=1

1
(

mt−1
j =∅

)
−1 (8)

m =∅ and mt−1
i = a⇒ |∅|=

n

∑
j=1

1
(

mt−1
j =∅

)
+1 (9)

where 1(·) is an indicator function equal to 1 when an agent sent the empty message in t−1. This
formulation constrains ∑

K
a=1 qt

i j(a|m) = 1 for each m ∈ Mi and all t, except for the initial period.
We describe the initial expectations we use in section 3.2. Then, agent i can calculate each agent
j’s expected payoff for a > 1 as

E
(
πi j(a,m)

)
=

K

∑
h=a

qt
i j(h|m)a(α−β)+

a−1

∑
l=1

qt
i j(l|m)(αl−βa) . (10)

As before, each agent’s payoff of a = 1 is always safe, and equal to α−β. Agent i does not have
to take into account any message costs for agent j, as these represent sunk costs in the action stage
for j and are not considered when choosing a best reply action.

Now, using the the expected payoff E(πi j(a,m)), agent i can evaluate the expected minimum
action by checking each agent j’s best reply to each of i’s messages, and then choose the message
that induces the highest ranked minimum action of the other agents. Formally, let

Π j(m) = {a ∈ Ai : E
(
πi j(a,m)

)
≥ E

(
πi j(a′,m)

)
∀a′ ∈ Ai} (11)

be the set of actions such that they are an expected best reply to message m for agent j (from
the point of view of agent i). If E

(
πi j(a,m)

)
= E

(
πi j(a′,m)

)
for some actions a and a′, agents

randomize uniformly among them (so Π j(m) becomes a singleton). Let Π−i(m) = Π1(m)∪ ...∪
Πi−1(m)∪Πi+1(m)∪ ...∪Πn(m) be the union of all agents’ j 6= i expected best reply sets. There
is thus one Π−i(m) for each m ∈ Mi and K + 1 in total for every agent i. Agent i then compares
the payoffs of the lowest ranked action in each Π−i(m) – the minimum, denoted amin – and then
chooses the message corresponding to the set with the minimum yielding the highest payoff. We
denote this collected set of minimum actions by Πmin

i . Best reply messages are found in

BRm
i = {m ∈Mi : πi (amin)≥ πi

(
a′min

)
∀amin,a′min ∈Π

min
i } (12)

where
πi (amin) = amin (α−β)− c(m) . (13)

If there is more than one message in this best reply correspondence, we again assume that agents
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randomize uniformly between them. The implication of the above procedure is that the only prob-
abilistic judgement in the communication stage is made when assessing the impact of a certain
message on other agents’ choice of best replies. In the action stage, the decision-making is exactly
as described by equations (5) and (6).

3.2 Simulation results

We start by comparing our results to Kriss et al. (2012) in the next section, and then examine the
model at a more general level by expanding the range of the parameters of the game in section 3.2.2.
Each configuration of the parameters run for eight periods, as in the Kriss et al. (2012) experiments.
When there are non-zero probabilities of mistake and experiments, we run each configuration 100
times. For most of the results below, we report averages of these 100 repetitions. The simulations
without mistakes and experiments are not repeated.14

We use three different levels of mistake/experiment probabilities in the communication and ac-
tion stage: 0, 10, and 20 percent.15 In contrast to assumption 5, mistake and experiment probabili-
ties do not have to be same in both stages. We also include simulations with alternative distributions
to the uniform. The DoubleDist distribution captures the idea that experiments and mistakes may
be more likely to be close to the originally intended message/action. The probability that a mis-
take/experiment occurs is thus the same as with the uniform distribution, but doubling the distance
from the best reply message/action reduces the probability of being mistakenly chosen by half. As-
sume for example that there are 5 messages (including the empty message) and that the best reply
message is 2. Under uniform probability, each message has a 20 percent chance of being chosen
when a mistake/experiment occurs. Under the “double-distance-half-likely” type, the empty mes-
sage would have the probability of 11.1 percent, 1 of 22.2 percent, 2 of 44.4 percent, 3 a chance of
22.2 percent, and 4 a 11.1 percent chance. The distribution works identically for actions (but there
is no action corresponding to the empty message of course).

Another possibility is that if agents experiment in the communication stage, they may be more
prone to try higher ranked messages. Such experiments seem less likely in the action stage, as the
possible payoff loss of trying higher ranked actions is much greater. We therefore try two other dis-
tributions in the communication stage: the HighestMsg distribution stipulates that all experiments
result in the highest ranked message being sent, and the Exponential distribution (with rate param-
eter λ = 1 in all cases) make messages progressively more likely, the higher their rank. Given the

14Note that there is a chance component also when mistakes/experiment probabilities are zero, as agents resolve the
choice between best reply messages/actions with equal expected payoff by randomizing uniformly. As these ties are
rare and to keep the number of simulations at a manageable size, we choose not to repeat these runs.

15The experimental literature examining the relationship between stated beliefs and strategy choices often find
frequencies of choices that are not best reply replies to stated beliefs at least as high as these probabilities of mis-
takes/experiments, see e.g. Nyarko and Schotter (2002), Costa-Gomes and Weizsäcker (2008), and Manski and Neri
(2013).
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payoff structure of the game, we expect the highest ranked message to be experimented with more
often and it is the second most common message after the empty message in Kriss et al. (2012)
(by a wide margin). However, the HighestMsg distribution leaves little room for mistakes, which
is why we include the Exponential distribution that does allow for lower ranked messages to be
chosen by mistake.

In the initial round, we use a uniform randomization to create a vector of non-empty messages
that agents use to form expectations about which messages they think other agents will send in
period 1. Agents then send best reply messages conditional on these expectations as described in
section 3.1. In the action stage, agents best reply to sent messages as before, but as there is no
minimum action in the previous round, agents use only the messages to form their expectations
and the empty message puts equal weight on all actions. So if all messages are empty in the initial
round, which may happen, agents randomize uniformly over all available actions.

3.2.1 Comparison to experimental results

The two treatments in Kriss et al. (2012) use a ratio of β/α = 10/20, 9 agents, and 7 actions
and let message costs be equal to 1 or 5. In Figure 1 we show the full empirical distributions of
minimum actions in round eight of the simulations when message costs are either 1 or 5, and there
are mistake/experiment probabilities greater than zero in both the communication and action stages.
We show results for all four communication stage distributions of mistakes/experiments, while both
the Uniform and the DoubleDist distributions are included in the action stage. Although it is evident
that the distributions are wide-ranging (all seven actions are represented as the minimum action in
both), it is also clear that the action corresponding to the stochastically stable state in our model
with uniform mistakes/experiments (action 1 for both configurations) is the most frequent among
the minimum actions already in round 8 with both levels of message costs and for all distributions.
The overrepresentation of action 1 among the minimum actions is somewhat less pronounced if we
only allow for a 10 percent probability of mistakes and experiments, but the results for the different
distributions are otherwise similar (results not shown). Note also that the distributions are similar
regardless of the exact level of the message costs.

In Kriss et al.’s treatment with message costs = 5, all six groups have a minimum action of 1 in
the eighth round. With message costs = 1, the distribution is the following: four groups play action
1, two groups play 3, and one group each play action 5 and action 7.16 Thus, action 1 is the most
frequent minimum action also in the experiments.

Table 1 contain the mean and range of our simulated minimum actions in round eight, where
the minimum action is averaged over 100 repetitions for each configuration. As can be seen in
Figure 1, the Exponential and HighestMsg distribution yield higher ranked minimum actions on

16Information about the average action in round eight is not included in Kriss et al. (2012), so we cannot compare
our results to the distribution of the average action in their experiments.
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Figure 1: Distributions of minimum actions in round 8
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average, but the difference to the other two distributions is not very large. With message costs =
1, the average minimum action in round eight in Kriss et al. is 2.75. This average is included in
the range of 5 out of 8 combinations of distributions and is closest to the DoubleDist-Exponential
combination, which is 2.92. As our means and ranges are very similar for message costs = 5, these
are further away from the experimental mean where all six groups end up with a minimum action
of 1 in round eight.

These results reflect a feature confirmed also in the results with a wider range of parameters
(presented in the next section): our estimates are not very sensitive to increases in the cost of
messages. Kriss et al.’s subjects do on the other hand seem to react to the different costs, although
one reason may be that we are comparing our averages for the minimum actions over groups to
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Table 1: Mean and range, Average minimum action in round 8

Panel A: Message costs = 1
(1) (2) (3) (4)

DISTRIBUTION Uniform DoubleDist HighestMsg Exponential

Uniform 1.80 1.71 2.21 2.22
[1.60,1.98] [1.53,1.89] [1.77,2.87] [1.52,2.86]

DoubleDist 2.25 2.15 3.19 2.92
[1.65,2.81] [1.77,2.50] [1.95,4.45] [1.91,3.78]

Panel B: Message costs = 5
(1) (2) (3) (4)

DISTRIBUTION Uniform DoubleDist HighestMsg Exponential

Uniform 1.71 1.73 2.01 2.08
[1.50,1.86] [1.45,1.91] [1.28,2.82] [1.64,2.73]

DoubleDist 2.35 2.05 3.24 3.09
[1.95,2.88] [1.70,2.34] [2.06,4.39] [2.1,4.09]

The table display the mean and, in square brackets, the upper and lower
bound of the range of average minimum actions in round 8 for each
combination of communication and action stage distributions.

a very small sample. As mentioned, there are 8 groups in the low message cost treatment and 6
in the high message cost treatment in their experiments. A hypothetical seventh group in the high
message cost treatment coordinating on a minimum action of 6 or 7 in round 8 would raise the
mean so that it would be included in 5 out of 8 ranges for example. A behavioral reason may be
that the salience of costs differ, message costs = 1 may be treated as negligibly small for example,
while higher message costs may loom larger and enter into the calculations of subjects’ expected
payoffs. A related possibility is that the lower message costs make agents experiment with sending
messages of higher actions more often, which our simulations do not allow for. The difference in
the pattern of communication is not large between the two treatments, but both messages in general
and the highest ranked message are more frequent in the low cost treatment.

3.2.2 Regression results

To be able to separate the effects from different variables and to report the general results in a
succinct way, we run OLS regressions with the average action, and the average minimum action
in round eight as dependent variables (both variables are averaged over 100 repetitions in con-
figurations with positive mistake/experiment probabilities). As independent variables, we include
indicator variables for each increment of the variables used to determine the configurations, using
the category with the lowest value as the reference category throughout.

The following variables determine the configurations. Number of agents and Number of ac-
tions: both the number of agents and actions are varied between 2-10 in increments of two for the
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regressions. These are denoted as for example agents2 if the configuration uses two agents. Mes-
sage costs: the cost of sending messages is increased in increments of two, starting from 1 and up
to 9. Action mistake probabilities and Communication mistake probabilities: we use three different
levels of mistake/experiment probabilities in both the communication and action stage: 0, 10, and
20 percent.

Uniform, DoubleDist, HighestMsg and Exponential: We include two distributions of mistakes
and experiments in the action stage, and four in the communication stage as described in the pre-
vious section. All are included as indicator variables, and the uniform distribution is the reference
category in all regressions (DoubleDist(actions) is the indicator variable for the DoubleDist distri-
bution in the action stage).

β/α-ratio: We keep α constant at 20, while β varies between 8-12 in increments of one, so
ratior ∈ {0.40,0.45,0.50,0.55,0.60}, r = 1,2,3,4,5. The mid-point 0.50 is the most commonly
used ratio in the experimental literature. As β increases, the incentives to choose a higher ranked
action becomes weaker. Thus, we expect a negative relationship between the β/α-ratio and our
outcome variables.

Using the full ranges described above yields 45,000 configurations (and a total number of sim-
ulations well over 4 million). The results of the OLS regressions are shown in table 2.17 Columns
(1)-(2) use the average action in round 8 as the dependent variable and columns (3)-(4) use the
average minimum action in round 8. Columns (1) and (3) contain all configurations regardless of
whether mistakes and experiments are possible, while columns (2) and (4) contain specifications
where there are non-zero probabilities of mistakes and experiments in both stages.18 In columns
(2) and (4), we use the categories where mistake and experiment probabilities are 10 percent as
reference categories instead of the 0 percent category.

The results for the average and minimum actions are similar for most variables over the two
types of specifications, so we discuss them together. We expect that increasing the number of
agents should make it more difficult to use communication to break out of inefficient states, and
to increase the number of occasions where some agent makes a mistake or experiments. The first
effect should imply lower average actions and average minimum actions, while direction of the
second effect depends on the distribution used. The estimates get progressively more negative as
we increase the number of agents. The largest change is the jump from 2 (the reference category)
to 4 agents.

Message costs are not a large influence on either the average or minimum action in round
8. Except for the highest cost category in the specifications with all configurations included, the

17Indicator variables for actions are suppressed in table, but included in all specifications. The results for the number
of actions are perhaps less interesting as when more actions are available, the average and minimum actions increase
mechanically.

18Using an intermediate specification where mistakes and experiments are possible in at least one stage does not
change the results much.
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Table 2: Average action and Average minimum action in round 8

(1) (2) (3) (4)
VARIABLES Avg action Avg action Min action Min action

agents4 -0.719*** -0.694*** -0.800*** -0.761***
(0.0208) (0.0267) (0.0221) (0.0289)

agents6 -1.122*** -1.327*** -1.239*** -1.452***
(0.0205) (0.0254) (0.0219) (0.0281)

agents8 -1.541*** -1.985*** -1.716*** -2.284***
(0.0212) (0.0255) (0.0224) (0.0278)

agents10 -1.804*** -2.321*** -1.996*** -2.651***
(0.0219) (0.0266) (0.0231) (0.0289)

msgcosts3 -0.00772 0.00228 -0.00801 0.00196
(0.0194) (0.0221) (0.0205) (0.0245)

msgcosts5 -0.00982 -0.00168 -0.00998 -0.00127
(0.0193) (0.0221) (0.0205) (0.0244)

msgcosts7 -0.0228 -0.00914 -0.0234 -0.0101
(0.0194) (0.0221) (0.0205) (0.0245)

msgcosts9 -0.0587*** -0.0340 -0.0611*** -0.0370
(0.0194) (0.0222) (0.0205) (0.0245)

actionmistake1 -1.262*** -1.335***
(0.0156) (0.0161)

actionmistake2 -1.588*** -0.281*** -1.754*** -0.425***
(0.0158) (0.0144) (0.0167) (0.0158)

commistake1 0.565*** 0.562***
(0.0156) (0.0164)

commistake2 0.918*** 0.455*** 0.939*** 0.429***
(0.0159) (0.0144) (0.0167) (0.0157)

DoubleDist(actions) 0.310*** 0.500*** 0.380*** 0.557***
(0.0123) (0.0140) (0.0130) (0.0155)

DoubleDist -0.239*** -0.343*** -0.253*** -0.375***
(0.0176) (0.0213) (0.0185) (0.0231)

HighestMsg 0.606*** 0.756*** 0.639*** 0.826***
(0.0168) (0.0188) (0.0177) (0.0206)

Exponential 0.386*** 0.723*** 0.480*** 1.032***
(0.0182) (0.0194) (0.0192) (0.0215)

ratio2 0.0324 -0.0313 0.0309 -0.0350
(0.0199) (0.0236) (0.0212) (0.0259)

ratio3 -0.300*** -0.294*** -0.363*** -0.407***
(0.0193) (0.0225) (0.0203) (0.0244)

ratio4 -1.193*** -1.179*** -1.283*** -1.323***
(0.0198) (0.0223) (0.0210) (0.0248)

ratio5 -1.224*** -1.209*** -1.316*** -1.357***
(0.0197) (0.0225) (0.0209) (0.0249)

Constant 2.854*** 2.391*** 3.002*** 2.594***
(0.0310) (0.0375) (0.0328) (0.0413)

Mean, dep var 3.44 3.13 3.40 3.13
Observations 45,000 20,000 45,000 20,000
R2 0.701 0.775 0.686 0.756
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
Indicator variables for the number of actions are included in all
specifications but are left out of the table.
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estimates are very close to zero (and the magnitudes are also rather small for message costs = 9).
This can actually be seen also in the conditions of proposition 2: while the stochastically stable state
depends to some degree on message costs, the ratio has greater influence. Beyond the introduction
of costly communication, the exact levels of message costs is therefore not a huge influence on the
outcome in either version of our model.

The coefficients representing the frequency of mistakes/experiments in the action stage are
negative and large, while mistakes and experiments have a positive but smaller influence in the
communication stage. This is in line with the proof of proposition 2, where it turns out that mis-
takes/experiments in the action stage for most parameter values determine the stochastically stable
state – often resulting in the most inefficient state being stochastically stable. However, in some
cases when incentives are strong and groups are small, communication mistakes also become im-
portant, in which case all absorbing states become stochastically stable. In the action stage, almost
all of the effect comes from going from no mistakes/experiments (the reference category) to having
at least some, as the coefficients on the variables are of similar magnitude for both actionmistake1

and actionmistake2. In the communication stage, a 20 percent mistake/experiment probability in-
creases the average action by almost 1, and adds almost 0.5 compared to the 10 percent probability.
This difference between the stages is due to the HighestMsg and Exponential distributions, which
increase the play of higher ranked actions.

The DoubleDist distribution affects the results differently depending on whether we are in the
communication or action stage. Compared to the uniform distribution, DoubleDist(actions) makes
it less likely that play drops all the way to a lower ranked action by just one mistake in the action
stage. This makes sense since any mistake tends to be closer to the intended action than under the
uniform distribution where a far lower action played by mistake is quickly followed by far lower
play of other agents. On the other hand, in the communication stage, the DoubleDist distribution
makes it less likely that a mistaken/experimental message indicates a much higher ranked action
than the current state. The HighestMsg and the Exponential distribution increase both the average
action and the average minimum action in round 8, as expected.

Lastly, the coefficients for ratios are mostly negative and becoming progressively more negative
the higher the ratio becomes. This is in line with the model’s predictions as a higher ratio represents
weaker incentives to play a higher ranked action. Ratio2 is however positive relative to ratio1 as
the reference category in column (1) and (3), which may seem unintuitive (although ratio2 is never
significant). One explanation is that the stochastically stable state is the same for a large share
of the configurations, regardless of the ratio. Thus, we expect to see convergence over time. An
interpretation in terms of behavior that fits with how agents in our simulations react in the initial
round could be that with a higher ratio, agents are relatively certain that others will indicate the
highest ranked action with a message. Therefore, they abstain from doing so themselves (i.e. take
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the chance to free ride on other agents’ messages).19 However, if many or all agents think in this
way, few will actually send a message. When faced with an unexpected situation in the action
stage agents may therefore find it difficult to assess what will happen and choose an action more at
random, which frequently yield low ranked minimum actions.

4 Concluding remarks

This paper develops a model to examine how communication affects organizational coordination
when actions are highly interdependent among boundedly rational agents. The results imply that
efficient coordination may be difficult to achieve when communication is costly, as the stochas-
tically stable state is often the least efficient coordinated state. Even if message costs are small
compared to the potential gains of efficient coordination, the costs introduce a trade-off for agents
between lowering the strategic uncertainty for the group and the costs of communication. This
effect of communication costs may explain the contrasting results in experiments with costly and
costless communication.

We also use a version of the model in simulations to examine its short run properties. The
stochastically stable states often have considerable explanatory power also in the short run, as these
states are overrepresented in the empirical distribution of minimum actions after eight rounds (espe-
cially when groups are large). The difficulties experienced by experimental subjects to coordinate
on efficient states when communication is costly is clearly present also in our simulations.

These results suggests that organizations may improve the efficiency of groups by lowering
communication costs, but also that lower communication costs are often not enough to achieve
efficient coordination. That organizations can structure communication by imposing formal rules
and routines may therefore be more important and, under certain conditions, necessary for efficient
coordination. Situations where such structures are often missing, like new collaborations between
teams or organizations, frequently result in coordination failures. We examine two simple routines,
mandatory communication, and the assignment of a team leader. Mandatory communication im-
plies that sending and choosing the payoff dominant action is the unique stochastically stable state.
A team leader may also induce efficient coordination but only when he or she has enough authority
or credibility, and expects to be able to persuade the group to choose the communicated action.

While our model is broadly consistent with recent experimental results, it is of course in some
aspects a drastic simplification of human decision-making. But we think that the modelling of
costly communication is at least one step towards richer game-theoretical models of organizational
coordination; models that allow for more general ways of communication and are informative about

19In Kriss et al. (2012), the modal message in the first round of the costly communication treatments is the empty
message; 45.8 and 53.7 percent of the subjects send this message in low and high cost treatment respectively, so it is
not uncommon that agents choose not to communicate in the first round.
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how communication and routines can be mixed to achieve efficient coordination. Interesting future
developments in this direction would be to let agents communicate sequentially and send more than
one message, to generalize the number of periods agents remember, and to model communication
in other coordination games, for example the median action game.
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A Proofs of propositions

We start in the next section by defining the concept of stochastic stability and how stochastically
stable states can be computed, as well as some properties of unperturbed and perturbed Markov
processes that we use in the proofs. A fuller description of these concepts can be found in for
example Young (1998) (especially chapter 3, which we follow closely below). The proofs of the
propositions follow in sections A.2 – A.4.

A.1 Stochastic stability

A discrete-time Markov process on a finite state space X specifies the probability that the process
changes from state x to state y from one period to the next for each state x,y ∈ X (Young, 1998).
In our model, the largest state space we use is S = M×A, which is clearly finite. The transition
probability of moving to state s = (mt+1,at+1) in period t +1 conditional on being in s′ = (mt ,at)

in t is determined by the frequencies of messages and the minimum action in t, as well as the
probabilities of mistakes and experiments. As long as the mistake/experiment probabilities are
non-zero but small, they imply that the process can be regarded as a perturbed Markov process, in
the sense that the transition probabilities are slightly distorted versions of some original process,
called P0. Young (1993, 1998) calls such processes regular perturbed Markov processes, denotes
them Pε, and define them to have certain characteristics, which we describe below.

Definition: Pε is aperiodic and irreducible for all ε ∈ (0,ε∗], where ε∗ > 0.
Aperiodic means that the process can return to a state x at irregular times. A process is ir-

reducible if there is a positive probability of moving from any state to any other state in a finite
number of periods. Because mistakes and experiments are possible in every period in our setting,
any state can be reached with positive probability from any other state.

As Pε is irreducible for every ε > 0, it has a unique stationary distribution µε (Young, 1993).
Again following Young (1993, 1998), a state x is stochastically stable if

lim
ε→0

µε(x)> 0, (14)

i.e. any state that the limiting distribution puts positive probability on is a stochastically stable state.
The limit limε→0 µε(x) = µ0(x) exists for every x, and the limiting distribution µ0 is a stationary
distribution of P0. It follows in particular that every regular perturbed Markov process has at least
one stochastically stable state. To describe a way to find this state or states, we need to define some
other concepts as well.

Definition: A recurrent class of P0 is a collection of states such that no state outside the class
is accessible from any state inside it, i.e. the probability of leaving a recurrent class is zero. A state
is called absorbing if it constitutes a singleton recurrent class.
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Let E = {E1,E2, ...,EK} denote the set of recurrent classes of the unperturbed process. An
irreducible process, like the perturbed one, has only one recurrent class, which consists of the
whole state space. There is in general several different ways of reaching an absorbing state or a
recurrent class.

Definition: A aa′-path is a sequence of states ζ = (Ea = z1,z2, ...,zq = Ea′) that start in Ea and
end in Ea′ .

We also need a concept for how “difficult” it is for the process to move from a certain state to
another:

Definition: The resistance of a one-period transition between two states zi,z j in a perturbed
process, denoted r(zi,z j), is the minimum number of mistakes or experiments required to make the
transition, i.e. r(zi,z j) is a positive integer, or zero if no mistakes or experiments are needed. The
resistance of a aa′-path is the sum of the resistances on the path, i.e. r(ζ) = r(z1,z2)+ r(z2,z3)+

...+ r(zq−1,zq).
As it is impossible to leave a recurrent class or an absorbing state without mistakes/experiments,

the resistance of a transition from a recurrent class Ea to another Ea′ is always positive. There can
in general be many aa′-paths, but to find the stochastically stable we are going to be interested in
the ones with the least resistance.

Definition: raa′ = minr(ζ) is the minimum total resistance needed to transition from Ea to Ea′

for all possible aa′-paths ζ.
Note that raa′ need not be equal to ra′a. Young (1998, p. 55-56) describes how the stochastically

stable states can be computed in a simple way: first, construct a complete directed graph with K
nodes, one for each recurrent class. The directed edge a→ a′ from Ea to Ea′ is called aa′ and the
weight on the edge is equal to raa′ . A rooted tree T is a set of K−1 directed edges such that from
every node different from Ea, there is a unique directed path in the tree to Ea. The total resistance
of T is the sum of the minimum resistances raa′ on the K−1 edges that compose it.

Definition: The stochastic potential γ(Ea) of the recurrent class Ea is defined as the minimum
resistance over all trees rooted at a. That is, denote the set of all trees rooted at Ea with T (a), then
the stochastic potential is

γ(Ea) = min
T∈T (a)

∑
k,k′∈T

rkk′. (15)

Stochastically stable states are the absorbing states that have the minimum stochastic potential, i.e.
minEa∈E γ(Ea) (Young, 1993, Theorem 2).

Example: Consider the complete graph in Figure A.1, where the three recurrent classes E1,E2,
and E3 are represented by the three nodes and the resistances between these classes are shown by
the adjoining numbers to the edges.

This example has nine rooted trees, three for each node. For example, the three trees rooted at
E1 have the following directed edges: (23,31); (21,31); (32;21). The stochastic potentials – the
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Figure A.1: Pairwise resistances between recurrent classes
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summed resistances on the tree with the minimum resistance for each Ea – are :

γ(E1) = r32 + r21 = 1+0 = 1

γ(E2) = r13 + r32 = 1+1 = 2

γ(E3) = r21 + r13 = 0+1 = 1

Consequently, γ(E1) and γ(E3) have the same minimum stochastic potential and are therefore the
stochastically stable states.

All proofs use the idea in Riedl et al. (2012) that if a state can be reached with a number of
uncoordinated mistakes, it can also be reached with the same number of “coordinated” mistakes.
That is, if we for example assume that all mistakes are made in the action stage, one of the least
resistance aa′-paths between any Ea and Ea′ is always one where all mistakes/experiments are of
action a′ (the path need not be unique). This is so since all combinations of the same number
of mistakes/experiments have the same probability, as the distribution of mistakes/experiments is
uniform. Also, for all Ea except E1 and EK , moves to both higher and lower ranked absorbing states
are possible. Thus, if it always requires less mistakes/experiments to move to a lower ranked state,
then γ(E1) < γ(Ea)∀Ea ∈ E. If it always requires more mistakes/experiments to move to a lower
ranked state, then EK has the minimum stochastic potential, i.e γ(EK)< γ(Ea)∀Ea ∈ E.

A.2 Proof of proposition 2

We start by stating two lemmas. The first shows that the expected payoff of m=K is always weakly
greater than all other messages except possibly the empty message and that sending a lower ranked
message than the previous period’s minimum is never a best reply. The second shows that the only
candidates for absorbing states, and thus for stochastically stable states, are Ea ∈ E. As all agents
use the same decision-making process and the same information, we need only to check the condi-
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tions for one agent i.

Lemma 1: For all t, (i) E(πi(a,m = K)) ≥ E(πi(a,m = a′)) for all a,a′ ∈ Ai; and (ii) for all
l < at−1,m = l /∈ BRm

i .

Proof : For (i): First, ∑
K
h=a qt

i(h|m = K) ≥ ∑
K
h=a qt

i(h|m = a′) for all a,a′ ∈ Ai as the number of
messages indicating actions ranked higher than or equal to a is at least as many in the first term
and messages affect probabilities only by their frequencies according to assumption 3. In turn,
∑

a−1
l=1 qt

i(l|m = K)≤ ∑
a−1
l=1 qt

i(l|m = a′) since ∑
K
a=1 qt

i(a|m) = 1. From equation (2), we can see that
m = K thus always implies at least as much weight on a(α−β), and as a(α−β)> αa′−βa for all
a,a′ ∈ Ai such that a > a′, E(πi(a,m = K))≥ E(πi(a,m = a′)) ∀a,a′ ∈ Ai, which proves part (i).

To prove (ii), assume at−1 = a and m = l ∈ BRm
i . Then, E(πi(m = l)) ≥ E(πi(m = K)) by

equation (4). Part (i) implies that this can hold at best with equality. If messages are able to
affect subjective probabilities, then by assumption 3: E(π(l′,m = K)) = E(π(l′,m = l′)) for all
l′ ≤ l. Furthermore, E(π(h,m = K)) ≥ E(π(h,m = l′)) for all h ≥ a > l as the frequency of
higher ranked messages is equal for l and lower ranked actions, while higher for all h > l so that
∑

K
h>l qt

i(h|m = K)≥∑
K
h>l qt

i(h|m = l). This implies that ∑
K
h>l qt

i(h|m = K) = ∑
K
h>l qt

i(h|m = l) only
if m = K is not expected to increase qt

i(K|m = K) and therefore does not increase ∑
K
h>l qt

i(h|m)

(which m = l is never expected to do by assumption 4). But if messages do not increase subjec-
tive probabilities, ∑

K
h>l qt

i(h|m = ∅) ≥ ∑
K
h>l qt

i(h|m = l) for all h > l as qt
i(a|m) is non-decreasing

in m = ∅ by assumption 4. Therefore, as c(∅) = 0 and c(l) > 0, E(π(m =∅)) > E(π(m = l)),
contradicting m = l ∈ BRm.�

Lemma 2: Only Ea ∈ E can be absorbing states of the unperturbed process.

Assume at−1 = a. Lemma 1 implies that no agent sends mt
i = l < a (but possibly the empty mes-

sage). Then, as ∑
a−1
l=1 pt

i(l) = 0 according to equation (5), and a(α−β) > l (α−β) for all l < a,
playing a lower ranked action than a cannot be a best reply in t. This implies that we cannot go
back to lower ranked actions being minimum actions in the unperturbed process. As agents are
identical, either all send mt

i = h≥ a so that all agents’ best reply actions are equal to h, or all send
the empty message and a is the minimum action also in t and onwards.

Assume st
i = (h,h) ∀ i ∈ N. Then in t + 1, by assumption 1, all agents expect the same dis-

tribution of other agents’ messages. As qt+1
i (a′|m = ∅) = 0 ∀ a′ 6= h due to assumption 2, this

and assumption 4 implies qt+1
i (h|m = h) = qt+1

i (h|m = ∅) = 1, and as c(h) > c(∅), agents send
mt

i = ∅. By equation (5), indicating action h or no communication has the same effect on pt
i(h)

in this case. Then, as at = h, h is the best reply action and strategy profile si = (∅,h) in t +1 and
onwards. Assume instead st

i = (∅,a)∀ i ∈ N. Then, as mt
i = h was not a best reply for any agent,
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si = (∅,a) in t + 1 and onwards. As these scenarios hold for all a ∈ Ai and all agents, the only
possible absorbing states are Ea ∈ E.�

This leaves Ea ∈ E as candidates for stochastically stable states. Assume we are in Ea in t−1. By
lemma 1, sending a higher ranked message is the only possibility besides the empty message. By
assumption 1 and 2, qt

i(a|m = ∅) = 1 and qt
i(a
′|m = ∅) = 0∀ a′ 6= a. By the same assumptions,

for h > a: ∑
K
h>a qt

i(h|m = h) = qt
i(h|m = h) and ∑

h−1
l=1 qt

i(l|m = h) = qt
i(a|m = h) = 1−qt

i(h|m = h).
Using this and equation (2), we can see that whenever

a(α−β)> qt
i(h|m = h)h(α−β)+

(
1−qt

i(h|m = h)
)
(αa−βh)− c

⇒ qt
i(h|m = h)<

β

α
+

c
α(h−a)

(16)

holds for all a,h ∈ Ai there is no better reply to si = (∅,a) than itself.
To separate between the candidates for stochastically stable states whenever equation (16) hold,

we check the number of mistakes/experiments needed to move from one absorbing state to another.
In the action stage, the following must hold for a higher and lower ranked action than a to be a best
reply and thus for a move to a new absorbing state:

pt
i(h)h(α−β)+

(
1− pt

i(h)
)
(αa−βh)≥ a(α−β)⇒ pt

i(h)≥
β

α
(17)

l(α−β)≥
(
1− pt

i(l)
)

a(α−β)+ pt
i(l)(αl−βa))⇒ pt

i(l)≥ 1− β

α
(18)

This holds as we only need to consider coordinated mistakes/experiments, which imply that the
frequencies of all other actions not h or a (l and a) are zero. Therefore, a is a certain payoff in first
equation above, and l in the second as they are lower ranked.

Assume first that all mistakes/experiments are made in the communication stage, then given the
definitions of pt

i(h) and pt
i(l) we can rewrite these conditions as

pt
i(h) =

1
n ∑

j∈N
pt

i j(h)⇒ ∑
j∈N

pt
i j(h)≥

nβ

α
(19)

pt
i(l) =

1
n ∑

j∈N
pt

i j(l)⇒ ∑
j∈N

pt
i j(l)≥ n

(
1− β

α

)
(20)

where pt
i j(h) and pt

i j(l) is 1 if j makes a mistake/experiment and otherwise 0, as mt
i =∅ is the best

reply message in Ea by the proof of Lemma 2.
Assume instead that all mistakes/experiments are made in the action stage (this is thus the

situation the agents are in when communication is not possible, as in proposition 1). By equation
(5), if at = h, then pt+1

i (h) = 1 and otherwise 0. That is, at
i ≥ h ∀ i ∈ N must hold for h to be
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the best reply in t + 1. As this can only happen by mistake/experiment in t, it takes at least n
mistakes/experiments to move to a higher ranked absorbing state. Similarly, pt

i(l) = 1 in t + 1 if
at = l. Moving to a lower ranked absorbing state requires only one mistake/experiment for any l <
a. Thus, if nβ

α
> 1, γ(E1)< γ(Ea)∀Ea ∈ E such that a 6= 1 and E1 is the unique stochastically stable

state. If nβ

α
≤ 1, then all Ea ∈ E are stochastically stable as it requires just one mistake/experiment

to move to any absorbing state (combinations of mistakes/experiments in the two stages always
require more mistakes/experiments than one). This proves part (i) and (ii) of proposition 2.

For part (iii), assume again we are in Ea in t−1, and that at first qt
i(h|m = h)≥ β

α
+ c

α(h−a) for
all pairs h,a such that h > a. It is enough that this holds with equality, as then agents randomize
between sending h and the empty message. At some t ′ ≥ t, enough agents send h so that this is also
the best reply action, and by the proof of lemma 2, we cannot go back to lower ranked actions in
the unperturbed process.

By lemma 1, if this condition hold for h, it must also hold for K. If i is contemplating either
m = h or m = K, then under assumption 2 the only other action with positive probability is a. In
turn, by assumption 3 qt

i(K|m = K) = qt
i(h|m = h), qt

i(a|m = h) = qt
i(a|m = K) = 1− qt

i(h|m =

h) = 1−qt
i(K|m = K). Then we can write the difference between the expected conditional payoffs

of messages K and h as

qt
i(K|m = K)K (α−β)+

K−1

∑
l=1

qt
i(l|m = K)(αl−βK)−qt

i(h|m = h)h(α−β)

−
h−1

∑
l=1

qt
i(l|m = h)(αl−βh) = (K−h)

(
qt

i(K|m = K)α−β
)
. (21)

Expression (21) is always positive as qt
i(K|m = K)α > β if qt

i(K|m = K) ≥ β

α
+ c

α(K−a) . So if
equation (16) does not hold, all agents send mt

i = K and K is consequently the best reply action. In
turn, the best reply to st

i = (K,K), for all i, is st+1
i = (∅,K) (see Lemma 2), which is the only best

reply to itself and the only absorbing state and stochastically stable state.
For any h > a, β

α
+ c

α(h−a) is smallest when a = 1. Thus, whenever qt
i(h|m = h) ≥ β

α
+ c

α(h−a)
holds for some a,h, it also holds for h and a = 1. Assume that it holds for h = K and a = 1, but
does not hold for any other pair a,a′ ∈ Ai. This implies that E2, ...,EK are absorbing states. By the
proof of part (i), unless nβ/α≤ 1, the move to E1 requires the fewest mistakes/experiments among
Ea ∈ E. Whenever in E1, si = (K,K) is the unique best reply, i.e. the resistance between the states
is zero. A similar argument can be made when qt

i(h|m = h)≥ β

α
+ c

α(h−a) hold also for a > 1, which

implies that EK has the minimum stochastic potential whenever qt
i(K|m = h) ≥ β

α
+ c

α(h−a) holds
for some pair a,h and nβ/α≤ 1. This concludes the proof.�
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A.3 Proof of proposition 3

Assume at−1 = a. By Lemma 1, sending mt
i = K is at least weakly preferred to all other messages

in any period. If BRm
i contains more than one message, agents randomize uniformly between these.

As m = K ∈ BRm
i holds for all t and there are finitely many messages, at some t ′ ≥ t enough agents

will send mt ′
i = K so that at−1 = K. If messages affect subjective probabilities, qt ′+1

i (K|m = K)>

qt ′+1
i (K|m = a′), and ∑

K
h=a′ q

t ′+1
i (h|m = K) ≥ ∑

K
h=a′ q

t ′+1
i (h|m = a′) for any a′ 6= K. Therefore,

E(πi (m = K))> E(πi(m = a′)), and K is then the only best reply message. K is consequently the
only best reply action in t ′+1. As s = ((K,K)1, ...,(K,K)n) for the same reasons is the best reply
to itself, it is the unique absorbing and stochastically stable state.�

A.4 Proof of proposition 4

Assume at−1 = a and that mt−1
1 = K > a. Then agent 1’s message did not make K into a best

reply for all agents in t − 1. As in equation (19) in the proof of proposition 2, this implies
that pt

i(K) < β

α
. According to our definitions, pt

i(K|mt
1 = h) = wt

i1(K|m
t
1=K)

n when at−1 = a. To-
gether with the assumption that mt−1

1 = K did not change the minimum action into K, this im-
plies that wt

i1(K|mt
1 = K) < nβ/α. If this holds for K, it holds for all h > a and messages do

not change the minimum action. Then only mt ′
1 = a remain a best reply message for agent 1 and

mistakes/experiments in the action stage are the only source of change from absorbing states.20

Therefore, s = ((1,1)1,(∅,1)2, ...,(∅,1)n) is the unique stochastically stable state for the same
reason as in the proof of proposition 2: it takes only one mistake/experiment to move to lowest
ranked action from any other state and more to move higher ranked.

Assume instead that wt
i1(h|mt

1 = h) ≥ nβ/α holds for all h ∈ Ai (it either holds for all actions
or none by assumption 3). Agent 1 sends a higher ranked message if it is expected to change the
choices of the other agents. As Lemma 1 and equation (21) from the proof of proposition 2 holds
for agent 1, the best reply message for agent 1 is mt

1 = K in such a case. That is, agent 1 sends
mt

1 = K when

qt
1(K|m = K)K(α−β)+(1−qt

1(K|m = K))(αa−βK)≥ a(α−β)

⇒ qt
1(K|m = K)≥ β

α
(22)

Note that as agent 1 must send a message, we can disregard the message costs since these are
always incurred. Thus, if wt

i1(K|mt
1 = K)≥ nβ/α and qt

1(K|m = K)≥ β

α
,21 then the only absorbing

20Mistakes and experiments in the communication stage cannot be important here because if wt
i1(h|mt

1 = h)< nβ/α

for all h > a, then the minimum action does not change because of a mistaken/experimental message from agent 1.
21It is enough that these condition holds with equality for the same reason as in part (iii) of the proof of proposition

2.
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state and the unique stochastically stable state is

s = ((K,K)1,(∅,K)2, ...,(∅,K)n).�
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