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We study the competition between interference due to multiple single-particle paths and Coulomb
interaction in a simple model of an Anderson-like impurity with local-magnetic-field-induced level
splitting coupled to ferromagnetic leads. The model along with its potential experimental relevance
in the field of spintronics serves as a nontrivial benchmark system where various quantum transport
approaches can be tested and compared. We present results for the linear conductance obtained
by a spin-dependent implementation of the density matrix renormalization group scheme which are
compared with a mean-field solution as well as a seemingly more advanced Hubbard-I approximation.
We explain why mean-field yields nearly perfect results, while the more sophisticated Hubbard-I
approach fails, even at a purely conceptual level since it breaks hermiticity of the related density
matrix. Furthermore, we study finite bias transport through the impurity by the mean-field approach
and recently developed higher-order density matrix equations. We find that the mean-field solution
fails to describe the plausible results of the higher-order density matrix approach both quantitatively
and qualitatively as it does not capture some essential features of the current-voltage characteristics
such as negative differential conductance.

PACS numbers: 72.25.-b,85.75.-d,73.23.Hk,73.63.-b

I. INTRODUCTION

When electrons pass through a mesoscopic region, the
superposition of several different single-particle transport
paths can lead to interference, as, e.g., in an Aharonov-
Bohm geometry with quantum dots embedded in the
arms.1,2 As the size of the mesoscopic region dimin-
ishes, many-particle effects such as Coulomb blockade be-
come increasingly important.3 This may change the am-
plitudes of the competing transport paths and thereby
alter the interference effect. Eventually, for sufficiently
strong many-body interaction, the single-particle-paths
picture breaks down and such systems should be treated
using a true many-body formalism. This problem of
the interplay between interference of several competing
paths and many-body interaction has recently attracted
a lot of attention theoretically in the general quantum-
transport context4,5,6,7,8,9,10,11,12,13,14,15,16,17 as well as
from more specific points of view such as the molec-
ular electronics,18,19,20,21,22,23,24 spintronics,25,26,27,28,29

or even full counting statistics30 and superconducting
transport.31

In the case of spintronics, the interference can be
achieved without necessity of a multiply-connected or-

bital geometry due to the possibility of superposition
of different purely spin amplitudes with the help of ei-
ther non-collinearly magnetized leads26,27,32 or an ad-
ditional spin-level splitting non-collinear with the lead

φ

B

FIG. 1: Sketch of our model, where the magnetic field B in
the central region is tilted by an angle φ with respect to the
magnetization of the contacts.

magnetization.27,33 Since experiments with strongly-
interacting quantum dots and ferromagnetic contacts
have recently been successfully performed34,35,36 the spin
interference effects proposed in previous work33 and fur-
ther elaborated here may be within experimental reach.

Previously, some of us considered a model33 consisting
of a spin-1/2 level coupled to ferromagnetic leads with
the magnetizations being either parallel or antiparallel.
In addition, a magnetic field non-collinear with the spin
direction of the leads was applied (see Fig. 1).63 For this
Ferromagnetic Anderson model with an applied magnetic
field B (from now on nicknamed the FAB model) the
linear conductance was obtained in two different regimes:
without interactions on the dot, and in the cotunneling
regime. For the non-interacting case with fully polarized
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FIG. 2: The linear conductance of Eq. (2), which shows the
anti-resonances for non-interacting electrons (full line, U = 0)
and the spin valve behavior for strongly interacting electrons
(dashed line, U = 100B) as a function of the angle between
the magnetizations of the leads and the applied magnetic field.

leads, zero temperature, the bare level on resonance and a
parallel lead configuration, the linear conductance can be
calculated, e.g., using non-equilibrium Green functions
(NEGF), and the exact result is33 (h is Planck’s constant)

Gnon−int =
e2

h

Γ0

L
Γ0

R

B2

cos2 φ

1 + cos2 φ [(Γ0

L
+ Γ0

R
)/2B]

2
, (1)

with Γ0

α being the coupling to the leads with α = L, R,
B the magnetic field times the magnetic moment of the
level, and φ the angle between the magnetization in the
leads and the applied magnetic field. The conductance
shows anti-resonance at angles φ = π/2 and φ = 3π/2
due to destructive interference, see Fig. 2.

Under the same conditions as stated above, the linear
conductance can be obtained in the cotunneling regime
([Γ0

L
+ Γ0

R
]/B � 1) even in the presence of an on-site

Coulomb interaction U , see Eq. (5), by applying a scat-
tering formalism:33

Gcotun =
e2Γ0

L
Γ0

R

h

[

cos2(φ/2)

−B
+

sin2(φ/2)

B + U

]2

. (2)

In this regime, the conductance shows a cross-over from
the behavior with anti-resonances at φ = π/2 for the
non-interacting case, to a spin-valve effect for U → ∞

with Gcotun
∝ cos4(φ/2). That is the anti-resonances

around φ = π/2 disappear and the conductance vanishes
for φ = π instead (see Fig. 2).

A simple physical picture for the situation described
above is: In a basis where the Hamiltonian for the iso-
lated dot is diagonal, the bare dot level energy is split by
the magnetic field, and for non-interacting electrons the
density of states has peaks at the two single-particle en-
ergies at ∓B, see Fig. 3. The widths of the two peaks de-
pend on the angle φ, and for fully polarized leads they are
proportional to cos2(φ/2) or sin2(φ/2), respectively. For
φ = 0 and φ = π one of the peaks is infinitely narrow and

Energy

B

ξ0 = 0

-B

∝ sin2(φ/2)

∝ cos2(φ/2)

φ

B

FIG. 3: Schematic energy spectrum in the linear conduc-
tance regime for the non-interacting case. The bare resonant
level is split due to magnetic field, and the angle between the
magnetizations of the leads and the applied magnetic field is
denoted by φ. The widths of the two resonances depend on φ
as cos2(φ/2) and sin2(φ/2), respectively.

electrons can only pass through the other level, whereas
for φ = π/2 the peaks are equally wide resulting in the
sharp anti-resonances due to interference. So the angu-
lar dependence of the conductance can be understood as
interference through non-degenerate levels, which have
widths depending on the angle between the magnetiza-
tions of the leads and the applied magnetic field. For
a large on-site Coulomb interaction some weight of the
density of states is moved away from the single-particle
energies and away from the Fermi level, thereby destroy-
ing the anti-resonances.

The qualitative difference between the interacting and
non-interacting regime is important, as it shows a very
crucial feature in the transport through mesoscopic sys-
tems, namely that it is generally not the single-electron
transport paths which determine the transport, but
rather many-electron processes. Besides from leading to
interesting physical effects, it also puts strong demands
on the theoretical transport formalism applied to such
systems, as it should be able to handle both the coher-
ence and the interactions. It also has to be applicable for
sufficiently low temperature, because otherwise thermal
fluctuations will wash out the interference effect. That
makes our model an excellent benchmark for transport
formalisms. Including interactions, if they are sufficiently
strong, is a challenge in the standard NEGF formalism
where all single-particle effects including the interference
are captured exactly. On the other hand, the density ma-
trix language (generalized master equation; GME) start-
ing from exact many-body states of the system, thus in-
cluding the interaction exactly, faces problems when the
broadening due to the leads comparable with level split-
ting (leading to interference effects) is to be incorporated.
Thus, this kind of models poses significant challenges to
standard transport approaches even outside notoriously
difficult strongly-correlated regimes such as the Kondo
regime.

Therefore, we use this model for a detailed compar-
ison study of the performance of different transport



3

U/Γ0

B/Γ0

NEGF

1

1

Scattering formalism

Figs. 6,8

FIG. 4: Sketch of the different parameter regimes. For van-
ishing interaction U , nonequilibrium Green functions pro-
vide the complete solution of the transport problem, see
Eq. (1). For large level splitting, the scattering formalism al-
lows for a quantitative description of the cotunneling events,
see Eqs. (2),(A1). In this work we provide results for the more
intricate region of moderate level splitting and a finite on-site
Coulomb interaction.

formalisms in the potentially problematic and so far
not addressed regime of broadening comparable to the
level splitting B ≈ Γ0

α and arbitrarily strong interac-
tion U . In particular, we test the results of higher-
order, i.e. beyond mean-field, decoupling schemes based
on NEGF11,26,37 and/or many-body-states-based NEGF
(Hubbard operator NEGF) approaches.38,39,40,41,42,43,44

We find that the Hubbard-I approximation in the frame-
work of NEGF,40,45 frequently applied to the Ander-
son model with or without ferromagnetic leads,11,26,43,44

gives unphysical and even mathematically wrong results
for the model considered in this paper. This finding raises
serious questions about the very foundation of the many-
body-states-based NEGF approaches.38,39,44

As stated above, so far only the non-interacting and
the cotunneling regime have been considered (see Fig. 4),
and for the latter only in linear response. In this paper,
we calculate the linear conductance at zero temperature
for arbitrary values of the tunneling coupling, applied
magnetic field and on-site Coulomb interaction using a
density matrix renormalization group (DMRG) scheme,
see Sec. III. Surprisingly, in the linear response regime
the results obtained using the DMRG scheme can, in
certain situations, be reproduced using Green functions
with a mean-field approximation, which is discussed in
Sec. IV. The unexpected failure of the Hubbard-I approx-
imation in the framework of NEGF40,45 is analyzed in
Sec. V. In section VI we extend the calculations beyond
linear response by applying a generalized master equa-
tion formalism46 which works in a basis of many-particle
states and takes into account higher-order tunneling pro-
cesses. In Sec. VII the failure of the mean-field Green
function method for finite bias is demonstrated. Finally,
we conclude on our findings in Sec. VIII. Appendix A
contains the cotunneling expression for less than full po-
larization of the leads and off-resonant transport, and
App. B presents details of the mean-field Green function
calculation.

II. THE MODEL SYSTEM

The model Hamiltonian of the quantum dot coupled
to magnetic leads is

H = HLR + HT + HD, (3)

where

H
LR

=
∑

α=L,R,kσ

ξ
α,kσ

c†
α,kσ

c
α,kσ

. (4)

Here σ =↑ / ↓ is the spin of the electrons, α denotes the
left or right electrodes, which are assumed to be polar-
ized along the z-axis (the spin quantization axis), either
parallel or anti-parallel. However, in this paper we only
consider parallel magnetizations of the leads. The quan-
tum dot is subjected to a magnetic field B, which is tilted
by an angle φ with respect to the z-axis and lies within
the xz-plane. Note that we neglect the negative sign of
the electron charge for simplicity. Thus, the energeti-
cally preferred spin direction is pointing in the direction
of B throughout this paper. The dot-Hamiltonian reads
(nσ = d†σdσ)

H
D

=
∑

σ

ξ
0
d†

σ
d

σ
+ Un↑n↓ −

∑

σσ′

μBB · τττ
σσ′d†σd

σ′ , (5)

where ξ0 is the orbital quantum dot energy, B = |μBB|

represents the magnetic field splitting, τττ is a vector con-
taining the Pauli spin-matrices, and U is the on-site
Coulomb interaction for double occupancy. In a spin ba-
sis parallel to B, the dot Hamiltonian is diagonalized as

H
D

=
∑

σ̃

(ξ
0
− σ̃B)d†

σ̃
d

σ̃
+ Un

↑̃
n
↓̃
, (6)

where the dσ and dσ̃ operators are related by the unitary
rotation

dσ =
∑

σ̃

Rσσ̃dσ̃, R =

(

cos(φ/2) sin(φ/2)
− sin(φ/2) cos(φ/2)

)

. (7)

Finally, the tunneling Hamiltonian is

HT =
∑

α=L,R

∑

kσ

(

tα,kσc†
α,kσ

dσ + h.c.
)

=
∑

α=L,R

∑

kσσ̃

(

t
α,kσ

R
σσ̃

c†
α,kσ

d
σ̃

+ h.c.
)

.
(8)

Here we allow for the tunneling matrix element tα,kσ to
be spin-dependent, because the states in the leads depend
on the spin direction. Note that there is no spin-flip asso-
ciated with the tunneling here, i.e., there is no spin-active
interface, which would require the use of a non-diagonal
tunneling matrix tα,kσσ′ . Depending on the parameters
this would correspond to having an angle between the
lead magnetizations, which would modify the details but
not the general behavior that we discuss.
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We define the energy-dependent coupling constants as

Γα(ε) = 2π
∑

kσ

|t
α,kσ

|

2δ(ε − ξ
α,kσ

) =
∑

σ

Γα,σ(ε), (9)

and let Pα denote the polarization of the tunneling from
lead α defined through Γα,σ(ε) = 1

2
(1 + σP

α
) Γα(ε). No-

tice that Pα ∈ [−1, 1] such that Pα = ±1 corresponds to
full spin-↑ / ↓ polarization and Pα = 0 corresponds to un-
polarized leads. For parallel (antiparallel) polarization of
the leads the Pα’s have the same (opposite) sign.

In the basis where the dot part of the Hamiltonian is
diagonal, the coupling of the two dot states, ↑̃ and ↓̃, to
the lead α is given by a matrix in the spin index, see also
Eq. (B5),

Γα,σ̃σ̃′ (ε) =
Γα(ε)

2
×

{

(1 + σ̃Pα cosφ) for σ̃ = σ̃′

Pα sin φ for σ̃ �= σ̃′
.

(10)
In the calculations using the DMRG and the density

matrix technique, we use a polarization of both leads
less than 1 for technical reasons. The minority spin only
introduces a smearing of the results discussed for fully
polarized leads.

III. LINEAR RESPONSE: DMRG

A. Tight-binding Hamiltonian

In order to apply the DMRG method to the model a
discretized version of the leads must be formulated. The
simplest choice is to model the leads as one-dimensional
semi-infinite tight-binding (TB) chains that are dis-
cretized appropriately. With this choice and denoting the
hopping matrix element between the resonant level and
the leads by tα,σ (α = L, R), the tight-binding Hamilto-
nian reads HTB =

∑

α=L,R
HTB

α
+ HTB

T
+ HD, where

HTB

α = −

∞
∑

n=2

∑

σ

D

2

(

c†α,nσc
α,n−1σ

+ c†
α,n−1σ

cα,nσ

)

,

(11)

HTB

T = −

∑

α=L,R

∑

σ

(

tα,σc†
α,1σ

dσ + h.c.
)

, (12)

and where HD is given in Eq. (5). That is in the DMRG
implementation we work in the lead spin-basis and do
not use the diagonalized version of the dot part of the
Hamiltonian. In HTB

α
, 2D is the bandwidth of the tight-

binding chain representation of the leads corresponding
to the hopping amplitude D/2 between the internal sites
in the chains.

In order to link the different theoretical approaches ap-
plied to solve the model, an expression for the effective
energy-dependent coupling constants between the single
site and the tight-binding leads, ΓTB

α,σ(ε), must be estab-
lished. For the one-dimensional tight-binding model of

the leads, these are given by47

ΓTB

α,σ(ε) = −2|tα,σ|
2 Im

[

gr

α,σ(1, 1, ε)
]

, (13)

where gr
α,σ(1, 1, ε) is the surface component of the re-

tarded Green function of the semi-infinite left or right
chain at energy ε. The surface of the tight-binding chain
is the first site, and the Green function reads48

gr

α,σ(1, 1, z) = 2
z −

√

z2
− D2

D2
, (14)

where z = ε+ iη is complex, and thus the imaginary part
of the Green function is finite only inside the band, ±D,
and is proportional to the semi-elliptic density of states.
Thus the coupling constants are given by

ΓTB

α,σ
(ε) =

4|tα,σ|
2
√

D2
− ε2

D2
. (15)

In Sec. III B we discuss the implementation of the po-
larization, and explain that half-filled leads can be used,
corresponding to ε = 0.

B. Modeling the polarization

Full polarization of the leads is avoided for several rea-
sons. Most prominently, full polarization decouples one
spin species in a lead completely in the sense that the
hopping matrix element between the lead and the reso-
nant level is zero for all angles. Dealing with decoupled
Hilbert spaces is undesired as it creates numerical prob-
lems such as ill-conditioned matrices, making the numer-
ical solution of the resolvent equations hard.49,50,51

Furthermore, there are single points where the model
itself is ill-defined for full polarization. At the angles
φ = 0 and φ = π the spin-flip process of the dot is in-
active because of the prefactor sinφ. Due to the full
polarization also the hopping matrix element for the mi-
nority spin connecting the lead and the dot is zero. Thus
the minority spin level is completely decoupled and hence
has a constant occupation. The occupation of the major-
ity spin level depends, however, on the occupation of the
minority spin level through the on-site Coulomb interac-
tion term Un↑n↓. That is the properties of the model for
these specific angles depend on the initial occupation of
the minority spin level, and no unique stationary state
exists.

It should be noted that the qualitative behavior for
(large) partial and full polarization are similar except
for the problem for specific angles described above. It is,
however, clear that a decreased polarization in the leads
tends to wash out the spin dependence in the model, and
in the limit of unpolarized leads all spin characteristics
are lost.

There is a certain freedom of choice in the modeling of
the polarization. Although the polarization is a property
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FIG. 5: (Color online) Sketch of the DMRG setup for the
FAB model. Notice the implementation of the polarization
through the hopping matrix elements, where tα,σ and the on-
site Coulomb interaction U are indicated in the figure. In the
DMRG evaluation a single lead mapping is used in combi-
nation with a momentum-space representation of the single
tight-binding lead.52 Here tk indicates a discretization depen-
dent hopping to all states in the momentum-space.

of the leads, it can be modeled by spin-dependent hop-
ping matrix elements connecting the dot to the leads.33

There are different approaches to modeling the polariza-
tion of the leads and we have chosen the simplest one to
implement in the DMRG setup. Rather than using spin-
dependent filling in the leads, we use half-filled leads for
both spin species, and model the polarization by modify-
ing the hopping matrix elements connecting the leads and
the dot. This is indicated in Fig. 5, where we show the
DMRG setup using a momentum-space representation of
the leads. This choice for the polarization simplifies the
DMRG setup significantly as identical discretizations can
be used for the two spin species in each lead such that
the spin species are again treated equally apart from the
polarization dependent hopping matrix elements,

tα,σ = t0α

√

1

2

(

1 + σPα

)

. (16)

In all calculations presented, we use identical polariza-
tions of the two leads, PL = PR = P , such that the
coupling to the leads are identical when t0

L
= t0

R
.

In the remainder of the article we measure all ener-
gies in units of the sum of the coupling constants at the
equilibrium chemical potential, ε = 0,

Γ0 =
∑

α,σ

ΓTB

α,σ(0). (17)

For the tight-binding chains this corresponds to mea-
suring all energies in units of 4

D

(

|t0
L
|

2 + |t0
R
|

2
)

, see
Eqs. (15),(16).

C. Calculation of the conductance

In order to obtain the conductance we make use of the
Meir-Wingreen formula53 rather than the Kubo formula
used in previous work.51,54 The evaluation of the spectral
function at zero bias and for proportional couplings55 can
be done within a single lead framework, effectively halv-
ing the lead size. For parallel magnetizations of the leads,
the FAB model falls in the linear regime within this class
of models, and thus the finite size scaling for the evalu-
ation of the spectral function is significantly better than
the evaluation of the Kubo formula, enabling faster and
more accurate calculations.52 Using DMRG we thus eval-
uate the two spin components of the full spectral function
in separate calculations, and therefore need to recombine
the spin resolved spectral functions into the total con-
ductance,

G(ξ0, φ) =

e2

h

∑

σ

2|tL,σ|
2
|tR,σ|

2

|tL,σ|
2 + |tR,σ|

2
Aσ(ξ0, φ, ω = 0), (18)

where the polarization enters through the hopping matrix
elements tα,σ, and Aσ denotes the spin resolved spectral
function of the dot. In this paper, we make the assump-
tion that the hopping matrix elements between the leads
and the dot are identical for both leads, t0

L
= t0

R
, and that

the polarizations in both leads are identical, PL = PR,
such that tL,σ = tR,σ = tσ.

In order to achieve the necessary precision in the
DMRG calculations a momentum-space representation of
the leads is used. Although the physics takes place at the
Fermi level also energies well away from the Fermi level
need to be represented properly, and the discretization
scheme used should support this. We use a discretization
of the momentum part of each lead consisting of a log-
arithmic discretization that covers a large energy span,
and switch to a linear discretization on the low-energy
scale close to the Fermi level.54 All the DMRG calcula-
tions presented in this paper were performed using 55
sites in the lead description, corresponding to 35 sites
scaled logarithmically and 20 sites scaled linearly around
the Fermi level.54

It should be noted that by virtue of the DMRG method
all interactions are rigorously taken into account. The
approximation in the method presented lie in the use of
a finite sized lead which can be benchmarked in the non-
interacting limit, and as such the method used contains
only controllable approximations.

D. Results

Using the momentum-space representation of the leads
in the DMRG setup we have calculated the spectral
function, and using the Meir-Wingreen formula in
Eq. (18) evaluated the conductance. For different values
of the magnetic field strength B and the on-site Coulomb
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interaction strength U , we have calculated the conduc-
tance versus the angle φ between the magnetic field and
the polarization direction. In all examples, we keep the
polarization in the two leads identical, PL = PR = 0.8.
As evident from the Hamiltonian, the model is sym-
metric around φ = π since cos(2π − φ) = cosφ and
sin(2π − φ) = − sinφ such that only the spin-flip term
in HD acquires an insignificant phase [see Eq. (5)].
Therefore we confine our studies to angles in the interval
φ ∈ [0, π], and the interval φ ∈ [π, 2π] is found by
reflecting the results around φ = π.

In order to determine the discretization needed for the
leads, exact diagonalization calculations for the spectral
function have been performed and, using Eq. (18), com-
pared to the NEGF results in the non-interacting limit,
U = 0 (not shown).52,64 By virtue of the exact diagonal-
ization, the only error present in this approach is the error
due to the finite size of the leads. The results show ex-
cellent agreement between the exact diagonalization and
the Green function results for a range of parameter val-
ues, and we conclude that the modeling of the leads is
sufficient for resolving the model.

Having benchmarked the DMRG setup in the known
limit of U = 0 we turn to the interesting regime of finite
interactions. In Fig. 6 we show the results of the DMRG
calculations (‘+’ symbols), keeping the bare level reso-
nant, ξ0 = 0. The calculations presented in each figure
were performed keeping the strength of the magnetic field
B fixed and varying the interaction strength U and the
angle φ, where the specific parameter values are given in
the plots.

For the parameter regimes considered here the numer-
ical zero-temperature DMRG results confirm the simple
physical picture sketched in the introduction. That is
the linear conductance versus the angle φ shows anti-
resonances for φ = π/2 in the non-interacting limit, and
a spin-valve behavior for strong on-site interaction.

When B/Γ0 decreases the maximum conductance in-
creases as the levels move closer to resonance, but the
qualitative behavior is the same when U is varied. Previ-
ous work showed that for fully polarized leads and U = 0,
the anti-resonances become sharper for decreasing B/Γ0

(see the left panel in Fig. 2 in Ref. 33). Due to the finite
polarization, the sharpening of the anti-resonances is not
very clear in the DMRG results.

Finally we note that the cotunneling expression derived
under the assumption B 
 Γ0, see Eq. (A1), reproduces
the DMRG results fairly well already for B = 2Γ0 (not
shown).

IV. LINEAR RESPONSE: MEAN-FIELD

SOLUTION

Mean-field solutions are often problematic when con-
sidering systems with only a few degrees of freedom such
as, e.g., transport through quantum dots with only a few
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FIG. 6: (Color online) The linear conductance vs. the an-
gle φ for B = Γ0/2 and B = Γ0. The ‘+’ symbols are
the DMRG results and the full lines are the non-equilibrium
Green function results using the Hartree-Fock approximation.
We apply an elliptic density of states, using Eq. (15) for the
coupling constant with D = 2Γ0. The other parameters are
P = PL = PR = 0.8 and ξ0 = 0. The Green function result is
exact in the non-interacting limit, U = 0, and is thus a rigor-
ous benchmark for DMRG in this limit. The good agreement
demonstrates the accuracy of the discretization, and confirms
the capability of the DMRG. Furthermore there is also a sur-
prisingly good agreement between these two methods for finite
interactions as discussed in detail in Sec. IV.

levels contributing to the transport. In this case, the
mean-field solution fails to describe Coulomb blockade56

and can lead to unphysical bistabilities at finite bias due
to a sudden switch between different transport modes.

Surprisingly, Fig. 6 shows that the mean-field version
of the Hamiltonian from Eq. (3) actually reproduces the
linear conductance results of the previous section rather
well, which we will explain below.

The mean-field version of the Hamiltonian in Eq. (3) is
obtained by re-writing the interaction term as consisting
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of a Hartree and a Fock-term

HHartree = U(d†
↑̃
d↑̃〈d

†

↓̃
d↓̃〉 + d†

↓̃
d↓̃〈d

†

↑̃
d↑̃〉), (19)

HFock = −U(d†
↑̃
d↓̃〈d

†

↓̃
d↑̃〉 + d†

↓̃
d↑̃〈d

†

↑̃
d↓̃〉),

i.e., the replacement is Un↑̃n↓̃ → HHartree+HFock. Keep-
ing only the Hartree-term gives a basis-dependent Hamil-
tonian, and for the FAB-model the two spins are corre-
lated (for φ �= 0, π) due to the coupling to leads giving a
non-vanishing Fock term.65

From the mean-field Hamiltonian the linear conduc-
tance can be obtained using the non-equilibrium Green
function formalism, and the calculation is similar to the
non-interacting calculation in Ref. 33. However here the
non-interacting dot Green function is replaced with the
Hartree-Fock dot Green function

G
−1

HF
(ω) =

(

ω − (ξ0 − B + U〈d†
↓̃
d↓̃〉) +U〈d†

↓̃
d↑̃〉

+U〈d†
↑̃
d↓̃〉 ω − (ξ0 + B + U〈d†

↑̃
d↑̃〉)

)

.

(20)

The generalized occupations have to be calculated self-
consistently through the relation

〈d†
σ̃
dσ̃′〉 =

−i

2π

∫ ∞

−∞

dω G<

σ̃′σ̃
(ω), (21)

with the lesser Green function being

G
<(ω) = ifL(ω)Gr(ω)ΓLG

a(ω)+ifR(ω)Gr(ω)ΓRG
a(ω),
(22)

where the expressions for the coupling constants, Γα, are
derived in App. B.

The zero-temperature linear conductance is obtained
as47,55

GMF =
e2

h
Tr [Ga(0)ΓLG

r(0)ΓR] . (23)

The results for B = Γ0/2 and B = Γ0 are shown in
Fig. 6 together with the DMRG results. It is clearly seen
that for B = Γ0 the results agree almost exactly, but for
B < Γ0 deviations start to appear, especially for angles
around π/2. This rather surprising success of the mean-
field solutions can be understood by an inspection of the
occupations, see Fig. 7:

First we notice that the couplings to the levels de-
pend on the angle φ, see Eq. (10), and consider the non-

interacting case U = 0. At φ = 0 the spin-↑̃ level is
roughly 80% occupied due to a large broadening, but
the spin-↓̃ level is almost unoccupied due to the large
B/(Γ

L,↓̃↓̃ + Γ
R,↓̃↓̃) = 5. At φ = π the spin-↑̃-level is al-

most decoupled and the occupation goes to 1, whereas
the occupation of the spin-↓̃ level is ∼ 20%. For the in-
termediate angles, there is a smooth cross-over between
the two regimes, see the black curves in Fig. 7. When
calculating the occupations self-consistently for finite U ,

0
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U = 6Γ0

�
��

increasing U

�
�
���
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FIG. 7: (Color online) The mean-field occupations vs. φ for
B = Γ0/2 and four different values of the on-site Coulomb
interaction. The upper bunch of curves are for 〈n↑̃〉 and the
lower ones are for 〈n↓̃〉. The rest of the parameters are as in
Fig. 6.

the overall trend does not change: 〈n↑̃〉 remains almost

identical, and 〈n↓̃〉 decreases for increasing U , see Fig. 7.
So the reason why the mean-field solutions performs

relatively well (at least at zero temperature) is that
when one of the levels fluctuates the most, the other
level has an occupation being either approximately zero
or 1, i.e., the products of the fluctuations vanishes.
For this specific model, the success of the mean-field
solution is due to the combination of the split levels and
the angle dependent couplings, which means that the
term (n↑̃ − 〈n↑̃〉)(n↓̃ − 〈n↓̃〉), neglected in the mean-field
Hamiltonian, remains small for all angles. The largest
deviation between the mean-field results and the DMRG
results is expected for the angles around φ = π/2, which
is also observed in Fig. 6.

At elevated temperatures or for even smaller mag-
netic fields, the mean-field solution is expected to per-
form worse due to larger fluctuations of the occupa-
tions, but for finite temperatures no exact results are cur-
rently available for comparison. Furthermore, while we
have shown here that the mean-field solutions are some-
what fortuitously reliable to describe linear response, we
demonstrate in Sec. VII that they fail for the FAB model
for finite bias.

V. LINEAR RESPONSE: HUBBARD-I

APPROXIMATION

Another popular and widely used approximation is the
Hubbard-I approximation (HIA) which corresponds to a
decoupling of equations of motion for the Green’s func-
tions at a higher level of the hierarchy than the simple
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mean-field approximation used in the previous section.
Therefore, one could expect better performance of this
approximation compared to the mean-field approxima-
tion. This expectation is further supported by the fact
that HIA naturally arises as the lowest-order approxima-
tion in the theories developing perturbation series around
the state of the isolated system, i.e. around the so-called
“atomic limit”. Despite the lack of existence of the stan-
dard Wick theorem due to the non-Gaussian nature of the
unperturbed system with arbitrary correlations, system-
atic (even renormalized) perturbation theory reportedly
exists39,57 and HIA is in a certain sense the lowest order
in that expansion. Indeed, it turns out that HIA can
rather simply and yet correctly describe the non-trivial
effects of single-level broadening in the Coulomb block-
ade regime of transport studied by other sophisticated
methods46,58 and confirmed experimentally.58 Therefore
HIA appears to be the solution to the problem of a simul-
taneous description of interference/broadening and inter-
action.

However, this optimistic picture breaks down as soon
as more complicated systems are addressed, namely,
any system where coherence between different transport
channels is involved. The FAB model is one such exam-
ple and we will demonstrate the breakdown of HIA for
this model. A similar situation arises for the problem of
a single spin-degenerate level with local Coulomb inter-
action coupled to superconducting leads in the so-called
π-junction regime, where the Josephson supercurrent is
observed. The HIA is known to fail to predict this the-
oretically and experimentally well-established fact, see
e.g. Ref. 31, Fig. 4a. The situation in the case of the
FAB model is even more severe since the HIA failure is
not just physical, as in the superconducting case, but the
results are even mathematically inconsistent. Fundamen-

tal analytical identities such as (Gr)† = G
a and, conse-

quently, the hermiticity of the density matrix is broken
within the HIA.

To demonstrate this explicitly, we use the Hamilto-
nian in Eq. (3) and perform analogous derivations as in
Refs. 26, 40 for simpler models without any magnetiza-
tion at all or without the local splitting, respectively. We
arrive at the matrix equation

G(ε) = g(ε) + g(ε)Σ(ε)G(ε) (24)

for the causal Green function Gσ̃σ̃′(ε) (in energy repre-
sentation) of the central dot. Here

Σσ̃σ̃′(ε) =
∑

αkσ

|t
α,kσ

|

2
(

R
†
)

σ̃σ

1

ε − ξ
α,kσ

R
σσ̃′ . (25)

is the self-energy matrix due to the coupling to the con-
tacts, and we introduced the auxiliary Green function

g(ε) =

⎛

⎜

⎝

ε−ξ↑̃−U(1−〈d†

↓̃
d↓̃〉)

(ε−ξ↑̃)(ε−ξ↑̃−U)

−U〈d†

↓̃
d↑̃〉

(ε−ξ↑̃)(ε−ξ↑̃−U)

−U〈d†

↑̃
d↓̃〉

(ε−ξ↓̃)(ε−ξ↓̃−U)

ε−ξ↓̃−U(1−〈d†

↑̃
d↑̃〉)

(ε−ξ↓̃)(ε−ξ↓̃−U)

⎞

⎟

⎠
, (26)

where ξ↑̃/↓̃ = ξ0 ∓ B are the level energies in the basis

parallel to B as given in Eq. (6). For vanishing split-
ting, B = 0, these are precisely the Eqs. (15)–(21) of
Ref. 26. The retarded and advanced Green function are
then again obtained by G

r/a(ε) = G(ε ± i0+), respec-
tively. In addition, we define the retarded and advanced
components of the other functions in the same way.

A general condition relating the retarded and advanced

Green’s functions is (Gr)† = G
a. As Eq. (24) implies

g
r/a =

[

(

G
r/a

)−1

+ Σ
r/a

]−1

, (27)

and (Σr)
†

= Σ
a from Eq. (25) this requires (gr)

†
= g

a.
This is, however, only compatible with Eq. (26) if the
off-diagonal elements are mutually complex conjugated.

For non-zero coherences 〈d†
↓̃
d↑̃〉 = 〈d†

↑̃
d↓̃〉

∗
�= 0 and finite

level splitting ξ↑̃ �= ξ↓̃ pertinent to the FAB model this
condition is not satisfied and, thus, HIA breaks the nec-
essary mathematical condition for the Green’s functions.
Similarly, self-consistent evaluation of the (generalized)
populations in the spirit of Eq. (21) in thermal equilib-
rium (since we study currently the linear response only)
would yield a non-hermitian density matrix, yet another
mathematical problem stemming from the inconsistency
of the HIA equations.

It should be stressed that the inconsistency only shows
up if both the local level splitting and the coherences be-
tween different spin states (stemming from non-collinear
magnetization arrangement) are present. Therefore, the
inconsistency has apparently not been noticed before26,40

since previously employed models do not contain both
necessary ingredients.

Nevertheless, the FAB model is both mathematically
and physically a realistic model and the failure of HIA
reveals problems inherent in that approximation. As
mentioned before, the HIA is in some sense the lowest-
order expansion in reportedly systematic theories based
on Hubbard operator Green’s functions.39 One can show
that the same problems carry over to the many-body for-
malism, see Ref. 40 for a pedagogical overview of the con-
nection between the formulation of HIA in the standard
as well as the many-body formalism.

VI. FINITE BIAS: 2VN APPROACH

So far we have only considered linear response and
zero temperature. In this section we apply a density ma-
trix formalism developed in Ref. 46, giving access to the
regime of finite bias and finite temperature. The method
works in a basis of many-particle eigenstates for the dot
Hamiltonian, thereby including all interactions on the
dot exactly. Correlated transitions between the lead and
the dot states with up to two different electron states
are included exactly, which suggest the notation second
order von Neumann approach (2vN). By solving the re-
sulting set of equations for the steady-state, a certain
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class of higher-order processes are also included. Inter-
ference effects are also included by a full treatment of the
nondiagonal density matrix elements.

The dot part of the Hamiltonian, HD, has four
many-particle eigenstates {|0〉, |↑̃〉, |↓̃〉, |2〉}, where |2〉 =

d̃†↓d̃
†
↑|0〉, and the energies are 0, E

↑̃
= ξ0−B, E

↓̃
= ξ0 +B

and E
2

= E
↑̃

+ E
↓̃

+ U , respectively. Inserting a com-

plete set of dot states in the tunneling Hamiltonian from
Eq. (8) gives

HT =
∑

kσα,ab

(

Tba(kσα)|b〉〈a|cα,kσ + c†
α,kσ

|a〉〈b|T ∗ba(kσα)
)

(28)

where a, b denotes the dot many-particle eigenstates and
Tba(kσα) =

∑

μ
t∗
α,kσ

Rσμ〈b|d
†
μ
|a〉 are the couplings be-

tween these states and the lead states.
Inserting these coupling matrix elements and eigenen-

ergies in Eqs. (10),(11) in Ref. 46 gives a closed set of
equations for the elements of the reduced density ma-
trix, which can be solved numerically. As for the DMRG
calculation we assume the leads to be 80% polarized. Sig-
nificantly larger polarizations (≈ 1) are difficult to handle
numerically, especially in the linear conductance regime.
This also limits the values for the bias voltages and tem-
peratures which can be used.

For the finite bias calculations presented here, we use
a constant density of states, so that effects due to the
change of the chemical potentials are not superimposed
by changes in the contact couplings. For numerical pur-
poses, we implement a finite band width with elliptically
shaped edges at 0.95D < |ε| < D, where D surpasses all
other relevant energy scales. In all plots, the bias voltage
V is applied symmetrically, μL = −μR = eV/2.

Before considering finite bias, we have carefully in-
spected the results for low bias (eV/Γ0 = 0.05 − 0.1)
and low temperature (kBT/Γ0 = 0.05− 0.1) for B/Γ0 =
0.5, 1, 2 for all angles φ (not shown). For the non-
interacting case, the exact NEGF results are reproduced
for all parameters tested. From the low-bias results we
have extracted a numerical value for the linear conduc-
tance, and the results show almost quantitative agree-
ment with the exact DMRG results for all tested values
of U and all angles. The discrepancies can be attributed
to the (small but) finite bias and the finite temperature
used in the density matrix calculation. We conclude that
the 2vN approach is capable of describing the effect of
the interactions and the coherence in the low-bias regime
for the model system considered.

Fig. 8a) shows the current versus bias voltage for differ-
ent angles, where the bare level is on resonance, ξ0 = 0,
B = 2Γ0 and an on-site Coulomb interaction U = 8Γ0.
Shoulders in the current are expected if half the bias
matches the single-electron transition energies in the dot.
This happens at eV/Γ0 = 4 for the transitions |0〉 → |↑̃〉

and |0〉 → |↓̃〉, at eV/Γ0 = 12 for |↓̃〉 → |2〉, and finally

at eV/Γ0 = 20 for |↑̃〉 → |2〉.

In the low-bias regime, eV/Γ0 < 4, the current is sup-
pressed when the angle φ is increased from 0 to π due to
the spin-valve effect (see also, e.g., Fig. 6 for large U/Γ0).

In the intermediate regime 12 < eV/Γ0 < 20, the cur-
rent shows a very pronounced angular dependence, with
a significant current drop between φ = 0 and φ = π. For
φ ≈ π one even detects negative differential conductance
around eV = 12Γ0. In this region, the lower spin level ↑̃
can be filled not only by the process |0〉 → |↑̃〉 but also

by |↓̃〉 → |2〉. It is thus more likely to be filled com-

pared to lower biases eV < 12Γ0. In the case φ = 0, ↑̃ is
aligned with the lead polarization and therefore exhibits
high tunneling rates. Thus its increased occupation prob-
ability goes along with an increase of current around
eV = 12Γ0. In contrast, for φ = π, ↑̃ is pointing against
the lead polarization and therefore has a low tunneling
rate, explaining the drop of current around eV = 12Γ0.
For intermediate angles there is a smooth cross-over be-
tween the two limits. Here the non-diagonal elements of
the density matrix are non-vanishing and quantum co-
herence plays a role, as the two dot states are superpo-
sitions of the lead spins. Off-diagonal elements are also
important to include in transport through dots coupled
to non-collinear ferromagnetic leads, even in the absence
of an applied magnetic field.59,66

VII. FINITE BIAS: MEAN-FIELD NEGF AND

MASTER EQUATION

Figure 8b) shows the current versus applied bias cal-
culated using the Hartree-Fock mean-field version of the
Hamiltonian, see Eqs. (19)-(22) and App. B, within the
NEGF formalism using a self-consistent calculation of the
occupations, see, e.g., Ref. 47. The parameters are iden-
tical to Fig. 8a) in order to allow for a direct comparison.

In the low-bias regime (eV < 4Γ0), where the aver-
age occupations 〈n↑̃〉, 〈n↓̃〉 are close to one and zero, re-
spectively, the results agree with the 2vN formalism of
Sec. VI. This goes well with the observation from sec-
tion IV, that the conductance is well reproduced within
the mean-field model.

In the region 4 < eV/Γ0 < 12, we find 〈n↑̃〉 ≈ 0.5 as

the lower energy state ↑̃ is in the window between the
Fermi levels with symmetric coupling to both contacts.
Thus the higher energy state ↓̃ has the energy B+U/2 =
6Γ0 which is above the emitter Fermi level and 〈n↓̃〉 ≈

0. If ↑̃ is aligned with the lead polarization (i.e. φ =
0), the current is larger, while it is low for φ = π as
seen in Fig. 8b). Finally, at eV/Γ0 > 12, the upper

level ↓̃ enters the window between the Fermi levels, takes
an average occupation 〈n↓̃〉 ≈ 0.5, and contributes also

to the current. The repulsion of the levels by U/2 is
an artefact of the mean-field model, and correspondingly
neither the current values nor the shoulders agree with
the more detailed 2vN results shown in Fig. 8a).

Fig. 8c) shows the corresponding result from the mas-
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FIG. 8: (Color online) The current versus bias voltage for
five different angles φ obtained using the 2vN density matrix
formalism (a), the mean-field Hartree-Fock approach (b), and
the master equation approach (c). The parameters are: ξ0 =
0, B = 2Γ0, U = 8Γ0, kBT = 0.1Γ0, PL = PR = 0.8 and the
bias is applied symmetrically. For the 2vN-method we used a
constant density of states with a half band-width D = 20Γ0,
see the main text, while for the Hartree-Fock calculation the
wide-band limit is applied, i.e. the real-part of the self-energy
was neglected.

ter equation approach56,60,61 where the occupations of
the many-particle states are determined by electron hop-
ping processes to and from the leads. While this ap-
proach does not provide any current for low biases, where
cotunneling dominates the transport, it provides reliable
results for the current plateaus. In particular, the oc-
currence of negative differential conductance for φ ≈ π
for biases around 12Γ0/e is confirmed. Note that the
presence of pronounced steps of width kBT is due to the
entire neglect of broadening in this approach. Similar
results are obtained by taking into account nondiagonal
density matrices within the 1vN approach62 (not shown).

VIII. CONCLUSION

In this article, we provided a full description of the Fer-
romagnetic Anderson model with applied magnetic field
B (FAB). We have successfully implemented the density
matrix renormalization group (DMRG) method, which
provides the linear conductance for arbitrary strength of
the on-site Coulomb interaction and arbitrary level split-
ting. The data interpolate between the known results of
non-equilibrium Green functions (NEGF) for zero inter-
action and the cotunneling results for large level splitting.
A key result is the strong suppression of conductance
with increasing on-site Coulomb interaction if the mag-
netic field on the dot is opposite to the lead polarization.

The DMRG results can serve as a benchmark for dif-
ferent approaches, where we find that both the second
order von Neumann (2vN) approach and the NEGF ap-
proach with mean-field interaction give reliable results for
the conductance. While the 2vN approach also provides
plausible results for finite bias, the mean-field NEGF fails
due to the wrong treatment of partially occupied states.

For finite bias the 2vN approach predicts a strong de-
pendence of the current on the direction of the magnetic
field in the intermediate bias region. Here negative dif-
ferential conductance is predicted if the magnetic field
on the dot is opposite to the lead polarization. This fea-
ture can also be qualitatively obtained from the simpler
master equation approach.

Finally we have shown that the Hubbard I approxima-
tion leads to unphysical results for this particular model.
This shows that the FAB model constitutes a sensitive
test case for different approaches due to its involved inter-
play between interference, broadening, and interaction.
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APPENDIX A: COTUNNELING EXPRESSION

The expression for the cotunneling current in Eq. (2)
can easily be generalized to arbitrary polarization and
off-resonant transport, ξ0 �= 0. For identical polarizations
of the leads, PL = PR = P , it reads

Gcotun =
e2Γ0

L
Γ0

L

2π�

[

(

1 + P

2

)2 (

cos2(φ/2)

ξ0 − B
+

sin2(φ/2)

ξ0 + B + U

)2

+ 2
(1 + P )(1 − P )

4

(

− sin(φ/2) cos(φ/2)

ξ0 − B
+

sin(φ/2) cos(φ/2)

ξ0 + B + U

)2

+

(

1 − P

2

)2 (

sin2(φ/2)

ξ0 − B
+

cos2(φ/2)

ξ0 + B + U

)2
]

.

(A1)

APPENDIX B: EQUATIONS FOR THE NEGF

SOLUTION

For completeness we present here the equations for
the non-equilibrium Green function calculations within
the Hartree-Fock approximation. Using the equation-of-
motion technique, the Green functions in the diagonal
basis are33

G
r,a(ε) =

(

G
−1

HF
− Σ

r,a

L
(ε) − Σ

r,a

R
(ε)

)−1

, (B1a)

[Σr,a

α
(ε)]σ̃σ̃′ =

∑

kσ

(R†)σ̃σ|tα,kσ
|

2gr,a

α,kσ
(ε)R

σσ̃′ , (B1b)

where gr,a

α,kσ
(ε) = (ε − ξ

α,kσ
± i0+)−1 and Γα =

−i [Σr
α − Σ

a
α]. The Green function G

−1

HF
(ε) is stated in

Eq. (20).
For the tight-binding chain of Sec. III with elliptic

bands we find

Γα(ε) ≡2π
∑

kσ

|tα,kσ|
2δ(ε − ξα,kσ)

=
∑

σ

ΓTB

α,σ(ε) =
4|t0α|

2
√

D2
− ε2

D2
,

(B2)

where Eqs. (15), (16) have been used. The ↑̃↑̃-component
of the self-energy becomes

[Σr,a

α
(ε)]↑̃↑̃ =

∑

kσ

(R†)↑̃σ|tα,kσ
|

2
R

σ↑̃

ε − ξα,kσ ± i0+

=
1

2
(1 + Pα cosφ)

∫

dε′

2π

Γα(ε′)

ε − ε′ ± i0+
,

(B3)

where we used the definition of the polarization [see be-
low Eq. (9)].

The principal part of the integral can be found analyt-
ically for the elliptic density of states

P

∫

D

−D

dε′

2π

Γα(ε′)

ε − ε′
=

Γα(0)ε

2D
for |ε| < D, (B4)

where it has been used that Γα(0) = 4|t0
α
|

2/D.

The other components are calculated similarly, and the
full expression for the self-energy becomes

Σr,a

α (ε) =
1

2

(

1 + Pα cosφ Pα sin φ
Pα sinφ 1 − Pα cosφ

)

×

[

εΓα(0)

2D
∓

iΓα(ε)

2

]

. (B5)

After a self-consistent evaluation of the Green func-
tions, the current can within the mean-field approxima-
tion be evaluated as

JMF =
1

2π�

∫ ∞

−∞

dεTr [Ga(ε)ΓL(ε)Gr(ε)ΓR(ε)]

× [fL(ε) − fR(ε)] ,

(B6)

with fα(ε) = 1/
[

e(ε−μα)/kBT + 1
]

, α = L, R, being the
Fermi function.
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