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Synopsis

An inertial stabilized platform system with three single axis gyroscopes is
analysed. Special attention is given to the influence of the reaction torques of the
gyroscopes on the dynamics of the system. On the basis of the analysis a synthesis
method is developed using standard techniques for servomechanism synthesis.
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proper matching of the electrical and the mechanical properties should also be
analyzed to form a foundation for a study of systems with extremely small
stable elements.

The main drawbacks of the existing analyses are the restrictive assumptions
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structure of the specific designs. In addition the notations used are usually very
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1. Introduction

The function of a platform system is to establish a reference coordinate
system for guidance, navigation, fire control or other purpose. The desired
reference system may be fixed to inertial space, fixed to the earth, etc. The part
of the platform system which mechanizes the reference is called the controlled
member or the stable element. This is isolated from the motions of the base by
a system of gimbals. The deviation of the controlled member from the desired
reference system is sensed and counteracted by torque-producing devices.
Much research has been devoted to the development of suitable sensors;
according to the unclassified literature the gyroscopes have been the most suc-
cessful. In the platform systems which use gyros, the reference system is
basically fixed to inertial space. If other references are required, additional
information must be provided. In earth fixed systems e.g. this can be obtained
from accelerometers or pendulums. Both free gyros and single-axis gyros have
been used as sensing devices. For systems with free gyros the control problem
is to align the controlled member to the spin axes of the gyros. The solution to
this type of problem is fairly straight forward. Systems with single axis gyros
are more complex as the gyros give reaction torques when they produce signals.
In many systems the gyros are very small compared to the controlled member
which means that the reaction torques are negligible and that even the single
axis gyros can be treated as pure sensing devices. This greatly simplifies the
analysis. See e.g. DRAPER and WooDBURY (1956) and MirsuTtomr (1958).

In this report we will study an inertial stabilized platform system where the
deviations of the controlled member from the inertial space are sensed by three
single-axis gyros. It is assumed that the controlled member is isolated from the
motions of the base by a system of gimbals arranged in such a way that it is
possible to apply torques to the stable element. It is further assumed that the
stable element and the gyros can be treated as rigid bodies. However, we do not
make any assumptions concerning the relative magnitudes of the mechanical
parameters of the system. Also we do not assume any special orientation of the
gyros. The fact that the orientation of the gyros might affect to dynamics of
the system was pointed out by ZAcHRissoN (1957).
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Fig. 1. Schematic diagram of a single-axis gyro.

2. Single axis gyros

The main features of a single-axis gyro are shown in Fig. 1. It consists of a
gyrorotor supported by bearings in a gimbal which is supported in the case.
The pivot axis of the gimbal is called the output axis (OA) of the gyro. The
angle between the gimbal and the case is the output signal of the gyro. The gyro
is provided with a signal generator (SG) which gives a signal proportional to
the output signal. The gimbal is also provided with another device, the torque
generator (TG), which makes it possible to apply a torque to the gimbal. The
space between the gimbal and the case is often filled with a fluid. This serves
to float the gimbal in order to decrease the friction torque in the gimbal
bearings. The gimbal is therefore also called the float. This word will be used
as being synonymous with gimbal even when the gimbal is not floated. In some
applications the fluid is also used to introduce viscous damping between the
gimbal and the case.

The spin axis (SA) of the gyro coincides with the axis of the rotor. The axis
coincident with the spin axis when the output signal is zero is called the spin
reference axis (SRA). The input axis of the gyro (IA) is orthogonal to the output
axis and the spin axis. The axes OA, SRA and IA form a righthanded ortho-
gonal coordinate set.

We will now give an equation which describes the performance of the single
axis gyro. Introduce the following notations

J the moment of inertia of the gyrorotor with respect to the spin axis
N the angular velocity of the gyrorotor

H=J " m, the angular momentum of the gyrorotor

al the moment of inertia of the gimbal, including the gyrorotor, with

respect to the output axis
Jmn(r) the disturbing torque acting on the float of the gyro
o(t) the output signal of the gyro

d
D= 7 differential operator




aJo(D)  the transfer operator from the output signal to torque about the
output axis of the gyro (the viscous torque introduced by the
buoyancy fluid is also included in the operator o(D)). a(D) is
supposed to be a rational function of the differential operator D.

g“ the components of the angular velocity of the gyro with respect to
v inertial space
‘QSRA

Assuming that the inertia ellipsoid of the float is symmetric with respect to the
output axis. Newton’s second law of motion gives after linearization

a[D* +0(D)] p(1) = 0682,,(1) = aDQuy (1) — m(1) 2.1

This equation is called the signal equation as it tells how the output signal
reflects the motion of the case of the gyro. The derivation of this equation is
left for the reader. (It is derived in section 4 under more general conditions than
stated above).

It is desirable that the output signal depends only on the component of the
angular velocity along the input axis. The term aDQy, ,(t) causes what is referred
to as the output axis sensitivity of the gyro. The last term in (2.1) is caused by
the disturbances acting on the float, e.g. friction torque, mass unbalance torque,
buoyancy unbalance torque, etc. The influence of these terms will be discussed
later. Neglecting them the signal equation runs

Wo

0= Crpe s o(D)]

Q41 (2.2)

The transfer function of all types of single-axis gyros can be represented by
this equation. Different types of gyros correspond to different operators o(D).
A few examples are given below.

Example 1. (The Integrating Gyro).
Choose
a(D)=0

This means that there is no coupling from the output signal to torque acting
on the float. The equation (2.2) gives,

wy (" _
p=—| O(0)dr
a
where 0i, is the angle of rotation of the case of the gyro about the input axis.

The output signal is thus proportional to the time integral of the angle of
rotation of the case of the gyro which explains the name integrating gyro.




Example 2. (The Proportional Gyro).
Choose ‘

o(D)=aD

This means that a torque proportional to the angular velocity of the float with
respect to the case, is applied to the float. In practice this is done either by
filling the space between the case and the float with a viscous liquid or by
feeding the torquemotor of the gyro by the electronically differentiated output
signal of the gyro. The equation (2.2) gives,

1 (O

o t
p(H)=— = 7J e 799, (v)dx

0
a D(D+uw) 4

The steady state output signal is thus proportional to the angle of rotation of
the case, which explains why a gyro of this type is called a proportional gyro.
The name “rate-integrating gyro” and the inconsistent abbreviation of this:
“integrating gyro” is also found in the literature.

The sensitivity of the proportional gyro is

Dy
§s=—
od

Gyros of this type are frequently used in high precision navigation platforms
because of their very low drift-rates. Cf. DRAPER (1951), DRAPER, WRIGLEY,
GrouEg (1955) and DRrRAPER, WRIGLEY, HOVORKA (1960).

Example 3. (The Differentiating Gyro or the Rate Gyro).
Choose

a(D)=aD+x

This means that the torque applied to the float is a linear combination of the
output signal and its time-derivative. The term «D is necessary for a stable
operation of the gyro. The term x is in practice obtained by a mechanical spring
between the case and the float or by feeding the torque-generator with a signal
proportional to the output signal.

The equation (2.2) gives

Dg
p(t)= aTDT—mQM(O

In the steady state the output signal is thus proportional to the angular velocity
of the case.
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Fig. 2. Schematic diagram of a single-axis platform system.

3. Single axis platform systems

3.1. System description

In the single-axis case the stable element is suspended in such a way that it can
rotate about an axis whose orientation is fixed with respect to inertial space.
The orientation of the controlled member is defined by the angle 6(t). Stabiliza-
tion of the platform means arranging a system in such a way that the angle
6(t) is a given function of time and of the position of the controlled member.
When we restrict the discussion to inertial stabilized systems the prescribed
angle is a constant. A simplified diagram of a single axis platform system is
shown in Fig. 2.

The controlled member is provided with a single-axis gyro whose input axis
is coincident with the axis of rotation of the controlled member. The system is
provided with a torque motor which makes it possible to apply a torque to the
controlled member.

The angular motions of the controlled member are sensed by the single-axis
gyro. The output signal of the gyro is electronically processed and fed to the
torque motor (TM) of the stable element and to the torque generator (TG) of
the gyro. A signal flow diagram is shown in Fig. 3.

The problem is to determine how to do the electronic processing so that the
controlled member maintains its orientation in spite of disturbances.

3.2, Analysis

We will start by deriving the equation of motion of the system. Introduce the
notations
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Fig. 3. Signal flow diagram of a signal-axis platform system.

bJ the moment of inertia of the controlled member, including the gyro,
with respect to the axis of rotation

H=J - w, the angular momentum of the gyro

JM(t) the disturbing torque acting on the controlled member

JM (1) the control torque applied to the controlled member by the torque-
motor (TM)

o the orientation of the controlled member with respect to inertial space
o(t) the output signal of the gyro

d
D= i differential operator

Applying Newton’s second law of motion to the controlled member we get
after linearization

bJD?*0(t)=JM(t)+ I M (t)— HD p(t) (3.2.1)

The last term in (3.2.1) is due to the fact that a reaction torque is developed
when the gyro produces an output signal. This term is referred to as the primary
reaction torque of the gyro. The derivation of this equation is left for the reader.
(It is derived under more general assumptions in section 4.)

The control torque, M,(¢), is supposed to be a functional of the output signal
of the gyro, ¢(f). We assume that it has the form

M ()= —(D)" (1) (3.2.2)
d
where (D) is a rational function of the differential operator Dzﬁ.

The equations (2.1), (3.2.1) and (3.2.2) give

bD*[1+ }})(D)]B(r)zM(z)er—DYo(D) -m(t) (3.2.3)

Wo
where
0wy WD +1(D)

YoD)=, "D[D*+a(D)]

(3.2.4)
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This equation is referred to as the equation of motion of the controlled member
with the servoloop closed. We will give a few examples which illustrate the
properties of the system for different choices of the operators o(D) and (D).

Example 1
Choose

A,
Yo(D)= E

and suppose the disturbing torque acting on the float to be zero, i.e. m(1)=0.
Equation (2.2.3) then gives

b[D*+ A,D]0()=M(1)

An observer who analyses the system by applying torques to the controlled
member will this find it mechanically equivalent to a rigid body whose moment
of inertia is bJ and whose angular motions are damped with a moment propor-
tional to its angular velocity with respect to inertial space. The coefficient of
damping is A,Jb. [Nm - sec - rad™'].

Example 2
Choose

A,

YO(D)ZE

and suppose that the disturbing torque acting on the gyrofloat is zero. Eq.
(3.2.3) then gives

b[D? + A;10()=M(D)

An observer who analyses the system by applying torques to the controlled
member will thus find it mechanically equivalent to a'rigid body whose moment
of inertia is Jb and whose angular motions are spring-restrained to inertial
space. The restraint is linear and the spring coefficient is 4,Jb [Nm - rad™'].

We will now define the concept of inertial stabilized platform system.

Definition 3.2.1

A single axis platform system is said to be inertial stabilized or stabilized with
respect to inertial space if (3.2.2) is stable with respect to the disturbance M(¥).

(For a discussion of the concept of stability with respect to a disturbance we
refer to MALKIN (1959). A necessary and sufficient condition is that all the roots
of the equation D2[1+ Yo]=0 have negative real-parts.)
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Corollary

For an inertial stabilized platform system the function Y(D) must at least have
a double pole at the origin.

This means that for an inertial stabilized platform system the controlled
member must at least be spring-restrained to inertial space. Compare example 2.
Poles of Y (D) at the origin of order higher than two means still tighter coupling
between the controlled member and inertial space.

One obvious way of obtaining an inertial stabilized platform system is thus
to choose

Wo
+28—
D

2

Wo

Yo(D)=—3 (3.2.5)
D

where the first term corresponds to spring-restraining the controlled member

to inertial space and the second term is the damping necessary for a stable

system. Introducing Y, into the (3.2.3) and Laplace-transforming we get

1 2fwep+op \
5m(p)

o0 B
) wop pP+2éwep+w]

b[p® +2éwop+wi] ?)

The transformed variables are denoted by writing p for the argument. This
equation shows how the controlled member reflects the disturbances M(f) and
m(t). In many cases the specifications can be satisfied with a system of this
type. This system will, however, be unnecessarily complicated. It is possible to
obtain a system with almost the same properties with a less complicated
instrumentation.

The disturbing torque acting on the float of the gyro has until now been
neglected. The following theorem says something about their effects on the
system,

Theorem 3.2.1

For a single axis inertial stabilized platform system the function

D[1+Y,]
Yo
has a root D=0,

The proof is obvious from the definition 3.2.1,

The theorem means that the transfer function from the disturbing torque
acting on the gyrofloat to the angular deviation of the stable element has a pole
at the origin. The system is thus very sensitive to low frequency disturbances
acting on the float of the gyro. A constant disturbing torque gives in the steady
state an angular deviation of the controlled member which increases linearly
with time. This phenomenon is called the drift of the platform and is caused by
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the fact that a gyro responds to a torque on the float in the same way as to an
angular velocity about the input axis. Compare the signalequation (2.1).

The theorem 3.2.1 also implies that the angular orientation of the stable
clement cannot be stable with respect to both the disturbances m(f) and M(7).
(In principle we might have required stability with respect to m(r). The system
had then been unstable with respect to M(7)). The reason why we require stability
with respect to M(z) for an inertial stabilized system is that in practice the
disturbances M(f) are much greater than the disturbances m(1).

If it is desired to have the stable element rotating in a prescribed manner
with respect to inertial space, commanding signals are fed to the torque-
generator of the gyro. For commanding signals of low frequencies the angle of
rotation will then be proportional to the time-integral of the commanding
signal. The inertial stabilized platform system is therefore often called an
integrating drive.

3.3. Synthesis

The main features of the single axis system were derived in the previous section.
We will now turn to the synthesis problem, i.e. we will determine the operators
7(D) and o(D). We must then consider

A. The character of the disturbances.

B. The sensitivity of the system to the disturbances.

C. The ability of the system to follow commanding signals.

D. The possibility of realizing the operators in physical components.

For the sake of convenience we have divided the disturbances into two groups,
disturbing torque acting on the stable element, and disturbing torque acting on
the float of the gyro.

The sensitivity of the system to the two groups of disturbances can be traded
against each other. In the case of inertial stabilized systems the error caused
by disturbing torques acting on the stable element can be made arbitrarily
small by the proper choice of the transfer functions o( p) and 7(p). As a result
the system is very sensitive to low frequency disturbing torques acting on the
float of the gyro. If we instead choose to design a system in which the error
due to a constant disturbing torque on the gyrofloat is finite in the steady state
we will find that a constant disturbing torque on the controlled member in the
steady state will give an error increasing linearly with time. The disturbing
torques acting on the float of the gyro can however be made very small by
proper design of the gyro. A good gyro may have a drift of about 0.01°/hour.

In applications where it is desired to rotate the controlled member with
respect to inertial space the system must of course respond fast enough to the
commanding signals. The navigation frequencies are extremely low and they
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Fig. 4. Block diagram of a single-axis platform system.

will thus give very modest bandwidth requirements. In case of gear driven
gimbals, the isolation of the controlled member from the base motions is only
effective for frequencies lower than the bandwidth. For these systems the
bandwidth must thus be greater than the highest frequency of the vibrations
of the base. In direct driven gimbals there is an attenuation of the high frequency
base motions due to the moment of inertia of the controlled member and the
sensitivity of the system to disturbing torques can thus be traded against
bandwidth. Cf. section 3.4.

The problem of determining o(D) and (D) is in many ways similar to the
synthesis of servomechanisms. In order to facilitate the use of the standard
methods for servomechanism synthesis we will give our problem a block-
diagram representation. Laplace-transforming the equation (3.2.3) we get

1 Y,
0(p)= M(p)—%—a—)—' m(p) (3.3.1)

bp2[1+Y0] p 14+Y,
where

wy  wop+1(p)

At LIS 3.3.2
ab p[p*+a(p)] (3:32)

and the transformed variables are denoted by writing p for the argument.
These equations can be represented by the block-diagram of Fig. 4.

The synthesis problem is solved in the following way

1. Determine the open loop system function Yo or alternatively the closed loop
system function

Yo
1+ Y,
consistent with the specifications.

2. Then determine the transfer functions o(p) and 7(p) consistent with the
equation (3.3.2).
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The first part to the synthesis is the classical problem on servomechanisms.
Although no complete solution has yet been presented the problem is solved
for certain classes of specifications in ordinary textbooks on automatic control.
If the specifications on the system are complete the problem can be solved by
optimization techniques. This is the case e.g. when the disturbing torques are
stationary stochastic processes and the WIENER KOLMOGOROV theory can be
utilized. When minimizing the RMS error the constraints given by the fixed
components and the ability of the system to follow commanding signals must
be considered. The technique for the handling of these auxiliary conditions are
thoroughly treated by NewToN, GouLD and KAISER (1957). However, in many
situations the specifications on the system are incomplete, 1.e. they do not
uniquely determine the open loop system function Y.

The choice between the different possible transfer functions Yo is then
governed by the complexity of their instrumentation. Solutions to this problem
have been proposed by several authors, e.g. NICHOLS (JAMES-NICHOLS-PHILLIPS
(1947), Ch. 4), Evans (1948) and TRUXAL (1955).

These methods assume that the specifications are given in terms of error
coefficients, bandwidth, and similar coefficients. The definition 3.2.1 of an
inertial stabilized platform system gives the following condition on the error
coefficients

Position error constant K,= oo
Velocity error constant K,= oo

The acceleration error constant is related to the spring coefficient of the restraint
of the controlled member to inertial space by

k=Jb K, [Nm - rad™ 1]

For an inertial stabilized platform system the choice of the closed loop transfer
function is thus limited to the class of transfer functions giving zero velocity
error. The order of magnitude of the constants for a platform in a high class
navigation system are

Bandwidth 100 rad sec™?!

Acceleration constant K,=103-10%sec™ 2

There are applications with considerably lower bandwidth specifications.
Notice however, that we can not carry out an effective synthesis from these
specifications only. We must at least qualitatively know the distribution of the
disturbing torques on various frequencies. Cf. section 34.
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The second step in the synthesis, to determine o(p) and 7(p) when Y,(p) is
given, has no unique solution. Either o(p) or 7(p) can be arbitrarily choosen,
the other is then given by (3.3.2). In many applications there is no feedback
around the gyro; the transfer function o(p) is then uniquely given by the choice /
of the gyro. Cf. section 2.

Also notice that it is possible to choose 7(p)=0, which means that no gimbal
torque motor is used. Disturbing torque acting on the controlled member is then
counteracted by the precession of the gyro. The gyro thus serves the double
purpose as sensing and actuating device. This means specifications on the gyro
which are difficult to obtain with the technological means of today. A system
of this type cannot withstand constant disturbing torque acting over long
periods of time as the output signal of the gyro in that case will not be small.

3.4. Examples of synthesis

We will now give some examples on the synthesis of an inertial stabilized single
axis platform system. In these examples we will use the synthesis method given
by TRUXAL (1955). We start with the synthesis of a system where the primary
reaction torque of the gyro can be neglected.

3.4.1. Systems where the primary reaction torques are negligible

Example 1

Synthesize a system with the specifications

Bandwidth B

Acceleration constant K,

The primary reaction torque of the gyro is negligible, which means that

[7(p)| > w,lpl for all actual frequencies

Equation (3.3.2) then gives

o ©(p) :
e i (3.4.1)
° ab p[p*+a(p)]
Choose the closed loop system function
2
Y:B Pips ptzy (3.4.2)

z;  (PP+20Bp+ B p+p)(P+Pp2)
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This choice is governed by

1. The excess of poles over zeros for ¥ must at least equal the excess (V) for
Y, In this case we have N=3. (This implies that 7(p)—1 for the highest

: o . 1
frequency of interest. In some cases 1t is desirable to have t(p)— —- at the
P

highest frequency of interest. The corresponding modifications are left for
the reader).

2 At least one zero is needed in order to get a system with an infinite velocity
constant.

The bandwidth condition is satisfied by the choice of ¢ and f8. The zero z; is
determined by the condition on the velocity constant, i.e.
1 2 1t 1 1
K, B pi P2 Zx
We have then two constants p; and p, left for satisfying the condition on the
acceleration constant. The remaining condition is chosen in such a way that
the compensating network becomes as simple as possible.
The open loop system function is
Y 2 +z
YOZ;*’:/LPLP_Z__Z_P_%__’_ (3.4.3)
1-Y oz ppt+p)p+p)
where
pr+py=20p+pi+p:
p1-pa=B>+pip2+20p(pi+p2)
The acceleration constant is
K,=p* Bll_gzl,
Pi P2

The transfer function from disturbing torque acting on the controlled member
to the angular deviation of the controlled member is

’ y 1 (p+p)(p+p2)
. S P P (3.4.4)
bp*Y, b (p>+20Bp+B7)p+p)P+Pp2)
The equations (3.4.1) and (3.4.4) give
bp* z)(p*+
(=" Bpip: (p+z )" +a(p) (3.4.5)

wezy  p(p+p(p+D2)
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There are many possibilities for determining o(p) and 7(p) consistent with this

equation.

a) Assume that no feedback is used around the gyro. The transfer function
o(p) is then determined by the characteristics of the gyro. The gyro is supposed
to be proportional, hence

o(p)=ap

Cf. section 2. The equation (3.4.5) gives

_abp’pips (p+z)(p+a)
wozy (PP (P+p3)

(p)

In order to get a simple transfer function 7(p) it is desirable to have p, =a.

Given {, f, « and K, we have 4 equations to determining the unknowns
Pi» P2, Py and z,. If the system should be stable it must be required that the
poles p, and p, are in the right plane. This gives the following conditions for
the constants f3, o« and K,

o
->2(
(3.4.6)
K
.._a< 1 _QCE
B o

If the specifications are consistent with these it is thus possible to chose p a=0.
The transfer function 7(p) then becomes

_(lbﬂ2p1p2 'p—{—zl
wozy  p+py

©(p)

Introduce the following numerical values
£=100 rad-sec™!
K,=10° sec”?
{=0.7

o =600 sec” !

(%
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Fig. 5. Frequency response of the transfer function Y3 from disturbing torque acting on the
controlled member to controlied member angular deviation for a system with B=100rad -
sec™ !, K,=10% sec™ %

then
+16.8
Y =6.65X106__2_——————£——4———————"
(p?+ 140p + 10000)(p+ 17.8)(p+628)
+16.8
Yy 6,65 1005 —
p (p+186)(p+600)
b pt+16.8
W(p)=6.65x 10°°~ -2
w, p+186
(p+186)(p-+600)

i
M T (5% +140p + 10 000)(p + 17.8)(p + 628)

The frequency response of the transfer function Y3, is shown in Fig. 5.
b) It is now assumed that
o(p)=op+x

which can be obtained by using a rategyro or by having feedback around a
proportional gyro. Cf. section 2. The equation (3.4.5) gives

abfpips (p+z )P +op+)

T(p) = 7 7
002y p(p+p)(p+p2)

In order to get a simple transfer function 7(p) it is desirable to have
%=pip

K=pi+Ps
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Given f3, {, K,, o and « there is five variables (p;, p,, p,, p, and z,) to satisfy
six equations. In general it is thus not possible to specify more than four of the
constants. Under conditions similar to a) the system can be solved and we get

=abﬁ2p1pzlp+zl

WoZy p

7(p)

In this case the transfer function 7(p) includes an integration. The character of
the over all system transfer functions are of course the same as in a).

Example 2

The specifications of the system considered in example 1 are subject to the
restriction

p

o

K[l
F<1—2C
The acceleration constant must thus at least be less than the square of the
bandwidth. If higher values of the acceleration constant are required the overall
system function cannot have the form given by (3.4.2). Instead the overall
system function

2
+2z +z
Y(p)=/3 P1P2Ps — (PZ (p+z,) (3.4.7)
21z, (P 20Bp+f7)p+p)(p+p2)(p+ps)
is chosen.
The condition on the velocity constant gives
1 21 1 1 1 1
_ = — + —_ =
K, B pi p2 Ps z1 22
The open loop system function is
Y 2 +z +z,) )
Vo= :ﬁ DP1P2Ps (ptz)(ptzy) (3.4.8)

1-Y  zyz,  pY(p+p(p+p)(p+p3)

where
Pi+Ds+Dp3=Dps+pr+ps+20B
PiP2+PiP3+D3p3=P1D2+ P1Ps+ Paps+20B(py + P2+ ps)+ B
P1P2P3=P1P3P3+20B(p1D2+ P1Ps+ P2p3)

The acceleration constant is then

__ p2P1P2Ps

K 7 1 7
P1DP2Ds3

a
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Fig. 6. Frequency response of the transfer function Yj; from disturbing torque acting on the
controlled member to controlled member angular deviation for a system with B=100rad *
~sec” !, K,=10%sec™ 2,

Given ¢, ff and K, there are eight variables to satisfy five equations. It is thus
possible to impose three other conditions. These are chosen in order to get a
simple instrumentation in the same way as was demonstrated in the previous
example. Notice that arbitrarily high values of the acceleration constant can be
specified. The transfer function from disturbing torque acting on the controlled
member to controlled member angular deviation is

Y (p+p)(P+p)p+p3)
MY, (P2 +28Bp+ B+ p)(p+ pa)(p+pa)

(3.4.10)

Fig. 6 and Fig. 7 show the frequency response of this transfer function for the
specifications =100 rad - sec™ ' K,=10° rad - sec” ? and f=1077 rad - sec™ !
K,=103%rad - sec™ ? respectively.

3.4.2. Remark concerning the specifications

By comparing Fig. 5, Fig. 6, and Fig. 7 we can conclude that the acceleration
constant is not necessarily a proper measure of the sensitivity of the system to
disturbing torques acting on the controlled member. To judge this it is neces-
sary, at least qualitatively, to know the frequency distribution of the disturbing
torques. A comparison of Fig. 5 and Fig. 7 tells e.g. that the influence of high
frequency disturbing torques (1 rad - sec™ !) can be greatly diminished by a
reduction of the bandwidth.

3.4.3. Systems where the primury reaction forques are not negligible

As the platform system becomes smaller the primary reaction torque of the
gyro can no longer be neglected. When the reaction torque is not negligible

SRR
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Fig. 7. Frequency response of the transfer function Y3, from disturbing torque acting on the
controlled member to controlled member angular deviation for a system with B=0.01 rad -
csecTY, K, =10%sec™ 2,

why should it not be used for stabilization purposes? In section 3.3 we found
that it was not convenient to let the reaction torque of the gyro take care of all
the stabilization but is it not possible to synthesize part of the open loop
system function, e.g. the damping term of Y, by the primary reaction torque?
These problems will be discussed in connection with some examples in the
following.

Example 3

Synthesize a single axis platform system with the specifications

Bandwidth g

Acceleration constant K,

Also investigate the possibilities of utilizing the primary reaction torque of the
gyro.

When the reaction torque is not negligible the term w,p can not be neglected
in comparison with 7(p). The complete equation for ¥, (3.3.2), must thus be
used.

The following closed loop system function is chosen

/)’2P1. p+zy
z; (PP+2Bp+ B p+py)

Y(p)= (3.4.12)
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This choice is governed by

1. The excess of poles over zeros for Y must at least equal the excess (N) for
Y,. In this case we have N=2. Notice that N is independent of the properties
of 7(p). Cf. example 1.

2. At least one zero is needed in order to get a system with infinite velocity
constant.

The bandwidth condition, which essentially determines the transient response,
is satisfied by the choice of { and . The zero z, is determined by the requirement
for an infinite velocity constant, i.e.

1 20 1 1

=4 =0

KU ﬂ P1 Z:

The remaining constant p, is given by the specification on the acceleration
constant.
The open loop system function is

Y Bp ptz

Y, = = . . (3.4.13)
*1-Y oz, pPp+p)
where
pi=pi+2(B
The acceleration constant is
K,=p 5
Py

The transfer function from disturbing torque acting on the controlled member
to the angular deviation of the controlled member is

Y 1 p+py
Yu=T"F"7 73 p 2
bp*Y, b (p™+2(Bp+p Np+p1)l

Given f, { and K, we have two equations for determining p, and z,. Solving
these, we get
K,

=2(f"
p1=2(p F_K,

m__zV . Ka
“=2P e )

If the transient behaviour of the system is not to be significantly affected by p,
and z, then the quotient p,/z, should not deviate too much from unity.
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Put
Pi_
2y

146

The constant J is the relative influence of p, and z, on the transient response.
Cf. TRUXAL (1950). Requiring that <8, and further that p, and z, are in the
right half plane, the following inequality is obtained
1 i 1+4C2 (3.4.14)
<—< - A,
Ka 50
which is the condition to be imposed on the specifications of a system with an
over all system function according to (3.4.12).
A reasonable value is §,=0.25. Putting {=0.7 we get

K,
0.11<ﬁ—5 <1

Cf. (3.4.6).

When the open loop transfer function is determined there remains to deter-
mine t(p) and o(p).

The equations (3.4.13) and (3.3.2) give

abB’p, ) asp*+a,p’ +o(p)p+zy)

(p)= (3.4.15)
WoZy p(p+p2)
where
do=z _w3Z1Pz
TN abpp,
a)gzl
a;=1-— 5
abf”p,
To give t(p) a simple form it is desirable to have a;=0.
Putting a,=0 and we get
g
— =146 3.4.16
abp? ( )

which is the condition to be satisfied if the damping coefficient should be
synthesized by the primary reaction torque of the gyro. The condition means
physically that the moment of inertia of the controlled member should match
the angular velocity of the gyrorotor and the bandwidth of the system. In the
following it is assumed that (3.4.16) is satisfied, which means a;=0. We will
now turn to the problem of determining t(p) and o(p). Only one case will be
discussed.
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Assume that the gyro is proportional, i.e.

o(p)=op
hence
p(zy+a—py)+az,
(p)=we————— =
P+py
This is further simplified if we have

d=pj—z;=p, +2{f—z,
then
Z1

T(P)zwo(lhl“zﬂ 7
p+py

The above condition on the damping coefficient of the gyro can be achieved
either by choosing a suitable filling fluid or by using feedback around the gyro.

Example 4
The choice of the over all system function (3.4.12) in example 3 restricts the
synthesis to specifications where
2 »2
4
1< E~ <1+ i
Ka 00
If the specifications are not consistent with this inequality, another overall
system function, which allows higher values of the acceleration constant, must
be chosen. A possible choice is

:[32171172_ (p+z)(p+z,)

e s e e B
The condition on the velocity constant gives
201 1 1 1
KB ppozom
The open loop system function is
Yozﬂzplpz, (p+2)(p+2,) (3.4.18)

212, pAp+p)(p+ps)
where
Pi+Di=pi+p,+2B
Z1Zy

PiP2=py " P2+20B(py+po)+ P —

sy

Tpmm—
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The acceleration constant is

K,=p* 220
PiD2

The transfer function from disturbing torque acting on the controlled member
to the controlled member angular deviation is

Y 1 (p+p)(p+p2)
p*Yy b (PP +20Bp+ B3 p+p)(p+ps)

Yu(p)= b

The transfer function z(p) is

_a_é i Bpip, . ayp*+asp’+a,p +o(p)p+z,)(p+z,)

7(p)

Wo 217, p(p+p)(p+ps)
where
C‘)g 212y
ay=1~— 5
abB” pip,
2
Wo 212 ’ ’
a3=2Z;+z;———>" (pi+p2)
: abﬂz PiP2
60(2) ZIZZ ’ ’
ry=2Zy ' Zp———— "——"P1' P2
abﬁz PiD>

The transfer function 7(p) has a particularly simple form if a,=0 i.e.

abﬁz PiD>

wé 2423

which is the condition to be satisfied if the damping term should be synthesized
with the primary reaction torque of the gyro.

4. Three axis platform systems

4.1. System description

A simplified diagram of a three axis platform system is shown in Fig. 8. The
controlled member is suspended for three degrees of freedom, e.g. by a system
of gimbals. The suspension is arranged in such a way that it is possible to apply
a control torque to the stable element. This is obtained by providing the gimbals
with torque-motors.
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Gimbal bearing
and torguer.

The controlled

Fig. 8. Simplified diagram of a three-axis platform systen.

The angular motions of the stable element are sensed by three single axis
gyros, whose input axes do not lie in the same plane. The output signals of the
gyros are processed clectronically and fed to the gimbal torquemotors in such
a way that the controlled member maintains the desired orientation in spite of
the disturbances. In order to distribute the signals to the gimbal torquemotors
it is necessary to know the mutual orientation of the gimbals. This information
is obtained from resolvers on the gimbals.

We will assume that it is possible to command each torquemotor by signals
from all gyros and also that the torquegenerator of each gyro can be controlled
by all the output signals.

A signal flow diagram of one of the channels is shown in Fig. 9.

Output signat
from 1-gyro

Filter and

amplifier

Filter and
amplifier

Output signal
from 2-gyro

Filter and

amplifier

Filter and
amplifier

Output signal

Commanding A A
rom 3-gyro

signal

Gimbal
torquer

Filter and

amplifier

Filter and
amplifier

Gimbal orientation

Fig. 9. Signal flow diagram of a three-axis platform system.
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The problem is to determine how to do the electronic processing. The answer
to this problem will be given in terms of the transfer functions from the output
signals of the gyros to the torque applied to the controlled member and to the
floats of the gyros. The torque applied to the controlled member will be given
as components on axes fixed to the controlled member. When these components
are determined only a coordinate transformation is required to obtain the
torque to be applied by the gimbal torquers.

4.2. Equations of motion

We will now derive the equations which describe the performance of the
system. To simplify the analysis we make the following assumptions

The controlled member and the gyros are rigid bodies.

The three gyros have the same mechanical properties.

The gyrorotor is symmetric with respect to the axis of rotation.

The center of mass of the gyros lies on the output axis.

The angular velocity of the gyrorotor with respect to the float is constant.

ARE S

4.2.1. Coordinate systems

The center of mass of the controlled member, including the gyrofloats, is O.
The gyros are denoted by 1, 2 and 3, and referred to as the “l-gyro” etc. The
center of the m-gyro is denoted by O™, Introduce the right-handed orthogonal
coordinate sets

Oy, y,Vs fixed to the controlled member

0™y, My, My “Mfixed to the m-gyro, the x;, x, and x,-axes coincide with the
input axis, output axis and spin reference axes respectively

0™z (Mz,tmz 0" fixed to the float of the m-gyro the z;-, z,- and z,-axes coincide
with the input, output and spin axes respectively.
Cf. Fig. 10.
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The following conventions are introduced in order to simplify the algebraic
work.

(1) Latin indices used as subscripts will take all values from 1 to 3 unless
the contrary is specified.

(2) If a Latin index is repeated in a term, it is understood that a summation
with respect to that index over the range 1, 2, 3 is implied.

Introduce the Kronecker delta d,; and the permutation synbol ¢; i defined by
[ 1if i=j
0 if i)

Oy =1
[ 1 if indices ijk occur in cyclic order
g = l—l if indices ijk occur in acyclic order

0 if two indices are equal

The position of the m-gyro on the controlled member is thus given by 0%, and
the orientation of the m-gyro by the transformation from the y-set to the x-set

x{m ngjl)yj 4.2.1)

In the special case when the input axes of the gyros are orthogonal we can
choose the coordinate systems in such a way that the input axis of the m-gyro
is coincident with the y,-axis. The orientation of the gyros is then determined
by three angles 67, 0, 0, called the orientation angles of the gyros, cf.
Fig. 11. The transformation matrices P™ = {p{"} then become

) )
[ p]’]{l :51'1719 p”'ll; _51i
p(ZI:,)m +1=C08 6("')
p(Z':l)m +2= Sill 6("1) (422)

PV 1=—sin 6

pg?)m +2= Cos 9("1)
thereby defining
pi(,m)zx-}‘:% ZPS;':) m=1,2,3

The transformation from the x-set to the z-set is a rotation around the output
axis. Hence

27 = 42.3)
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73
Fig. 11, Arrangement»of the gyros for a system with orthogonal input axes.

where
r(l”{) =cos p™
r{" = —sin o™
i =sin o™ (4.2.4)
% =cos ¢
= =5,

Combining (4.2.1) and (4.2.3) we get
ZE,’") = qg."’yj (4.2.5)

where

=1
If the input axes of the gyros coincide with the y;-axes the transformation
matrices Q= {g{""} are

cos gt sin oM sin 8" —sin ¢ cos 01
o= o cos Y sin 6V
sin p —cos ¢V sin 6V cos ¢ cos gV
—sin p®cos 6P cos p® sin ¢ sin ¥
0P =1 sinf® 0 cos % (4.2.6)
cos pPcos 8 sin o —cos ¥ sin g
sin p®sin 3 —sin ¢ cos 6 cos g
0=l cosg™® sin 6 0

—cos ¢ sin 6 cos ¥ cos 8 sin ¢
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4.2.2. Analysis of the orientation of the gyros

We will now introduce two quantities which depend on the orientation of the
gyros and influence the dynamics of the system.
The total angular momentum of the gyros is

H-/5

where

3
s= Y 2§ (4.2.7)

The quantity s is called the spinnumber or the spin of the system. The signi-
ficance of this quantity is shown in chapter 5. Another quantity of signifi-
cance is the output orientation number I, which is defined as the triple scalar
product

I=[%5, 22, 28] (4.2.8)

The output axis orientation number can be interpreted geometrically as the
volume of the parallelepiped with the output axes unit vectors £5, £2and £{»)
as concurrent sides. '

The spinnumber and the output axis orientation number obviously satisfy

the inequalities

If the input axes of the gyros are orthogonal, the orientation of the gyros is
determined by the orientation angles 67, ) and §®. The arrangement of the
gyros can then be classified by the triplet 61, 0, . An arrangement is called
cyclic if all angles 6™ are equal and orthogonal if they are multiples of ix.

The equations (4.2.1), (4.2.2), (4.2.7) and (4.2.8) give the following relation-
ship between the spin number, the output axis orientation number and the
orientation angles

s=(sin 6V — cos 8) + (sin 62 — cos 6)? + (sin 6 — cos 6P)*  (4.2.9)
I=sin 8" sin 8 sin  + cos 6 cos 92 cos B> (4.2.10)
In case of orthogonal input axes we have

0<s<6

—1<i<1
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If we further require that the arrangement is orthogonal we get
1<ls<<5
There are 64 orthogonal arrangements which can be arranged in four groups

with s=1, /=0; s=3, [=—1; s=3, I=1; s=5, I=0; respectively.

4.2.3. The equation of motion of one of the gyros

We will now derive the equation of motion of one of the gyros. Introduce the
notations.

J the moment of inertia of the gyrorotor
g the angular velocity of the gyrorotor
ATy, the inertia matrix of the gyrofloat including the gyrorotor
AT = (6461~ 01;0:)ziz ;dm
2 the angular velocity of the controlled member with respect to

inertial space
Q the component of £ on the y, axis

the output signal of the m-gyro

D= o differential operator
JA,,0,/(D) the transfer function from the output signal of the j-gyro to torque

acting on the float of the i-gyro. (The viscous damping due to the
flotation fluid is included in o;;(D)).

Jm® the component, on the output axis, of the disturbing torque acting
on the float of the i-gyro.

The angular velocity of the controlled member is
Q=07
The float of the m-gyro has the angular velocity «™.
w(l}l):w§111)2\§lll)
where
o =g+ g™, (4.2.10
The angular momentum of the float of the m-gyro is H™. Hence

[I(m)= JArSw§171)2£771)+onfgm)
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Differentiating with respect to time we get
B = JT A0 + 45,000 000 e, 12" 4.2.12)
The equations (4.2.11) and (4.2.12) give
B =J[A4;,6" +823 P00+ A g 2+ 44831 2,00 +
+Aj282jk¢(m) ¢("')+A12qgn) & 182, (/’(m)+A,sq(m)87ikgx€b(m)+
+ AR+ A g e 1 22,12 (4.2.13)
The component of H™ along the output axis is
HY =J[A, Lo+ Ay g0 — gV, +A;,q8"¢ 220" +
+A5,457Q +A]bqg‘“)qfll") 128221

The torque acting on the float of the m-gyro has a component .#3" along the
output axis where

//(2"1) = JAZZ[O-ml(D) go(l) + O-IIIZ(D) ¢(2) -+ 0-1113(D) ¢(3)] - ‘]1”(”')

The terms in the bracket are the viscous torque and the torque applied by the
torquegenerator which is controlled by all the output signals. The Jast term
is the disturbing torque acting on the float of the gyro.

Newton’s second law of motion gives

Ay [D? ™+ Zcrms(D)cﬂ“)] woqQ— A2,q%" 2,

s=1

— A e 20" — Ardi" 2~ AJSCJE?')C.IS") 1222,—m" (4.2.14)

which is the equation of motion of one of the gyrofloats. This equation is
called the signal equation as it tells how the output signal of one gyro reflects
the angular motions of the controlled member.

The left member of (4.2.14) represents the dynamic properties of the gyros
and the feedback from the signal generators to the torque generators of the
gyros. The first term of the right member is dominant. The coefficients q('")
form a matrix

cos o' sin gV sin 0V —sin ¢ cos 6V
0={q{" =|sin (p(z) cos 6 cos g sin ¢ sin 0
sin o™ sin 0 —sin p cos 6 cos g
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The diagonal elements are the desired elements in the sense that an output
signal is obtained for the component of the angular velocity on the correspond-
ing input axis. The dependance of the diagonal elements on ¢ means that the
sensitivity of the gyros is not constant. The nondiagonal elements of Q are
due to the fact that, when a gyro signals, there is a component of the angular
momentum of the gyro orthogonal to the spin reference axis. The gyro thus
senses the component of angular velocity along the spin reference axis. This
effect is referred to as spin (reference) axis sensitivity. It introduces a term in
the signal equation of second order in ¢'” and ;. The spin axis sensitivity can
thus be decreased by keeping the output signals small.

The second term of the right member of (4.2.14) is due to the output axis
sensitivity. This effect is linear and was already discussed in section 2.

The other terms in (4.2.14) are at least of the second order in ¢ and Q.
The dominant second order term is the spin axis sensitivity as the term intro-
duced by this effect is multiplied by @, which is much greater than the other
coefficients. (A typical value of w, is 2000 rad - sec™ ')

4.2.4. The equation of motion of the controlled member
We will now derive the equation of motion of the controlled member. Introduce

JCy, the inertia matrix of the stable element (including three mass points,
each equal to the mass of one gyrofloat, sitnated at the center of the
floats) with respect to the y-set, i.e.

]th:(5k15ij—5kj(5il)jyiyjdm
where the integration is carried out over the stable element and the

three mass points.

JB, (@) the inertia matrix of the stable element with respect to the y-set,
including the floats fixed in their actual positions, i.e.

JBkl:(5k15ij—5kj5il)jyi))jd’72 :
where the integration is performed over the stable element and the

gyrofloats.

Jr; (D) the transfer function from the output signal of the j-gyro to the y-
component of the torque applied to the controlled member. (The
7;,(D):s are assumed to be rational functions of the differential operator

JM () the y-component of the disturbing torque acting on the controlled
member.
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The angular momentum of the controlled member is

3
H=JC, 29+ Y H™

m=1

Differentiating with respect to time we get

3
H= J(CIka + CijiQkSijl)?t + z H™

m=1

The equation (4.2.13) gives
H=J[A,q0 5™ +6,,190° 0™ 0o + Ay g2, +
+q87 g0 832,00 + Aj2€l§<’1")82jk P "™ +
+ A a e 52 0" + A g 62020 +
+ AP0+ A0 00,120, 15 wris

The torque acting on the platform is composed of components from the torque
motors and disturbing torques JM.
Newton’s second law of motion gives

3
B, (9)82,,+ Bjk( 4 )Sijl'Qi'Qk + Z 1[Ak2('II(c’l") ‘/’(m) + q(f;') (0(’")0)0 +
m=

+7,,(D) ‘/7("') + qgn)f.h(c'ln)siskgrwo + AjZQI(:l")Sij (ﬂ(m) Cb(m) +

+4;,q ,(,'-")‘11?1")31' ij.~¢("') +A4 'sqg;")%((';l)azl'kgt92’("') +

J

+ A dS g Q] =M, ' (4.2.15)

4.3. Linear approximations of the equations of motion

We will now linearize the equations of motion of the system in order to obtain
a linear mathematical model of the three axis platform system. To judge
whether this linear model is a faithful description of the system in any special
case, it is necessary to analyse the complete equations.

For the inertia matrix JB,,(¢) of the stable element, including the floats
with all moving parts fixed in their actual positions, we have

3
Bu(e)=Cyu+ 21 A q”
m=
(Notice that the elements B;;(¢)depend on the output signals of the gyros.
However, if the inertia ellipsoids of the gyros are symmetric with respect to the
output axes, the clements B;; are constants.)
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Introducing this in (4.2.14) we get

H=J(B,(¢)2,+ B(9)2:Q8:;)9,+

3
+J Y [Ag” 0" + 457 6" o +

m=1
+ 4544 613, Q2000 + Aqul(:I")ngk o™ o +
+A5900q8 e 2.0M + Ajsqg;")qgl)gzikgz o™ +
+ 445 " 209,

In many applications considerable effort is made in order to make the system
behave linearly. The output signals of the gyros are usually restricted to small
values. In a high precision navigation platform system the output signals are
of the order of magnitude of a few seconds of an arc. Notice, however, that
there are many situations where the linear model is insufficient.

4.3.1. The linearized signal equation

Neglecting all terms of (4.2.14) which are of second or higher order in ¢‘” and
2;, we get
3
A22D2 q)(m) + Z GIIIS(D) ' (0(’") +

s=1
Ay pPDQ,— PP w2 +m™ =0 4.3.1)

This equation can be written in a more compact form by introducing the
notations

otV 2, mt
e Q=[Q,\, m=| m?®
ot Q, m (4.3.2)
V(D)= {v;}
(4.3.3)
1 . .
Uij=/"12*2wop(1}—AZSP§j)D
The equation (4.3.1) then becomes
S(D)* @(1)=V(D)R(1) — m(t) (4.3.4)

which is the linearized signal equation for the three axis system. This equation
shows how the output signal reflects the angular motions of the controlled
member and the disturbances.
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If the input axes of the gyros are orthogonal the expression for V(D) can be
further simplified. Introduce the unit matrix I, the matrices L and N defined by

0 cos  sing®
L=/ sin¢*® 0 cos 9% (4.3.5)
cos 0 sinf?® 0
0 —sin P cos O
N=| cos6?® 0 —sin (4.3.6)
—sin % cos 0

and their transponates L and N we get from (4.3.4)

Wo Az
V(D)=|-——A4,,D}I-DL—-—DN (4.3.7)
A22 22

If the inertia ellipsoid of the gyrofloat is symmetric with respect to the output

axis, (4.3.7) is further reduced to
) (o)
V(D)=—I1-DIL (4.3.8)
A22

_The first term is the desired term of V(D) and the second term is due to the
output axis sensitivity of the gyros.

4.3.2. The linearized equation of motion of the controlled member

Neglecting all terms of (4.2.15) which are of second or higher order in ¢ and
Q;, we get
3
Blm"(zm + D Z [p(Znt,) ' p(lly) _p(I';I) ' pg;')]gt_i_

m=1

3
+ 3 [Apl? 0" + 57 6" wo + 110" 1= M, (4.3.9)

m=1
where
Bij:Bij(0)§ B:{Bij}

The matrix JB is thus the inertia matrix of the controlled member including all
moving parts fixed in their null positions. Using the notations of section 4.3.1
and further denoting
M,
M=|M,
M,

T(D)= {Tij(D)}
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the equation (4.3.9) becomes

F(D)R(H) = M(D)— G(D) (1) (4.3.10)

where
F(D)=DB+w,(L—L) (4.3.11)
G(D)=T(D)+ (4,D* + 0D+ A,,D*L— A5, D’°N  (43.12)

The equation (4.3.10) is referred to as the linearized equation of motion of the
controlled member. The term JF(D)Q(r) is the time-derivative of the angular
momentum of the controlled member (notice the influence of the spin of the
gyros), JM is the disturbing torque, and JG(D)e(?) is the control torque
applied to the controlled member from the torque motors which are commanded
by the gyros.

Eliminating the output signal between (4.3.4) and (4.3.10), we get

K(D)R(1)=M(r)+ le G(D)S™ (D)m(t) (4.3.13)
where
K(D)=F(D)+ G(D)S™'(D)V(D) (4.3.14)

The equation (4.3.14) is referred to as the equation of motion of the controlled
member with the servoloop closed.

4.3.3. Block diagram representations of the linearized equations

Assuming the initial conditions to be zero and Laplace-transforming the
equations (4.3.4), (4.3.10) and (4.3.14) we get

S(p)e(p) =V(p)R(p)— m(p) (4.3.15)

F(p)2(p)=M(p)— G(p)e(p) (4.3.16)
1

K(p)2(p)=M(p)— A——G(p)S“ '(p)m(p) (4.3.17)

The signal equation and the equation of motion of the controlled member can
be represented by the matrix block diagram of Fig. 12.

The equation of motion of the controlled member with the servoloop closed
(4.3.17) can be represented by the block diagram of Fig. 13.
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The matrix block diagrams show the global character of the system. If
we are interested in the signal flow between the different channels we must
study each component of the equations of motion. Fig. 14 shows a block
diagram representation of one component of (4.3.17).

F (1

Cnferacion due o the | | 2 Galed 5O [T Mnferation dus o non)

|Olfjt3"Ut axis sensitivity C* wl i\gla&mat elements i

of the gyros.

(t) Hit)

ii X apcosé:“ % a 03(p) T(p) I\ i B3 ii

! ] \ |

|

aft ) gt
11 S ap sine(3 /— a 0u{p) Tn(p) Y pBy, 1
|
L X o A\ -
o4it) @éa@% EN wp A 1 3
Wy o apz (o] 9@@99 B33p

N N —m j‘
l 5 ) i s 6% o, ()
1?“) apsing ‘ | %smé) - i

| m, () I if Mt} l K
I
| coséﬂ 1 g Sin " sz(t)\!
* qu(t 1 l WHCos |
Interaction due to se- interaction due to the \
\condary reaction torquz{ |'spin of the gyros. |
L ! L. 1

Fig. 14. Block diagram illustrating the third component of the equation of motion of the
controlled member.
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4.3.4. Single axis platform systems

For a stable element with only one gyro, the equations (4.3.15), (4.3.16) and
(4.3.17) are still valid if the matrices are interpreted in the following way

wop+01(p)
G(p)= A22P2 cos 'V + 0,1(p)
Ay,p*sin 0 +044(p)

S(p) =p*+01(p)

1
V(P):T(wm ~A,,pcos 9(1), — Ay, psin 0(1))

22

Byp B,p+wycos0  Biip+wgysin 6
F(p)=| Bip—wo cos 6V B,,p B,sp

Biip—wq sin 6 Bi,p Bisp

1t is assumed that the input axis of the gyro coincides with the y;-axis and that
the inertia ellipsoid of the gyrofloat is symmetric with respect to the output axis.
If the angular motions of the controlled member are restricted to rotations
around the y,-axis the equation (4.3.17) reduces to

1 1 Y, ‘
Q(p)=———M(p)+— my(p) (4.3.18)

Biip(1+Yo) we 1+7%,

where

o _T11(P)+wop
Aq1Byy P[PZ‘*‘O'M(P)}

This proves the statements of section 3.2.

Y, (4.3.19)

4.4. Preliminary analysis of three axis systems

4.4.1. The concept of platform

The mathematical model developed in the previous section will now be used
to analyse the system. We start by introducing a new concept.

Definition 4.4.1

A platform is a physical object to which is attributed geometrical structure,
mass distribution, and angular momentum. The geometrical structure and the
mass distribution of the platform are equal to those of the controlled member.
The angular momentum of the platform with respect to the point P is defined by

d
EHP =Kp(D)$2(1)
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where £2(¢) is the angular velocity of the platform and
Kp(D)=DB,+wo(L—1L)+G(D)S™ (D)V(D)

JB, is the inertia matrix of the controlled member with respect to the point P.
The other quantities above are defined in section 4.3.

The platform can be considered as a generalized rigid body. The elements
of the “inertia matrix” of the platform can be arbitrary physically-realizable
functions of the differential operator D, which offers many possibilities. Only
a few of the many possible varieties of platforms have so far been subjected to
experimental investigations. The inertial stabilized platform is one type which
already has found several important applications. In the following we will only
study this type.

Definition 4.4.2

A platform is said to be inertial stabilized if the angular orientation of the
platform, relative inertial space, is stable with respect disturbing torques acting
on the platform.

Corollary 1.
For an inertial stabilized platform the equation

det pK(p)=0

has all the roots in the left half plane. Cf. MALKIN, (1959) p. 273.

Corollary 2.

For an inertial stabilized platform, the eigenvalues of K(p) have at least single
poles for p=0.
Assuming that the eigenvalues of K(p) have single poles at the origin, we get

lim pK(p)=C

p—>0

This means physically that the platform is spring restrained to inertial space.
The cigenvalues of C are the spring constants with respect to axes parallel to
the eigenvectors of C. For further comments on the physical interpretations
we refer to the discussion of the single axis case in section 3.

Corollary 3.

For an inertial stabilized platform system the equation

det {pS(p)G ™' (P)K(p)} =0 (44.1)

has a root p=0.
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4.4.2. The stability of inertial stabilized platforms with respect to disturbing torques
acting on the gyrofloats

According to the definition 4.4.1 the angular deviation of the controlled member
is stable with respect to disturbing torques acting on the platform. From corol-
lary 3 it follows that a constant disturbing torque on a gyrofloat will give an
angular deviation error which increases at least linearly with time. The angular
orientation of the platform is thus unstable with respect to disturbing torques
acting on the gyrofloats. We will now investigate what is required if the angular
velocity of the controlled member should be stable with respect to torques
acting on the gyrofloats. We start by discussing an example.

Example

Assume that the inertia ellipsoids of the gyrofloats are symmetric with respect
to the output axes and that the servosystem from the output signals to the
gimbal torquers are “perfect”, meaning that

p(H)=0 all 1

Of course, this is not possible with physically-realizable transfer functions. In
any case this example clearly shows the effect of the output axis coupling on the
sensitivity of the system to disturbing torques acting on the gyrofloats. Introduc-
ing the above condition into the linearized signal equation (4.3.4), we get

A2, V(D)Q(1)=m(1)

If the input axes of the gyros are orthogonal, the characteristic equation
becomes

3
~3
a’<>> L9673 2 s 4.4.1)

detV= (M
a 2a

The only possibility of avoiding characteristic roots with positive real part is
by choosing an orientation of the gyros which gives

=0
{ (4.4.2)
s=>3

If >3 two of the characteristic roots have vanishing real parts. To judge the
stability we will thus have to consider the nonlinear terms in the signal equation.
This is done in the special case when the orientation of the gyros given by

T g»= _T

hence
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The equation (4.2.14) then gives

wogg

A, 0, = —woQ;+(Az3—A411)"
22842 0023 +(A33 ) wo+2(A33—A11)Q3

+mP(1)

(4.4.3)
W 2,025

A,y Qs =02, —(A33—A11)" ‘
22843 = Woiey (433 11) w0+2(A33—A11)Q3

+mA1)

IO

Q -_———
' wo+2Az3—A11)2;

wo>2| Ayz— A1y || 2]
The time derivative of the Liapunov function
V=05+9Q;

with respect to the equation (4.4.3) is zero, which implies that the equation is
stable with respect to initial value disturbances. However, this is not sufficient
to make the angular velocity stable with respect to the disturbances m®(1).

Considering the fact that the output axis orientation number depends on
the orientation of mechanical axes, it is impossible, of course, to obtain /=0.
Neither is it possible to have the input axes of the gyros exactly orthogonal to
each other. The characteristic equation (4.4.1) is then replaced by

Wy 3 g 2 Wo\ , 3
detV=V,|—| +Vol—| p+Vas{—]pP +V,p7=0 (4.4.4)
a a a

where

Vi=La, 10 55]
= = [, 6, [0, S, - 50, 52, 4]

7 a1 »(2) o3 a(1) a(2) (3 a1 a(2) o(3)
I/3'__[3‘(1 )9 “\(2 )’ A(2)]'*'[“\(2 )9 )*(1 )54\2)]'{_[“\2 s X2 T A1 ]

A

The vector £ is the unit vector along the x{”-axis defined in section 4.2.1.
The scalar triple products above can be interpreted geometrically as the

volume of the parallelepiped which has the vectors for concurrent sides.

Requiring that all the roots of (4.4.4) are in the left half plane, we get

V>0 i=1,2,3,4

V,Vi>ViVy
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which replaces the condition (4.4.2). In case of approximatively orthogonal
input axes the above condition gives

{s>3+51

(4.4.5)
—0,<1<0;

where the ,:s are small quantities depending on the deviation of the axes from
the orthogonal positions. A similar result is obtained if it is also taken into
account that the inertia ellipsoids of the gyros in practice cannot be perfectly
symmetrical about the output axis. Assuming 421#0 and 42:7#0 conditions
similar to (4.4.5), where J1, 62 and 3 now depend on A21 and A23, are obtained.

It is thus possible to get characteristic roots, all of which have negative real
parts. However, this will require accurate adjustement of the orientation of the
gyTos.

The conditions for the stability of the angular velocity of the controlled
member with respect to disturbing torques acting on the gyrofloats will now
be discussed. The linear model of the system will be utilized. The angular
velocity of the controlled member is then given by

A=K OMp)+ K DGES  pmp)  (¢46)
22

The extension to the general case is obtained by a theorem of MALKIN (1959)
which says that a stationary motion is stable with respect to a disturbance if
all the characteristic roots of the linear approximation of the equation of motion
have negative real parts. It is thus only in case of characteristic roots with
vanishing real parts that the nonlinear terms must be studied. However, before
doing so we should consider the fact that some characteristic roots depend on
quantities which only have limited accuracy. In practice the system must thus be
arranged in such a way that all the roots of the characteristic equation have
negative real parts. We thus have the following condition.

Theorem 4.4.1

In order that the angular velocity of the controlled member is stable with respect
to disturbing torques acting on the gyrofloats it is a necessary and sufficient
condition that the equation

det V(p)[K(p)— F(p)] ' =0

has no roots in the right half plane.
If the arrangement of the gyros is chosen in such a way that

=0
s>3
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the equation det V(p)=0 has no roots in the right half plane, it is then sufficient
to require that function det [K(p)—F (p)]”* has no zeros in the right half plane,
which is a very weak condition. If the above condition is not satisfied, the
theorem implies that the functions det V(p) and det [K(p)—F(p)] should have
the same zeros in the right half plane. This is a very restrictive condition, a very
important situation where it is satisfied js discussed in section 5.2.

In order to shorten the notations we introduce

Definition 4.4.3

An inertial stabilized platform system is said to be stable if the angular velocity
of the controlled member is stable with respect to disturbing torques acting on
the gyrofloats.

5 Influence of the cross couplings on the dynamics of the
system

5.1. Imtroduction

The analysis of section 4.4 was a straight-forward generalization of the results
obtained for the single axis case. Some problems specific to the three axis
system will now be analysed. The three axis system can be regarded as three
single axis systems with mutual interaction cf. Fig. 14. This approach is conven-
ient if the interaction between the single axis channels is small. In that case
the system can be analysed and synthesized essentially from a single axis
approach which means a considerable simplification. On the contrary, if the
interaction between the systems is large, the single axis approach will say very
little about the three axis system. In this section the influence of the interaction,
or crosscoupling, will be analysed in order to obtain criteria for the validity of
the single axis approach. A linear model of the system will be used throughout
this section. It is also assumed that,

1. The inertia ellipsoids of the gyro floats are symmetrical with respect to the
output axes, i.e.

Ay =0 i#j
Put A22=a

2. The inertia ellipsoid of the controlled member is a sphere, i.e.

B;;=b-0o

ij ij

3. The input axes of the gyros are mutually orthogonal.
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The equations (4.3.8) and (4.3.11) then give
Wo
V(p)=—I—-pL (5.1.1)
a
F(p)=bpl+ws(L-L) (5.1.2)

Example
Consider a system which satisfies 1, 2 and 3 and further

4. The torque-generator of each gyro is only controlled by the output signal
of the same gyro. The control characteristics are the same for all gyros.
Hence

C’ij(P) = U(P)5ij

5. The m-component of the control torque applied to the controlled member
is only commanded by the output signal of the m-gyro. The same feedback
characteristics are used in all channels. Hence

7;(p)=1(p)d;;
With these assumptions (4.3.2) and (4.3.12) run

S Y p)=[p*+o(p] 1

~

G(p)=[1(p)+wopll+ap’L

The equation (4.3.14) then gives
ab ,
K(p)=0bp[1+ Y] I——p YoL+o,L.
Wg

weo(p) ¥ ap’ T

T Ptap) | prop) (.1.3)

where Yo is the open loop system function for one of the single axis loops, i.c.

wy  p)+wop

_ o, TR 5.1.4
ab p[p*+a(p)] G149

0

Cf. (3.3.2)
The fact that K(p) is not diagonal means that there are interactions between
the channels. The second term of K(p) is due to the output axis sensitivity of
the gyros. Cf. section 2.

When the gyro signals, it produces reaction torques. The component of the
reaction on the input axis is called the primary reaction torque. This causes the
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term ,p in the numerator of Y. The other componerts of the reaction torques
are called secondary reaction torques. (These are usually considerably smaller
then the primary reaction torque). The third and fourth terms of K(p) are
due to secondary reaction torques. The last term of K(p) is due to a combina-
tion of output axis sensitivity and secondary reaction torques. Cf. Fig. 14 fora
representation of the interaction in terms of a block diagram.

5.2. Analysis of systems where the interaction is entirely due to the output axis
sensitivity of the gyros

5.2.1. Problem statement

There is a large class of systems in which the gyros act essentially as sensing
devices with very small secondary reaction torques which are effectively masked
by a small amount of Coulomb friction.
Many of the existing conventional platform systems with small gyros and
comparatively large and heavy stable elements belong to this class of systems.
For systems in which the interaction between the channels is entirely due to
the output axis sensitivity of the gyros, (5.1.3) reduces to

ab ,
K(p)=bp[1+Yo]I—a7p VoL (5.2.1)
(4]

A block diagram of such a system is shown in Fig. 15. Also compare Fig. 14.
The stability conditions for systems of this type will now be further investi-
gated.

Theorem 5.2.1

The angular velocity of the controlled member of an inertial stabilized plaiform
with a X(p) matrix according to (5.2.1) is stable with respect to disturbing
torques acting on the gyrofloats if Y, has no zeros in the right half plane.

Proof
The equations (5.1.1), (5.1.2) and (5.2.1) give

ab
K(p)—F(p)= P YoV(p)

0

Hence

-1 @y
V(p)IK(p)—F(p)] '= aboY.

The system is then stable according to the theorem 4.4.1.
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Fig. 15. Block diagram of a system where the only interaction is due to the output axis
sensitivity of the gyros.

In order to judge the stability of systems of this type it is thus sufficient to
ensure that the system is inertial stabilized. We thus have to analyse the
characteristic equation.

det pK(p)=0 (5.2.2)

The stability of this equation together with the weak condition on Y, in the
theorem 5.2.1 then implies that the system is stable.
The characteristic equation can be reduced to

b )
bp[1+ Yo —ti- = p* Yo =0 (5.2.3)
Wo
where the #,.5 are the roots of the equation
-3
t3+STi~—I=O (5.2.4)

s and [ are the spinnumber and the output axis orientation number introduced
in section 4.2.2. The numerical values of the roots of (5.2.4) for integral values
of s and / are given in the table below.




48
\ )
—1 0 1
s\ +
0 —1.477 0 1.477
0.7384i0.361 +1.225 —0.7384i0.361
1 —1.326 0 1.326
0.662410.563 +1.000 —0,6624170.563
) —1.165 0 1.165
0.583+10.720 +0.707 —0.583410.720
3 —1 0 1
0.500+10.865 +0 —0.500410.865
4 —0.836 0 0.836
0.418+£i0.739 +i0.707 —0.4184i0.739
5 —0.682 0 0.682
0.233410.961 47 —0.233470.961
6 —0.554 0 0.554
0.277471.315 +il.225 —0.2774i1.315

If the single-axis channels are stable, the equation
p*[1+Y,]=0

has all the roots in the left half plane.

The condition s=3, /=0 is then sufficient for the stability of the three axis
system. Some questions now arise. Is it possible to obtain a stable system if this
condition is not satisfied? Although a system with s=3 and /=01is stable, is it
sufficiently damped to be of practical use? Before answering the questions we
will recall the properties of the Y -functions. Y 18 the open loop system func-
tion for one single axis loop. The properties of Y, for inertial stabilized systems
were discussed in section 3.3. It was found that ¥, should have at least a double
pole at the origin. Possible analytical forms of Y, were also discussed in the
sections 3.2 and 3.3. Cf. (3.2.5), (3.4.3), (3.4.8), (3.4.13) and (3.4.18).

p 2
20 +§_2

5.2.2. Stability conditions for systems with Yo = ——
p

One of the possible open loop system functions is

2
Y0:‘2£[i+ﬁ_z
p

Cf. section 3.2. The stability condition for a system with this special open loop
system function will now be analysed.
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The characteristic equation of the system is
p*+2(Bp+B*—ty(2p* + fp)=0 i=1,2,3 (5.2.5)
where the ;s are the roots of (5.2.4) and y is the cross-coupling coefficient
defined by
a
“/=—/3 (5.2.6)
Wo
Cf. (5.2.3).

Notice that the crosscoupling coefficient increases with the bandwidth .

Combining two of the equations (5.2.5) with complex conjugated 7-values,
an equation of the fourth degree with real coefficients is obtained. Applying
the theorem of Hurwitz on this and the remaining second order equation, we
obtain the following condition for stability

402 —4y(1+20)Reft;} + 77 (1 +8D)(Re{t;})* —°20 | 1;|*Re{t} =0
{24’-«;Re{r,-}20 i=1,2,3

In case of equality in the first of the equations the characteristic equation has
two pure imaginary roots

20—7yRe{t;}

o vy
T 2yIm{t;)

The stability condition is obviously satisfied for all y-values if

Re{t;}<0 i=1,2,3

i.e.

=0

§=>3
Cf. (5.2.4) .
If this condition is not satisfied the system is at least stable for sufficiently
small values of the cross-coupling coefficient y.

If either 1#0 and arbitrary s, or /=0 and s<3 the equation (5.2.4) has at

least one root in the right half plane. Let o be the root in the first quadrant
or on the real axis. The condition of stability gives

{(X —yRe{to})*(1 —2{yRe{to}) —207°(Im {t0})* Re{to} =0
2{ —yRe{to} =0

The inequalities are satisfied if

LY
W
o
“

yRe{IO} gf(‘:s aO)




50

where
f(C9 O(0) = min (2Cs ZO)

and z, is the smallest positive root of the equation. |

]2€(1 +°‘0)Z3 -1+ 8(:2)22 +4C(1 +2CZ)Z—4§2=O

(it

Systems with />0 and arbitrary s, or /=0 and s<3 have

hence

oo=0

The function f((, o) then reduces to
1
s 0)= i 2 > A e
JZ, 0) mln( ¢ 2@)

A graph of the function f(, 0) is given in Fig. 16.
Summarizing the stability conditions for a system with

2
8P
p p

Yo
we get
I. Systems with /<0 are stable if

yRe{to} < S(E; %)

1. Systems with /=0 and s<3 are stable if

1
Re{t,}<min (2, —
vRe{ 0}_mm(é 2C)

III. Systems with /=0 and s>3 are stable for all values of y
IV. Systems with />0 are stable if

1
Re{t,}<<min{2{, —
el min 2. )
If the cross-coupling coeflicient y is sufficiently small the system discussed is
thus stable, independent of the orientation of the gyros. The upper limit of v for a
stable system is given by the equation (5.2.7).
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2f(£.3)

Fig. 16. Fig. 17.

Example

Give the stability conditions for systems with the following arrangements of

the gyros
T
A. [O, 0, —]
2

B. [n,=n, 7]
c. [0, 0, 0]

TR
D. |- -=

The 5, 7 and ¢, numbers are obtained from the equations (4.2.9). (4.2.10) and
(5.2.4). We get

A s=1,1=0, 1,=1
B. s=3,1=—1,t,=%+i}]/3
C.s=3,I=1,t,=1
D. 5=5,1=0, t,=0

According to II and IV the systems A4 and C are stable if

[ 1
Y= ¢, 0)=min (2@ —V)
2
The system B is stable if

7<2- f((, 3)
where

f(C: 3):1nin [2C> ZO]
and z, the smallest positive root of the equation
8(z° —(1+8(H)z2 +4{(1 +20¥)z — 42 =0

Fig. 17 shows a graph of the function 2f(, 3).
The system D is always stable.
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" | 5

Fig. 18. Root locus with respect to the cross coupling coefficient y for the equations
p*+1l.a1p+1—yt(1.41p*+p)=0 i=1,2,3

of a system with /=0; s=1.

05

/
Fig. 19. Root locus with respect to the cross coupling coefficient y for the equations

pP+lLap+1—yt(Laip*+p)=0 i=1,2,3

of a system with /=—1; s=3.

Fig. 20. Root locus with respect to the cross coupling coefTicient y for the equations

pr+laip+1—yt(L.a1p*+p)=0 i=1,2,3

of a system with /=-1; s=3.
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02 05

a =

01,7605 h
02
5 B 2
1

2

.
Fig. 21. Root locus with respect to the cross coupling coefficient y for the equations

p*A1l.aipF1—yr(L41p?+p)=0 i=1,2,3
of a system with /=0; s=35.

Although a system is stable if the equation (5.2.7) is satisfied it may be too
oscillative for practical use. To judge this we have to solve the characteristic
equation. This is most conveniently carried out with the graphical method of
Evans. This method gives directly the root locus of the characteristic equation
with respect to the coupling coefficient.

Figs. 18—21 show the root loci for the characteristic equations of the systems
treated in the example.

5.2.3. Stability conditions for systems with arbitrary Y,

In practical applications it is necessary to consider open-loop system functions
which are considerably more complicated than the one discussed in section
5.2.2. The analysis, can, however, be carried out in a straight-forward way
following the scheme of section 5.2.2, using the reduction of the characteristic
equation given in section 5.2.1. In case of complex open=loop system functions
Y,, the algebraic conditions are rather difficult to handle. We will in general
find that, if the single axis loops are stable, the output axis coupling will not
cause instability irrespective of the orientation of the gyros, if the crosscoupling
coefficient y is sufficiently small and if certain restrictions are placed on the
open loop system function, Y,

Some possible restrictions on the open-loop system function which can be
formulated in terms of frequency response are given below. Let M, denote
the maximum value of the closed-loop gain i.c.

| Yo(io) ‘

M =max |————|
? O<w<m[1+Yo(iw)’
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Assume that

max

peC !

\
Yo(l’)l <K- l%“l

where C is a contour composed of the part of the imaginary axis

1
1 K14 — 5.2.8
| Imp| = (1+M ) (5.2.3)

p

and a semicircle on the imaginary axis as diameter, to the left of it. Both M,
and K can be easily obtained from a frequency response plot of Y.

Theorem 5.2.1

A sufficient condition for the stability of the characteristic equation (5.2.3)
under the above condition on Y is

1 1

: 5.2.9
<max|t,-l K(1+M,) (5:29)

Proof

On the contour C’, consisting of the imaginary axis with a semicircle on this
line as diameter enclosing the right half plane, we have

3
l p(1+ Yo)] =9 ti%ym

According to Rouche’s theorem the characteristic equation of the system
(5.2.3) then has the same number of zeros in the right half plane as the equation

pr1+Y)=0

But this equation has no roots in the right half plane since the single-axis loops
are stable, which proves the theorem.

In order to get a complete picture of the effect of the output axis sensitivity
coupling on the dynamics of the system, the characteristic equation must be
solved. For small values of the crosscoupling coefficient, the following expan-
sion is useful.

1
+0(y*
p1dlogY, o)

dp pP=po

Po
Di=Dot+7ti—
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where p, is a characteristic root of a single axis channel and ¢, the corresponding
roots of the equation (5.2.4). For larger values of the crosscoupling coefficient,
the characteristic equation is conveniently solved by the graphical method of
Evans, even in case of equations of a high degree.

Example
Consider a system with
s =3
[ =-1
¥, = 1.07[3_2 (p+0.04675)

p? (p+1.46p)

The characteristic equation of the system is of the 9th degree. According to
section 5.2.1 it can be reduced to

(P> +1.418p+pH)(p+0.058)— 1. 1t;y8p(p+0.0467)=0 i=1,2,3

234

1q

0.5 0
055 W

6n 0 20 50 \]\
) |

Fig. 22. Root locus with respect to the cross coupling coefficient y for the equations
(p*+1.41p+1)(p+0.05)F1.14,9(p*+0,0467p) =0 i=1,2,3
of a system with /=—1, s=3,
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where the #;:5 are the roots of the equation (5.2.4) i.e.
ty=—1
t,=0.5+10.865
t;=0.5—10.865

and y the crosscoupling coefficient

The root locus of the characteristic equation is shown in Fig. 22.

5.3. Example of the interaction caused by the secondary reaction torques

If the secondary reaction torques are not negligible, the zeros of the functions
det V(p) and det [K(p)—F(p)] in the right half plane do not coincide except in
very special cases. In general, it must then be required that the orientation of
the gyros will be chosen in such a way that /=0 and s>3. The function det
V(p) then has no zeros in the right-half plane. With some very weak addi-
tional conditions (det [V(p)—F(p)]™ ' shall have no zeros in the right half plane),
the system is then stable if it is inertial stabilized. To judge this, it is sufficient
to consider the characteristic equation

det p K(p)=0

which can be done by the methods of the previous section. Let it suffice to give
an example.

Example

Consider a system where the arrangement of the gyros is
W_qg. g% g T
V=0, 0"== 6= - i.e. I=0, s=3. Further assume

By =b-0

Ay =0 i#j

ij

i

A,, =a
Tij(P)=T(P)5ij

S(p) =£’—[p2 +a(p)] V(p)

0
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The equation (4.3.14) then gives
K(p)=Y,I+ Y,L—Y,L
where

Y, =w,
. _® . d(p)
" a p*+o(p)

The characteristic equation of the system can then be reduced to

det pK(p)=pY;[p?Y{+3p*Y,¥;]=0

Assuming
2Ap B
2L
p P
and
a(p)=oap
A
YA
S
1.._
02 :
o1
005
0,05
¢ \o1
N N2
.S
NK]\i
05 oz
-5

Fig. 23. Root locus with respect to the cross coupling coefficient y for the equation
(p2+1.41p+1D¥p+0.71)+2.13P%p*=0
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we get
(P> +20Bp+ B (p+0)+3p*ap*p* =0
where p is the cross-coupling coefficient

D

bp

which can be interpreted physically as the quotient between the angular
momentum of the gyro and that of the controlled member. Notice that p
decreases with increasing bandwidth.

The above equation can be conveniently solved by the graphical method of
Evans. The result is shown in Fig. 23.

p

6. Sensitivity of the system to disturbances

6.1. Introduction

There are many reasons why the controlled member should deviate from its
desired orientation. In order to obtain a complete picture of the deviation, we
have to consider the details of the suspension, the motion of the carrying
vehicle, the termal distribution in the gimbals, their elastic deformation etc.

For the sake of convenience we have divided the disturbances into two groups

M(#) the disturbing torque acting on the controlled member

m(t) the disturbing torque acting on the gyrofloats
The main object of the preliminary synthesis of the single axis system was the
elimination of the disturbing torques acting on the controlled member. Doing
so we had to compromise between the ability of the system to follow command-
ing signals and the sensitivity to disturbing torques M(7).

The sensitivity of the system to disturbing torques acting on the controlled
member can essentially be judged from a single axis analysis. Cf. fig. 5, 6 and 7.
It has been shown that the angular orientation of the stable element of an
inertial stabilized platform is unstable with respect to disturbing torques acting
on the floats of the gyros. A constant disturbing torque on one gyrofloat gives
in steady state an indication error increasing with time. In some cases it was
also necessary to use special arrangement of the gyros if a constant disturbing
torque acting during a finite time interval should not give an indication error
increasing exponentially with time. Cf. section 4.4.

If the disturbances are given, the indication error can be calculated from the
system equations. If the character of the disturbances are known only in
statistical terms, the statistical character of the indication error can sometimes
be determined. This problem will now be further discussed.
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6.2. The single axis case

In the single axis case the indication error is given by

, 1 Yy
[ S— M -+ —_— "
P11+ Y] wep 1+ Y,

m(p)

The error obtained for deterministic disturbances is thus easily computed. If
the disturbing torque M(7) is a stationary stochastic process, the indication
error will tend to a stationary process. However, this is usually not the case for
errors due to disturbing torque acting on the gyrofloat.

Assume that the disturbing torque acting on the gyrofloat is a stationary
gaussian stochastic process with zero average. The power spectrum of the
disturbing torque is supposed to be @, (m).

The angular velocity of the controlled member is then a stationary gaussian
process with zero average whose power spectrum is

1 Yoliw)  Yo(—io)

Do(w)=—
2(@) @02 1+ Yo(io) 1+ Yo(—iw)

' ¢l”(w)

The corresponding covariance function is
Ro(t)= T@g(a))ei”’(iw
The angular deviation of the controlled member
6(t) =0§Q(r)dr

is also a gaussian process. However, this process is not asymptotic stationary
(unless @p(w)=0 (w?). The amplitude distribution of &(¥) at a fixed time is

w0

N0, o(t)) where t
a*()=[(t—s)Ro(s)ds (6.2.1)

Notice that most of the high frequency part of @, (w) can be eliminated if it is
possible to reduce the bandwidth of the servosystem.

The random drift of a single axis platform system due to stationary disturbing
torques could thus be specified by the covariance function R, (7) of the disturb-
ing torque acting on the gyrofloats.

6.3. The three axis case

We will start by introducing a quantity which is a suitable description of the
controlled member.
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Introduce a coordinate set O¢,£2¢s fixed to inertial space and initially
coincident with the y-set. The transformation of the ¢-set on the y-set is

y=C(§ (6.3.1)
where

C0)=I
The orientation of the controlled member is thus completely determined by
the transformation matrix C(r). According to Euler’s theorem of a rigid body, an
orthogonal transformation can be interpreted as a rotation around the eigen-
vector of the transformation matrix. The angle of rotation G(¢) is used to

specify the angular deviation of the controlled member. The angle 6(¢) is
related to the matrix C(¢) by the relation

6(t)=arccos {{ TrC(H)—1] (6.3.2)

leaving ambiguity to the sign of 6(¢). Tr C is the trace of the matrix C. We
obtain the following equation for C()

co)=1+f903coddﬂ (6.3.3)
0

where
('Q)jk:‘QiBijk
and (#) the angular velocity of the stable element.

Introduce the matrix sequence

Co=1I
t
Cn(t)zl_*_jﬂ(t,)cn— 1(t, dt '
0

This sequence converges in norm to the solution of (6.3.3) at least when
[|Q(1)|| is bounded in an interval including (0, #). As

Q+0—0

the solution C is an orthogonal matrix.

With (6.3.2), (6.3.3) and (4.4.6), it is thus possible to compute the indication
error if the disturbances M(r) and m(s) are given. Similarly, the statistical
properties of the indication error can be derived from those of the disturbances.
An example is given below.

Example

The equation (6.3.3) will now be approximated. The approximation will be
used to estimate the variance of the indication error due to disturbing torques
acting on the gyrofloats.
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The equation (6.3.3) gives

le-cyp= 3 421

s

3 B
Taking the vector norm ||x|| as max [Z\f] we get
1e(0, 1) | 1

a=[Q] =max[Q}(N+ Q3+ 25(N]*
t(0, 1)
further is

|TrC—TrC,|<3 — 0<t<rt
- ‘y:4 ‘7.

The equation (6.3.2) thus has the solution
0*(N=e(1) e +e (6.3.4)
where

o) = {2, (2)de

and the error ¢ is given by

w0 I\'
|e] <2cosar—(at)* + }, Q
v=4 Vo

(6.3.5)

Assuming that the components of the angular velocity are independent,
stationary, stochastic processes with the same autocorrelation function Rge(7),
we get for the variance of the angular deviation of the controlled member

E0X(H)=3 f(t— SRo(s)ds+e (6.3.6)
0

where the error ¢ is given by (6.3.5) cf. (6.2.1).

6.4. Errors caused by the spin axis sensitivity

Throughout the analysis we have used a linear model of the system. The
system is usually arranged in such a way that it behaves almost linearly. The
output signals of the gyros are e.g. restricted to very small values. The dominant
nonlinear terms in the signal equation are the terms due to the spin axis sensiti-
vity of the gyros. Cf. section 4.2.3. Including these the signal equation runs

S(D)g(1)= [?Q(w)—DL]Qm—m(r)
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The equation of motion of the system can be solved by iteration. The iteration
process converges for /<t at least if the disturbances M(f) and m(t) are finite.
Hence

Q=2+ D)+ . ..

where
1
K(D)_Q(O)(t)=M(’)+;1—G<D)S_ Y(D)m(t)
22
1
K(D)Q(l)(f):—-G(D)S_I(D) ' m(l)(r)
AZZ
and
_ wo\ 2 . !
mD(1)= (710) (51119(1)92—C056(1)93).BTC(D).QI
Wqg . b
4 Lo 6(1)' ‘OSGU) Q. - Q. —Q. - 7—.{2
p sin c P plyad) T2 D*+a(D) *
D D
+ 29 cos20Wg, - 2, —sin?0 V0, — .,
P D*+a(D) b +a(D)
etc.

Even if the components of the angular velocity are independent, the average
value of the second term will in general not be zero. The influence of the
spin axis sensitivity will thus in the first approximation be equivalent to a
disturbing torque on the gyrofloats with a non-zero average. However the
coefficient of the second term sin 6 cos 67 will be zero if the arrangement

. 7
of the gyros is orthogonal, i.e. fP=p- 5

7. Synthesis of inertial stabilized platform systems

As all problems have their individual character, it is impossible, of course, to
give detailed schemes covering all possibilities. Let it therefore suffice to give
the main lines of a synthesis procedure.

1. Choose a matrix K(p) which satisfies the specifications.

2. Design a system which has the K(p)-matrix obtained above.

3. Check if it is possible to change the K(p)-matrix in order to simplify the
instrumentation without overriding the specifications.
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For inertial stabilized systems the first step consists of choosing a K(p)-matrix
which gives a sufficiently tight coupling between the controlled member and
inertial space. If it is also intended to rotate the system with respect to inertial
space, we have to compromise between the ability to follow commanding
signals. With the specifications usually given, there is no unique solution to
the problem. The choice between the different possible solutions is governed
by instrumentational considerations.
It is favourable to choose a diagonal K(p)-matrix

K(p)=p[1+Yo]1 (7.1)

where Y, is determined from the synthesis of a single axis channel cf. sections
3.3 and 3.4.
For the second step in the synthesis we start with the equation

K(p)=F(p)+G(p)S ' (nV(p) (7.2)

The K(p)-matrix is obtained in the first step. This equation gives 9 equations
for determining the 18 transfer functions o;(p) and 7,(p), the orientation
angles 6V, 0¥, 0 and the comparents of the inertia matrices A and B. The
problem is thus highly undetermined and it is thus possible to impose several
other conditions.

Example

Suppose that the gyros, their orientation, the controlied member, and all
fl;(p):s are given. The equations (4.3.12) and (4.3.14) give

T(p)= G(p)—(A;,p” + wop)I— Ay p°L+A45,p°N

G(p)=[K(p)—F(p)]V™"(p)S(p)

1t is obvious from this example that T(p) will have nondiagonal elements even
if K(p) is diagonal. If these nondiagonal elements arc not mechanized, the
system will not have the K(p) matrix given by the first step. The main problem
of the third step is to analyse if this is consistent with the specifications. Special
attention must also be paid to the stability conditions if the K(p) matrix is not
diagonal. It is also necessary to analyse the order of magnitude of the angular
velocities of the controlled member and the output signals of the gyros to
judge if the linear model is appropriate.
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