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ABSTRACT 

In this paper we develop a simple maximum likelihood estimator for probit models where the 

regressors have measurement error. We first assume precise information about the reliability 

ratios (or, equivalently, the proxy correlations) of the regressors. We then show how reason-

able bounds for the parameter estimates can be obtained when only imprecise information is 

available. The analysis is also extended to situations where the measurement error has non-

zero mean and is correlated with the true values of the regressors. An extensive simulation 

study shows that the estimator works very well, even in quite small samples. Finally the 

method is applied to data explaining sick leave in Sweden. 

Keywords: Measurement error; errors-in-variables; probit; binary choice; bounds. 

JEL Classification: C25; C29 
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1) INTRODUCTION 

Binary choice models are those where the dependent variable can only take one of two values. 

Such models are very common in economics. Examples include models that explain whether 

or not an individual is employed, whether or not a prospective buyer decides to purchase a 

particular house, whether or not a person registers as sick, etc. Models with errors-in-

variables are those where the explanatory variable(s) are measured with error. When, e.g., we 

estimate a production function it is quite possible - in fact quite probable - that the observed 

values of variables such as labor and capital include measurement error. A closely related 

problem concerns situations where some variables in a theoretical model may have no 

observable counterpart. An example of this is where we use unemployment as a proxy vari-

able to measure the level of economic activity.  

Both of the above areas have been investigated quite thoroughly on their own. Binary 

choice models are extremely common in the absence of measurement errors, while the analy-

sis of the linear regression model with measurement errors, though not without problems, is 

quite standard. Introductory and advanced textbooks in econometrics usually have at least one 

section on each of these topics, and a number of specialized monographs in these areas are 

also available, the most cited of these probably being Maddala (1983) and Fuller (1987). 

There are two reasons it is important to study this combination of problems: it is very 

common and it is very serious. If we ignore the presence of measurement errors or proxy 

variables in binary choice models, then our parameter estimates will be inconsistent. This 

means, for example, that we will obtain incorrect (poor) estimates of how the introduction of 

a qualification day into a sickness benefit system affects the probability of an individual re-

porting sick. Many political decisions depend on the correct estimation of such effects.  

Very little has been done, however, with regard to models that include measurement 

errors within binary choice models. The most obvious general reference for this area is the 

book by Carroll et al. (1996), where the authors observe that there have only been a few 

examples of binary choice models with measurement errors in the literature, mostly within the 

areas of biology and medicine. The authors present three approximate methods ("regression 

calibration", "simulation extrapolation" and "approximated instrumental variables"), which 
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have recently been implemented for generalized linear models in Stata 8. In a series of papers, 

Stefanski and Carroll (1985, 1987, 1990) have analyzed a logit binary choice model assuming 

either nonparametric or parametric (normally distributed) measurement errors, and assuming 

that the covariance matrix of the measurement errors is exactly known. These results are 

numerically quite complex. Kao and Schnell (1987a) have extended the results of Stefanski 

and Carroll (1985) to panel data models, and in Kao and Schnell (1987b) they develop similar 

results for the random effects probit model. Wansbeek and Meijer (2000) have suggested 

estimating a logit measurement error model using GMM. A number of recent articles have 

suggested various methods for estimating general nonlinear measurement error models (for 

example Hsiao and Wang (2000), Newey (2001) and Li (2002)). These methods can be 

extended to binary choice models, but all depend on either some kind of prior information and 

simulation techniques, or need replicated data. 

In the next section of this paper we develop a simple maximum likelihood point 

estimator for probit models with measurement error, given sufficient apriori information to 

identify the model. This is done at first by imposing some quite restrictive assumptions which 

are then successively weakened. We then use techniques akin to the consistent bounds 

approach, proposed by Klepper and Leamer (1984), to extend the analysis to situations with 

weaker prior information. By concentrating directly on the mapping from the reliability ratios 

to the parameter estimates we are able, however to obtain what we call “reasonable bounds”. 

These are narrower (often considerably narrower) than the Klepper-Leamer bounds.  

In the third section we present a Monte Carlo experiment that shows how different 

degrees of measurement error affect the small sample properties of the traditional estimates 

and of the ML estimates we have developed, while the fourth section presents an empirical 

example concerning sick-leave in Sweden. The results of both these sections show that taking 

measurement error into account causes considerable changes in the inferences we draw.1 

                                                 
1 The simulations were performed using Matlab while the empirical example was estimated using Gauss. A 
general Gauss program is available at http://swopec.hhs.se/lunewp/abs/lunewp2003_004.htm. 



 4

2) ESTIMATION OF THE PROBIT MODEL WITH ERRORS-IN-VARIABLES 

2.1) FORMULATION OF THE MODEL 

The traditional binary choice model connects an unobserved dependent variable vi to a k × 1 

vector of explanatory variables xi through the relationship 

, 1, ,i i iv i nα ε′= + + =xb … , (1) 

where α is the constant term and β is a k × 1 vector of unknown parameters. The error term εi 

is assumed independent of xi. The observed dependent variable (denoted yi) takes the values 

one or zero depending on whether νi is greater or less than zero, i.e., 

0 if 0
1 if 0.

i
i

i

v
y

v
≤

=  >
 (2) 

In the context of an errors-in-variables model xi will now denote the true (possibly un-

observed) vector of explanatory variables, with jth element xij, j = 1,…,k. Corresponding to the 

true explanatory variables we observe an equal number of z-variables, which are related to x 

through 

i i i= +z x u , (3) 

where ui is a k × 1 random vector with E(ui) = 0. We assume that ui is independent of xi and εi 

for all i. Some of the z-variables may be miss-measured observations of the x-variables (in 

which case the corresponding elements of ui are measurement errors), some may be proxy 

variables for the x-variables, and some may be identical to their unobserved counterparts (in 

which case the corresponding elements of ui are equal to zero). This is the error model 

approach.2  

                                                 
2 The other approach to modeling errors is the Berkson model where xi = zi + ui, and ui are the measurement 
errors. Here, E(ui | zi) = 0, which implies that the expected error conditional on the observed zi is zero as opposed 
to the error model where the expectation conditional on the actual xi is zero. In the error model, the observed 
value is correlated with the measurement error while in the Berkson model it is the actual value that is correlated 
with the measurement error. Which approach to use depends on how one believes the measurement errors are 
generated, or equivalently what one believes to be a fixed value for an observation: the true values of the regres-
sors or the observed values. In our view it is natural to assume that in economics, and other non-experimental 
sciences, it is the true values that are fixed. We therefore follow the error model approach in this paper. 
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If εi is i.i.d. N(0,1) and ui is equal to zero (zi = xi for all i), we have a traditional probit 

model where the estimation of the parameters is straightforward using maximum likelihood. 

The log-likelihood is given by 

( ){ } ( ) ( ){ }
1

ln 1 ln 1
n

i i i i
i

y yα α
=

 ′ ′= + + − − + ∑ z zb bF F  (4) 

where Φ is the standard normal c.d.f. function. Maximization of this log-likelihood will yield 

consistent estimates of α and β. 

However, if some or all of the observed variables deviate from their theoretical counter-

part, either because of measurement errors or because they are proxy variables, the problem is 

more complicated. It is well known that a multiple regression model with the error model 

approach is not identified. The same is obviously true for the probit model defined above. To 

see the effect of the measurement errors, combine equations (1) and (3) to get 

i i i iv α ε′ ′= + + −z ub b , (5) 

where the error term is now composed of two parts. OLS and ML estimates that ignore meas-

urement errors will be inconsistent since the error ( i iε ′− ub ) is correlated with the explana-

tory variable z.  

To proceed further we will make the assumption that both x and u are i.i.d. normal  

( , )i xNx m S∼  and ( , )i uNu S0∼ . (6) 

Since xi and ui are assumed independent, this specification implies that zi is also i.i.d. normal, 

i.e., ( , )i zNz m S∼  with 

z x u= +S S S .  (7) 

Note that we have now made a series of quite strong assumptions. Some of these seem 

to be intuitively reasonable; for example the normality of the errors can be justified by 

appealing to the central limit theorem. Others are more dubious, however. In particular there 

are three assumptions that we make for the sake of simplicity in development of our results, 

but that we will later relax in section 2.5. These assumptions are the following. 
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ASSUMPTION 1: The model is non-calibrated, i.e., z is an unbiased estimate of x. 

An error model is calibrated if it is specified that 0 1i i i= + +z x ug G , which is obviously 

more appropriate for proxy variables. A non-calibrated model has 0 =g 0  and 1 = IG . 

ASSUMPTION 2: The measurement errors u are independent of the true variables x.  

There are many cases where we can expect a non-zero correlation between the measure-

ment errors and the true variables, for example in data on self-reported incomes. 

ASSUMPTION 3: All the variables in x (and therefore z) are unconditionally normal.  

This assumption excludes dummy variables, and demands that even those variables that 

are measured without error should be normal. 

Even after making all of the assumptions given above it is obvious that the model 

defined by (1), (2), (3) and (6) is unidentifiable, since we only observe zi while xi and ui are 

unobserved. This implies that Σu and Σx cannot be identified, which in turn implies that β may 

not be consistently estimated.3 At this point there are two ways of progressing. The first 

approach can be taken if one has precise additional information, either in terms of observable 

instruments for the z-variables or in terms of exact knowledge of Σu (or some transformation 

of Σu). This approach leads to point estimates of the parameters. The other approach, which 

leads to consistent bounds for all parameters, is available even if one only has weak or no 

information about Σu.  

2.2) ESTIMATION USING INSTRUMENTAL VARIABLES 

The estimation of nonlinear measurement error models using instrumental variable techniques 

is discussed in, for example, Bound et al (2001, Section 3.3). The use of such methods is 

much more complicated than in the linear case, since in general it is not sufficient to know 

that an instrument (w) is uncorrelated with the measurement error. The conditional distribu-

                                                 
3 Wansbeek and Meijer (2000, pp 327-329) proposed estimating a logit measurement error model using GMM 
with the same number of moment conditions as parameters to estimate. This seems to eliminate the need for 
precise additional information, but unfortunately one of their estimating equations (11.7a) can easily be shown to 
reduce to an identity, and thus gives no information about the parameters. This holds for any distribution of the 
errors and any symmetric distribution of the latent variable. 
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tion of z given w has to be known if consistent estimation is to be achieved. However, 

Amemiya, Y (1985) and Carroll and Stefanski (1990) have shown that using x̂  (the predictor 

of x from the regression x on w) as a proxy for x often works quite well. This type of approach 

has been used by Iwata (2001) for estimating the measurement error probit model, under the 

assumption of a joint normal distribution of the variables.  

In addition to the technical difficulties, another drawback with the IV method is the 

assumption that efficient instruments exist at all. There are a few situations where the method 

might be appropriate, for example poorly measured disposable income could be instrumented 

using more precisely measured taxable income. In most cases, however, it is as an act of faith 

to assume that an instrument's reduced correlation with the error term (in this context, its 

lower measurement error compared to the independent variable's) will more than compensate 

for the decreased precision (due to the non perfect correlation between the instrument and the 

variable). 

2.3) ESTIMATION USING PRECISE INFORMATION ON ΣU. 

If Σu is known then all the parameters are identified. Σx can be estimated from (7), which 

allows us to then estimate the rest of the parameters. This will obviously also apply if we have 

exact information on a one-to-one transformation of Σu. However, knowledge concerning Σu 

is not very common, and we will therefore consider two transformations of Σu that are more 

intuitively appealing when our analysis is extended to cover weak information. These trans-

formations are reliability ratios and x-z correlations. 

2.3.1) Reliability Ratios 

Reliability ratios are particularly useful if u is a measurement error. The (traditional) reliabil-

ity ratio associated with variable j is defined as 

Var( )
, 1, , .

Var( )
ij

j
ij

x
j k

z
π = = …  (8) 

If assumption 2 holds, i.e., u is uncorrelated with x, then 
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Var( ) 1
Var( ) Var( ) 1 [Var( ) Var( )]

ij
j

ij ij ij ij

x
x u u x

π = =
+ +

, (9) 

and in this case 0 1jπ≤ ≤ . The reliability ratios will be the same for each observation i since 

u and x are assumed homoscedastic. Note that πj is equal to one if and only if the jth variable 

is measured without error, and that the reliability ratio decreases as the measurement error 

increases. πj can be interpreted as the reliability we have in the jth explanatory variable.  

Typically, one specifies the covariance matrix of the measurement errors as diagonal 

(see for example Klepper and Leamer (1984)). If this is the case, the k traditional reliability 

ratios are all that are needed to identify the model. The variance of xij can be estimated as πj 

times the sample variance of zij, while the covariance between xij and xi  can be estimated as 

the sample covariance between zij and zi . 

However, if we wish to allow for covariances between the measurement errors, then we 

will have to introduce the covariance reliability ratio, jπ  

Cov( , ) Cov( , )
, , 1, , ,   .

Cov( , ) Cov( , ) Cov( , )
ij i ij i

j
ij i ij i ij i

x x x x
j k j

z z x x u u
π = = = ≠

+
…  (10) 

This is the ratio of the true covariance between variables j and  to the observed covariance 

between these two variables. Note that πj  is equal to one if either of the jth and th variables are 

measured without error, or if the measurement errors are uncorrelated.  Note also that πj  will 

only be greater than one if the measurement errors are correlated with the opposite sign to the 

true regressors. It follows from (8) to (10) that 

Var( ) (1 )Var( ), 1, , .ij j iju z j kπ= − = …  (11) 

Cov( , ) (1 )Cov( , ), , 1, , ,   .ij i j ij iu u z z j k jπ= − = ≠…  (12) 

It is possible to collect the reliability ratios into a single matrix Π, where: 

1 1

1

k

k k

π π

π π

 
 =  
  

P .  

Let 1 denote a k × k matrix of ones, and "*" the Hadamard product (element by element 

multiplication). If we use this notation to define ( )= −P P1  we can then write *x z=S P S  
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and *u z=S P S . If Π is known we can therefore estimate Σx using an estimate of Σz, which 

will allow us to estimate the rest of the parameters.  

It is often more convenient to specify Π than to specify Σu, since Π is scale independent 

while Σu is not. The variances of the measurement errors are quite likely to be affected by 

such factors as growth in the economy, and can therefore vary over time. The reliability 

ratios, on the other hand, are much less likely to change from one period to another. 

2.3.2) X-Z Correlation 

If zij is a proxy variable for xij, then the concept of a reliability ratio may not be very appeal-

ing. Instead, one may be able to specify the correlation between the proxy variable and the 

true variable (the x-z correlation). 

Cov( , )
Var( )Var( )

ij ij
j

ij ij

x z
x z

ρ =  (13) 

If a proxy is perfect then it will have a correlation of one with the true variable, and the cor-

relation will decrease the poorer the proxy becomes. Using (3) and the independence of x and 

u, we find 

Var( )Cov( , )
Var( )Var( ) Var( )

ijij ij
j j

ij ij ij

xx z
x z z

ρ π= = =  (14) 

The correlation between zij and xij is simply the square root of the reliability ratio of the jth 

variable. From the estimation point of view it is therefore immaterial whether one specifies 

the reliability ratio of a variable or its x-z correlation.  

If correlation between the measurement errors of different variables is allowed, then we 

must also specify cross x-z correlations 

2

Cov( , ) Cov( , )
Cor( , )

Var( )Var( ) Var( )Var( )
ij i ij i j

j ij i
jij i j ij i

x z x x
z z

x z z z

π
ρ

ρρ
= = =  (15) 

If all the observed explanatory variables are perfect proxies then the ρj's are all equal to one, 

and the ρj 's are equal to the correlation between z-variables.  
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Specifying the severity of the measurement error problem in terms of Σu, Π or the ρ's is 

obviously simply a matter of taste, intuitive appeal and available information. In the rest of 

this paper we will use the reliability ratio notation; if x-z correlations are easier to specify then 

these can be transformed to reliability ratios using (14) and (15). 

Note that the relationship (14) is critically dependent on assumptions 1 and 2, i.e., that 

the model is non-calibrated and that u is uncorrelated with x. We will return to this point in 

Section 2.5, where we will show that using the x-z correlations in these cases is often more 

appropriate than using reliability ratios directly. 

2.4) MAXIMUM LIKELIHOOD WHEN Π  IS KNOWN 

The joint distribution of the observations on y and z will involve all the unknown parameters, 

( , vech( ) , , )z α′ ′ ′ ′=w m S b . If we assume that x, and therefore z, is weakly exogenous with 

respect to (α, β) we can write the log-likelihood of the parameters as 

( ) ( ) ( )1 1 2 1 2
1 1 1

( ) ln , ln ln , ,
n n n

i i i i i
i i i

f y f f y
= = =

= = +∑ ∑ ∑z z zw w w w w , 

where 1 ( , vech( ) )z′ ′ ′=w m S  and 2 ( , )α′ ′=w b . Estimating these parameters by directly maxi-

mizing this likelihood function (so called full information maximum likelihood (FIML)) can 

be difficult in practice, mainly due to the large number of elements in Σz. 

An alternative approach that is often used is therefore limited information maximum 

likelihood (LIML), also called two-step estimation, that is obtained by 

• First, maximizing ( )1 1 1 1
1

( ) ln
n

i
i

f
=

=∑ zw w  over ω1 ⇒ estimates 1ˆ ( )zw  

• Second, maximizing ( )2 1 2 2 1 2
1

ˆ ˆ( , ) ln , ( ),
n

i i
i

f y
=

=∑ z zw w w w  over ω2 ⇒ estimates 2ˆ ( , )y zw . 

LIML will yield consistent estimates, but the asymptotic covariance matrix of α and β is in 

general not simply the inverse of the information matrix from the second stage. Correct esti-

mates of the covariance matrix can be obtained using the results of Murphy and Topel (1985). 

In the linear measurement error model LIML is equivalent to substituting the first two 

sample moments of z for µ and Σz in the full likelihood, which can then be maximized over α 
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and β. Fuller (1987, section 2.2.1) shows that this two step procedure is equivalent to maxi-

mizing the full likelihood function directly. 

We will prove that these results hold even for the probit errors-in-variables model. In 

the rest of this section we derive the LIML estimates and show that these are the same as the 

FIML estimates. A consistent estimate of the covariance matrix of α and β is also given. As 

discussed above, there are now two approaches to estimating the parameters using maximum 

likelihood, LIML and FIML. 

2.4.1) LIML Estimation 

Under the assumptions we have made the vector ( , , , , )i i i i iv ε′ ′ ′ ′z x u  is multivariate 

normal, where the variables are connected through the relations (1) and (3). The first-step 

likelihood is therefore given by 

1 1
1 2 2 2constant ln tr ( ) ( )n n n

z z z z
− −′= − − − − −S z zS S m S m   (16) 

where 1 ( )( )z i in i
′= − −∑S z z z z . It is well known that the ML estimates of µ and zS  are z  

and zS , which are independently distributed 1( , )znN m S  and ( ) ( )1
1 Wishart , 1n

zn n n− −S . The 

sample moments are thus consistently estimating the population moments. Somewhat less 

well known is that the asymptotic covariances of the elements of Sz are given by4 

1AsyCov( , ) ( )jk m j km jm kns s σ σ σ σ= + . 

These results enable us to calculate an estimate of V1, the asymptotic covariance matrix of 

1
ˆˆ ˆ( , vech( ) ) ( , vech( ) )z z′ ′ ′ ′ ′= = z Sw m S , see the Appendix. 

To calculate the second-step likelihood we need to find the conditional distribution of y 

given z. This can be found from the binary choice relationship (2) as 

( )
( )

( )

0
|

2

|0

for 0

for 1

v z i i i i

i i

v z i i i i

f v dv y
f y

f v dv y

−∞
∞

 =
= 
 =


∫
∫

z
z

z
 

Since v and z are jointly normal, the conditional distribution of v given z must also be normal 

                                                 
4 The results in this paragraph can be found in e.g. Anderson (1984), equation 3.2.9, theorems 3.2.1, 3.3.2 and 
3.4.4, and corollary 7.2.3.  
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( ) ( )2

| 22

1 exp
22

i i
v z i i

v
f v

µ

σπσ

∗

∗∗

 − = − 
  

z ,  

where the conditional mean and variance can be found from Anderson (1984, theorem 2.5.1) 

and the fact that the regression parameters have been normalized using Var( ) 1iε = , 

1E( ) E( ) ( * ) ( )i i i i i z z ivµ α α −∗ ′ ′ ′= = + = + + −z x z zb b m b P S S m , and (17) 

2 1Var( ) Var( ) 1 {( * ) ( * ) ( * )} 1i i i i z z z zvσ −
∗ ′ ′= = + = − +z x zb b b P S P S S P S b . (18) 

The probability of observing a particular value of y is thus  

( ) *

*

1 if 0

Pr

if 1

i

i i
i

y

y y

y

µ
σ

µ
σ

∗

∗

  
=  

  = = 
  = 
 

z

F

F

−

 (19) 

The second-step log-likelihood function for the probit model with measurement errors and 

given reliability ratios is therefore given by 

( ){ } ( ) ( ){ }2
1

ln / 1 ln 1 /
n

i i i i
i

y yµ σ µ σ∗ ∗
∗ ∗

=

 = + − −  ∑ F F . (20) 

The LIML estimates are found by substituting the first-step estimates of µ and zS  ( z  

and zS ) into (17) and (18) to yield ˆiµ∗  and 2σ̂ ∗ . Using these in (20) leads to a function that is 

very reminiscent to the ordinary probit likelihood, and that is simple to maximize. 

The asymptotic covariance matrix of the first-step LIML estimates (V1) is standard, but 

the matrix for the second-step estimates ( 2
∗V ) has to be calculated through 

2 2 2 1 1 1 2( )∗ ′ ′ ′= + − −V V V CV C RV C CV R V   (21) 

where V2 is the unadjusted second-step covariance matrix, and where 

2 2

2 1
E

ω ω
   ∂ ∂=    ′∂ ∂   

C  2 1

2 1
E

ω ω
   ∂ ∂=    ′∂ ∂   

R   

see Murphy and Topel (1985), who also establish consistency of LIML under the usual regu-

larity conditions. Details concerning the gradient vectors necessary for the maximization of 
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the likelihood and the calculation of the Murphy-Topel variances can be found in Theorem 1 

and Theorem 2 in the Appendix, where it is also shown that =R 0 .5  

2.4.2) FIML Estimation 

The FIML estimate is found by maximizing 1 1 2 1 2( ) ( ) ( , )= +w w w w simultaneously over 

all parameters to yield estimates ˆ̂ ( , )y zw , where 1 and 2 are given by (16) and (20). It can be 

shown, however, that this maximization will lead to exactly the same estimates as LIML, see 

Theorem 3 in the Appendix. The only possible advantage of using the FIML procedure is that 

we can estimate the covariance matrix using either the OPG method or the inverse of the 

Hessian. Some of the matrices in the Murphy-Topel formula can only be estimated by the 

OPG method if LIML is used. 

2.4.3) Behavior of the Likelihood Function 

It is well known that the probit likelihood function (4) is globally concave and goes to −∞  as 

jβ → ±∞ . This is not true for the measurement error probit, however. In Appendix A.5 we 

show that the likelihood function (20) approaches an asymptote as (some of) the parameters 

approach infinity. This can lead to some quite subtle convergence problems in small samples, 

some examples of which are reported in connection with our simulation studies in Section 3.  

2.5) RELAXING THE ASSUMPTIONS 

2.5.1) Calibration 

The use of non-calibrated models seems a reasonable assumption when the variables are only 

being affected by "true" measurement error. However, if we are using a proxy variable it is 

because we are hoping for a high correlation with the true variable, not because we are ex-

pecting it to be an unbiased estimate of that variable. A good proxy should also have zero 

partial correlation with the other variables in the model – i.e., it should be a proxy for one and 

only one of the true explanatory variables.  

                                                 
5 Note that the Murphy-Topel covariance matrix will only equal the unadjusted second stage matrix if =C 0 , 
which is equivalent to the information matrix of the full likelihood being block diagonal. In Appendix A.4 we 
show that this is not the case here. 
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Writing the calibration model explicitly as 

0 1i i i= + +z x ug G  (22) 

we can solve for x to obtain 

1 1
1 0 1,     where ( ) and i i i i i i i
− −= + − =z x u z z u u= G g G , (23) 

where the fact that a one-to-one relationship between the proxy variables and the true ex-

planatory variables implies that Γ1 should be diagonal and non-singular.6 Letting γ0j be the jth 

element of γ0 and γ1j the jth diagonal element of Γ1 we can classify the explanatory variables as 

follows 

• No measurement error 0 10, 1, 0j j ijuγ γ= = =  

• True measurement error 0 10, 1, 0j j ijuγ γ= = ≠  

• Proxy variable 0 10, 1, 0j j ijuγ γ≠ ≠ ≠ . 

Using (1) and (23) implies that the ML estimators described in the previous section will 

still hold if z and P are replaced by z  and P  in (17) and (18), where P  is the matrix of 

reliability ratios between z  and x. However, we know that 1 1
1 1z z
− − ′=S G S G  and, if Γ1 is di-

agonal, that 1 1
1 1( * ) ( * )z z
− − ′=P S G P S G . Substituting these results yields 

1( * ) ( )i z z z i zµ α −∗ ′ ′= + + −zb m b P S S m , and 

2 1{( * ) ( * ) ( * )} 1z z z zσ −
∗ ′= − +b P S P S S P S b . 

where 0

1

j

j

γ
α α γ= −∑   and  

1

j
j

j

β
β γ= . 

To make this estimator operational we need to know P , which can be a problem since z  is 

unobservable. However, since Γ1 is assumed diagonal, Cor( , ) Cor( , )j j j jz x z x= . In other 

words we can use (14) to let us obtain the reliability ratio we need from the usual x-z correla-

tion, i.e., 2
j jπ ρ= . A similar result follows for the cross reliability ratios. 

                                                 
6 If z is a proxy for x1, then it can still be correlated with x2 if the two x-variables are correlated. The partial cor-
relation between z and x2 given x1 must however be zero if z is to be a good proxy. 
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Calibration will therefore not affect our results as regards the parameters of the 

variables that are not proxies, as long as we obtain the reliability ratios as the squares of the 

correlations between the proxies and the true variables. The constant term and the parameters 

of those variables that are proxies will be affected, however, but this may be acceptable if the 

proxies have merely been introduced to control for heterogeneity. It is also sometimes possi-

ble to obtain independent information concerning regression coefficients between x and z. In 

this case we can obtain the required parameter estimates using the relationships 

1
1

j
jj j j

j

ργβ β β γ∗= = , (24) 

where 1 jγ  is the coefficient from the regression of z on x, and 1 j
γ∗  is the coefficient from the 

regression of x on z. 

2.5.2) Correlation Between the Measurement Errors and the True Variables 

The assumption that the measurement errors are uncorrelated with the true variables may 

sometimes be inappropriate, for example respondents with low incomes may well tend to re-

port incomes in excess of the true value whilst those with high incomes may well tend to 

underreport.  

Assuming joint normality of the errors and the variables implies that all regressions 

must be linear, and in particular that 0 1i i i= + +u x wf F , where E( | )i i =w x 0 . Substituting the 

above into (3) yields 

0 1( )i i i= + + +z I x wf F , 

which is of the same form as (22) if 1F  is diagonal. Once again, we need to interpret the reli-

ability ratio in the MLE as the square of the x-z correlation (forgetting this can lead to quite 

serious errors, for example there is nothing to stop (8) being greater than one if u and x are 

negatively correlated). 

If the measurement error is correlated with its own true variable (but has zero partial 

correlations with the other variables) then the parameters of the other variables will still be 

correctly estimated. Only the parameter estimate of that variable in question will be affected.. 
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If additional information is available we could use (24), which will be appropriate for 

calibrated models, correlated measurement errors or both. If only correlated measurement 

errors are involved, then we could also use 

(1 ) (1 )
j j j jj j j j u x u xβ β φ β ρ σ σ= + = + . (25) 

2.5.3) Non-Normality of the True Variables 

A severe constraint on the analysis presented above is the normality assumption, (6). While it 

is not too restrictive to presume that the errors ε and u are normal, the assumption that the un-

conditional distribution of the true regressors, x, is also normal would exclude all manner of 

empirically interesting situations, e.g., models with dummy variables. Luckily the normality 

of x is merely a sufficient condition for deriving the LIML estimates, not a necessary one 

The normality assumption was used in three places in our LIML analysis. 

• In the derivation of the second step likelihood 

• In the derivation of the first step estimates 

• In the derivation of the Murphy-Topel adjustment 

The first step estimates ( z  and zS ) are, however, consistent even if the regressors are 

non-normal. If the second step likelihood is correct, then under the usual regularity conditions 

the LIML estimate given by Theorem 1 of the Appendix will also be consistent.7  

In a similar manner it can be shown that the Murphy-Topel adjustment (21) will still 

hold in the non-normal case if the second step likelihood is correct, the only difference being 

that V1 is estimated by (A.4) instead of (A.3). This can be seen by studying Murphy and Topel 

(1985), where it obviously does not matter if the set of equations used to define the first step 

estimates ((A.2)) is considered to be a set likelihood equations or moment equations. 8 

The properties of the LIML estimates thus only depend on the validity of (20), i.e., we 

need to show that v z  is normally distributed with mean and variance given by (17) and (18). 

                                                 
7 Strictly speaking these estimates should now be referred to as mixed ML/MM not LIML, but for the sake of  
simplicity we retain the former notation. 
8 The main thrust of Murphy and Topel (1985) is in fact mixed LS/ML estimation; pure LIML estimation is 
introduced almost as an afterthought, 
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In appendix A.6 we will show that assumption 3 can be replaced by either of the following 

assumptions 

ASSUMPTION 3´: The conditional distribution of x given z is normal and the regression of x 

on z is linear and homoscedastic.  

ASSUMPTION 3´´: The explanatory variables can be divided into two groups; x1 which are 

measured with error and x2 which are measured without error. The conditional distribu-

tion of x1 given x2 is normal and the regression of x1 on z is linear and homoscedastic.  

The first of these alternatives is quite subtle. It implies that the conditional distribution of u 

given z is normal, but note that it is not enough to assume that the conditional distribution of u 

given x is normal; in fact from (3) we can see that u given x and u given z can only both be 

normal if the joint distribution of u, x and z is normal. Note also that the assumption that the 

regression of x on z (or equivalently, u on z) is linear and homoscedastic is quite a strong one, 

although considerably weaker than assuming that the unconditional distributions of x and z 

are normal. Our results should also hold approximately as long as the regression is 

approximately linear – a much weaker assumption again.9 

The second alternative is easier to understand, since we are not making any assumptions 

about the distribution of the variables that are measured without error. However, it is not 

enough to merely assume that the conditional distribution of x1 given x2 is normal. Note also 

that under this assumption the unconditional distribution of x1 (or z1) need not be normal if the 

unconditional distribution of x2 is non-normal.  

These assumptions are shown in Appendix A.6 to imply that the second-step likelihood 

is given by (20), and that the LIML estimates therefore have the same properties as before. 

Obviously these estimates are only FIML under the joint normality of all the variables. 

                                                 
9 Assumptions concerning linear regressions are made in several other places in this and other papers. Results 
will only be approximately correct if these regressions are merely approximately linear.  
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2.6) CONSISTENT BOUNDS AND REASONABLE BOUNDS 

Often we are in a situation where we have no precise information concerning the reliability 

ratios and no instruments are available. In other cases instruments do exist which will yield 

consistent estimates, but these are so poorly correlated with the explanatory variables that for 

all feasible sample sizes the efficiency of the estimated parameters will be unacceptably low. 

When no instruments are available and we have no knowledge at all of the reliability ratios, 

the only approach is that of “consistent bounds” suggested by Klepper and Leamer (1984). In 

this approach one identifies all the parameter values that are mathematically consistent with 

non-negative estimates of the variance of εi and positive semi-definite estimates of Σx and 

Σu.10 Thus, one abandons the attempt to find a single statistically consistent estimate of the 

parameters of interest.  

There are some obvious drawbacks in the Klepper-Leamer approach, however. 

• First, Klepper and Leamer (1984) identify bounds in the parameter space, but there is no 

connection between a particular error structure and a particular estimate of β. The only 

exception is the estimator where the measurement errors are assumed zero (all ui = 0 or all 

πi = 1). 

• Second, consistent bounds estimates are often unbounded, at least for some parameters. 

• Third, although prior information can be incorporated into the analysis, this can only be 

done in a non-intuitive manner using lower bounds on the ρ’s and upper bounds on the 
2R  of the regression equation. 

The procedure developed in Klepper and Leamer (1984) assumes that vi is directly ob-

servable (as they work with a traditional multiple regression model with errors-in-variables) 

Although it may be theoretically possible to derive consistent bounds for the model specified 

in equations (1), (2), (3) and (6), the drawbacks mentioned above have prompted us to take 

another route.  

                                                 
10 The consistent bounds are found by running k + 1 regressions. If all these regressions are in the same orthant, 
then the set of maximum likelihood estimates will be the convex hull of the regression estimates. If this is not the 
case then the consistent bounds estimates become unbounded. 
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Instead of simply deriving general consistent bounds, which include all parameter val-

ues that are mathematically consistent with positive semi-definite covariance matrices of the 

data, we will present estimates that are mathematically consistent with reasonable values of 

Π. We will denote these as “reasonable bounds” for the parameters. 11 

Maximizing (20) for given Π  defines a mapping from a particular reliability matrix to a 

parameter vector β. If we are able to specify bounds on the reliability ratios for those variables 

that we suspect to be measured with errors (or bounds on the x-z correlations for the proxy 

variables) we can define a continuous mapping from the “reasonable” bounds on Π to “rea-

sonable” bounds on β. The drawbacks mentioned above in the Klepper-Leamer approach are 

now removed 

• There is an obvious connection between the values of β and the values of the reliability 

ratios. 

• If the “reasonable” bounds on β tend to become unbounded for some values of Π , this 

will merely indicate an incompatibility between the model, the data and these values of Π. 

• Prior information is introduced in a very intuitive manner. 

An important question that has to be answered is whether we have any prior information 

at all. It is certainly true that precise prior information about a particular problem is very rare. 

However, information from detailed surveys in similar areas can be used to give reasonable 

bounds to the reliability ratios. This has become much easier since Bound et al (2001) pub-

lished their review of over 100 studies concerning measurement errors in surveys. A third of 

the studies give information which can easily be transformed into reliability ratios, while 

others can be used to derive these ratios under further assumptions.12 In addition, some studies 

even give information concerning calibration and correlations between the measurement 

errors and the true variables. 

                                                 
11 A similar idea can be found in Wansbeek and Meijer (2000, pp 46-58), where parameter bounds obtained in a 
linear regression model using bounds on the covariance matrix of the measurement errors. 
12 The information, which is usually in the form of correlations, is most often found in studies concerning 
earnings, hours worked, benefits and education. 
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3) SIMULATION STUDIES 

The purpose of this section is twofold. Firstly, we wish to investigate the traditional probit 

estimator to see how it fares when the explanatory variable(s) have measurement error, and 

secondly we want to evaluate the performance of the MLE estimator developed in this paper 

under the same circumstances. This second estimator, found by maximizing (19) will 

henceforth be denoted the “EIVML-estimator” as opposed to the Probit ML estimator.  

We have performed four separate simulation experiments to investigate the performance 

of both estimators, under varying circumstances, as the severity of the measurement errors 

varies. Simulation Study 1 is the simplest, where the model contains only one explanatory 

variable, and this is subject to measurement error. In Simulation Study 2 we consider a model 

with two uncorrelated explanatory variables, where the reliability ratios of both variables can 

vary.  

It is well known that even under the classical assumptions the probit model will not 

perform satisfactorily when the proportion of successes (“ones”) gets close to zero or one. In 

Simulation Study 3 we investigate the effect of changing this proportion on the performance 

of the EIVML estimator in a single-regressor model with measurement error. 

Finally, in Simulation Study 4, we again consider the two variable model, but where the 

explanatory variables are correlated. In a standard linear model if some variables (X1) are 

measured with errors while others (X2) are not, and if these two sets of explanatory variables 

are uncorrelated, then OLS estimator of β2 is unbiased. Typically, the higher the correlation 

between the explanatory variables the more biased is the OLS estimator of β2. We wish to 

investigate if this argument carries over to binary choice models. This can be of practical 

importance in common situations where the elements of (X2) are dummy variables, which 

typically have low correlation with continuous variables 

In all the simulation studies we estimate the model given by (1) − (3), where the 

constant term is set as 0α = , the slope parameter(s) are set 1β =  and the distribution of the 

probit error term is (0,1)Nε ∼ 13. In each experimental situation 1000 replications of the data 

                                                 
13 As for all probit models, we are actually estimating β/σ, where σ is the variance of ε. Thus, simulating ε with a 
variance of 1 is simply a normalization which allow us to estimate β. 
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were generated. For each replication the parameter estimate(s) and their standard errors, using 

both the outer product of first derivatives and the inverse of the Hessian, were calculated for 

both the usual probit ML and the EIVML estimators. Note that in general the Murphy-Topel 

adjustments to the EIVML standard errors were not used, the only exception being Study 1C 

which was specially designed to investigate this question.  

It should be noted that the relationship Var( ) Var( )x zπ=  implies that there are basi-

cally two different ways of comparing the results of our experiments as the reliability ratios 

are allowed to vary. One way is to hold Var( )z  constant and allow Var( )x  to vary, which 

will be appropriate when investigating a given data set where the variance of the observed 

data (z) is constant, but where it is not known how this variance is divided between x and u. 

Studies 1A, 2, 3 and 4 are performed in this manner.  

The other way is to hold Var( )x  constant and allow Var( )z  to vary, which is realistic 

from a theoretical point of view where the variance of the true unobserved explanatory vari-

able (x) is constant and we want to investigate the effect of lowering the reliability ratio. In 

this scenario the explanatory power of the latent model (1), 2 1 Var( ) Var( )mR ε ν= − , is held 

constant for varying degrees of measurement error. Study 1B is performed in this manner.  

STUDY 1 

This is our basic study where we have a model with one explanatory variable measured with 

errors. The proportion of successes, P, is set at 50% by letting the mean of the explanatory 

variable be zero. The experiments are performed for sample sizes n = 100, 1000 and 10000, 

and for ten different values of the reliability ratios, 1.0,0.9, ,0.1π = … . 

Study 1A 

We simulate independently (0,4 )ix N π∼  and (0,4 4 )iu N π−∼  for each value of π. This im-

plies that (0, 4)iz N∼  and 2 4 (1 4 )mR π π= +  for all π. When 1π = , all the variance in z is due 

to the variance in x, while as π decreases, the variance in the measurement errors u increases 

at the expense of the variance in x. Note that the replicating for sample size 10000 is time-
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consuming, and since the results are to all intents and purposes identical to those for sample 

size 1000 we discontinued this part of the experiment for reliability ratios less than 0.5.  

Table 1. Mean Parameter Estimates and Fail Rates for Probit and EIVML in Study 1A 

Probit ML EIVML 
π 2

mR  
n=100 n=1000 n=10000 n=100 Fail Rate n=1000 n=10000

1.0 0.80 1.0459 1.0046 1.0009 1.0459 0.0 % 1.0046 1.0009 
0.9 0.78 0.7996 0.7745 0.7723 1.0851 0.3 % 1.0073 1.0012 
0.8 0.76 0.6404 0.6248 0.6250 1.1048 1.5 % 1.0060 1.0013 
0.7 0.74 0.5363 0.5169 0.5164 1.1535 4.5 % 1.0114 1.0021 
0.6 0.71 0.4458 0.4286 0.4284 1.1847 6.0 % 1.0135 1.0003 
0.5 0.67 0.3642 0.3548 0.3535 1.1344 8.4 % 1.0254 1.0012 
0.4 0.62 0.2913 0.2867  1.1144 8.9 % 1.0301  
0.3 0.55 0.2276 0.2217  1.1434 10.8 % 1.0306  
0.2 0.44 0.1587 0.1561  1.1273 11.2 % 1.0342  
0.1 0.29 0.0855 0.0848  1.1574 10.7 % 1.0282  

Figure 1. Mean Parameter Estimates for Probit and EIVML in Study 1A. 
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In Study 1A all the replications resulted in well-behaved likelihoods when n = 1000 and 

10000. This was no longer the case, however, for n = 100 when measurement error in the data 

increased, for example 11% of the replications had ill-behaved likelihoods when the reliabil-

ity was as low as 0.1π = . The statistics presented in the tables and graphs are based on the 

well-behaved likelihood functions only. 

The results of this experiment are presented in Figure 1 and Table 1. The most striking 

observation is that the probit model will deliver severely inconsistent estimates when we have 

measurement errors. For 1π =  (100% reliable data, no measurement errors) the probit estima-

tor gives results close to the true value of β. As the reliability ratio drops, the inconsistency of 

the probit MLE increases. Even when the reliability is as high as 80%, we have a bias of 

almost 40%. The reliability of the income variable, for example, is usually estimated to be 

between 70% to 80%. Ignoring measurement errors in economic binary choice models may 

thus result in a severe bias. We can also see that the standard probit method underestimates 

the true absolute value of the parameter when there is measurement error – a common feature 

in errors-in-variables' models that often goes under the name attenuation.  

The estimator developed in this paper seems to works well when π is known, at least for 

this experiment. We do notice a small-sample upward bias in the estimate of β which disap-

pears as n increases. Investigating the distribution of the parameter estimates for a particular 

case is also revealing. In Figure 2 we have created a histogram over the estimates of β from 

the individual replications (excluding ill-behaved likelihoods) for 100n = and 0.5π = . We 

see clearly that the distribution of the estimates is skewed to the left, which will cause the av-

erage to be biased upwards. The median of the β-estimates is typically close to 1, however, 

for example in Figure 2 the median is 0.99 while the average is 1.14. 

Tables A1 and A2 of the Appendix give additional information from Study 1A such as 

the standard deviation, average standard errors (OPG and inverse Hessian), and the minimum 

and maximum replicates. The average standard errors in general lie close to the standard de-

viations of the parameter, showing that the formulae we are using seem to give unbiased 

estimates even in small samples. This is true for both the probit and EIV variance estimators, 
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which seems quite surprising since the probit itself is inconsistent and we are not using the 

Murphy-Topel correction for EIV. We shall return to the last point in Study 1C. 14  

Figure 2. Empirical Frequency Function for EIVML Estimates (Study 1A: n = 100, π = 0.5). 

STUDY 1B  

In Study 1B we keep the variance of x fixed at Var( ) 4x = , which implies that 2 0.8mR =  while 

Var( ) 4 /z π=  and Var( ) 4(1 ) /u π π= − . For 1π =  studies 1A and 1B are identical, but when, 

for example, 0.1π =  we have Var( ) 0.4x = , Var( ) 3.6u = , Var( ) 4z =  and 2 0.29mR =  in study 

1A, while we have Var( ) 4x = , Var( ) 36u = , Var( ) 40z =  and 2 0.8mR =  in study 1B. In all 

other respects the studies are the same.  

The general conclusions from Study 1B are the same as for Study 1A, i.e., the probit 

estimator exhibits considerable inconsistencies when there is measurement error, while 

EIVML is consistent with only small bias when 1000n ≥ . The results for EIVML seem at 

first sight, however, to be less satisfactory than in Study 1A when the reliability in the data is 

low. For example, from Table 2 we can see that more ill-behaved likelihoods are generated 

                                                 
14 The standard error estimates are even more skew than the parameter estimates, which is why we are getting 
bias for very low reliabilities in small samples. 
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when 100,n =  and even for 1000n =  when 0.5π ≤ , and that the small-sample biases seem to 

be larger. From Table A4 of the Appendix we can see a considerable bias in the standard 

errors for very small samples. 

Table 2. Mean Parameter Estimates and Fail Rates in Study 1B, 2 0.8mR =  

Probit ML EIVML π 
n=100 n=1000 n=10000 n=100 Fail Rate n=1000 Fail Rate  n=10000 

1.0 1.0459 1.0046 1.0009 1.0459 0.0 % 1.0046 0.0 % 1.0009 
0.9 0.7927 0.7635 0.7612 1.1081 0.5 % 1.0080 0.0 % 1.0012 
0.8 0.6143 0.5963 0.5966 1.1168 3.3 % 1.0084 0.0 % 1.0016 
0.7 0.4891 0.4731 0.4722 1.1276 9.1 % 1.0203 0.0 % 1.0027 
0.6 0.3884 0.3723 0.3720 1.0944 16.1 % 1.0315 0.0 % 1.0013 
0.5 0.2970 0.2900  1.0114 22.0 % 1.0651 0.2 %  
0.4 0.2225 0.2182  0.9613 26.7 % 1.0839 2.5 %  
0.3 0.1598 0.1543  0.8747 33.4 % 1.0741 5.6 %  
0.2 0.1003 0.0975  0.7599 38.3 % 1.0363 11.6 %  
0.1 0.0471 0.0466  0.5703 41.0 % 0.9495 22.0 %  

Figure 3. Mean Parameter Estimates for Probit and EIVML in Study 1B. 
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The reason for the difference becomes apparent when we look at the values of 2
mR  in Tables 1 

and 2. Probit-type models do not work well when the goodness-of-fit of the latent regression 

(1) is large15, and we can see that 2 0.8mR =  for all reliabilities in Study 1B while the 

goodness-of-fit is considerably less for small π in Study 1A. For a given model with given 

latent goodness-of-fit, the performance of EIVML in small-samples deteriorates quite rapidly 

as the reliability of the data decreases. However, for given data, with unknown latent good-

ness-of-fit, this deterioration is not at all as rapid. Sample sizes of 100 seem to be too small to 

obtain good estimates in all cases. 

Study 1C 

Calculation of the Murphy-Topel standard errors in Studies 1A and 1B gave results that were 

barely distinguishable from the uncorrected values (in general the differences were less than 

those obtained using OPG or inverse Hessian). A valid question is thus in what conditions it is 

necessary to use the correction.  

The formula given in Theorem 2 of the Appendix simplifies considerably when there is 

only one explanatory variable, in particular (A.7b) reduces to 0ψ = . The ratio between the 

uncorrected and corrected standard deviations of β̂ (denoted as the rsd) becomes a fairly sim-

ple rational function of 2
mR , P and the moments 2( )E λ , 2( )E zλ  and 2 2( )E zλ , where λ is 

given by (A.5a). These moments can be estimated very simply using simulation methods, 

since we do not have to perform any EIVML maximization. We therefore estimated the rsd 

using 60.000 replications, which gives a high degree of accuracy.  

In Table 3 we present the results for the set-up used in Study 1A, while in Figure 4 we 

present the results for varying 2
mR  and P with a reliability ratio of 0.6. The results show that it 

is the proportion successes that is most important in deciding whether it is necessary to use 

the Murphy-Topel correction. For 0.5P =  the correction has little effect, while for 0.9P =  

there seem to be some advantages in using the correction. The standard errors seem to be 

                                                 
15 This might seem to be counter intuitive, but follows from the fact that when the goodness-of-fit is high then 
values of x above the mean will almost always lead to one value of y, while values below the mean will lead to 
the other value. The likelihood will therefore be very flat, since changes in the parameters produce almost no 
change in the probabilities. If the fit is perfect, then we get the well-known result that the likelihood becomes 
horizontal and the estimation breaks down. The argument is the same for both probit and EIVML. 
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unbiased, at least in Study 1A, but it should be remembered that their distribution becomes 

very skew when 2
mR  and/or P become large.  

 

Table 3. Corrected and Uncorrected EIVML Standard Errors ( P = 0.5  and ( )Var z = 4 ) 

ˆ( )n σ β⋅  Study 1A (n = 10000) π 
Corrected Uncorrected Ratio s.d. Average s.e. 

1.0 1.86 1.86 1.0000 0.0177 0.0183 
0.9 2.48 2.48 1.0013 0.0243 0.0244 
0.8 3.04 3.03 1.0028 0.0309 0.0300 
0.7 3.52 3.51 1.0036 0.0354 0.0352 
0.6 4.00 3.98 1.0036 0.0401 0.0402 
0.5 4.56 4.55 1.0030 0.0454 0.0453 
0.4 5.07 5.06 1.0022   
0.3 5.75 5.74 1.0013   
0.2 6.90 6.90 1.0005   
0.1 10.07 10.07 1.0001   

Figure 4. Ratio of Corrected to Uncorrected EIVML Standard Errors ( = 0.6π ) 
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STUDY 2 

In this study we have a model with two uncorrelated explanatory variables, both measured 

with errors. The proportion of successes, P, is again set at 50%, while the experiments are 

performed for sample sizes n = 100, 1000 and 10000. We restrict our attention to the presen-

tation of the experiments where Var( )z  is held constant as π  varies (case A), since the results 

when Var( )x  is held constant (case B) mirror those in Study 1 (namely that EIVML performs 

a little worse in this case). 

We simulate independently (0,4 )ji jx N π∼  and (0,4 4 )ji ju N π−∼  for j = 1,2 and for 

each pair 1 2( , )π π 16. This implies that (0, 4)jiz N∼  and 2
1 2 1 2(4 4 ) (1 4 4 )mR π π π π= + + + . We 

consider five values of the reliability ratios, 1.0,0.8, ,0.2jπ = … , but due to symmetry we 

only need to study 15 cases instead of 25. 

Figure 5 shows the mean parameter estimates for EIVML and Probit ML in this study, 

while Tables A5 to A7 in the Appendix give some more detailed results. The general results 

of this study are the same as in Study 1. We can see that the Probit ML works very poorly 

when there is measurement error while the EIVML is consistent with quite small finite sample 

bias for all values of the reliability ratios. EIVML does not work well in very small samples 

(n = 100) with low reliability, however, in the sense that the failure rate increases quite 

dramatically.  

The new information given by this study concerns the interplay between measurement 

errors in different variables. In spite of the fact that both the true variables and the measure-

ment errors are independent, there is obviously a spill over from one reliability ratio to the 

parameter estimate for the other variable. There is a large sample bias of roughly 25% in the 

probit estimate 1̂β  when 1 1π =  but 2 1π ≠ , thought this bias does not seem to increase as the 

reliability of the second variable decreases. The effect is, of course, more dramatic when the 

"own" reliability is low. Even the small sample bias of EIVML seems to increase when either 

of the reliability ratios is small. 

                                                 
16 Since both Cov(z1, z2) = 0 and Cov(x1, x2) = 0, π12 is not formally defined. The empirical covariances will not 
be exactly zero, however, and thus π12 = 1 is used in the formulae for the EIVML estimates. 
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Figure 5. Mean Parameter Estimates in Study 2 

n = 100 (a) EIVML (b) Probit ML 

n = 1000 (c) EIVML (d) Probit ML 

 n = 10000 (e) EIVML (f) Probit ML  
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STUDY 3 

In this study we extend Study 1A in such a way that the expected proportion of 1’s and 0’s is 

no longer 0.5. Simple algebra shows that the probability that y is equal to one is given by 

( )( 1) ( ) 1 xP P y Φ α ′ ′≡ = = + +b m b S b . 

There are thus basically two ways of getting 0.5P ≠ ; we can introduce a non-zero intercept α 

or we can change the expected value of x and z to a non-zero value. In this study we keep 

α = 0 and simulate ( , 4 )ix N µ π∼  and (0,4 4 )iu N π−∼ . To obtain a given value of P with 

these parameter values we simply set 1( ) 1 4Pµ Φ π−= ⋅ +  

In our experiments we allow the reliability ratio to take the values 1.0,0.8, ,0.2π = …  

for sample sizes n = 100 and 100017. We consider 0.5,0.75,0.9P =  for both sample sizes, 

while for n = 1000 we also consider P = 0.6 and 0.98. 

In Figure 6 and in Table A818 we show some results, which are actually quite surprising. 

When there is no measurement error we obtain the expected result that the Probit ML is con-

sistent, and that its standard error decreases as P gets closer to the value 0.5. The introduction 

of measurement error causes inconsistency for all values of P, but the surprising result is that 

the bias increases as P approaches 0.5.  

The EIVML estimator is obviously consistent (note the differences in scale in the 

Figures 7a and 7b), but the effect of P and π  on the size of the bias is quite complex. For all P 

the bias first increases as π decreases, but after a turning point the bias then decreases. This 

turning point occurs for smaller π when P gets closer to 0.5. The same pattern, though even 

more extreme, can be observed for the standard errors. In cases where P is large the EIVML 

estimator seems to perform best for small and large reliability ratios. It is important, however, 

to reiterate that the bias of the EIVML was very small in all cases. In addition, due to replica-

tion error, too much emphasis should not be put on the shapes of the curves in Figure 6b.  

                                                 
17 In Studies 3 and 4 and we exclude the sample size n = 10000, since this case reveals nothing that was not 
already apparent in Studies 1 and 2, namely that EIVML produces estimates very close to the true parameter 
values while Probit ML is about as biased as we find in the case n = 1000. 
18 Note that the results for P = 0.5 are not identical to those for Study 1A due to the use of different random 
numbers. They are, however, very similar. To save space the results for n = 100 are not shown in Table A8, since 
they do not yield any further insights in addition to those found for n = 1000. 
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Figure 6. Bias and Standard Deviation of the Parameter Estimates in Study 3, n = 1000 

(a) Probit 

(b) EIVML  
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STUDY 4 

In the final study we again consider a two-variable model, but where the variables are now 

allowed to be correlated. The first variable is a correctly measured dummy variable (and 

therefore not normally distributed) while the second variable is continuous and has measure-

ment errors. In this study we let the reliability ratio for the second variable take the values 

1.0,0.8, ,0.2π = … , while the correlation between the variables is allowed to vary as 

0.0,0.1, 0.6ρ = … . The sample sizes used are n = 100, 1000. 

For a given reliability ratio we start by simulating 1 2( , )w w  from a bivariate normal 

distribution with 1 2( )  ( ) 0E w E w= = , 1Var( ) 1w = , 2Var( ) 4w π=  and 1 2Cor( , ) ww w ρ= . The 

variable 1x  is defined as 1 1x =  if 1 0w >  and 1 1x = −  if 1 0w ≤ , while 2 2x w= . It can be 

shown quite straightforwardly that ρ, the correlation between 1x  and 2x , is equal to wρ  

multiplied by 2 0.7979cπ ≈ , where cπ  is the constant 3.14… (In practice we first decide 

on the value of ρ we wish to use in our simulations, and then calculate 2w cρ ρ π= ⋅ ).19 

Finally the observed variables are obtained as 1 1z x= , indicating that the first (dummy) 

variable is measured without error, while 2 2 2z x u= +  where 2Var( ) 4 4u π= − . 

In Tables A9 and A1020 we show the results for this study. There are two special 

questions that we want answered in this study.  

(1) What happens to the probit estimate of the parameter of a variable measured without error 

when it is correlated to a variable with measurement error?  

(2) What happens to the EIVML estimates when a variable measured without error is not 

normally distributed? 

In study 2 we showed that the effect of measurement error spills over from one probit 

parameter estimate to another, even when the variables are uncorrelated. In this study we find 

that a positive correlation between the variables seems to work in the opposite direction for 

the variable measured without error, see Figure 7. 

                                                 
19 Note that 2 2 / 0.64cρ π≤ ≈ , which reaffirms the fact that severe multicollinearity is seldom a problem in 
models with dummy variables. 
20 To save space the results for some values of ρ are not shown in the tables 
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Figure 7. Probit Estimates of β1 when π2 Varies. Study 4, n = 1000 
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A general interpretation seems to be that the size of the estimate increases with the correlation 

between the two variables, while the slope decreases with the reliability ratio of the other 

variable. Multicollinearity can thus sometimes help the probit estimate against measurement 

error in another variable. 

As to the second question, it is apparent from Tables A9 and A10 that the non-normality 

of the variable without measurement error does not affect the properties of the EIVML 

estimator in the slightest. The mean estimates of the parameter of the variable with 

measurement error is almost exactly the same as in Figure 3, while the estimates of the other 

parameter are even better. The small sample bias of the EIVML has as good as disappeared 

when n = 1000. 

4) A STUDY CONCERNING SICK-LEAVE IN SWEDEN 

4.1) DESCRIPTION OF THE STUDY 

At the beginning of the 1990's the level of sickness benefit was 100% for most Swedes (the 

official insurance rate was 90%, but most employees were covered by collective labor con-

tracts that topped up the remaining 10%). In addition no qualification time was required, 
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benefit being paid from the first sick day. During the nineties the situation with regards to 

public finances has lead to more or less continuous reductions in the welfare system. Sickness 

benefits have been seriously affected by several of these changes; for example a qualification 

day (with 0% benefit) was introduced on the 1st of April 1993. 

The decision of whether or not to go to work will depend on the cost in a broad sense. 

The price of a day of sick leave depends on, for example, the individual's wage, the benefit 

level and the number of qualification days. Other factors that are more difficult to quantify 

will also affect the decision, e.g., start-up costs when returning to work after a period of un-

planned absence, the risk of sanctions when illegally registering oneself as sick, the discom-

fort of working when sick and on the probability of thereby causing a longer period of sick-

ness. Many of the factors that affect the cost are thus based on individual characteristics. 

Demographic and background variables such as sex, age, number of children, marital status, 

occupation, region, etc., are obviously of interest. 

A logit model to explain the incidence of sick leave in Sweden has been estimated by 

Edgerton (1997). The model used in that study involved a large number of interaction terms, 

but since the study is being used here mainly as an illustration, we will use a simplified ver-

sion that it is still quite realistic. Probit and logit estimation of this model result in almost 

identical marginal effects. 

The dependent variable we use in our model is the incidence of sick leave (1 = sick / 0 = 

not sick) under a specific week in January. The independent variables are:  

• 1. Sex: Female = 1 

• 2-4. Age: Normalized age ( = [Age in years – 16]/48), its square and its cube  

• 5. Nationality: A dummy equal to 1 for individuals from the Middle East, Africa, Asia, 

Latin America or Stateless 

• 6. Municipality type: 1 for individuals from midsize or industrial towns 

• 7. Marital status: 1 for singles. 

• 8. Children: Dummy, 1 if individual has children less than 1 year old 

• 9. Type of employment: 1 if temporary, 0 if permanent 

• 10. Degree of employment: 1 for part time, 0 for full time 
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• 11. Occupation: 1 for non industrial worker 

• 12. Socioeconomic Class: 1 for “white collar” 

• 13. Blue collar trade union membership: 1 if member 

• 14. White collar trade union membership: 1 if member 

• 15. Real wage rate: 100 Swedish Crowns / hour, in 1980 prices 

• 16. Regional unemployment rates: in percentage 

• 17. Reform dummy: 1 if there is a qualification day 

4.2) THE DATA 

The main source of information used in this report is the Labor Force Survey (LFS), per-

formed on a monthly basis by Statistics Sweden. This survey consists of a number of ques-

tions, mainly concerning labor force participation but also including a number of background 

variables. In addition, information concerning wages and salaries is collected in the January 

edition of the LFS. The total number of observations containing wage information in the 

period 1992-1995 is 33,665 (Of these 17,809 observations are purely cross-sectional, while 

15,856 consist of two observations for 7,928 individuals. We will be ignoring panel issues in 

this paper). Due to partial non-response only 33,498 observations were used in this study. 

The quality of the LFS data is in general thought to be quite satisfactory. The wage 

variable, however, is collected by simply asking the interviewees what their pay-period is 

(monthly, weekly, hourly etc.) and how much they usually earn per period. A simple inspec-

tion of the data shows, for example, a considerable amount of rounding. 

4.3) RESULTS 

We estimate the errors-in-variables probit by maximizing the likelihood (20) for various 

values of Π. We believe that only the real wage is miss-measured, and we will only vary π15 

(denoted as π). For π = 1 we have the traditional probit estimate. The results from estimating 

this model are given in Table 4, along with some descriptive statistics (means and, for non-
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dummy variables, standard deviations). We also give the correlations of all the variables with 

wages. 

First of all we should note that the incidence of sick-leave is naturally quite small, 

P = 0.058 in our data. This causes imprecision in all binary choice modeling, with or without 

measurement error. Secondly, we can see from the following table that most of the variables 

are only slightly correlated with the miss-measured variable.  

Table 4. Results for the Standard Probit Model 

 Parameter Std. error P-value Variable 
Mean 

Variable 
Std. dev. 

Corr. with 
Wage 

Constant −1.689 0.1014 0.0000    

Sex 0.235 0.0286 0.0000 0.5241  −0.27 

Age 1.707 0.5633 0.0025 0.4957 0.2467 0.26 

Age2 −2.977 1.1847 0.0120   0.21 

Age3 2.118 0.7432 0.0044   0.17 

Nationality 0.236 0.1284 0.0664 0.0062  −0.03 

Municipality −0.072 0.0310 0.0205 0.1648  −0.04 

Marital 0.082 0.0265 0.0019 0.2663  −0.15 

Children −0.353 0.0766 0.0000 0.0431  −0.01 

Temporary −0.241 0.0515 0.0000 0.0839  −0.15 

Part Time −0.106 0.0285 0.0002 0.2792  −0.19 

Occupation −0.134 0.0335 0.0000 0.7814  0.11 

Class −0.100 0.0371 0.0069 0.5181  0.37 

BC_Union 0.227 0.0414 0.0000 0.4536  −0.30 

WC_Union 0.114 0.0436 0.0092 0.4020  0.31 

Wage −0.694 0.1273 0.0000 0.3722 0.1264 1.00 

Unemp −0.008 0.0077 0.3059 6.9365 1.8159 −0.05 

Reform −0.152 0.0284 0.0000 0.4804  0.01 
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Turning to the probit estimates we can see that all the parameters are significant except 

for the unemployment variable. The signs of the parameters also agree with the signs of the 

marginal effects in the more complex model given in Edgerton (1997). We can see, for 

example, that having less secure jobs (temporary or part-time) reduces the probability of 

taking sick leave, while membership of a trade union increases it. Women and industrial 

workers tend to be sick more often than men and non-industrial workers. It is especially 

interesting to note that the introduction of a qualification day does seem to reduce the 

tendency to take sick leave. 

Table 5. Parameter Estimates for EIVML 

 π = 1.0 π = 0.9 π = 0.8 π = 0.7 π =0.6 π = 0.5 

Constant −1.689 -1.465 -1.148 -0.674 0.148 2.007 

Sex 0.235 0.235 0.237 0.239 0.246 0.267 

Age 1.707 1.714 1.734 1.735 1.785 1.937 

Age2 −2.977 -2.992 -3.030 -3.027 -3.113 -3.379 

Age3 2.118 2.127 2.150 2.153 2.214 2.404 

Nationality 0.236 0.236 0.237 0.240 0.247 0.268 

Municipality -0.072 -0.072 -0.072 -0.073 -0.075 -0.082 

Marital 0.082 0.082 0.083 0.083 0.086 0.093 

Children -0.353 -0.353 -0.355 -0.359 -0.369 -0.401 

Temporary -0.241 -0.241 -0.242 -0.245 -0.252 -0.274 

Part Time -0.106 -0.106 -0.107 -0.108 -0.111 -0.121 

Occupation -0.134 -0.134 -0.135 -0.136 -0.140 -0.152 

Class -0.100 -0.100 -0.101 -0.102 -0.105 -0.114 

BC_Union 0.227 0.228 0.229 0.231 0.238 0.258 

WC_Union 0.114 0.114 0.114 0.116 0.119 0.129 

Wage -0.694 -1.306 -2.183 -3.509 -5.870 -11.332 

Unemp -0.008 -0.008 -0.008 -0.008 -0.008 -0.009 

Reform -0.152 -0.152 -0.153 -0.155 -0.159 -0.173 
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The EIVML estimates were calculated for wage reliability ratios varying from 0.9 down 

to 0.5, and the results are presented in Table 5. Changing the values of the reliability ratio in 

the ML estimation obviously affects all the parameter estimates. The effect is quite small, 

however, for all parameters other than wages (plus the constant term). This can be seen as a 

positive empirical conclusion – measurement error in one variable does not seem to affect the 

parameter estimates of other variables to any significant degree. This is partly due to the low 

correlation between wages and the other variables. 

Looking at Table 5 also reveals what is often called attenuation. For all the parameters 

(except the constant term) we can see that 

• the estimate assuming no measurement error is smallest in absolute value 

• the estimates for all reliability ratios  have the same sign 

• the estimate assuming no measurement error is one of the bounds 

Attenuation is an exact property of simple linear regression with measurement error, and a 

commonly observed phenomenon in other measurement error models. In other words, not 

taking measurement error into account will tend to make us believe that variables are less 

important than they really are. These conclusions reinforce what was found in the Monte 

Carlo study. 

Another result, not shown in the table, is that the difference between the Murphy-Topel 

and unadjusted standard errors is quite small. For the wage parameter this difference grows 

from 3% to 7% as the reliability ratio decreases from 0.9 to 0.5. For the other parameters the 

differences are 3% at most, and often less than 1%. This is in spite of the proportion of posi-

tive y's being less than 0.07, which we saw from Study 1C tends to make the difference 

between the two standard error estimates increase.   

In Figure 8 we show 95% confidence for the wage parameter as the reliability ratio 

varies. The only general conclusion that be drawn from this figure is that the parameter is sig-

nificantly negative whatever the degree of measurement error. Otherwise it is apparent that 

the uncertainty about the parameter grows far too large for it to be useable if the reliability 

gets too small. 
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Figure 8. 95% Confidence Interval for the Wage Parameter for Different Reliability Ratios 
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It is therefore important to be able to try and set "reasonable bounds". Looking at the 

Bound et al (2001) survey, there are 12 studies from which we can calculate 18 different reli-

ability ratios for self-reported earnings.21 Four of these figures are for hourly rates, which 

have reliability ratios of 0.26, 0.40, 0.42 and 0.42. A closer analysis shows, however, that a 

large part of this unreliability is due to incorrectly reported hours worked. In the data used in 

our example the respondents were asked to report their earnings for the relevant period 

(usually monthly, sometimes hourly and occasionally weekly). The number of hours worked 

per period is much more standardized in Sweden, due to collective bargaining, than in the 

studies reported in Bound et al. The conversion to hourly rates is therefore much more reli-

able, and it is more appropriate to use the reliability ratios presented for the other intervals. In 

11 of these cases the reliability ratios varied between 0.78 and 0.9822, the three remaining 

"outliers" are at 0.61, 0.64 and 0.70. Reasonable bounds on π seem therefore to be between 

0.7 and 1.0, which gives a wage parameter of between –0.7 and –3.5. If we are willing to 

                                                 
21 Some of the reliability ratios are given for ln(earnings). However, the reliability ratio of ln(earnings) is 
approximately equal to the reliability ratio of earnings times the ratio of the of the expected values of z and x. 
The latter ratio is given in five studies, and is always between 0.98 and 1.035. In other words, we can ignore this. 
We have also ignored four results which were given for "usual" or "recent" earnings. 
22 This agrees with a further result given by Fuller (1987 p.8), who quotes an estimate of 0.85 for the reliability 
ratio for income. This figure was obtained from a 1970 study by the US Bureau of the Census. 



 40

accept a lower reliability bound of 0.8, then the 95% confidence interval for the parameter lies 

between -0.4 and –3.2. 

A final piece of information that can be gleaned from Bound et al concerns whether the 

measurement error is correlated with the true values. This seems to be the case in all studies 

which investigate this problem – the correlation always being negative. In six studies regres-

sion coefficients are reported which can be used in (24) – strangely enough always for regres-

sions of x on z. Two of these are for hourly rates, and the others give κ = 0.74, 0.91, 1.01 and 

1.10, where β β=k . The negative correlation seems only to have a small effect on the para-

meter estimates, and probably in the direction of reducing them in absolute value. 

5) CONCLUSIONS 

In this paper we have derived ML estimates and standard errors for the probit errors-in-

variables model when the reliability ratio matrix is known. This has been done under quite 

restrictive assumptions of normality, but also when these assumptions have been relaxed 

somewhat. A Monte Carlo study shows that the method works well even in small samples. 

We discuss how these results can be used when the reliability ratio matrix is unknown. 

We adapt Klepper and Leamer's consistent bounds approach to what we call "reasonable 

bounds" – based on a one-to-one mapping between the reliabilities and the parameter esti-

mates. An empirical study of sick-leave in Sweden shows this approach works well, and 

yields insights into the model which otherwise would not be apparent.  

Both the Monte Carlo and empirical studies reveal attenuation, i.e., assuming no meas-

urement error leads to an underestimation of the absolute value of the parameters. Other con-

clusions are that variables that are measured without error are not affected very much by 

measurement error in the other variables, but that if two variables both have measurement 

error then there can be interaction between the two reliabilities. 
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APPENDIX 

A.1) ML and MM Estimation of µ and Σz 

Assuming normality of x and z we can write the likelihood of the observed regressors for the 

ith observation as (see Anderson (1984, eq 3.2.2)) 

11 1
1 2 2constant ln ( ) ( )i z i z i

−′= − − − −z zS m S m  

Let jσ  denote an element of zS , jσ  an element of 1
z
−S , js  the jth column of zS  and js  

the jth column of 1
z
−S . We also let Eij denote the matrix with (i, j)th element equal to one and 

all other elements equal to zero. Using this notation the gradients of the likelihood can be 

found using the matrix results of Amemiya, T (1985, pp. 461-2), Lütkepohl (1996, Chapter 

10) and Harville (1997, Chapter 15). Remembering that zS  is symmetric we obtain 
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∂
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The derivatives w.r.t. the variances and covariances can be written in vector form, 

which simplifies the algebra and the programming of the Murphy-Topel correction. To do this 

we need to define the matrix operator dg(.), which leaves the diagonal of a matrix unchanged, 

but puts all off-diagonal terms to zero. That is dg( )=D C  implies that 

0
ii

ij
c i j

d
i j
=

=  ≠
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Using this notation we can write 

( )1 1
2vech dg( )

vech
i

i i
z

∂ = −
∂

A A
S

, where (A.1b) 

1 1 1( )( )i z i i z z
− − −′= − − −A z z z zS S S  (A.1c) 

which can be seen directly from Harville (1997, eqs (15.6.7) and (15.8.12)). 

Summing (A.1) over the observations and equating to zero yields the likelihood equa-

tions 

1ˆ ˆ( )z
− − =zS m 0  (A.2a) 

1 1 1ˆ ˆ ˆ
z z z z
− − −′ − =SS S S 0  (A.2b) 

z  and zS  are obviously ML estimates of µ and zS . (A.2) can also be considered as moment 

equations, however, and z  and zS  are therefore also method of moment (MM) estimates. 

This is important, since MM estimation does not depend on the normality assumption, and in 

this case (A.1) can be considered the gradient of the moment equations. 

The asymptotic covariance matrix of z  and zS , which is of dimension 1
2 ( 3)k k + , can 

be denoted 

1 1
1

1 1

µµ σµ

σµ σσ

′ 
=  
 

V V
V

V V
.  

Assuming normality we can use the references given in footnote 4 to show that 

1
1̂ znµµ =V S   (A.3a) 

1̂µσ =V 0  (A.3b) 
1

1̂ ( )
jk m j km jm kn s s s sσ σ = +V . (A.3c) 

If we do not assume normality, but consider z  and zS  as MM estimates, then the elements of 

their asymptotic covariance matrix can be estimated, using Greene (2000, eq (4.55)), as  

1
1̂ j k jkn sµ σ =V  

1
1̂ ( )

jk m jk m jk mn s s sσ σ = −V , where 

1 ( )( )( )jk ji j ki k in i
s z z z z z z= − − −∑  and 1 ( )( )( )( )jk m ji j ki k i mi mn i

s z z z z z z z z= − − − −∑ , 
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while (A.3a) will still hold. If we define ( )( )i i i ′= − −S z z z z  then we can write 

1
1̂ znµµ =V S   (A.4a) 

( ){ }1 1
1̂ vech( )(vech( )) vech( )(vech( ))i i z zn n iσσ ′ ′= −∑V S S S S  (A.4b) 

{ }2
1

1̂ ( )(vech( ))i iinµσ ′= −∑V z z S  (A.4c) 

A.2) LIML Estimation of α and β  

Using (20) we can see that the second stage likelihood for the ith observation is 

( ){ } ( ) ( ){ }2 ln / 1 ln 1 /i i i i iy yµ σ µ σ∗ ∗
∗ ∗= + − −F F ,  

where iµ∗  and 2σ∗  are given by 

1( * ) ( )i z z iµ α −∗ ′ ′= + + −zb m b P S S m  
2 1= [( * ) ( * ) ( * )] 1z z z zσ −
∗ ′ − +b P S P S S P S b . 

We need to find the derivatives of this likelihood in terms of ( , vech( ) , , )z α′ ′ ′ ′=w m S b , 

Writing 2 ½( )i iθ µ σ∗ −
∗=  we can adapt Amemiya, T (1985, eq (9.2.8)) and obtain  

2i i
i

θλ∂ ∂=
∂ ∂w w

, where 

(1 )
i i

i i
i i

y Φλ φ
Φ Φ

−= ⋅
−

. (A.5a) 

We find for ϑ ∈ w  that  

2
1 31

2
θ µ σσ µ σ
ϑ ϑ ϑ

∗
− ∗ −∗
∗ ∗

∂ ∂ ∂= −
∂ ∂ ∂

 

The derivatives on the right hand side of the above equation can be found using the results in 

Amemiya, T (1985, pp. 461-2), Lütkepohl (1996, Chapter 10) and Harville (1997, Chapter 

15). For the conditional mean we obtain  

1iµ
α

∗∂ =
∂

 

1( * ) ( )i
z z i

µ∗
−∂ = + −

∂
zm P S S m

b
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1( * )i
z z

µ∗
−∂ = −

∂
b S P S b

m
 

{ }
{ }

1
1

1 1 1

( * ) ( ) ( * ) ( )

( * ) ( )

( * ) ( )

i z z
z i z i

jj jj jj

jj jj z z z jj z i

j j
j jj z i

µ
σ σ σ

π

β π

∗ −
−

− − −

∂ ∂ ∂′ ′= − + −
∂ ∂ ∂

′= − −

′ ′= − −

z z

E E z

z

P S Sb S m b P S m

b S P S S S m

b P S s s m

 

{ ( ) ( * )( )}( )j j ji
j j z i

j

µ π β β
σ

∗∂ ′′ ′ ′ ′= + − + −
∂

zs s b P S s s s s m , 

while for the conditional variance we obtain 

2 2
0  and  σ σ

α µ
∗ ∗∂ ∂= =

∂ ∂
0  

2
12[( * ) ( * ) ( * )]z z z z

σ −∗∂ = −
∂

P S P S S P S b
b

 

{
}

2
1 1

1
1 1

1 1

1 1

2

( * ) ( * ) ( * )( * ) ( * )

( * ) ( * )

( * ) ( * )

( * ) ( * )

2 ( * )

z z z
z z z z

jj jj jj jj

z
z z z z

jj

jj jj jj z z jj jj jj z z

z z jj z z

jj j jj j z

σ
σ σ σ σ

σ

π π π

π β π β

− −∗

−
− −

− −

− −

∂ ∂ ∂ ∂′= − − +∂ ∂ ∂ ∂
∂ + ∂ 

′= − − +

+

′= −

E E E

E

P S P S P Sb P S S S P S

SP S S S P S b

b P S S S P S

P S S S P S b

b P S s ( * ) ( * )j j j
z z′′+ b P S s s P S b

 

2
2 2 ( )( ) ( )( )( )j j j

j j j z j z z
j

σ π β β π β β
σ

∗∂ ′ ′′ ′= − ∗ + + ∗ + ∗
∂

b P S s s b P S s s s s P S b  

These results can be substituted back into the derivatives of the likelihood. If we define  

= −P P1  (A.5b) 

1 1( * ) ( * )z z z z
− −= − =ID P S S P S S  and  (A.5c) 

( * ) ( * )j j
j j j z z j jψ β π β π′ ′= − = −b P S s b P S s  (A.5d) 

then, remembering the symmetry of Π and ∆, we obtain the gradients 
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12i
iλσ

α
−
∗

∂ =
∂

 

{ }

1 1 3 12

1 2

{ ( * ) ( )} {( * ) ( * ) ( * )}

( ) ( * )

i
i z z i i i z z z z

i i i z

λσ λ µ σ

λ σ µ σ

− − ∗ − −
∗ ∗

− ∗ −
∗ ∗

∂ = + − − −
∂

= + − −

z

I z

m P S S m P S P S S P S b
b

Dm D P S Db
 

1 1 12 { ( * ) }i
i z z iλσ λσ− − −

∗ ∗
∂ = − =
∂

b S P S b Db
m

 

{ } {

}
{ }

1 3 22 1
2

1 2 2 21
2

1 2 21
2

( * ) ( )

2 ( * ) ( * ) ( * )

( ) [ 2 ( ) ( ) ]

( ) [

j ji
i j jj z i i i jj j

jj

j j j
jj j z z z

j
i jj i i jj j jj j jj j jj jj j jj

j
i jj i i jj

λσ β π λ µ σ π β
σ

π β

λσ ψ µ σ π β π β π β ψ π β ψ

λσ ψ µ σ ψ

− ∗ −
∗ ∗

− ∗ −
∗ ∗

− ∗ −
∗ ∗

∂ ′ ′= − − − −
∂

′′ ′− +

′= − − − − + −

′= − − +

z

z

z

b P S s s m

b P S s b P S s s P S b

s m

s m{ }2 (1 )]j jj jjβ π π−

 

{ }1 22 ( )( ) [ (1 )]ji
i j j i i j j j j j

j
λ σ ψ ψ µ σ ψ ψ β β π π

σ
− ∗ −
∗ ∗

∂ ′ ′= + − − + −
∂

zs s m  

The gradients w.r.t. the sigmas can be simplified if we use the following lemma. 

Lemma 

Let A be any ( )p p×  matrix, b and c be ( 1)p×  vectors and ι  be the ( 1)p×  vector of ones. 

Explicit matrix multiplication proves the following relationships 

11 1 1

1 1

( )
k k

k kk k

a b a b

a b a b

 
  ′= ∗ 
 
 

A bi , and 

1 1 1

1

k

k k k

c b c b

c b c b

 
  ′= 
 
 

cb  

This leads to the following results 

12i
iλσ

α
−
∗

∂ =
∂

 (A.6a) 
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{ }1 22 ( ) ( * )i
i i i zλσ µ σ− ∗ −

∗ ∗
∂ = + − −
∂

I zDm D P S Db
b

 (A.6b) 

12i
iλσ −

∗
∂ =
∂

Db
m

 (A.6c) 

( )2 1
2

z
vech dg( )

vech
i

i i
∂ = −

∂
B B

S
 (A.6d) 

where 

{ }1 2 ( ) (( ) ( ))i i i i iλσ µ σ− ∗ −
∗ ∗  ′ ′ ′= + − ∗ + ∗ ∗ − B X X Y Y bb P P1  (A.7a) 

1( ) [( ) ]z z
− ′ ′= ∗ − ∗Y S P S bi bi P  (A.7b) 

1[ ( ) ]i z i
− ′= ∗ −zX Y S m i  (A.7c) 

Looking at these results we can see from (A.1) and (A.6) that, conditional on z, the gradients 

of 2  are linear functions of λ  while those of 1  are not functions of λ  at all. The Murphy-

Topel matrix R, defined after equation (21), therefore has elements that are expected values of 

linear functions of λ . Since we can also see from (A.5a) that ( | ) 0E λ =z , it follows that R 

must also be equal to zero. 

We have thus established the following two theorems 

Theorem 1 

The LIML estimates α̂  and b̂  are found by solving the equations 

( )1 ˆˆ 0ii
σ λ−

∗ =∑  

( ) ( ) ( ){ }1 2 ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ( ) ( * )i i i z i ii i i
σ λ λ σ λ µ− − ∗

∗ ∗+ − − =∑ ∑ ∑z I z SD D P Db 0  

where 

1ˆ ( * )z z
−= S SD P  

ˆ ˆˆ ˆˆ ˆ ( )i iµ α∗ ′ ′= + + −z I zb D b D  

2 ˆ ˆˆˆ = ( * ) 1zσ∗ ′ +Sb P Db  
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( )
ˆ ˆ( / )ˆ ˆ ˆ( / )

ˆ ˆ ˆ ˆ( / ) 1 ( / )
i i

i i
i i

y µ σλ φ µ σ
µ σ µ σ

∗
∗ ∗

∗∗ ∗
∗ ∗

−= ⋅
−

F
F F

 

Theorem 2 

Since R = 0, the Murphy-Topel adjusted covariance matrix for (α, β) is estimated by  

2 2 2 1 2
ˆ ˆˆ ˆ ˆ ˆ ˆ∗ ′= +V V V CV C V   

where 1̂V  is given by (A.3) or (A.4), depending on whether or not the regressors are assumed 

to be normally distributed. Denoting 1 ( , vech( ) )zω′ ′ ′= m S  and 2 ( , )ω α′ ′= b  we have 

1
2 2

2
2 2

ˆ
ˆ ˆ

i i

i ω ω

−
   ∂ ∂=    ′∂ ∂   ∑V  

2 2

2 1

ˆ
ˆ ˆ

i i

i ω ω
  ∂ ∂=   ′∂ ∂  ∑C . 

The elements of these matrices are found using (A.1), (A.5), (A.6) and (A.7), with ′w  replaced 

by ˆˆ ˆ( , vech( ) , , )z α′ ′ ′ ′= z Sw b .23 

A.3) Full Information Estimation of the Parameters 
The FIML method is to maximize ( )1 2 1 2i ii

= + = +∑  over all the parameters simulta-

neously, which leads to the likelihood equations 

1 ˆˆ ˆˆ 0ii
σ λ−

∗
  = 
 ∑  (A.8a) 

( )1 2 ˆˆ ˆˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆˆˆ ˆ ˆ( ) ( * )i i i z i ii i i
σ λ λ σ λ µ− − ∗

∗ ∗
    + − − =    

    ∑ ∑ ∑I zDm D P S Db 0  (A:8b) 

( )1 1ˆ ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆˆ ( )i z ii i
σ λ− −

∗
 + − = 
 ∑ ∑ zDb S m 0  (A.8c) 

                                                 
23 Greene (2000, p. 135) multiplies the summations in the estimates of C and R by a factor 1/n, which is 
obviously a misprint. Greene (2003 p. 510) keeps these estimates of C and R, but changes the definitions of V1 
and V2 (though not of 2

∗V ). Working through the algebra shows that the estimated adjusted covariance matrix in 
Theorem 2 is the same as that given in Greene (2003, Theorem 17.8).  
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( )1 1
2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆvech dg( ) vech dg( )i i i ii i i i
 − + − = 
 ∑ ∑ ∑ ∑A A B B 0   (A.8d) 

From (A.8a) we see that ˆ̂ 0ii
λ =∑ , and substitution into (A.8c) yields ˆ̂ = zm . Substituting 

these results in turn into (17) and (A.8b) leads to 

{ } ( )1 2 ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ( * )z i ii
σ σ λ− −

∗ ∗
 ′− − = 
 ∑I I zP S Dbb D 0  

which, assuming the first two matrices are non-singular, can only equal zero if ˆ̂ 0i ii
λ =∑ z . 

This in turn implies ˆ ˆˆ ˆ 0i ii
λ µ ∗ =∑ , and using these results in (A.7a) shows that ˆ̂ 0ii

=∑ B . 

Equation (A.8d) thus reduces to (A.1b), which as we have previously shown leads to 
ˆ̂

z z= SS . 

The FIML estimate of ω1 is therefore the same as the LIML estimates. (A.8a) and (A.8b) are 

now identical to the likelihood equations in Theorem 1, which establishes the following theo-

rem. 

Theorem 3 

In the measurement error probit model with known reliability ratio matrix the FIML and 

LIML estimates are identical. 

A.4) Non-Block Diagonality of the Information Matrix 

The "off-block-diagonal" part of the Hessian of the full likelihood can be obtained by sum-

ming the derivatives of (A.6c-d) w.r.t. 2w . Deriving first of all w.r.t. α we obtain 

2 1
1 12i i i

i
λ λσσ λ σ

α α α α

−
− −∗
∗ ∗

∂ ∂ ∂∂= + =
∂ ∂ ∂ ∂ ∂

DbDb Db
m

, 

since 1σ −
∗ Db  is not a function of α. Writing 2 ½( )i iθ µ σ∗ −

∗= , the derivatives of λ w.r.t. the 

parameters can be expressed as 

2 ( )i i i i i i
i i i i

i i

λ θ λ φ θ θλ λ λ θ
φ θ

∂ ∂ ∂ ∂ ∂= − + = − +
∂ ∂ ∂ ∂ ∂w w w w

,  

since i
i i

i

φ θ φ
θ

∂ = −
∂

, see Amemiya, T (9.2.12) or Greene (19.23). To evaluate this function we 

need to derive θ w.r.t. ω. Letting ϑ ∈ w  we have 
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2
1 31

2
θ µ σσ µ σ
ϑ ϑ ϑ

∗
− ∗ −∗
∗ ∗

∂ ∂ ∂= −
∂ ∂ ∂

. 

In particular we have 1µ
α

∗∂ =
∂

 and 
2

0σ
α

∗∂ =
∂

, and thus 

2 1 1i
i i i

λ λ σ λ µ σ
α

− ∗ −
∗ ∗

∂ = − −
∂

. 

Substituting into the expression for the second derivative and summing we obtain 

( )
2

2 2 12i
i i i

i

σ λ σ λ µ
α

− − ∗
∗ ∗

∂ = − +
∂ ∂

Σ Σ∑ Db
m

 

Conditioning on Z and taking expectations yields the following element of the information 

matrix 

2 2
22

(1 )E i i

i i

φσ
α Φ Φ

−
∗

 ∂− = ∂ ∂ − 
∑ ∑Db

m
, 

since the expected value and variance of y are Φ  and Φ(1- Φ). The above can only be zero if 

∆ is zero, which implies no measurement error. Similar but more complicated exercises can 

be performed for the other elements of the off-diagonal block. 

A.5) Behavior of the Likelihood Function 

Maximizing the measurement error likelihood (20) can lead to numerical problems in small 

samples when there is severe measurement error, in particular the iterations can appear to 

converge in spite of very large values of the estimated parameters being reported. This result 

follows, however, from the fact that the likelihood function approaches an asymptote as the 

absolute values of the parameters approach infinity.  

A "well-behaved" likelihood will have a distinct local maximum and then approach the 

asymptote from above as the parameters increase, see Figure A.1a. No computational prob-

lems occur in this case. It is perfectly possible, however, for the likelihood to monotonically 

increase and approach the asymptote from below, see Figure A.1b. This "ill-behaved" case 

becomes more likely in small samples with considerable measurement error.  
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Figure A.1. Typical Log-Likelihood Functions for the Measurement Error  
(a) Well-Behaved Likelihood (b) Ill-Behaved Likelihood 

Since the likelihood is very flat when approaching the asymptote, this can lead to apparent, 

convergence in the ill-behaved case. Luckily, we can often distinguish between these two 

situations without having to plot the complete likelihood function.  

In the well-behaved case we expect the maximized log-likelihood, ˆ( )b , to be larger 

than the asymptote, a , whilst in the ill-behaved case they will be almost equal. To evaluate 

a  we first normalize the parameters as, e.g., max | |j jγ β β=  and then let max | |β → ∞  in 

(17) and (18). This leads quite straightforwardly to 

1

1

{ ( * ) ( )}

{( * ) ( * ) ( * )}
i z z i

z z z z

µ
σ

−∗

−∗

′ + −→
′ −

zg m P S S m
g P S P S S P S g

,  (A.9) 

where lim=g g . Substituting the limiting value from (A.9) into (20) yields a . 

Note that 1γ = ±  if there is only one explanatory variable, which makes the formula for 

the asymptote very simple. In the general case we estimate g  using ˆ ˆˆ max | |j jγ β β= , which 

implies that the limit in (A.9) can be estimated using  

1

1

ˆ { ( * ) ( )}
ˆ ˆ{( * ) ( * ) ( * )}

z z i

z z z z

−

−

′ + −

′ −

S S z z

S S S S

g m P
g P P P g
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A.6) The LIML Estimate with Non-Normal Regressors 

In Section 2.5.3 we assert that Assumptions 3´ or 3´´, together with the assumptions we have 

made concerning the errors, are sufficient for the second-step likelihood to be given by (20). 

We will now prove this. 

The distributional assumptions that we are making concerning the errors can be written 

(a) ε, u and x are jointly and pairwise independent 

(b) (0,1)Nε ∼  and ( , )uNu S0∼  

The distributional assumptions concerning the variables in Assumption 3´ are 

(c´) | ( , )c cNx z m S∼ , where ( )c = + −A zm m m  and cS  is homoscedastic 

The last condition implies that u |z is normal with a linear homoscedastic regression, 

which together with (a), (b) and (5) means that the conditional distribution of v given z is also 

normal. To show that this conditional distribution has the same mean and variance as given 

previously we write 

( ) ( )− = − +x A zm m d , (A.10) 

where E( ) =zd 0 . Using the usual regression results we have  

1 1 1Cov( , )[Var( )] ( * )x z z z
− − −= = =A x z z ΣS P S S , and 

1Var( ) Var( * ( * ) ( * )x z z z z z
−′= ) = − = −z A Ad d S S P S P S S P S . 

Substituting (A.10) into (1)gives 

( ) ( )v α ε′ ′ ′= + + − + −A zb m b m b d , 

and thus E( ) ( )v α ′ ′= + + −z A zb m b m  and Var( ) 1 Var( )v ′= +z b d b . Substituting the 

results for  A and Var( )d  into these expressions yields (17) and (18), which proves our result. 

A similar proof will apply if we use Assumption 3´´. Condition (c´) is replaced by 

(c´´) 1 2| Nx x ∼ , 1 1 1E( | ) ( )= + −x z A zm m  and 1Var( | )x z  is homoscedastic. 

Conditions (a), (b) and (c´´) imply that both 1 2|z x  and 2|ν x  are normal, and thus 

1 2, |ν z x  and 1 2| ,ν z x  are also normal. The last expression is simply |ν z , since 2x  is meas-
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ured without error. It also follows from (c´´) that 1 1 1 1( ) ( )− = − +x A zm m d , which leads to 

(A.10) with 1 
=  
 

A
A

I0
 and 1 

=  
 

d
d

0
. The results from the proof using condition (c´) thus 

carry through this case. 
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Table A1. Statistics related to Study 1A – the Probit MLE ( P = 0.5  and ( )Var z = 4 ) 
(a) n = 100. 

Estimates of Beta Mean s.e. π 2
mR  

Mean Min Max s.d. OPG Hessian 

1.0 0.80 1.0459 0.6318 2.1024 0.2069 0.2152 0.1968 
0.9 0.78 0.7996 0.4642 1.7229 0.1538 0.1562 0.1458 
0.8 0.76 0.6404 0.2770 1.2629 0.1214 0.1243 0.1181 
0.7 0.74 0.5363 0.2630 1.2377 0.1118 0.1069 0.1027 
0.6 0.71 0.4458 0.2019 0.8108 0.0919 0.0943 0.0911 
0.5 0.67 0.3642 0.1054 0.7416 0.0862 0.0844 0.0821 
0.4 0.62 0.2913 0.0732 0.5913 0.0758 0.0767 0.0754 
0.3 0.55 0.2276 0.0404 0.4759 0.0705 0.0717 0.0709 
0.2 0.44 0.1587 −0.0553 0.4044 0.0695 0.0679 0.0674 
0.1 0.29 0.0855 −0.1269 0.3354 0.0661 0.0650 0.0648 

(b) n = 1000. 

Estimates of Beta Mean s.e. π 2
mR  

Mean Min Max s.d. OPG Hessian 

1.0 0.80 1.0046 0.8416 1.2017 0.0574 0.0590 0.0583 
0.9 0.78 0.7745 0.6440 0.9370 0.0437 0.0442 0.0439 
0.8 0.76 0.6248 0.5345 0.7580 0.0368 0.0363 0.0361 
0.7 0.74 0.5169 0.4290 0.6214 0.0301 0.0313 0.0311 
0.6 0.71 0.4286 0.3531 0.5248 0.0284 0.0278 0.0277 
0.5 0.67 0.3548 0.2846 0.4731 0.0254 0.0254 0.0253 
0.4 0.62 0.2867 0.2158 0.3805 0.0240 0.0234 0.0234 
0.3 0.55 0.2217 0.1515 0.2955 0.0220 0.0221 0.0220 
0.2 0.44 0.1561 0.0958 0.2326 0.0213 0.0209 0.0209 
0.1 0.29 0.0848 0.0207 0.1514 0.0196 0.0202 0.0201 

(c) n = 10000. 

Estimates of Beta Mean s.e. π 2
mR  

Mean Min Max s.d. OPG Hessian 

1.0 0.80 1.0009 0.9492 1.0624 0.0177 0.0184 0.0183 
0.9 0.78 0.7723 0.7265 0.8155 0.0138 0.0139 0.0138 
0.8 0.76 0.6250 0.5905 0.6679 0.0117 0.0114 0.0114 
0.7 0.74 0.5164 0.4852 0.5604 0.0099 0.0098 0.0098 
0.6 0.71 0.4284 0.3988 0.4607 0.0087 0.0088 0.0088 
0.5 0.67 0.3535 0.3286 0.3766 0.0080 0.0080 0.0080 
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Table A2. Statistics related to Study 1A – the EIVMLE ( P = 0.5  and ( )Var z = 4 ) 

(a) n = 100. 

Estimates of Beta Mean s.e. π 2
mR  

Mean Min Max s.d. OPG Hessian 

1.0 0.80 1.0459 0.6318 2.1024 0.2069 0.2152 0.1968 
0.9 0.78 1.0851 0.5424 3.4397 0.3373 0.3380 0.3131 
0.8 0.76 1.1048 0.3603 4.5049 0.4389 0.4943 0.4623 
0.7 0.74 1.1535 0.4001 4.2133 0.5481 0.7069 0.6752 
0.6 0.71 1.1847 0.3564 4.1302 0.6103 0.9126 0.8735 
0.5 0.67 1.1344 0.2155 4.0863 0.5982 0.9148 0.8886 
0.4 0.62 1.1144 0.1860 4.3241 0.6227 1.0180 0.9846 
0.3 0.55 1.1434 0.1358 4.6428 0.7140 1.2353 1.2136 
0.2 0.44 1.1273 −0.2835 5.6483 0.8586 1.5510 1.5409 
0.1 0.29 1.1574 −1.9554 7.1817 1.2662 2.5610 2.5612 

(b) n = 1000. 

Estimates of Beta Mean s.e. π 2
mR  

Mean Min Max s.d. OPG Hessian 

1.0 0.80 1.0046 0.8416 1.2017 0.0574 0.0590 0.0583 
0.9 0.78 1.0073 0.7923 1.3333 0.0787 0.0790 0.0784 
0.8 0.76 1.0060 0.7904 1.4524 0.1007 0.0975 0.0967 
0.7 0.74 1.0114 0.7407 1.5267 0.1117 0.1154 0.1149 
0.6 0.71 1.0135 0.7202 1.6974 0.1399 0.1336 0.1333 
0.5 0.67 1.0254 0.6921 2.9242 0.1705 0.1558 0.1553 
0.4 0.62 1.0301 0.6357 2.6225 0.1899 0.1765 0.1763 
0.3 0.55 1.0306 0.5697 2.2908 0.2074 0.2014 0.2007 
0.2 0.44 1.0342 0.5184 3.1714 0.2606 0.2436 0.2436 
0.1 0.29 1.0282 0.2083 3.6136 0.3465 0.3491 0.3491 

(c) n = 10000. 

Estimates of Beta Mean s.e. π 2
mR  

Mean Min Max s.d. OPG Hessian 

1.0 0.80 1.0009 0.9492 1.0624 0.0177 0.0184 0.0183 
0.9 0.78 1.0012 0.9227 1.0797 0.0243 0.0245 0.0244 
0.8 0.76 1.0013 0.9146 1.1217 0.0309 0.0300 0.0300 
0.7 0.74 1.0021 0.8975 1.1780 0.0354 0.0353 0.0352 
0.6 0.71 1.0003 0.8759 1.1658 0.0401 0.0402 0.0402 
0.5 0.67 1.0012 0.8721 1.1448 0.0454 0.0454 0.0453 
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Table A3. Statistics related to Study 1B – the Probit MLE ( P = 0.5  and 2
mR = 0.8 ) 

(a) n = 100. 

Estimates of Beta Mean s.e. π Var( )z  
Mean Min Max s.d. OPG Hessian 

1.0 4.0 1.0459 0.6318 2.1024 0.2069 0.2152 0.1968 
0.9 4.4 0.7927 0.4763 1.6345 0.1557 0.1563 0.1450 
0.8 5.0 0.6143 0.2631 1.1296 0.1182 0.1192 0.1125 
0.7 5.7 0.4891 0.2173 1.0340 0.1010 0.0957 0.0918 
0.6 6.7 0.3884 0.1865 0.7380 0.0765 0.0793 0.0760 
0.5 8.0 0.2970 0.1379 0.6145 0.0654 0.0644 0.0623 
0.4 10.0 0.2225 0.0808 0.4244 0.0516 0.0522 0.0511 
0.3 13.3 0.1598 0.0469 0.3245 0.0417 0.0422 0.0414 
0.2 20.0 0.1003 −0.0004 0.2182 0.0320 0.0321 0.0317 
0.1 40.0 0.0471 −0.0276 0.1118 0.0219 0.0213 0.0211 

(b) n = 1000. 

Estimates of Beta Mean s.e. π Var( )z  
Mean Min Max s.d. OPG Hessian 

1.0 4.0 1.0046 0.8416 1.2017 0.0574 0.0590 0.0583 
0.9 4.4 0.7635 0.6394 0.9500 0.0429 0.0437 0.0433 
0.8 5.0 0.5963 0.5128 0.7341 0.0357 0.0344 0.0341 
0.7 5.7 0.4731 0.3879 0.5722 0.0273 0.0280 0.0278 
0.6 6.7 0.3723 0.3007 0.4506 0.0237 0.0231 0.0230 
0.5 8.0 0.2900 0.2235 0.3562 0.0191 0.0192 0.0191 
0.4 10.0 0.2182 0.1720 0.2703 0.0161 0.0158 0.0158 
0.3 13.3 0.1543 0.1193 0.2005 0.0127 0.0128 0.0128 
0.2 20.0 0.0975 0.0684 0.1279 0.0098 0.0098 0.0098 
0.1 40.0 0.0466 0.0228 0.0682 0.0066 0.0066 0.0066 

(c) n = 10000. 

Estimates of Beta Mean s.e. π Var( )z  
Mean Min Max s.d. OPG Hessian 

1.0 4.0 1.0009 0.9492 1.0624 0.0177 0.0184 0.0183 
0.9 4.4 0.7612 0.7114 0.8044 0.0136 0.0137 0.0136 
0.8 5.0 0.5966 0.5639 0.6370 0.0112 0.0108 0.0108 
0.7 5.7 0.4722 0.4468 0.5153 0.0090 0.0088 0.0088 
0.6 6.7 0.3720 0.3470 0.4025 0.0071 0.0073 0.0073 
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Table A4. Statistics related to Study 1B – the EIVMLE ( P = 0.5  and 2
mR = 0.8 ) 

(a) n = 100. 

Estimates of Beta Mean s.e. π Var( )z  
Mean Min Max s.d. OPG Hessian 

1.0 4.0 1.0459 0.6318 2.1024 0.2069 0.2152 0.1968 
0.9 4.4 1.1081 0.5615 4.9760 0.4030 0.3914 0.3605 
0.8 5.0 1.1168 0.3441 3.9940 0.4637 0.5846 0.5461 
0.7 5.7 1.1276 0.3301 3.5251 0.5269 0.8199 0.7844 
0.6 6.7 1.0944 0.3381 3.2086 0.4755 0.9169 0.8789 
0.5 8.0 1.0114 0.2994 3.0805 0.5157 1.0730 1.0437 
0.4 10.0 0.9613 0.2126 2.7659 0.5113 1.2177 1.1950 
0.3 13.3 0.8747 0.1620 2.6145 0.4856 1.2939 1.2661 
0.2 20.0 0.7599 −0.0018 2.5147 0.4768 1.3853 1.3641 
0.1 40.0 0.5703 −0.3252 2.4402 0.4358 1.3166 1.3100 

(b) n = 1000. 

Estimates of Beta Mean s.e. π Var( )z  
Mean Min Max s.d. OPG Hessian 

1.0 4.0 1.0046 0.8416 1.2017 0.0574 0.0590 0.0583 
0.9 4.4 1.0080 0.7951 1.4179 0.0813 0.0815 0.0809 
0.8 5.0 1.0084 0.7823 1.6062 0.1146 0.1072 0.1065 
0.7 5.7 1.0203 0.6974 1.8361 0.1406 0.1399 0.1390 
0.6 6.7 1.0315 0.6479 2.4011 0.1983 0.1842 0.1839 
0.5 8.0 1.0651 0.5772 2.5826 0.2671 0.2618 0.2602 
0.4 10.0 1.0839 0.5762 2.7838 0.3312 0.3643 0.3640 
0.3 13.3 1.0741 0.5328 2.6898 0.3623 0.4784 0.4764 
0.2 20.0 1.0363 0.4316 2.5571 0.4000 0.6278 0.6277 
0.1 40.0 0.9495 0.2521 2.4415 0.4123 0.8396 0.8382 

(c) n = 10000. 

Estimates of Beta Mean s.e. π Var( )z  
Mean Min Max s.d. OPG Hessian 

1.0 4.0 1.0009 0.9492 1.0624 0.0177 0.0184 0.0183 
0.9 4.4 1.0012 0.9128 1.0834 0.0250 0.0252 0.0252 
0.8 5.0 1.0016 0.9080 1.1344 0.0341 0.0327 0.0327 
0.7 5.7 1.0027 0.8929 1.2452 0.0426 0.0413 0.0413 
0.6 6.7 1.0013 0.8479 1.2684 0.0499 0.0511 0.0511 
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Table A5. Statistics related to Study 2, n = 100. ( P = 0.5  and ( )Var z = 4 ) 

1π  2π  Mean Min Max Standard deviation Mean s.e. (OPG) Mean s.e. (Hessian) 

Probit 

2
mR  Fail Rate 

1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  

1.0 1.0 0.89  1.1073 1.1083 0.5562 0.5603 3.3739 3.2923 0.3065 0.3047 0.2948 0.2962 0.2513 0.2517 
0.8 1.0 0.88  0.6705 0.8404 0.3070 0.4399 1.9445 2.3475 0.1659 0.2082 0.1654 0.1942 0.1481 0.1722 
0.6 1.0 0.86  0.4590 0.7627 0.1847 0.4219 1.2975 1.8013 0.1251 0.1695 0.1252 0.1641 0.1145 0.1488 
0.4 1.0 0.85  0.3031 0.7551 0.0374 0.3930 0.8853 1.5539 0.1025 0.1586 0.1035 0.1558 0.0968 0.1427 
0.2 1.0 0.83  0.1655 0.8301 -0.1023 0.4753 0.9183 2.3035 0.0933 0.1741 0.0963 0.1696 0.0904 0.1541 
0.8 0.8 0.86  0.5615 0.5579 0.2583 0.2209 1.3351 1.3867 0.1341 0.1355 0.1279 0.1295 0.1190 0.1196 
0.6 0.8 0.85  0.3934 0.5189 0.1279 0.2549 0.8441 1.2543 0.1021 0.1116 0.1031 0.1160 0.0967 0.1079 
0.4 0.8 0.83  0.2567 0.5197 -0.0094 0.2560 0.6418 0.9584 0.0864 0.1067 0.0881 0.1099 0.0841 0.1042 
0.2 0.8 0.80  0.1403 0.5572 -0.0817 0.3051 0.4633 1.5840 0.0808 0.1141 0.0826 0.1147 0.0794 0.1074 
0.6 0.6 0.83  0.3669 0.3649 0.1020 0.1293 0.7602 0.9045 0.0903 0.0934 0.0933 0.0939 0.0886 0.0893 
0.4 0.6 0.80  0.2431 0.3685 -0.0598 0.1597 0.8384 0.8294 0.0880 0.0914 0.0813 0.0890 0.0785 0.0857 
0.2 0.6 0.76  0.1301 0.3872 -0.1119 0.1183 0.4436 0.7212 0.0744 0.0873 0.0751 0.0895 0.0729 0.0859 
0.4 0.4 0.76  0.2433 0.2391 0.0010 0.0129 0.4970 0.5953 0.0784 0.0789 0.0773 0.0773 0.0752 0.0752 
0.2 0.4 0.71  0.1284 0.2559 -0.0599 0.0365 0.3821 0.5028 0.0709 0.0759 0.0711 0.0762 0.0697 0.0743 
0.2 0.2 0.62  0.1342 0.1394 -0.0952 -0.0540 0.4131 0.4722 0.0649 0.0707 0.0683 0.0686 0.0675 0.0678 

EIVMLE               
1.0 1.0 0.89 0 % 1.1073 1.1083 0.5562 0.5603 3.3739 3.2923 0.3065 0.3047 0.2948 0.2962 0.2513 0.2517 
0.8 1.0 0.88 5.5 % 1.1948 1.1827 0.4032 0.5012 4.3379 4.3124 0.5852 0.5097 0.8085 0.7023 0.7245 0.6241 
0.6 1.0 0.86 13.1 % 1.1566 1.1509 0.3229 0.4906 3.9064 4.0685 0.5989 0.4645 1.0660 0.8457 0.9810 0.7711 
0.4 1.0 0.85 17.1 % 1.1050 1.1287 0.0939 0.4408 3.8464 4.3696 0.6695 0.5084 1.3692 1.0140 1.2737 0.9345 
0.2 1.0 0.83 18.8 % 1.0446 1.1309 -0.5601 0.5666 4.9897 4.3902 0.8365 0.4954 1.8809 1.1133 1.7619 1.0355 
0.8 0.8 0.86 15.3 % 1.0971 1.0925 0.4122 0.2996 3.5733 3.7649 0.4849 0.5051 0.8102 0.8279 0.7476 0.7579 
0.6 0.8 0.85 19.0 % 1.1040 1.1051 0.2470 0.3548 3.4202 3.2154 0.5516 0.4877 1.0900 0.9747 1.0115 0.8989 
0.4 0.8 0.83 19.6 % 1.0577 1.1070 -0.0471 0.3517 3.9104 3.6965 0.6240 0.5049 1.3314 1.0712 1.2593 1.0115 
0.2 0.8 0.80 23.9 % 0.9774 1.1020 -0.5667 0.4399 4.1518 3.6375 0.8005 0.5009 1.8137 1.1626 1.7350 1.1010 
0.6 0.6 0.83 21.4 % 1.0761 1.0706 0.2126 0.2449 3.4415 3.2230 0.5285 0.5233 1.1153 1.1059 1.0512 1.0447 
0.4 0.6 0.80 26.4 % 0.9850 1.0268 -0.1644 0.2781 3.5792 3.3788 0.5937 0.4988 1.2049 1.0563 1.1555 1.0074 
0.2 0.6 0.76 25.4 % 0.9768 1.0954 -2.3292 0.2016 4.8604 3.6608 0.7995 0.5345 1.8316 1.2755 1.7642 1.2187 
0.4 0.4 0.76 26.0 % 1.0146 1.0054 0.0037 0.0454 3.9342 3.7763 0.5886 0.5945 1.2672 1.2715 1.2380 1.2366 
0.2 0.4 0.71 26.6 % 0.9892 1.0595 -0.8803 0.1201 4.4973 4.1741 0.7959 0.6108 1.7755 1.4048 1.7505 1.3722 
0.2 0.2 0.62 27.5 % 1.0432 1.0827 -0.6994 -0.3415 4.7266 5.1428 0.8163 0.8743 1.9578 2.0444 1.9354 2.0351 
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Table A6. Statistics related to Study 2, n = 1000. ( P = 0.5  and ( )Var z = 4 ) 

1π  2π  Mean Min Max Standard deviation Mean s.e. (OPG) Mean s.e. (Hessian) 

Probit 

2
mR  Fail Rate 

1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  

1.0 1.0 0.89  1.0068 1.0081 0.8151 0.8248 1.2629 1.2467 0.0688 0.0695 0.0690 0.0692 0.0677 0.0678 
0.8 1.0 0.88  0.6296 0.7862 0.5040 0.6254 0.8033 0.9271 0.0418 0.0474 0.0433 0.0497 0.0427 0.0490 
0.6 1.0 0.86  0.4313 0.7202 0.3253 0.6070 0.5402 0.9002 0.0338 0.0423 0.0339 0.0437 0.0335 0.0432 
0.4 1.0 0.85  0.2865 0.7178 0.1778 0.6137 0.3903 0.8891 0.0283 0.0426 0.0292 0.0421 0.0290 0.0419 
0.2 1.0 0.83  0.1572 0.7830 0.0781 0.6635 0.2502 0.9550 0.0287 0.0463 0.0273 0.0451 0.0271 0.0448 
0.8 0.8 0.86  0.5330 0.5320 0.4310 0.4115 0.6587 0.6804 0.0362 0.0364 0.0357 0.0355 0.0353 0.0353 
0.6 0.8 0.85  0.3722 0.4990 0.2816 0.4129 0.4678 0.6347 0.0287 0.0318 0.0291 0.0325 0.0289 0.0323 
0.4 0.8 0.83  0.2497 0.4975 0.1543 0.4049 0.3348 0.6074 0.0250 0.0315 0.0257 0.0314 0.0256 0.0312 
0.2 0.8 0.80  0.1325 0.5308 0.0616 0.4180 0.2146 0.6424 0.0237 0.0331 0.0241 0.0323 0.0240 0.0320 
0.6 0.6 0.83  0.3531 0.3535 0.2825 0.2696 0.4388 0.4490 0.0259 0.0277 0.0271 0.0271 0.0269 0.0269 
0.4 0.6 0.80  0.2350 0.3514 0.1566 0.2738 0.3147 0.4281 0.0246 0.0257 0.0240 0.0261 0.0239 0.0260 
0.2 0.6 0.76  0.1236 0.3727 0.0617 0.2880 0.1890 0.4691 0.0214 0.0272 0.0225 0.0263 0.0224 0.0261 
0.4 0.4 0.76  0.2334 0.2349 0.1631 0.1652 0.3157 0.3063 0.0229 0.0232 0.0231 0.0231 0.0230 0.0230 
0.2 0.4 0.71  0.1249 0.2502 0.0563 0.1720 0.2030 0.3503 0.0218 0.0229 0.0215 0.0228 0.0214 0.0228 
0.2 0.2 0.62  0.1321 0.1337 0.0622 0.0602 0.1948 0.2050 0.0217 0.0206 0.0209 0.0209 0.0209 0.0209 

EIVMLE               
1.0 1.0 0.89 0 % 1.0068 1.0081 0.8151 0.8248 1.2629 1.2467 0.0688 0.0695 0.0690 0.0692 0.0677 0.0678 
0.8 1.0 0.88 0 % 1.0206 1.0182 0.7294 0.7787 1.6859 1.5284 0.1172 0.0988 0.1188 0.1017 0.1171 0.1000 
0.6 1.0 0.86 0 % 1.0325 1.0303 0.6400 0.7644 1.9106 1.8056 0.1725 0.1316 0.1698 0.1307 0.1681 0.1292 
0.4 1.0 0.85 0 % 1.0396 1.0327 0.4937 0.7506 3.3253 2.6343 0.2412 0.1627 0.2311 0.1546 0.2290 0.1532 
0.2 1.0 0.83 0.3 % 1.0753 1.0480 0.4112 0.7095 4.2431 2.7283 0.3791 0.1965 0.3577 0.1820 0.3561 0.1809 
0.8 0.8 0.86 0 % 1.0315 1.0295 0.7294 0.6650 1.8585 2.0353 0.1596 0.1599 0.1501 0.1497 0.1486 0.1484 
0.6 0.8 0.85 0 % 1.0338 1.0366 0.6261 0.6981 2.0720 2.0904 0.1982 0.1761 0.1966 0.1739 0.1952 0.1727 
0.4 0.8 0.83 0.1 % 1.0616 1.0495 0.4827 0.6930 3.1767 2.4713 0.2716 0.2076 0.2677 0.2028 0.2662 0.2014 
0.2 0.8 0.80 0.4 % 1.0698 1.0507 0.3804 0.6551 3.2740 2.4249 0.3802 0.2193 0.3867 0.2193 0.3842 0.2175 
0.6 0.6 0.83 0.2 % 1.0596 1.0617 0.6634 0.6408 2.5985 2.5402 0.2326 0.2386 0.2314 0.2321 0.2301 0.2308 
0.4 0.6 0.80 0.6 % 1.0652 1.0557 0.5007 0.6151 2.8316 2.8515 0.2985 0.2559 0.2911 0.2488 0.2898 0.2476 
0.2 0.6 0.76 0.1 % 1.0701 1.0570 0.3803 0.6328 3.2705 2.5598 0.3746 0.2456 0.3964 0.2530 0.3951 0.2520 
0.4 0.4 0.76 0.4 % 1.0621 1.0693 0.5487 0.5370 3.1761 3.4252 0.3104 0.3142 0.3044 0.3065 0.3037 0.3057 
0.2 0.4 0.71 0.9 % 1.1032 1.0909 0.3748 0.6242 3.8762 3.5548 0.4265 0.3163 0.4332 0.3245 0.4319 0.3235 
0.2 0.2 0.62 0.5 % 1.0917 1.1019 0.3737 0.3490 3.9663 4.1182 0.4092 0.4013 0.4057 0.4075 0.4046 0.4062 
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Table A7. Statistics related to Study 2, n = 10000. ( P = 0.5  and ( )Var z = 4 ) 

1π  2π  Mean Min Max Standard deviation Mean s.e. (OPG) Mean s.e. (Hessian) 

Probit 

2
mR  Fail Rate 

1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  1̂β  2β̂  

1.0 1.0 0.89  1.0019 1.0014 0.9268 0.9349 1.0880 1.0824 0.0223 0.0215 0.0212 0.0212 0.0212 0.0212 
0.8 1.0 0.88  0.6248 0.7814 0.5842 0.7338 0.6671 0.8370 0.0135 0.0151 0.0134 0.0154 0.0134 0.0153 
0.6 1.0 0.86  0.4284 0.7145 0.3972 0.6626 0.4734 0.7637 0.0107 0.0141 0.0105 0.0135 0.0105 0.0135 
0.4 1.0 0.85  0.2854 0.7142 0.2599 0.6732 0.3120 0.7606 0.0092 0.0130 0.0091 0.0132 0.0091 0.0132 
0.2 1.0 0.83  0.1563 0.7819 0.1308 0.7427 0.1843 0.8330 0.0085 0.0142 0.0085 0.0141 0.0085 0.0141 
0.8 0.8 0.86  0.5300 0.5308 0.4973 0.5023 0.5719 0.5626 0.0107 0.0108 0.0111 0.0111 0.0111 0.0111 
0.6 0.8 0.85  0.3724 0.4963 0.3480 0.4654 0.4019 0.5307 0.0094 0.0103 0.0091 0.0102 0.0091 0.0101 
0.4 0.8 0.83  0.2482 0.4959 0.2242 0.4615 0.2791 0.5313 0.0080 0.0100 0.0081 0.0098 0.0081 0.0098 
0.2 0.8 0.80  0.1326 0.5304 0.1095 0.4996 0.1654 0.5654 0.0077 0.0101 0.0076 0.0101 0.0076 0.0101 
0.6 0.6 0.83  0.3516 0.3514 0.3280 0.3256 0.3791 0.3775 0.0084 0.0087 0.0085 0.0085 0.0085 0.0085 
0.4 0.6 0.80  0.2344 0.3508 0.2118 0.3258 0.2701 0.3767 0.0076 0.0080 0.0076 0.0082 0.0075 0.0082 
0.2 0.6 0.76  0.1243 0.3726 0.1033 0.3491 0.1468 0.4020 0.0071 0.0082 0.0071 0.0082 0.0071 0.0082 
0.4 0.4 0.76  0.2341 0.2343 0.2099 0.2130 0.2572 0.2564 0.0073 0.0071 0.0073 0.0073 0.0073 0.0073 
0.2 0.4 0.71  0.1243 0.2482 0.1051 0.2263 0.1475 0.2762 0.0067 0.0073 0.0067 0.0072 0.0067 0.0072 
0.2 0.2 0.62  0.1325 0.1325 0.1098 0.1102 0.1510 0.1524 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 

EIVMLE               
1.0 1.0 0.89 0 % 1.0019 1.0014 0.9268 0.9349 1.0880 1.0824 0.0223 0.0215 0.0212 0.0212 0.0212 0.0212 
0.8 1.0 0.88 0 % 1.0009 1.0013 0.8999 0.9227 1.1192 1.1056 0.0356 0.0300 0.0353 0.0302 0.0352 0.0301 
0.6 1.0 0.86 0 % 1.0011 1.0014 0.8698 0.8831 1.2434 1.2037 0.0494 0.0389 0.0483 0.0369 0.0483 0.0368 
0.4 1.0 0.85 0 % 1.0008 1.0010 0.8427 0.8963 1.2100 1.1276 0.0636 0.0417 0.0630 0.0414 0.0629 0.0413 
0.2 1.0 0.83 0 % 1.0060 1.0047 0.7676 0.9015 1.3643 1.1920 0.0912 0.0439 0.0909 0.0436 0.0909 0.0436 
0.8 0.8 0.86 0 % 1.0033 1.0048 0.8850 0.8979 1.1660 1.1369 0.0417 0.0421 0.0428 0.0428 0.0427 0.0428 
0.6 0.8 0.85 0 % 1.0044 1.0036 0.8736 0.8837 1.2072 1.1899 0.0565 0.0488 0.0550 0.0482 0.0549 0.0481 
0.4 0.8 0.83 0 % 1.0047 1.0029 0.8188 0.8528 1.3070 1.1999 0.0695 0.0525 0.0693 0.0515 0.0692 0.0515 
0.2 0.8 0.80 0 % 1.0090 1.0068 0.7458 0.8839 1.5823 1.2860 0.1008 0.0538 0.0985 0.0531 0.0984 0.0531 
0.6 0.6 0.83 0 % 1.0065 1.0059 0.8466 0.8597 1.2353 1.2466 0.0586 0.0598 0.0593 0.0593 0.0593 0.0593 
0.4 0.6 0.80 0 % 1.0064 1.0036 0.8265 0.8390 1.3879 1.2606 0.0738 0.0611 0.0725 0.0612 0.0725 0.0612 
0.2 0.6 0.76 0 % 1.0114 1.0089 0.7630 0.8524 1.4548 1.3204 0.1024 0.0627 0.1007 0.0617 0.1006 0.0617 
0.4 0.4 0.76 0 % 1.0059 1.0067 0.8146 0.8277 1.2925 1.3024 0.0749 0.0737 0.0730 0.0731 0.0730 0.0730 
0.2 0.4 0.71 0 % 1.0106 1.0080 0.7739 0.8199 1.4487 1.3363 0.0993 0.0723 0.0981 0.0709 0.0981 0.0709 
0.2 0.2 0.62 0 % 1.0067 1.0068 0.7422 0.7358 1.3437 1.3731 0.0895 0.0901 0.0908 0.0908 0.0908 0.0908 
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Table A8. Statistics related to Study 3, n = 1000 ( ( )Var z = 4 ) 

  Probit EIVML 

 π Beta Estimates Standard Errors Beta Estimates Standard Errors 

  Mean Min Max s.d. OPG Hessian Mean Min Max s.d. OPG Hessian 
Failure 

Rate 

 1.0 1.0051 0.8258 1.2603 0.0594 0.0590 0.0583 1.0051 0.8258 1.2603 0.0594 0.0590 0.0583 0% 
 0.8 0.6270 0.5302 0.7506 0.0375 0.0364 0.0362 1.0121 0.7817 1.4197 0.1020 0.0983 0.0977 0% 

P = 0.5 0.6 0.4299 0.3453 0.5302 0.0278 0.0280 0.0278 1.0194 0.6968 1.7662 0.1385 0.1357 0.1347 0% 
 0.4 0.2858 0.2059 0.3853 0.0235 0.0234 0.0234 1.0235 0.5958 2.9119 0.1941 0.1756 0.1753 0% 
 0.2 0.1550 0.0855 0.2293 0.0204 0.0209 0.0209 1.0173 0.4550 2.8789 0.2396 0.2361 0.2360 0% 
 1.0 1.0043 0.8391 1.2127 0.0575 0.0590 0.0586 1.0043 0.8391 1.2127 0.0575 0.0590 0.0586 0% 
 0.8 0.6342 0.5312 0.7886 0.0369 0.0367 0.0364 1.0083 0.7690 1.5403 0.0997 0.0972 0.0964 0% 

P = 0.6 0.6 0.4413 0.3621 0.5613 0.0270 0.0280 0.0279 1.0164 0.7291 1.9065 0.1293 0.1302 0.1295 0% 
 0.4 0.3009 0.2317 0.3716 0.0235 0.0235 0.0235 1.0295 0.6666 1.7271 0.1627 0.1607 0.1605 0% 
 0.2 0.1710 0.0844 0.2420 0.0220 0.0208 0.0208 1.0244 0.5939 2.0604 0.1949 0.1834 0.1833 0% 
 1.0 1.0062 0.8505 1.2443 0.0619 0.0621 0.0613 1.0062 0.8505 1.2443 0.0619 0.0621 0.0613 0% 
 0.8 0.6798 0.5748 0.8341 0.0393 0.0383 0.0383 1.0122 0.7823 1.4646 0.0999 0.0952 0.0946 0% 

P = 0.75 0.6 0.5025 0.4236 0.6005 0.0297 0.0289 0.0290 1.0181 0.7541 1.6161 0.1193 0.1149 0.1143 0% 
 0.4 0.3686 0.2972 0.4554 0.0244 0.0237 0.0239 1.0126 0.7182 1.6589 0.1159 0.1169 0.1166 0% 
 0.2 0.2451 0.1664 0.3151 0.0212 0.0208 0.0209 1.0088 0.7528 1.3935 0.1028 0.1021 0.1020 0% 
 1.0 1.0116 0.8382 1.3121 0.0758 0.0744 0.0726 1.0116 0.8382 1.3121 0.0758 0.0744 0.0726 0% 
 0.8 0.7787 0.6563 0.9826 0.0511 0.0455 0.0469 1.0150 0.7807 1.5074 0.1054 0.0993 0.0985 0% 

P = 0.9 0.6 0.6380 0.5309 0.7690 0.0383 0.0334 0.0353 1.0193 0.7645 1.6195 0.1091 0.1053 0.1047 0% 
 0.4 0.5207 0.4394 0.6441 0.0314 0.0263 0.0282 1.0117 0.8039 1.5910 0.0978 0.0939 0.0937 0% 
 0.2 0.4054 0.3337 0.4919 0.0245 0.0219 0.0233 1.0068 0.8425 1.3033 0.0702 0.0723 0.0723 0% 
 1.0 1.0234 0.7768 1.8972 0.1213 0.1245 0.1155 1.0234 0.7768 1.8972 0.1213 0.1245 0.1155 0% 
 0.8 0.9261 0.6927 1.6418 0.1066 0.0776 0.0832 1.0432 0.7587 2.3637 0.1693 0.1556 0.1496 0.3% 

P = 0.98 0.6 0.8420 0.6575 1.4226 0.0868 0.0540 0.0624 1.0407 0.7603 1.8978 0.1582 0.1461 0.1427 0.1% 
 0.4 0.7454 0.6110 0.9480 0.0608 0.0388 0.0466 1.0213 0.7727 2.1448 0.1238 0.1143 0.1136 0% 
 0.2 0.6417 0.5152 0.7892 0.0463 0.0294 0.0356 1.0088 0.7894 1.3896 0.0817 0.0804 0.0802 0% 
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Table A9. Statistics related to Study 4, n = 100 
  Probit EIVML 

 π Beta Estimates Standard Errors Beta Estimates Standard Errors 

  Mean 1̂β  Mean 2β̂ s.d. 1̂β  s.d. 2β̂  se( 1̂β ) se( 2β̂ ) Mean 1̂β  Mean 2β̂ s.d. 1̂β  s.d. 2β̂  se( 1̂β ) se( 2β̂ ) 
Failure 

Rate 

 1.0 1.0714 1.0852 0.2640 0.2208 0.3438 0.2942 1.0714 1.0852 0.2640 0.2208 0.3438 0.2942 0% 
 0.8 0.8116 0.6597 0.1907 0.1299 0.2016 0.1320 1.0953 1.1162 0.4839 0.5205 0.4726 0.4817 3.1% 

ρ = 0 0.6 0.7434 0.4500 0.1659 0.0990 0.1714 0.1022 0.9983 1.0005 0.6164 0.7316 0.5523 0.5850 10.8% 
 0.4 0.7325 0.2936 0.1522 0.0833 0.1572 0.0837 0.9106 0.8941 0.6090 0.8335 0.5283 0.6043 14.5% 
 0.2 0.7916 0.1589 0.1472 0.0762 0.1518 0.0796 0.8946 0.8503 0.6594 1.1918 0.5220 0.7296 15.1% 
 1.0 1.0852 1.1016 0.2662 0.2370 0.3222 0.2904 1.0852 1.1016 0.2662 0.2370 0.3222 0.2904 0% 
 0.8 0.8912 0.6618 0.1952 0.1389 0.2063 0.1536 1.0802 1.0932 0.4810 0.5647 0.4750 0.5272 5.2% 

ρ = 0.2 0.6 0.8394 0.4482 0.1704 0.1052 0.1899 0.1106 0.9745 0.9877 0.5706 0.7558 0.5290 0.5825 11.5% 
 0.4 0.8635 0.2964 0.1589 0.0893 0.1637 0.0949 0.9000 0.8829 0.5969 0.9308 0.5213 0.6383 16.6% 
 0.2 0.9155 0.1551 0.1532 0.0802 0.1604 0.0812 0.8744 0.8080 0.5584 1.2090 0.4938 0.7242 16.8% 
 1.0 1.0775 1.0929 0.2616 0.2415 0.2793 0.2699 1.0775 1.0929 0.2616 0.2415 0.2793 0.2699 0% 
 0.8 0.9185 0.6512 0.1966 0.1426 0.2186 0.1585 1.0712 1.0984 0.5028 0.6187 0.4951 0.5647 5.0% 

ρ = 0.3 0.6 0.8859 0.4360 0.1716 0.1081 0.1756 0.1126 0.9748 0.9853 0.5512 0.7814 0.4992 0.5838 10.7% 
 0.4 0.9200 0.2859 0.1618 0.0921 0.1785 0.0960 0.8961 0.8789 0.5570 0.9448 0.5043 0.6307 15.6% 
 0.2 0.9928 0.1546 0.1578 0.0833 0.1592 0.0837 0.9101 0.8542 0.6349 1.4704 0.5147 0.8036 17.7% 
 1.0 1.0866 1.1141 0.2695 0.2771 0.3150 0.3332 1.0866 1.1141 0.2695 0.2771 0.3150 0.3332 0% 
 0.8 1.0208 0.6468 0.2073 0.1634 0.2341 0.1916 1.0404 1.0835 0.4982 0.7319 0.4837 0.6256 7.8% 

ρ = 0.5 0.6 1.0482 0.4082 0.1843 0.1219 0.1971 0.1318 0.9606 0.9419 0.5665 0.9400 0.5199 0.6531 13.4% 
 0.4 1.1130 0.2552 0.1762 0.1022 0.1916 0.1136 0.9253 0.8286 0.5669 1.1142 0.5247 0.6872 16.8% 
 0.2 1.1575 0.1329 0.1709 0.0909 0.1730 0.0969 0.9517 0.8363 0.6559 1.8672 0.5142 0.9250 16.6% 
 1.0 1.0854 1.1320 0.2732 0.3127 0.3478 0.4142 1.0854 1.1320 0.2732 0.3127 0.3478 0.4142 0% 
 0.8 1.1081 0.6073 0.2170 0.1775 0.2588 0.2054 1.0362 1.0199 0.4479 0.7137 0.4652 0.5862 7.4% 

ρ = 0.6 0.6 1.1620 0.3849 0.1967 0.1330 0.2155 0.1431 0.9466 0.8952 0.5374 1.0101 0.5162 0.6733 15.0% 
 0.4 1.2259 0.2383 0.1879 0.1108 0.2044 0.1219 0.9057 0.7920 0.5199 1.2503 0.5222 0.7328 19.6% 
 0.2 1.2663 0.1164 0.1835 0.0975 0.2148 0.1079 0.9636 0.7342 0.6724 2.1015 0.5723 1.0032 18.8% 
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Table A10. Statistics related to Study 4, n = 1000 
  Probit EIVML 

 π Beta Estimates Standard Errors Beta Estimates Standard Errors 

  Mean 1̂β  Mean 2β̂ s.d. 1̂β  s.d. 2β̂  se( 1̂β ) se( 2β̂ ) Mean 1̂β  Mean 2β̂ s.d. 1̂β  s.d. 2β̂  se( 1̂β ) se( 2β̂ ) 
Failure 

Rate 

 1.0 1.0059 1.0057 0.0757 0.0613 0.0738 0.0603 1.0059 1.0057 0.0757 0.0613 0.0738 0.0603 0% 
 0.8 0.7861 0.6280 0.0576 0.0384 0.0591 0.0390 1.0158 1.0153 0.1014 0.1043 0.1066 0.1078 0% 

ρ = 0 0.6 0.7172 0.4307 0.0506 0.0298 0.0495 0.0298 1.0207 1.0249 0.1212 0.1460 0.1209 0.1482 0% 
 0.4 0.7171 0.2873 0.0471 0.0255 0.0473 0.0259 1.0307 1.0402 0.1397 0.1992 0.1548 0.2222 0% 
 0.2 0.7797 0.1565 0.0456 0.0233 0.0459 0.0223 1.0213 1.0382 0.1381 0.2735 0.1410 0.2654 0.1% 
 1.0 1.0062 1.0043 0.0750 0.0642 0.0763 0.0641 1.0062 1.0043 0.0750 0.0642 0.0763 0.0641 0% 
 0.8 0.8435 0.6225 0.0580 0.0402 0.0599 0.0411 1.0120 1.0126 0.0974 0.1095 0.1026 0.1133 0% 

ρ = 0.2 0.6 0.8094 0.4257 0.0515 0.0313 0.0516 0.0320 1.0196 1.0297 0.1156 0.1566 0.1224 0.1667 0% 
 0.4 0.8346 0.2827 0.0485 0.0268 0.0494 0.0270 1.0354 1.0481 0.1303 0.2137 0.1452 0.2323 0% 
 0.2 0.9015 0.1527 0.0473 0.0245 0.0468 0.0241 1.0297 1.0517 0.1249 0.3005 0.1271 0.3027 0% 
 1.0 1.0091 1.0089 0.0749 0.0666 0.0801 0.0676 1.0091 1.0089 0.0749 0.0666 0.0801 0.0676 0% 
 0.8 0.8763 0.6166 0.0584 0.0415 0.0612 0.0429 1.0094 1.0124 0.0953 0.1136 0.1010 0.1191 0% 

ρ = 0.3 0.6 0.8655 0.4170 0.0523 0.0323 0.0521 0.0319 1.0170 1.0212 0.1096 0.1597 0.1100 0.1598 0% 
 0.4 0.9011 0.2753 0.0495 0.0277 0.0511 0.0266 1.0310 1.0425 0.1203 0.2183 0.1248 0.2194 0% 
 0.2 0.9704 0.1474 0.0484 0.0252 0.0479 0.0257 1.0401 1.0694 0.1399 0.3632 0.1722 0.4172 0% 
 1.0 1.0091 1.0094 0.0744 0.0739 0.0739 0.0732 1.0091 1.0094 0.0744 0.0739 0.0739 0.0732 0% 
 0.8 0.9693 0.5920 0.0600 0.0458 0.0599 0.0453 1.0072 1.0063 0.0897 0.1272 0.0916 0.1282 0% 

ρ = 0.5 0.6 1.0096 0.3857 0.0550 0.0355 0.0531 0.0351 1.0143 1.0026 0.0974 0.1769 0.0983 0.1833 0% 
 0.4 1.0630 0.2452 0.0526 0.0302 0.0515 0.0302 1.0185 1.0144 0.1008 0.2439 0.1102 0.2653 0% 
 0.2 1.1252 0.1276 0.0517 0.0273 0.0513 0.0284 1.0302 1.0575 0.1003 0.3915 0.1099 0.4264 0.1% 
 1.0 1.0024 1.0069 0.0741 0.0808 0.0745 0.0819 1.0024 1.0069 0.0741 0.0808 0.0745 0.0819 0% 
 0.8 1.0487 0.5602 0.0621 0.0496 0.0628 0.0510 1.0140 0.9762 0.0850 0.1362 0.0851 0.1422 0% 

ρ = 0.6 0.6 1.1135 0.3511 0.0576 0.0381 0.0589 0.0380 1.0109 0.9488 0.0860 0.1822 0.0897 0.1906 0% 
 0.4 1.1809 0.2192 0.0557 0.0324 0.0552 0.0325 1.0255 0.9730 0.0873 0.2557 0.0901 0.2669 0% 
 0.2 1.2288 0.1100 0.0545 0.0288 0.0539 0.0279 1.0342 1.0018 0.0852 0.4050 0.0792 0.4004 0% 
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