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Abstract:

Though there is a very large literature examining whether energy use Granger causes
economic output or vice versa this literature is fairly inconclusive. Almost all existing studies
use relatively short time series or panels with a relatively small time dimension. Additionally,
many recent papers continue to use what seem to be misspecified models. We apply Granger
causality and cointegration techniques to a Swedish time series data set on energy and
economic growth spanning 150 years to test whether increases in energy use and energy
quality have driven economic growth. We show that these techniques are very sensitive to
variable definition, choice of additional variables in the model, and sample periods. All of the
following appear to make a finding that energy causes growth more likely: using multivariate
models, defining variables to better reflect their theoretical definition, using larger samples,
and including appropriate structural breaks. However, it is also possible that the relationship
between energy and growth has changed over time and that results from recent smaller
samples reflect this. Energy prices have a significant causal impact on both energy use and

output.
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1. Introduction

Does growth in energy availability and use cause economic growth? Or does economic
growth drive increasing energy consumption? There is a very large literature investigating
these questions but it is fairly inconclusive (Stern, 2011). In this paper, we investigate these
questions by applying Granger causality and cointegration techniques to a dataset covering
150 years of Swedish economic history. This is the longest time series that has been used in
the large literature on causality between energy and economic growth. We show that these
techniques are very sensitive to variable definition, choice of additional variables besides
energy and output, and sample periods used. All of the following appear to make a finding
that energy causes growth more likely: using multivariate models, defining variables to better
reflect their theoretical definition, using larger samples, and including appropriate structural
breaks. However, it is also possible that the relationship between energy and growth has
changed over time and that results from recent smaller samples reflect this. Also, energy
prices have a significant causal impact on both energy use and output.

Granger causality and cointegration methods have been extensively used to test for causal
relations between the time series of energy, GDP, and other variables from the late 1970’s on
(Kraft and Kraft, 1978; Ozturk, 2010). Early studies relied on Granger causality tests on
unrestricted vector autoregressions (VAR) in levels of the variables, while more recent
studies tend to use cointegration methods as the key variables are likely to be non-stationary
and stochastically trending. Studies can also be distinguished by whether they use a bivariate

or a multivariate framework.

The results of early studies that tested for Granger causality using a bivariate model were
generally inconclusive (Stern, 1993). Where there were nominally significant results, they
mostly indicated that causality runs from output to energy. However, results differed across
time periods, the countries investigated etc. Most economists believe that capital, labor, and
technological change play a significant role in determining output, yet early studies implicitly
assumed that energy is the only input to production. If this is not true, it will lead to omitted
variables bias and in the case of stochastically trending variables non-cointegration and hence
spurious and often sample dependent regression results (Stern and Common, 2001). In
addition, all the samples used were small, which have higher inherent sampling variability,

leading Stanley et al. (2010) to argue that we should simply discard most small sample



studies when reviewing an empirical literature. These factors may explain the very divergent

nature of both the early literature and much of the more recent literature.

In order to address the first of these issues, Stern (1993) tested for Granger causality in a
multivariate setting using a VAR model of GDP, capital, and labor inputs, and a Divisia
index of energy use in place of energy use measured in heat units. When both the multivariate
approach and the quality adjusted energy index were employed, he found that energy Granger
caused GDP.

Yu and Jin (1992) conducted the first cointegration study of the energy-GDP relationship.
Again, the results of subsequent research differ according to the regions, time frames, number
of variables, and the definitions of inputs and outputs used. Stern (2000) estimated a
cointegrating VAR for the variables included in Stern (1993). The analysis showed that there
is a cointegrating relation between the four variables and that energy Granger causes GDP
either unidirectionally or possibly through a mutually causative relationship. Warr and Ayres
(2010) replicate this model for the U.S. using their measures of exergy and useful work in
place of Stern’s Divisia index of energy use. They find both short and long run causality from
either exergy or useful work to GDP but not vice versa. Oh and Lee (2004) and Ghali and EI-
Sakka (2004) apply Stern’s (1993, 2000) methodology to Korea and Canada, respectively,
coming to exactly the same conclusions, extending the validity of Stern’s results beyond the
United States. Lee and Chang (2008) and Lee et al. (2008) use panel data cointegration
methods to examine the relationship between energy, GDP, and capital in 16 Asian and 22
OECD countries over a three and four decade period respectively. Lee and Chang (2008) find
a long-run causal relationship from energy to GDP in the group of Asian countries while Lee
et al. (2008) find a bi-directional relationship in the OECD sample. Taken together, this body
of work suggests that the inconclusive results of earlier work are possibly due to the omission
of non-energy inputs. By contrast, in recent bivariate panel data studies, Joyeux and Ripple
(2011) find causality flowing from income to energy consumption for 56 developed and
developing economies, while Chontanawat et al. (2008) find causality from energy to GDP to
be more prevalent in the developed OECD countries compared to the developing non-OECD

countries in a panel of 100 countries.

Other researchers have estimated multivariate VAR models that also include energy prices.
Hamilton (1983) and Burbridge and Harrison (1984) found that changes in oil prices
Granger-cause changes in GNP and unemployment whereas oil prices are exogenous to the
system. More recently, Blanchard and Gali (2008) used VAR models of GDP, oil prices,



wages, and two other price indices, to argue that the effect of oil price shocks has reduced
over time. Hamilton (2009a) deconstructs their arguments to show that past recessions would
have been mild or have merely been slowdowns if oil prices had not risen. Furthermore, he
argues that the large increase in the price of oil that climaxed in 2008 was a major factor in
causing the 2008-2009 recession in the US. However, because it is hard to substitute other
inputs for energy, the short-run elasticity of demand for oil and other forms of energy is low
and the main short-run effects of oil prices are expected to be through reducing spending by
consumers and firms on other goods, services, and inputs rather than through reducing the
input of energy to production (Hamilton, 2009a; Edelstein and Killian, 2009). Therefore,
models using oil prices in place of energy quantities may not provide much evidence

regarding the effects of energy use itself on economic growth.

Using a panel vector error correction model (VECM) model of GDP, energy use and energy
prices for 26 OECD countries (1978-2005), Costantini and Martini (2010) find that in the
short-run energy prices cause GDP and energy use and that energy use and GDP are mutually
causative. However, in the long run they find that GDP growth drives energy use and energy
prices. Other researchers who model a cointegrating relation between GDP, energy, and
energy prices for individual countries produce mixed results. For example, Glasure (2002)
finds very similar results to Costantini and Martini (2010) for Korea, while Masih and Masih
(1997) and Hondroyiannis et al. (2002) find mutual causation in the long run for Korea and
Taiwan and Greece respectively. Following Stanley et al. (2010), we should probably put
most weight on the largest sample study — that of Costantini and Martini (2010) - concluding
that these models identify a demand function relationship where in the long run GDP growth

drives energy use.

Until very recently, all papers in this literature examined annual time series of a few decades
at most, which is a small sample size for time series analysis, though researchers have also
used panel data to try to increase statistical power. Two recent papers use much longer time
series.! Vaona (2012) tests for causality between Malanima’s (2006) data on Italian energy
use and GDP from 1861 to 2000 using the Toda and Yamamoto (1995) procedure, the

Johansen cointegration test, and Lutkepohl et al.’s (2004) cointegration test that allows for a

! The downside of using larger samples is that it potentially increases heterogeneity. The data generating process
may change over time for long time series and vary across countries in the case of panel data. Though both
Stern and Kander (2012) and VVaona (2012) allow for structural breaks in the deterministic time trend, other
parameters may also change. Similarly, though panel data studies allow for country effects, other parameters

may also vary across countries.



shift in the mean of the process at an unknown time. Vaona disaggregates energy into
renewable and non-renewable energy but only estimates bivariate VARs. The causality tests
find mutual causation between non-renewable energy and GDP and from one measure of
renewable energy to GDP. While the standard Johansen procedure does not find cointegration
between GDP and non-renewable energy, the Liitkepohl et al. approach does find

cointegration with a structural break in 1947.

Stern and Kander (2012) estimate a model using 150 years of energy, gross output, labor, and
capital data for Sweden. The model has two equations — a nonlinear constant elasticity of
substitution production function for the logarithm of gross output and an equation for the
logarithm of the ratio of energy costs to non-energy costs. Two specifications are estimated —
one assumes that the rate of technological change was constant over the 150-year period and
the other allows the rate to differ in each 50-year period. Using Choi and Saikkonen’s (2010)
non-linear cointegration test they find that the latter model cointegrates but the former does
not. This implies that there is a causal relationship between the variables, but the direction of

causality is unknown. The current paper investigates this issue using the same data set.

2. Granger Causality Testing

As is well known, correlation alone does not imply causation and so, without additional
information, simple static regression analysis of observational data can only be used to
estimate the partial correlations between variables or to compactly represent the joint
probability distribution (Chen and Pearl, 2012). In this context, researchers must use theory
to establish potential causal mechanisms (Heckman, 2008; Gerring, 2010), determine if
variables are truly exogenous, and ensure that there are no confounding omitted variables. If,
the classical regression conditions do hold true, then the static regression model can be
interpreted causally. More sophisticated techniques including Granger causality testing,
instrumental variables regression, and the potential outcomes framework (Ferraro and
Hanauer, 2011) can be used to determine causal relationships under weaker conditions,

though some assumptions are still needed.

Granger causality testing has been the most common approach to determining the causal
validity of energy-output models. A variable x is said to Granger cause another variable y if

past values of x help predict the current level of y given all other appropriate information.



This definition is based on the concept of causal ordering. Two variables may be
contemporaneously correlated by chance but it is unlikely that the past values of x will be
useful in predicting y, given all the past values of y and other relevant information, unless x
does actually cause y in a philosophical sense. Similarly, if y in fact causes x, then given the
past history of y it is unlikely that information on x will help predict y. However, where a
third variable, z, drives both x and y, and is omitted from the conditioning information, x
might still appear to drive y though there is no actual causal mechanism directly linking the
variables. The simplest test of Granger causality requires estimating the bivariate VAR:

p p
Ye=Bot Zﬂl,iyt—i + Zﬂl,p+j Xi_jt & (1)
i1 j=1
p p
X, =Poot Zﬂz,iyt—i + Zﬂz,m iXej T &y 2)
i1 j=1

where p is the number of lags that adequately models the dynamic structure so that the
coefficients of further lags of variables are not statistically significant and the error terms &
are white noise but may be correlated across equations. Deterministic time trends can also be

added to the model. If the p parameters 3, . ; are jointly significant, then we can reject the

null that x does not Granger cause y. Similarly, if the p parameters f,; are jointly significant

then the null that y does not Granger cause x can be rejected. There are several other variants
of this Granger causality test including the Sims (1972) causality test and the Toda and

Yamamoto (1995) procedure discussed below.

Sargent (1979) and Sims (1980) introduced the VAR modeling approach as a method of
carrying out econometric analysis with a minimum of a priori assumptions about economic
theory (Qin, 2011). The VAR model generalizes the model given by equations (1) and (2) to
a multivariate setting. Though a VAR cannot, due to limits on degrees of freedom, include all
variables that may be causally related to the principal variable under investigation, some
attempt can be made to include as many as possible. Standard multivariate Granger causality
tests are identical to that described above except that there are lags of additional variables in
the regression. The advantage of multivariate Granger tests over bivariate Granger tests is
that they can help avoid spurious correlations. This is through adding additional variables that
may be responsible for causing y or whose effects might obscure the effect of x ony
(Lutkepohl, 1982; Stern, 1993). There may also be indirect channels of causation from xto y,



which VAR modeling could uncover. Tests can also be constructed to exclude the lags of

variables from multiple equations (Sims, 1980).

Of course, failure to reject the null hypothesis that x does not cause y, does not necessarily
mean that there is in fact no causality. A lack of sensitivity could be due to a misspecified lag
length, insufficiently frequent observations (Granger, 1988), too small a sample (Wilde,
2012), omitted variables bias (Lutkepohl, 1982), or nonlinearity (Sugihara et al., 2012).

When some or all of the variables are non-stationary, a standard Granger causality test on a
VAR in levels is invalid as the distribution of the test statistic is not the standard chi-square
distribution (Ohanian, 1988; Toda and Phillips, 1993). This means that the significance levels
reported in the early studies of the Granger-causality relationship between energy and GDP
may be incorrect, as both variables are generally integrated series. If there is no cointegration
between the variables then the causality test should be carried out on a VAR in differenced
data, while if there is cointegration, standard chi-square distributions apply when the
cointegrating restrictions are imposed (Toda and Yamamoto, 1995). Toda and Yamamoto
(1995) developed a modification of the standard Granger causality test on the variables in
levels that is robust to the presence of unit roots. This method, described in detail below, adds
additional lagged variables to the vector autoregression that are not restricted in the Granger
causality test. Clarke and Mirza (2006) show that, despite the additional parameters, this
approach shows little loss of power compared to the alternative of testing the restrictions on a
VECM that imposes cointegrating restrictions. The latter can result in severe over-rejection
of the null of non-causality due to the pre-testing for cointegration involved in its
construction. Bauer and Maynard (2012) suggest an alternative approach where only one
extra lag of the variable being tested for exclusion is added. This procedure is robust to a
wide array of data generating processes including structural breaks in the explanatory
variables but not to I1(2) variables. They find that the reduction in parameters increases power

across the data generating processes that they test in a Monte Carlo exercise.

Nonlinear Granger causality testing procedures exist, such as the frequently used Hiemstra
and Jones (1994) approach. The latter has been applied to test for nonlinear causality between
energy and output (Chiou-Wei et al., 2008) but is not applicable to non-stationary data and
has several other shortcomings (Hassani et al., 2010). Chiou-Wei et al. (2008) difference
their data in order to apply the test, but this throws away the information on the long-run

relationship between the variables. Hassani et al. (2010) present a method based on singular



spectrum analysis that they claim can cope with non-stationary series. Another kernel-based
approach is developed by Sun (2008). However, these methods remain experimental or little

used as yet and we do not use them in this paper.

3. Data

Some background on the Swedish economy will be useful for interpreting the data and the
econometric results discussed below. Swedish industrialization and modern economic growth
took off roughly around 1850 (Greasley et al., 2013), which is also the starting year for the
analysis in this paper. Sweden went from being one of the poorest European economies in the

early nineteenth century to one of the richest 150 years later.

Sweden is a small open economy and exports have constituted a great part of its economic
success. Natural resources, such as the charcoal-based Swedish bar iron were the traditional
export good and completely dominated Swedish exports until the mid-nineteenth century.
The upswing in industrial growth in Western Europe in the 19™ Century, led to an expansion
in Swedish exports in three staple goods — bar iron, wood, and oats. In order to connect
Sweden’s vast natural resources with the international market, state-sponsored railways were
initiated and built starting in the 1850s. From the1890s, the focus shifted towards new
enterprises, which were closely related to the so-called Second Industrial Revolution. This
meant that scientific knowledge and more complex engineering skills replaced the earlier
dependence on natural resources. The electrical motor became especially important and new
companies such as ASEA (later ABB) were formed that combined engineering skills with the

large supply of hydropower in Sweden (Schén, 2008).

Compared to many other industrialized nations, Sweden’s energy system was never very
dominated by coal, but rather went from dependence on firewood in 1850 (roughly 75 per
cent of energy according to Gales et al. 2007) to becoming relatively dependent on primary
electricity. Sweden is well endowed with hydropower resources and great advances were
made in the electricity infrastructure from the 1910s to the 1950s. The national electrical grid
was integrated in the 1930s and the technology of high voltage transmission made it possible
to supply industries with electricity at lower prices and with great regularity. In 2000,

primary electricity constituted around 30 per cent of the energy consumed in the country, half



of which came from nuclear energy and half from hydropower (Gales et al. 2007). Reliance

on oil came only after the Second World War.

During the interwar period, when the rest of Europe was torn by world wars and depression,
the Swedish economy fared relatively well. The post-war period saw rapid economic growth
in all of Europe, and Sweden was no exception. In addition, this period also saw the
cementation of the "Swedish Model" for the welfare state. The “Swedish Model” at this time
was said to build on two main pillars: one the public responsibility for social security and the
other regulation of labor and capital markets. As long as the export sectors grew, the model
worked well. However, in the 1970s and early 1980s Sweden was hit by the oil crisis and
faced subsequent problems with structural adjustment of the economy. Industries such as
steel works, pulp and paper, shipbuilding, and mechanical engineering ran into crisis and the
Swedish Model started to disintegrate. The labor and capital markets became deregulated and
the expansion of public sector services came to an end. During the last decades of the
twentieth century, Swedish economic policy converged to European norms and this
facilitated the Swedish application for membership and final entrance into the European
Union in 1995 (Schon, 2010).

The data we use is identical to that used by Stern and Kander (2012) where a full description
can be found. The energy data comes from Kander (2002) and the other data from the
Swedish historical national accounts (Krantz and Schon, 2007). The variables considered in
our models and tests are: Gross output (GRO), GDP, capital (K), labor (L), heat content of
primary energy (HE), Divisia index of primary energy (DE),? the Divisia energy price index
deflated by the GDP deflator (PE), and the oil price in Swedish Krona deflated by the GDP
deflator (PO). The reason for looking at the price of oil is that it is more exogenous than the
energy price index. However, the series only starts in 1885. We transform all variables into
logarithms. We use the Divisia energy index to take into account the increased productivity
of energy over time due to the shift from coal and biomass to oil, natural gas, and primary
electricity (Stern and Kander, 2012).

% The heat content of primary energy is simply the total joules of the various forms of energy used in the
economy before combustion of some fossil fuel and biomass to produce secondary electricity. Most electricity is
primary (from nuclear, hydropower etc.) in Sweden. Divisia indexation computes a “volume index” of energy
input taking into account shifts between fuels with different productivities or “quality” as reflected in their
prices (see Stern, 2010).
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The quality of the data, especially of the energy quantity data, is better for more recent
decades. Therefore, we carry out unit root and causality tests for 1900-2000 and 1950-2000
sub-periods as well as for the full 150-year period.

Figure 1 presents the time paths of the key quantity variables. As all the variables are strongly
trending they are highly correlated. Fluctuations and changes in the trend slope also appear to
be correlated. Figure 2 compares the growth rates of the Divisia energy index (which is less
volatile than heat units of energy series) and GDP. The two series are strongly correlated in
the mid 20™ Century. In the 19 Century the energy series is much less volatile than the GDP
series and the reverse is true in the late 20™ Century. The reason for this is that the 19"
Century data are dominated by renewable energy and the way that this data was constructed
from the original sources did not put a focus on annual fluctuations (Stern and Kander, 2012).
The decline in energy’s cost share as the 20™ Century progressed might explain the change in
relative volatilities over the course of the century.

The simple correlation between the rates of change in Figure 2 is 0.49, which is highly
statistically significant (t = 6.89). The correlation between the rates of change is suggestive of
a functional relationship but the direction of causation and the role of other variables are not

indicated.

Figure 3 shows the two price series - the real price of oil and the Divisia energy price index
deflated by the GDP deflator. Oil is relatively expensive compared to the average energy
carrier and its price is also much more volatile. In particular, the 1% and 2™ World Wars
generated massive price spikes and a smaller spike follows the oil crisis of the 1970s. These
two series are strongly correlated (r = 0.56). The direction of causation between these two
series is pretty certain — oil prices are one component of the energy price index and are
largely driven by global oil prices and exogenous disruptions such as the World Wars.
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4. Econometric Methods

4.1. Unit Root Tests

First we test for unit roots assuming that are no structural breaks using the Phillips and Perron
(1988) test (PP), which has a null of a unit root and the Kwiatkowski et al. (1992) test
(KPSS), which has a null of stationarity. For the variables in log levels we estimate the

following regression:

yt:a+ﬂt+])yt—l+8t (3)

where y is the log of the variable of interest. The null hypothesis is that y; contains a unit root
and so y= 1. The PP test is a modified t-statistic for = 1. The alternative hypothesis is that y;

IS trend stationary with slope g. For the first differences we estimate:
Ay, =a+ Ay, + U, (4)

so that the alternative hypothesis is levels stationarity. We use the default four lags to

compute the standard errors used in the PP test statistic by the RATS procedure unitroot.src.

We also test for unit roots assuming the presence of structural breaks. We assume both that
the timing of the structural breaks is known — the breakpoints used by Stern and Kander
(2012) - using Park and Sung’s (1994) unit root test and that the timing is unknown, a priori,
using the tests developed by Lee and Strazicich (2003, 2004). We use the latter only on the
full 1850-2000 sample. Park and Sung’s (1994) tests modify (3) and (4) to allow for breaks in
the intercept and trend and to create test statistics that are invariant to the location of the
breakpoints. Park and Sung (1994) provide the distribution of these test statistics for one or
two breakpoints. Like Lee and Strazicich’s test, Park and Sung’s test allows for a structural
break under the null hypothesis. For the log levels the alternative hypothesis we use is trend
stationarity with breaks - Lee and Strazicich’s “break” model — while for the first differences
of logs the alternative is levels stationarity with breaks - Lee and Strazicich’s “crash” model.
We used the RATS procedure Isunit.src to compute the Lee and Strazicich tests and we wrote

the code for the Park and Sung test ourselves in RATS.

4.2. Granger Causality Tests
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For all VAR models, including the cointegration models discussed in the next subsection, we
select the optimal lag length, p, using the Akaike Information Criterion considering a
maximum of four lags (Schwert, 1989). We use the Toda and Yamamoto (1995) procedure
for testing for causality in the possible presence of unit roots and non-cointegration. We add
additional lags of all variables to account for possible unit roots in the time series and
compute the Wald test statistic for excluding only the first p lags of the variable of interest

from the relevant equation. The model we estimate is:
n p d

Yi = Z(VjAtjt + §jtjt)+ ZHth—i + Zni+pyt-p-i + & (5)
j=0 i=1 i=1

where d is the maximal order of integration in the data and n is the number of structural
breaks in the data. y; is the vector of m variables modeled in the VAR in year t and ¢, is the

corresponding vector of disturbances. y; and &, are m x 1 vectors and the IT; are m x m

matrices of regression coefficients. There are n-1 structural breaks. t, is a simple linear time

trend and, therefore its first difference, At,, is a constant term. For j > 0, At is equal to zero

up to and including the year of the structural break and unity after it. This means that the

i
slope of the time trend in period j is Z5k and similarly for the level of the intercept in period
k=0

J. This formulation of the trend and intercept components is intended to allow for a linear
time trend in the long-run relationship if the model is cointegrated, as well as drift terms in
the short run dynamics while allowing both to undergo structural change. This trend is
intended to model a possible unobserved technology trend. It is not intended to allow for a
shift in the mean of the series and, therefore, it differs from the formulation of the

deterministic components in Joyeux (2007).

Though parameter estimates are identical whether the system is estimated using OLS or a
seemingly unrelated regression estimator (SUR), following Toda and Yamamoto (1995) and
Clarke and Mirza (2006) we test the restrictions on the system of equations as a whole rather
than using the traditional F-test on a single equation. To test whether variable y causes
variable y, where the superscripts indicate individual variables in the vector y, we need to

test that IT! =13 =...=I1¢ =0, where IT{ is the element of the matrix IT; in the kth row

and jth column. We stack the matrices in (5) into a single matrix I :vec[l'Il,l‘Iz,...,l‘Ip+d :
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Then define R as a selector matrix so that RTI =vec|[1/,IT},...,IT | The null hypothesis can

now be expressed as RIT=0 and the Wald test statistic is:
W =ITR'[RVRT RI1 ©6)

where hats indicate estimated parameters and V is the estimated covariance matrix of /7
using the standard formula for seemingly unrelated regressions with one iteration of GLS.
The test statistic is distributed asymptotically as chi-square with p degrees of freedom.

4.3. Cointegration Modeling

Finally, we test for cointegration using the Johansen procedure allowing for both
deterministic trends and deterministic trends with structural breaks using the methodology of
Johansen et al. (2000). The purpose of this analysis is to see if there is a difference between
linear cointegration analysis and the Stern and Kander’s (2012) non-linear cointegration
analysis as well as to test for the direction of causality in the cointegration framework.® We
estimated the VECM models using E-Views implementing the structural breaks and

associated cointegration tests using code provided by David Giles.*

5. Results

5.1. Unit Root Tests

Table 1 presents the results of the Phillips-Perron (PP) and Park and Sung (PS) unit root tests,
Table 2 the Lee and Strazicich (LS) unit root tests, and Table 3 the KPSS unit root tests.

Looking first at the PP tests on the log levels, the null of a unit root cannot be rejected for any

3 Testing for causality using a t-test on the adjustment parameters is not a formally appropriate test (Clarke and
Mirza, 2006) but one that is widely used in the literature. First, the cointegration test is a pre-screening
procedure. If cointegration is found between two variables then there must be Granger causality in at least one
direction between them (Engle and Granger, 1987). Second, the correct causality test should jointly restrict the
long-run coefficient of the variable in question, the adjustment parameter, and the associated first differences in
the appropriate equation. Despite this, we report these tests for some cointegrated models with this strong
“health warning”.

4 The files - relating to the “Cointegrated at the hips” blogpost - are available at:
http://daveqgiles.blogspot.com.au/p/code.html.
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series when for either the complete period 1850-2000 or either of the sub-periods.® However,
we can reject the unit root null for all the differenced series except for capital in the two sub-
periods. Allowing for structural breaks in 1900 and 1950 (PS tests) does not change this
picture substantially. Neither does allowing endogenous selection of the breakpoints (LS
tests, Table 2). Capital appears to be a possibly 1(2) series and the other series 1(1).

The KPSS test (Table 3) easily rejects the null of trend stationarity for all the variables in log
levels in all time periods. For the first differences of the variables, we cannot reject the null of
levels stationarity for any variable for the full sample or the 1900-2000 subsample. However,
levels stationarity can be rejected for several variables in the 1950-2000 period. Therefore the

Toda-Yamamoto test appears to need up to two extra lags.

The endogenous breakpoints (Table 2) differ across variables and the levels and first
difference specifications. We also found that the number of lags included in the procedure
affected the choice of breakpoint. We also carried out LS tests with a single structural break
(Lee and Strazicich, 2004) and three structural breaks. These resulted in a different selection
of breakpoints that also varied across variables. Looking at Table 2, the obvious break in the
energy quantity series following the oil price shock in the early 1970s only shows up in the
first differences for DE and PE as well as for GDP and K. In levels these series have breaks
in the early- or mid- 1960s, which are not at all visible in the data (Figure 1). Given the
disagreement across these tests we use exogenous breakpoints — the 1900 and 1950
breakpoints used by Stern and Kander (2012) and 1916 (First World War) and 1973 (Qil

Crisis) breakpoints, which are apparent in the energy series.

5.2. Toda-Yamamoto Causality Tests

We start by estimating and testing the simple bivariate model for GDP and the heat content of
primary energy. Each equation also includes a constant and a simple linear time trend as a
proxy for technological change. We find (first two columns of Table 4) that GDP causes
energy use but not vice versa in each sub-period. When we replace the heat content of energy
with the Divisia index we find that there is causality from energy to GDP in the full sample

(p=0.015) and causality from GDP to energy in the 1950-2000 subsample but no causality in

5 This contrasts with the finding of International Monetary Fund (2011, 91-92) that real oil prices from 1875 to
2010 are 1(0). Our Swedish price series appears much less volatile in the short-run than their US dollar real oil
price series. On the other hand, Hamilton (2009b) argues that real oil prices follow a random walk with no drift.
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either direction for the 1900-2000 sub-period. This shows the sensitivity of bivariate tests to

the definition of variables.

Next, we estimate a multivariate VAR for GDP, capital, labor, and Divisia energy. This
shows causality from energy to GDP for the full period (p=0.031) and for 1900 to 2000
(p=0.037). But for the 1950-2000 period GDP causes energy (p=0.000). When GDP is
replaced with gross output, energy causes output in the full period and output causes energy
in the 1950-2000 period at the 10% significance level while there is no causation in either
direction in the 1900-2000 subsample. So these multivariate results are also somewhat

ambiguous.

The final two columns of the table allow for a trend break in 1900 and 1950. This mostly
does not change the results. However, it does reduce the significance of energy in the full
period in all three models with the Divisia energy index and dramatically reduces the

significance of GDP in the full period in the first model.

Table 5 shows the results of estimating VARSs including GDP and the quantity and price of
energy. The Divisia price index Granger causes energy use in all samples. GDP causes
energy use in the 1950-2000 subsample but the significance level is much lower in the full
sample and the 1900-2000 subsample. So there is only tentatively a demand function
relationship in these data in the full sample. The Divisia price index Granger causes GDP in
the full period and in the 1900-2000 sub-period. The quantity of energy has no significant
effect on GDP. In the full sample, the Divisia price index is, however, endogenous with
respect to energy quantity (p=0.019) and GDP (p=0.053) but this relationship does not hold
in the sub-samples though GDP causes prices in the 1950-2000 subsample (p=0.072).

Next, we replace the price of energy by the price of oil and the Divisia energy quantity index
by the heat equivalent of energy. The price of oil is clearly exogenous as we would expect.
The other main differences are that GDP causes energy in all samples and price does not
cause energy use in the 1950-2000 subsample. There is also more evidence of causation from

energy to GDP.

When a trend with structural breaks is used the results are very similar. The main difference
is that now GDP causes Divisia energy in each sample so that there is stronger support for the

demand function interpretation.
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We also added capital and labor to these latter models to produce a composite of the Table 4
and Table 5 models. The results were very similar to the models in Table 5. The price of
energy plays the dominant role in the models and capital and labor are mostly insignificant.
We also estimated all the models with structural breaks in 1916 and 1973 instead of 1900 and

1950. The results were similar with generally lower significance levels.

5.3. Linear Cointegration Analysis

We estimate vector error correction models for capital, labor, energy, and output measuring
energy using either heat units or the Divisia index and output using GDP or gross output. We
also estimate models with and without linear trends in the cointegration space and with and
without structural breaks. Finally, some models include the Divisia energy price index and
others do not. We assume that all variables are I(1). The results of the Johansen trace statistic
tests for the number of cointegrating vectors are presented in Tables 6-11 and coefficient
estimates for some of the models that passed the cointegration tests are presented in Tables
12 and 13.

The models in both Tables 6 and 7 are estimated for two specifications of the deterministic
components: under the assumption of an unrestricted constant term in the VAR but no linear
trends in the cointegrating relation (denoted as case 3 in Juselius, 2006, p.100) and under the
assumption that there is a linear trend in the cointegration space (denoted as case 4 in
Juselius, 2006). In tables 8 to 11 we allow for structural breaks in the intercept and in the
linear trend of the cointegration relation and so we only estimate the models that allow for
linear trends (the case 4 model). Each model uses 2 lags in the levels as suggested by the

Akaike information criterion.

As seen in Table 6, the null hypothesis of no cointegration cannot be rejected at the 5%
significance level in any model for either the full sample or the two subsamples. However,
for the model with the Divisia index of energy and gross output allowing for a trend in the
cointegration relation, we come very close to rejection of the null of non-cointegration at 5%
levels in the full sample (the trace statistic of 62.7 is very close to the critical value of 62.99).
At the 10% significance level the null of non-cointegration can be rejected while the
hypothesis of at most one cointegrating relation cannot be rejected. Of course, more than one

false rejection at the 10% level would be expected when 24 tests are carried out.
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The models in Table 7 are the same as in Table 6 except that the price of energy is included
alongside the other four variables. In the full sample, we can formally reject the null of zero
cointegrating vectors for two of the eight models at the 10% level, while several of the
models are very close to being significant at the 10 % level. Taking the low power of the
Johansen test into account, this could suggest at least one cointegration relation. In the 1950-
2000 subsample, we can reject the null of non-cointegration at either the 5% or 10% level for
all models with a trend in the cointegration space despite the expected low power of the test
in a sample of this size.

We also test for cointegration in the presence of a trend that is allowed to change slope every
50™ year. Johansen et al. (2000) derive the formulae for simulating the asymptotic
distribution in the presence of structural breaks. We use the critical values that correspond to
the model that Johansen et al. (2000) call the Hy(r) test, which means that we assume a
structural change in both the unrestricted constant and the slope of the trend in the
cointegration relation. The distribution of the critical values depends on the proportion of the
way through the sample that the break occurs. The new critical values were calculated using
the code described and supplied by Giles and Godwin (2011). Table 8 presents the trace test
statistics and the critical values for this test with structural breaks in 1900 and 1950 for the
model without energy prices. Adding structural breaks every 50" year does not increase the
rate of rejection of the null hypothesis of non-cointegration. On the contrary, the null
hypothesis of no cointegration cannot be rejected in any model. In Table 9 we add energy
prices to this model but the results stay the same: the null hypothesis of zero cointegration

relations cannot be rejected.

Still, allowing for a structural break in the trend every 50" year is arbitrary. In Table 10 we
conduct a similar analysis with the four variables from the production function framework
but allow for structural breaks in 1916 and 1973 instead of 1900 and 1950. As seen from the
table, the null hypothesis of no cointegration can now be rejected at the 10 % level in the
model in which Divisia energy and gross output were used together with capital and labor.
This finding indicates that both the definition of variables and the choice of structural breaks
in the cointegration relation can have an important effect on the results. In Table 11 we add
energy prices to the analysis in Table 10. We are now able to reject the null of no
cointegration in all the models, but the test still only suggests at most one cointegration

relation. In conclusion, the Johansen test for cointegration in a multivariate setting in a linear
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model only picks up a long-run cointegrating relationship between the variables in cases
where the structural breaks in the long-run relations are carefully chosen and the variables

carefully defined.

In Tables 12 and 13 we report estimates of the cointegrating vector, £, and the adjustment
parameters, «, for the models where we find cointegration in Tables 7 and 11. In Table 7 we
found one cointegrating vector at at least the 10% significance level for each model we tested
for the 1950 to 2000 period. We found cointegration at at least the 10% significance level for
all models in Table 11, which cover the entire 1850-2000 period allowing for two structural
breaks. We rejected non-cointegration in further isolated cases but do not report further
results for those models, which might simply be cases of Type 1 error. We normalized the
estimates of the cointegrating vectors on the energy variable and do not report the constant
term or any of the trend terms for the model with structural breaks.

Capital is not significant in any of the long-run relationships in Table 12 but energy prices are
highly significant in each, and labor, output, and the trend term are highly significant for the
first two models. Output, energy, prices, and the time trend have the expected signs. If we
interpret the labor variable as a proxy for population then the output variable can be
interpreted as the effect of income per capita, while the labor variable is the effect of
increasing population while reducing income per capita. Therefore, the effect of population
alone is the sum of these two elasticities. For the first two models income per capita has a
greater than unit elasticity while the implied elasticity of population is rather small but
positive. The elasticity of demand with respect to prices is very inelastic (0.28 to 0.38).
Energy use declines autonomously at a rate of 1.4% to 1.8% per annum. The models for
Divisia energy show much lower but less precisely estimated income per capita elasticity and
a close to unit implied population elasticity. The elasticity of energy demand with respect to
prices is less inelastic (0.64 to 0.73) and the autonomous rate of reduction of energy use is

lower too.

The adjustment parameter, ¢, is highly significant and negative for energy as expected in
each model in Table 12, implying that energy is endogenous. Output has a significant
adjustment parameter at the 5 or 10% level in the first three models but not in the fourth.
Only one other variable in one model — the energy price in the third model has an adjustment
parameter that is significant at the 10% level. These causality test results conform well to our

findings using the Toda-Yamamoto test in Tables 4 and 5.
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The results in Table 13 are much harder to interpret, probably because most variables are
now endogenous. Capital is only significant in the third model, while prices are only
significant in the first. Population now has a net negative effect on energy use, which is not
intuitive, while the income elasticity varies from 0.59 to 0.81. In the first two models all
variables apart from capital are endogenous. In the final two models the adjustment
coefficient for output is also insignificant. The results for the final model results are similar to
the causality tests for the most similar model in Table 5 except that here energy prices do not

cause energy use.

6. Discussion and Conclusions

Review of the literature on the time series analysis of energy and economic growth shows
that multivariate models that include capital and perhaps labor inputs and/or improved
measures of the energy input tend to find causality from energy to GDP. Results are more
mixed for bivariate models. Models with oil prices, energy, and output tend to find that in the
long-run GDP growth drives energy use while energy prices are exogenous at least in the

short-run.

As we would expect, most of the Swedish time series variables investigated are strongly
trending and all have stochastic trends. As a result there are strong correlations among them,

which do not necessarily say anything about causality.

A simple bivariate energy and GDP VAR model found causation from GDP to energy but
this was reversed in the full sample period when we used a Divisia index of energy. But we
found causality from GDP to energy in the 1950-2000 subsample and no causality in the
1900-2000 subsample. A multivariate model that included capital and labor inputs also
showed causality from energy to GDP in the 1850-2000 and 1900-2000 samples but from
GDP to energy in the 1950-2000 sample. These results for the most recent period are
intriguing because Stern and Kander (2012) find that the contribution of energy to economic
growth was much greater in the 19" and early 20" Centuries than in the late 20" Century. As
the cost share of energy fell its relative contribution to production fell too.

The only other long-term study of energy-growth causality (Vaona, 2012) found mutual

causation between non-renewable energy and GDP and from one measure of renewable
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energy to GDP using bivariate models. Non-cointegration between GDP and renewable

energy could only be rejected when a structural break was allowed.

Our VAR models of GDP, energy quantity, and energy prices mostly find that energy prices,
and particularly oil prices, are exogenous, that prices have a more significant impact on GDP
than energy quantities, and that GDP and energy prices drive energy use. But the significance

of the effect of energy prices on GDP was also attenuated in the 1950-2000 period.

We find that the Granger causality technique is very sensitive to variable definition, choice of
additional variables in the model, and sample periods. Better results can be obtained by using
multivariate models, defining variables to better reflect their theoretical definition, and by
using larger samples. A lot fewer significant relationships were found in the 1950-2000
sample than in the two longer samples. Of course, it is hard to know if that is due to the
smaller sample size or to changes in the nature of the relationship over time. It is likely that

IV and other causal techniques also are subject to similar vagaries of specification.

We also estimated VECM models using the Johansen procedure allowing for both simple
linear trends and time trends with structural breaks in the long-run relations. We found that a
model that both includes energy prices in addition to output and the three factors of
production and has structural breaks in 1916 and 1973 allows us to find at least one
cointegrating vector. We also found cointegration for the 1950-2000 subsample for models
with energy prices and a simple linear trend. Directions of causality in the long-run relations
of the VECM models quite closely matched those found with the Granger causality tests. The
long-run relationship seems to identify an energy demand model. However, VECMs that do
not include energy prices and have no structural breaks or structural breaks at other times
only find cointegration for a few specifications, which could simply be explained by type 1

error.

This is in contrast to the findings of Stern and Kander (2012) who estimate a static non-linear
production function model. They found that when arbitrary structural breaks in the time trend
every fifty years that represent a varying rate of technological change are allowed, the null of
cointegration could not be rejected by the Choi and Saikkonen (2010) non-linear
cointegration test. But when a constant rate of technological change was assumed the null
was rejected. This suggests that the long-run relationship between energy and output is in fact

non-linear due to the low elasticity of substitution between energy and other inputs. Perhaps
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including energy prices in the model is a proxy for the changes in cost shares in the non-

linear model.
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Table 1. Phillips and Perron and Park and Sung Unit Root Tests
Variable Form | Log Levels | First Log Levels First
Differences of Differences of
Logs Logs
HO Unit Root Unit Root Unit Root Unit Root
H1 Trend Levels Trend Levels
Stationary Stationary Stationary Stationary
1850-2000 No Structural Breaks 1850-2000 with Structural
Breaks in 1900 and 1950
GRO -2.03 -13.15 -3.18 -13.86
GDP -2.15 -12.26 -2.172 -12.36
K -1.19 -3.52 0.24 -3.08
L -0.87 -9.89 -3.15 -11.87
HE -2.50 -15.71 -4.08 -15.96
DE -1.83 -12.59 -2.60 -11.99
PE -2.52 -13.23 -4.00 -13.85
PO -2.55 -7.40 -2.66 -8.26
1900-2000 No Structural Breaks 1900-2000 with Structural
Break in 1950
GRO -1.93 -9.16 0.15 -7.66
GDP -1.60 -8.80 0.10 -7.08
K -0.73 -2.27 0.30 -1.70
L -0.85 -6.91 -0.05 -7.59
HE -2.17 -12.92 -1.81 -11.59
DE -0.48 -10.63 -0.94 -8.65
PE -1.45 -10.18 -2.02 -71.79
PO -2.39 -6.93 -2.28 -1.47
1950-2000
GRO -0.99 -4.48
GDP -1.14 -3.75
K -0.02 -1.02
L -1.90 -3.60
HE -1.28 -7.32
DE -1.10 -6.75
PE -1.67 -4.53
PO -2.65 -5.22

Notes: For definition of variables see the main text. For the price of oil the first
observation is for 1885. Values significant at the 5% level are in bold. For the
trend stationarity tests the critical value for the Phillips-Perron test at the 5% level
IS -3.45. For the Park and Sung test the critical values are -4.15 for one structural
break and -4.75 for two structural breaks. For the levels stationarity tests the
critical value for Phillips-Perron is -2.89 while for the Park and Sung tests they are

-3.33 and -3.72.
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Table 2. Lee and Strazicich Unit Root Tests

Variable | Log Levels First Differences of Logs
Form
HO Unit Root Unit Root
H1 Trend Stationary, “Break” Levels Stationary, “Crash”
Breakpoint | Breakpoint Breakpoint 1 | Breakpoint 2
Test Statistic 1 2 Test Statistic
GRO 1882 1961 -6.26 1890
-3.97 1945
GDP 1882 1961 -5.44 1904
-4.16 1970
K -4.12 1925 1962 -3.61 1934 1974
L 1885 1936 -5.61 1890
-3.55 1942
HE 1948 1978 -5.45 1923
-5.14 1980
DE 1912 1959 -6.22 1945
-3.60 1973
PE 1912 1965 -5.75 1928
-4.86 1973
PO 1910 1950 -5.90 1921
-4.76 1941

Notes: For definition of variables see the main text. For the price of oil the first observation is for
1885. Values significant at the 5% level are in bold. Exact critical values for the trend stationarity
test depend on the location of the breakpoints and vary from -5.59 to -5.74. For the levels
stationarity test the critical value is -3.84.
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Table 3. KPSS Unit Root Tests
Variable Log Levels Log First Differences
HO: Levels HO: Trend HO: Levels HO: Trend
Stationary Stationary Stationary Stationary

1850-2000
GRO 3.10 0.58 0.23 0.08
GDP 3.11 0.50 0.15 0.09
K 3.09 0.37 0.19 0.18
L 3.08 0.46 0.39 0.06
HE 3.04 0.37 0.08 0.08
DE 3.02 0.59 0.41 0.26
PE 2.65 0.26 0.09 0.09
PO 0.73 0.17 0.07 0.04

1900-2000
GRO 2.12 0.22 0.09 0.09
GDP 2.12 0.21 0.12 0.11
K 2.12 0.28 0.31 0.31
L 2.01 0.45 0.31 0.06
HE 2.06 0.21 0.10 0.10
DE 2.09 0.25 0.30 0.21
PE 1.64 0.26 0.17 0.07
PO 0.63 0.19 0.06 0.06

1950-2000
GRO 1.09 0.27 0.53 0.10
GDP 1.08 0.27 0.48 0.10
K 1.09 0.29 0.97 0.10
L 0.83 0.20 0.12 0.05
HE 0.91 0.26 0.59 0.07
DE 0.93 0.28 0.82 0.08
PE 0.26 0.22 0.35 0.07
PO 0.75 0.19 0.33 0.08

Notes: For definition of parameters and variables see the main text. Values significant at
the 5% level are in bold. For the price of oil the first observation is for 1885.




Table 4. Causality Tests: Production Function Models

Simple Time Trend

Time Trend with Structural

Breaks
Model Period | Energy GDP Energy GDP
-> -> -> ->
GDP Energy GDP Energy
Bivariate GDP | 1850- | 0.0123 8.8298 0.0341 0.6819
& HE 2000 (0.994) (0.012) (0.853) (0.409)
1900- | 1.7882 10.341 1.8056 9.0543
2000 (0.181) (0.001) (0.179) (0.003)
1950- | 0.3247 14.343
2000 (0.850) (0.001)
Bivariate GDP | 1850- | 5.8844 0.5195 6.3337 3.0376
& DE 2000 (0.015) (0.471) (0.042) (0.219)
1900- | 1.4505 0.2129 4.6809 0.9316
2000 (0.228) (0.644) (0.096) (0.394)
1950- | 0.2742 10.1098
2000 (0.872) (0.006)
Multivariate 1850- | 6.9394 1.4469 5.3801 2.8490
GDP, DE, K, L | 2000 (0.031) (0.485) (0.068) (0.241)
1900- | 6.5671 0.9707 4.3018 0.9894
2000 (0.037) (0.615) (0.116) (0.372)
1950- | 2.0888 19.5444
2000 (0.719) (0.000)
Multivariate 1850- | 6.6914 0.9950 5.7733 0.4030
GRO, DE, K, L | 2000 (0.035) (0.498) (0.056) (0.668)
1900- | 3.0552 2.2524 2.8161 1.4682
2000 (0.217) (0.325) (0.245) (0.480)
1950- |9.7121 18.1519
2000 (0.045) (0.001)

Notes: All variables are in log levels and all equations include a constant and a time
trend as specified. Statistics are chi-square statistics for excluding the first p lags of the
variable listed first in the equation of the variable listed second. Significance levels in
parentheses. Structural breaks are in the trend and intercept in 1900 and 1950.
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Table 5. Causality Tests: Demand Function Models

Model Period | Energy | Price GDP Price GDP Energy
-> -> -> -> -> ->
GDP GDP Energy | Energy | Price Price
GDP, DE, PE, 1850- | 1.2242 |29.131 |4.5628 |12.775 |5.8744 |7.9718
Simple Trend 2000 (0.542) | (0.000) | (0.102) | (0.002) | (0.053) | (0.019)
1900- |6.5279 |26.418 |6.3804 | 31.402 | 3.699 6.2954
2000 (0.163) | (0.000) | (0.172) | (0.000) | (0.448) | (0.178)
1950- | 0.5031 |2.4693 |11.458 |13.787 |5.2602 | 1.5143
2000 (0.777) | (0.290) | (0.003) | (0.001) | (0.072) | (0.469)
GDP, HE, PO, 1850- | 2.4696 |10.465 |5.8271 |7.5631 |0.0148 | 0.2500
Simple Trend 2000 (0.116) | (0.001) | (0.016) | (0.006) | (0.903) | (0.617)
1900- |3.3500 |7.5522 |5.7254 |7.4194 |1.1222 |2.5951
2000 (0.187) | (0.023) | (0.057) | (0.024) | (0.571) | (0.273)
1950- |3.3911 |2.6685 | 11.187 |1.5898 | 0.0008 | 0.0730
2000 (0.066) | (0.102) | (0.001) | (0.207) | (0.977) | (0.787)
GDP, DE, PE, 1850- | 2.4803 |28.691 |9.2418 |11.133 |4.7681 |5.5780
Trend with 2 2000 (0.289) | (0.000) | (0.010) | (0.004) | (0.092) | (0.061)
Structural Breaks | 1900- | 7.7194 |28.025 |15.590 |31.645 |5.785 9.2770
(1900, 1950) 2000 (0.102) | (0.000) | (0.004) | (0.000) | (0.216) | (0.055)
GDP, HE, PO, 1850- | 2.1269 |9.5089 | 7.0704 |8.5365 |0.0228 | 0.0450
Trend with 2 2000 (0.145) | (0.002) | (0.008) | (0.003) | (0.880) | (0.832)
Structural Breaks | 1900- |2.6338 |5.9331 |7.3232 | 10.641 |0.3808 | 0.7989
(1900, 1950) 2000 (0.268) | (0.051) | (0.026) | (0.005) | (0.827) | (0.671)

Notes: All variables are in log levels and all equations include a constant and a linear time
trend. The test statistics are F statistics with p-values given in parentheses
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Table 6. Johansen Test for Cointegration, No Structural Breaks

Unrestricted constant & linear trend in
Unrestricted constant cointegration space
#ClI
vectors 5% 10 % 5% 10 %
under | Trace Crit. Crit. | Concl | Trace | Cirit. Crit.
Variables HO stat Val Val. usion stat Val. Val. Conclusion
1850-2000
GRO, HE, 0 37.43 47.21 44.49 HO 4798 | 62.99 | 60.08 HO
K, L <1 18.98 29.80 27.06 HO 26.09 | 42.92 | 39.75 HO
GDP, HE, 0 33.02 47.21 44.49 HO 4395 | 62.99 | 60.08 HO
K, L <1 16.20 29.39 27.06 HO 2473 | 4292 | 39.75 HO
Reject HO
GRO, DE, 0 41.04 47.21 44.49 HO 62.70 | 62.99 | 60.08 @ 10%
K, L <1 18.69 29.79 27.06 HO 29.76 | 42.44 | 39.75 HO
GDP, DE, 0 39.29 47.21 44.49 HO 55.93 | 62.99 | 60.08 HO
K, L <1 20.03 29.79 27.06 HO 3256 | 42.92 | 39.75 HO
1900-2000
GRO, HE, 0 34.73 47.21 44.49 HO 4355 | 62.99 | 60.08 HO
K, L <1 14.90 29.80 27.06 HO 20.89 | 42.92 | 39.75 HO
GDP, HE, 0 32.37 47.21 44.49 HO 4156 | 62.99 | 60.08 HO
K, L <1 17.05 29.39 27.06 HO 21.38 | 42.92 | 39.75 HO
GRO, DE, 0 38.79 47.21 44.49 HO 5418 | 62.99 | 60.08 HO
K, L <1 17.28 29.79 27.06 HO | 29.38 42.44 | 39.75 HO
GDP, DE, 0 31.21 47.21 44.49 HO 48.98 | 62.99 | 60.08 HO
K, L <1 15.98 29.79 27.06 HO 25.99 | 42.92 | 39.75 HO
1950-2000
GRO, HE, 0 31.49 62.99 60.08 HO 47.44 | 62.99 | 60.08 HO
K, L <1 17.60 42.92 39.75 HO 27.48 | 4292 | 39.75 HO
GDP, HE, 0 32.91 62.99 60.08 HO 53.54 | 62.99 | 60.08 HO
K, L <1 18.79 42.92 39.75 HO 27.73 | 4292 | 39.75 HO
GRO, DE, 0 30.39 62.99 60.08 HO 48.03 | 62.99 | 60.08 HO
K, L <1 16.24 42.44 39.75 HO 27.85 | 42.44 | 39.75 HO
GDP, DE, 0 31.06 62.99 60.08 HO 50.06 | 62.99 | 60.08 HO
K, L <1 17.16 42.92 39.75 HO 27.93 | 42,92 | 39.75 HO
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Table 7. Johansen Test for Cointegration, No Structural Breaks, Energy Price Included

Unrestricted constant & linear trend

Unrestricted constant in cointegration space
#Cl
vectors 5% 10% 5% 10%
under | Trace | Crit. | Crit. Conc- Trace | Crit. Crit. Conc-
Variables HO stat Val Val. lusion stat Val. Val. lusion
1850-2000
Reject HO
GRO, HE, 0 68.34 | 69.81 | 65.81 @ 10% 83.7 88.8 84.38 HO
K, L, PE <1 39.46 | 47.85 | 44.49 HO 50.04 | 63.88 | 60.08 HO
GDP, HE, 0 63.90 | 69.81 | 65.81 HO 81.65 88.8 84.38 HO
K, L, PE <1 34.16 | 47.85 | 44.49 HO 50.75 | 63.88 | 60.08 HO
GRO, DE, 0 61.88 | 69.81 | 65.81 HO 81.65 88.8 84.38 HO
K, L, PE <1 29.90 | 47.85 | 44.49 HO 43.93 | 63.88 | 60.08 HO
Reject HO
GDP, DE, 0 66.77 | 69.81 | 65.81 @ 10% 83.72 88.8 84.38 HO
K, L, PE <1 31.94 | 47.85 | 44.49 HO 4757 | 63.88 | 60.08 HO
1900-2000
Reject HO
GRO, HE, 0 65.63 | 69.81 | 65.81 @ 10% 76.13 88.8 84.38 HO
K, L, PE <1 33.65 | 47.85 | 44.49 HO 43.65 | 63.88 | 60.08 HO
Reject HO
GDP, HE, 0 66.73 | 69.81 | 65.81 @ 10% 80.44 88.8 84.38 HO
K, L, PE <1 33.64 | 47.85 | 44.49 HO 46.68 | 63.88 | 60.08 HO
GRO, DE, 0 59.49 | 69.81 | 65.81 HO 80.96 88.8 84.38 HO
K, L, PE <1 31.27 | 47.85 | 44.49 HO 46.75 | 63.88 | 60.08 HO
GDP, DE, 0 61.08 | 69.81 | 65.81 HO 82.38 88.8 84.38 HO
K, L, PE <1 31.90 | 47.85 | 44.49 HO 48.64 | 63.88 | 60.08 HO
1950-2000
Reject HO
GRO, HE, 0 65.21 | 69.81 | 65.81 HO 86.40 88.8 84.38 @ 10%
K, L, PE <1 38.30 | 47.85 | 44.49 HO 53.88 | 63.88 | 60.08 HO
Reject HO
GDP, HE, 0 63.82 | 69.81 | 65.81 HO 87.59 88.8 84.38 @ 10%
K, L, PE <1 37.17 | 47.85 | 44.49 HO 54.80 | 63.88 | 60.08 HO
Reject HO
GRO, DE, 0 67.20 | 69.81 | 65.81 HO 93.08 88.8 84.38 @ 5%
K, L, PE <1 33.91 | 47.85 | 44.49 HO 59.34 | 63.88 | 60.08 HO
Reject HO Reject HO
GDP, DE, 0 65.30 | 69.81 | 65.81 @ 10% 91.26 88.8 84.38 @ 5%
K, L, PE <1 32.90 | 47.85 | 44.49 HO 58.81 | 63.88 | 60.08 HO
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Table 8. Johansen Test for Cointegration, Structural Breaks in 1900 and 1950

# ClI
vectors
under Trace 5% Crit. 10% Crit.
Model HO statistic Val Val. Conclusion
GRO, HE, 0 75.52 105.44 100.64 HO
K, L <1 42.17 75.26 71.17 HO
GDP, HE, 0 71.07 105.44 100.64 HO
K, L <1 42.22 75.26 71.17 HO
GRO, DE, 0 82.71 105.44 100.64 HO
K, L <1 44.7 75.26 71.17 HO
GDP, DE, 0 76.99 105.44 100.64 HO
K, L <1 45.12 75.26 71.17 HO

Note: Models with changing intercept and broken linear trend in the cointegration space (HLr) and structural

breaks in 1900 and 1950 (v1=0.33, v2=0.66).

Table 9. Johansen Test for Cointegration, Structural Breaks in 1900 and 1950, Energy

Prices Included

# ClI
vectors
under Trace 5 9% critical | 10 % critical
Model HO statistic value value Conclusion

GRO, HE, 0 111.37 139.37 133.9 HO
K, L, PE <1 76.26 105.44 100.64 HO
GDP, HE, 0 115.53 139.37 133.9 HO
K, L, PE <1 79.44 105.44 100.64 HO
GRO, DE, 0 108.1 139.37 133.9 HO
K, L, PE <1 71.71 105.44 100.64 HO
GDP, DE, 0 116.52 139.37 133.9 HO
K, L, PE <1 77.3 105.44 100.64 HO

Note: Models with changing intercept and broken linear trend in the cointegration space (HLr) and structural

breaks in 1900 and 1950 (v1=0.33, v2=0.66).
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Table 10. Johansen Test for Cointegration, Structural Breaks in 1916 and 1973

# ClI
vectors
under Trace 5 % critical | 10 % critical
Model HO statistic value value Conclusion
0 89.92 102.6 97.8 HO
GRO, HE, <1 54.05 72.96 68.7 HO
K, L <2 24.84 48.64 43.7 HO
0 95.44 102.6 97.8 HO
GDP, HE, <1 53.63 72.96 68.7 HO
K, L 20.19 48.64 43.7 HO
Reject HO @
0 101.49 102.6 97.8 10%
GRO, DE, <1 61.23 72.96 68.7 HO
K, L <2 25.5 48.64 43.7 HO
0 93.81 102.6 97.8 HO
GDP, DE, <1 54.27 72.96 68.7 HO
K, L <2 20.02 48.64 43.7 HO

Note: Models with changing intercept and broken linear trend in the cointegration space (HLr) and structural
breaks in 1916, 1973 (v1=0.44, v2=0.82).
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Table 11. Johansen Test for Cointegration, Structural Breaks in 1916 and 1973, Energy

Prices Included

# ClI
vectors Trace 5 9% critical | 10 % critical
Model under HO statistic value value Conclusion

0 143.96 136.2 130.74 Reject HO @ 5%

GRO,HE, | <1 92.09 102.6 97.8 HO

K, L PE |<2 54.79 72.96 68.7 HO
0 145.13 136.2 130.74 Reject HO @ 5%

GDP, HE, [<1 96.81 102.6 97.8 HO

K,L,PE [|<2 58.21 72.96 68.7 HO
0 133.22 136.2 130.74 Reject HO @ 10%

GRO, DE, | <1 83.04 102.6 97.8 HO

K,L,PE [|<2 46.98 72.96 68.7 HO
0 140.75 136.2 130.74 Reject HO @ 5%

GDP,DE, [<1 92.01 102.6 97.8 HO

K,L,PE [|<2 55.16 72.96 68.7 HO

Note: Models with changing intercept and broken linear trend in the cointegration space (HLr) and structural
breaks in 1916, 1973 (v1=0.44, v2=0.82).
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Table 12. Parameter Estimates for Models in Table 7, 1950-2000

Variables HE GRO K L PE Trend
B 1.000 -1.12 -0.07 0.83 0.38 0.014
(-5.37) (-0.38) (2.98) (6.16) (4.01)
o -1.34 -0.20 0.01 -0.03 0.41
(-5.93) (-2.23) (0.52)  (-0.55) (1.42)
Variables HE GDP K L PE Trend
B 1.000 -1.09 -0.17 0.88 0.28 0.018
(-5.00) (-0.93) (2.87) (3.97) (4.60)
o -1.25 -0.14 0.002 -0.035 0.42
(-6.25) (-1.77) (0.13) (-0.63) (1.61)
Variables DE GRO K L PE Trend
B 1.000 -0.45 -0.23 -0.57 0.73 0.007
(-1.47) (-0.83) (-1.39) (7.81) (1.28)
o -0.44 -0.11 -0.02 -0.02 -0.31
(-3.28) (-1.85) (-1.34) (-0.61) (-1.74)
Variables DE GDP K L PE Trend
B 1.00 -0.41 -0.37 -0.43 0.64 0.010
(-1.45) (-1.54) (-1.08) (7.12) (1.98)
o -0.51 -0.04 -0.02 -0.03 -0.28
(-3.7) (-0.59) (-1.23) (-0.62) (-1.42)

t-statistics in parentheses




Table 13. Parameter Estimates for Models in Table 11, 1850-2000

Variables HE GRO K L PE
B 1.000 -0.59 0.16 1.62 0.18
(-3.71) (0.10) (4.72) (2.34)

o -0.39 -0.18 -0.00 -0.07 0.29
(-4.88) (-3.32) (-0.44)  (-2.94) (2.26)

Variables HE GDP K L PE
B 1.000 -0.76 0.22 1.97 -0.06
(-3.45) (1.70) (5.00) (-0.63)

o -0.35 -0.16 -0.01 -0.07 0.29
(-4.73) (-4.06) (-1.31) (-3.89) (2.54)

Variables DE GRO K L PE
B 1.000 -0.78 -0.15 1.16 -0.01
(-6.89) (-2.06) (4.80) (-0.13)

o -0.33 0.06 -0.01 -0.10 0.86
(-4.12) (-0.79) (-0.86) (-3.27) (5.03)

Variables DE GDP K L PE
B 1.00 -0.81 -0.13 1.65 -0.00
(-4.76) (-1.30) (5.44) (-0.20)

o -0.26 -0.07 -0.01 -0.09 0.60
(-4.00) (-1.40) (-0.86) (-3.83) (4.36)

t-statistics in parentheses
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Figure 1. Quantity Variables: Sweden 1850-2000
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Figure 2. Growth Rates of GDP and Divisia Index of Energy Use
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Figure 3. Energy Prices
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