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Abstract—The problem of communicating one bit over a mem-
oryless Gaussian channel with an energy constraint is discussed.
It is assumed that the channel is allowed to be used only two
times. An ideal feedback channel is also supposed available.
The optimal feedback strategy and the bit-error probability are
derived. It is shown that feedback gives a significant performance
gain and that the optimal strategy is discontinuous. It is also
shown that most of the performance increase can be obtained
even with a one-bit feedback channel.1

I. I NTRODUCTION

Shannon observed in [1] that feedback will not improve the
capacity when communicating over a memory-less channel.
This conclusion relies on the definition of capacity as a
limiting case with arbitrary long blocks and no decoding delay
constraints. Several authors have since then analysed different
effects of feedback, see for instance [2], [3], [4], [5] and [6].
The current paper is inspired by the interesting results of [7]
where it is shown that the Shannon-limit on -1.6dB energy per
bit can be obtained even for the case of block length one, if a
noise-free feedback channel is available. The obtained scheme
however still has potentially unbounded decoding delay. To
understand the benefits of feedback in the case of finite block
lengths the extreme case with a decoding delay of two channel
uses seems natural to study

A. Problem

We want to transmit the messagem ∈ {0, 1} where either
message is equally likely. The coder/transmitter is assumed to
send real numbersuk using side-information from a causal
noise-free feedback channel, see Fig. 1.
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Fig. 1: The system studied in the paper. The feedback channel
is assumed noise-free.

The signal is transmitted over a channel with additive
Gaussian noise with unit variance. At timek the coder hence
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sendsuk(y[0,k−1],m) and the decoder receivesyk = uk + ek,
whereek ∼ N(0, 1) is Gaussian noise. We will analyse the
case with two transmissions, i.e.

y0 = u0(m) + e0 (1)

y1 = u1(y0,m) + e1.

The task of this paper is to find optimal coder functionsu0

andu1 so that an average energy constraint,

E(u2
0 + u2

1) ≤ Smax (2)

is satisfied for a given levelSmax and a decoder which
minimizes the bit error probability

P e = P (m̂ 6= m).

We will use the notationϕ(t) = (2π)−
1

2 e−t2/2 andQ(x) =∫∞

x ϕ(t)dt. It is well known (e.g. [8]) that the optimal bit error
rate without feedback is given by

P e
no feedback= Q(

√
Smax), (3)

which can be achieved by antipodal signalingu0 = ±
√
Smax

andu1 = 0. There is no performance benefit with splitting the
energy into several transmissions.

B. Optimal Decoder

The bit error probability is minimized by the Maximum
Likelihood-decoder, which chooses the decoded message as

m̂ = argmax
i∈{0,1}

P (y0, y1 | m = i).

The decoder will output the messagem that maximizes the
posterior probability

logP (y | m)

= − log(2π)− 1

2
(y0 − u0(m))2 − 1

2
(y1 − u1(y0,m))2.

The first transmission should be antipodal, i.e.E(u0) =
1
2 (u0(1) + u0(0)) = 0, since a nonzero constantE(u0)
does not carry any information and just wastes energy since
E(u2

0) = E(u0−E(u0))
2+(E(u0))

2. We will use the notation

x0 := u0(1) = −u0(0)

x1(y0) :=
1

2
(u1(y0, 1)− u1(y0, 0)).



Without loss of generality we assume thatx0 ≥ 0, u1(y, 1) ≥
0 andu1(y, 0) ≤ 0 for all y.

The decoded bitm is determined by the sign of

log
P (y | m = 1)

P (y | m = 0)
=

1

2

(
−(y0 − x0)

2 + (y0 + x0)
2

−(y1 − u1(y0, 1))
2 + (y1 − u1(y0, 0))

2
)

= 2y0x0 + 2

(
y1 −

u1(y0, 1) + u1(y0, 0)

2

)
x1(y0)

If m = 1 the bit is correctly decoded if

y0x0 + (x1(y0) + e1)x1(y0) > 0, (4)

wherey0 = x0 + e0. For m = 0 it is correctly decoded if

− y0x0 + (x1(y0)− e1)x1(y0) > 0, (5)

wherey0 = −x0 + e0. It follows from (4) and (5) that the bit
error probability is given by

P e =
1

2

∫ ∞

−∞

Q

(
y0x0

x1(y0)
+ x1(y0)

)
ϕ(y0 − x0)dy0

+
1

2

∫ ∞

−∞

Q

(−y0x0

x1(y0)
+ x1(y0)

)
ϕ(y0 + x0)dy0 (6)

=
1

2

∫ ∞

−∞

(
Q

(
y0x0

x1(y0)
+ x1(y0)

)

+ Q

(
y0x0

x1(−y0)
+ x1(−y0)

))
ϕ(y0 − x0)dy0. (7)

The expected energy in the left hand side of (2) is given by

S := x2
0 +

1

2

∫ ∞

−∞

u2
1(y0, 1)ϕ(y0 − x0) + u2

1(y0, 0)ϕ(y0 + x0)dy.

(8)

C. Optimal Encoder

For eachy0, minimizing the integrand inS over u1(y0, 1)
andu1(y0, 0) subject to the constraint

1

2
(u1(y0, 1)− u1(y0, 0)) = x1(y0)

is a convex quadratic optimization problem with a linear
constraint. We can therefore use the following result:

Lemma Assume thatW > 0 and thatA has full row rank.
The minimum ofxTWx subject toAx = b is then obtained
for x = W−1AT (AW−1AT )−1b and is given byxTWx =
bT (AW−1AT )−1b.

Using this we obtain that
[
u1(y0, 1)

u1(y0, 0)

]
=

2x1(y0)

ϕ(y0 − x0) + ϕ(y0 + x0)

[
ϕ(y0 + x0)

−ϕ(y0 − x0)

]

(9)

and the energy (8) becomes

S = x2
0 + 2

∫ ∞

−∞

x2
1(y0)

ϕ−1(y0 − x0) + ϕ−1(y0 + x0)
dy0

= x2
0 + 2

∫ ∞

0

x2
1(y0) + x2

1(−y0)

ϕ−1(y0 − x0) + ϕ−1(y0 + x0)
dy0. (10)

Since the integrands in (7) and (10) are unchanged ifx1(y0) is
changed tox1(−y0) we can assume thatx1(y0) is symmetric
in y0. From (9) we can then conclude that

u1(y0, 1) = −u1(−y0, 0) =
2

1 + e2y0x0

x1(y0).

To find x0 ≥ 0 and a symmetric functionx1(·) ≥ 0
minimizing Pe under the energy constraintS ≤ Smax we
introduce a Lagrange-multiplierλ > 0 obtain the following
result.
Theorem The optimal feedback strategyx0, u1(·) can be
found by solving

min
x0,x1(·)

L(x0, x1(·)) = min
x0,x1(·)

P e(x0, x1(·)) + λS(x0, x1(·)).
(11)

and using

u1(y0, 1) = −u1(−y0, 0) =
2

1 + e2y0x0

x1(y0).

For a givenx0 we can findx1(y0) from the implicit equation

x1 exp

(
y20x

2
0

2x2
1

+
x2
1

2

)
− cosh (y0x0)

2
√
2πλ

= 0. (12)

The optimalx1 equals either zero or the largest real root of
(12), depending on which case gives the smallest value of the
integrand in

P e =

∫ ∞

0

(
Q

(
y0x0

x1(y0)
+ x1(y0)

)
ϕ(y0 − x0)

+ Q

(−y0x0

x1(y0)
+ x1(y0)

)
ϕ(y0 + x0)

)
dy0.

(13)

Proof
To find the optimal communication scheme we will fix the

Lagrange multiplierλ and for eachx0 optimize the integrand
of P e + λS over x1(y0) for eachy0. The optimalx0 is then
found by a one-dimensional search. The procedure is repeated
for different values ofλ resulting in a curve of achievable bit-
errorP e vs powerS. The resultingP e andS are continuous
functions of λ, from which it follows that the method of
Lagrange multipliers used actually finds the pareto-optimal
boundary of the (convex) domain of achievable(P e, S).

OptimizingL overx1(y0) can be done separately for each
y0. We therefore seek the infimum of

Q
(y0x0

x
+ x

)
ϕ(y0 − x0) +Q

(−y0x0

x
+ x

)
ϕ(y0 + x0)

+
4x2λ

ϕ−1(y0 − x0) + ϕ−1(y0 + x0)
(14)

with respect tox := x1(y0). Using Q′(x) = −ϕ(x), we see
there are stationary points when

0 =
dL

dx
= − 1

π
exp

(
−y20x

2
0

2x2
− x2

2
− y20

2
− x2

0

2

)

+
8xλ

ϕ−1(y0 − x0) + ϕ−1(y0 + x0)
.



This is an implicit equation inx = x1(y0) for eachy0 which
can be simplified to

x exp

(
y20x

2
0

2x2
+

x2

2

)
− cosh (y0x0)

2
√
2πλ

= 0,

where the left hand side has the same sign asdL/dx. It is
easily seen that there are at most two real positive solutions
of (12) and that the sign of the derivative goes from positive
to negative to positive. This means that the smallest value of
L is taken either atx = 0 or at the largest solutionx∗ of (12).
For x = 0+ the expression (14) becomes

ϕ(|y0|+ x0).

This value should therefore be compared with

Q
(y0x0

x∗
+ x∗

)
ϕ(y0 − x0) +Q

(
−y0x0

x∗
+ x∗

)
ϕ(y0 + x0)

+
4x∗2λ

ϕ−1(y0 − x0) + ϕ−1(y0 + x0)
,

where x∗ is the largest solution from the implicit equation
above and the alternative with smallest result should be chosen.
An alternative is to directly minimize

Q
(y0x0

x
+ x

)
ϕ(y0 − x0) +Q

(
−y0x0

x
+ x

)
ϕ(y0 + x0)

+
4x2λ

ϕ−1(y0 − x0) + ϕ−1(y0 + x0)

overx.
Note that the solutionx1(y0) = 0 corresponds to that the

second transmission is not used. Close analysis shows that the
value ofx for which the minima occurs can be a discontinuous
function of y, see Figure 5.

II. RESULTS

Figures 2-3 compare achievable performance for optimal
transmission without use of feedback (top blue) and opti-
mal transmission with use of feedback(black). Also shown
is a suboptimal feedback scheme (red) corresponding to a
constantx1(y0) ≡ x1 (such as used in [7]). There is a
significant performance gain of many dBs using feedback.
The performance gain increases with SNR. The suboptimal
scheme with constantx1(y0) ≡ x1 (which for eachλ was
optimized jointly withx0) is rather close to optimal, except for
the low SNR regime where the optimal scheme outperforms
the suboptimal with some tenths of dBs. Notice also that
the feedback scheme obtainable with one-bit feedback (red
dashed) captures most of the performance gain with feedback.
The one-bit feedback scheme was obtained by assuming the
feedback to give information about whether or not|y0| ≤ a.
The levela was found by straight-forward search. We have not
been able to prove that this is the optimal use of the one-bit
feedback channel, but think it is true.

The optimal use of power in the second transmission,
determined byx1(y0), is interesting. The functionx1(y0) turns
out to be discontinuous, showing that the second transmission
should not be used if the first outputy0 is far away from
zero. The discontinuity is most pronounced in the low SNR
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Fig. 2: Bit error probability versus average power: Optimal
transmission without use of feedback (full), one-bit feedback
scheme (dashed) suboptimal feedback scheme (dash-dotted),
optimal feedback scheme (full-x), Shannon bound for infinite-
block transmissions (full). Notice the significant performance
gain with feedback, even using only one-bit feedback.
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Fig. 3: Zoom of previous figure. There is a performance cost
of 0.5-1dB with the one-bit feedback channel, compared to
using an infinite-capacity feedback channel.

regime, for high SNR the discontinuity threshold moves to
very high levels of y0, corresponding to turning off the
2nd transmission only at exteremly unlikely outcomes from
the first transmission. Note that for low SNR the second
transmission is used mainly wheny0 is close to zero. A
majority of the power is used for the first transmission. The
optimalu1(y0, 1) andu1(y0, 0) for Smax = 2.42 is illustrated
in Fig 6.
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Fig. 4: The optimal x1(y0), which is discontinuous,
is shown for four cases corresponding to BER of
0.26(lowest), 0.09, 0.02, 0.004 (highest) respectively.
The discontinuity of the upper curve is outside the
visable range. For the four different cases we have
x0 = 0.48, 0.89, 1.19, 1.39 respectively and the total
powerSmax = 0.35, 1.32, 2.42, 3.12.
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Fig. 5: The minima of the function in (14) change wheny0
changes. This results in a discontinuity of the functionx1(y0).
The figure corresponds tox0 = 1.19, Smax = 2.42 and three
values ofy0 around 3.2, compare Fig 4.

III. C ONCLUSION

The optimal feedback scheme for transmission of one bit
of information over a energy constrained Gaussian channel
has been found for the case when the Gaussian channel can
be used two times. The optimal scheme is discontinuous,
but a continuous simpler suboptimal scheme can be found
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Fig. 6: The optimal functionsu1(y0, 1) and u1(y0, 0) when
Smax = 2.42 andx0 = 1.19.

with rather similar performance. The generalization to longer
decoding delay constraints is open.
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