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Abstract

Two-phase flows are commonly found in components
in energy systems such as evaporators and boilers. The
performance of these components depends among oth-
ers on the controller. Transient models describing the
evaporation process are important tools for determin-
ing control parameters, and fast low order models are
needed for this purpose. This article describes a gen-
eral moving boundary (MB) model for modeling of
two-phase flows.
The new model is numerically fast compared to dis-
cretized models and very robust to sudden changes in
the boundary conditions. The model is a 7th order
model (7 state variables), which is a suitable order for
control design. The model is also well suited for open
loop simulations for systems design and optimization.
It is shown that the average void fraction has a signifi-
cant influence on the system response. A new method
to calculate the average void fraction including the in-
fluence of the slip ratio is given. The average void
fraction is calculated as a symbolic solution to the in-
tegral of the liquid fraction profile.

1 Introduction

First principle mathematical models of dynamical sys-
tems are made for a range of purposes, but one of
the most common ones is to develop and verify con-
trollers. The complexity of the model should be in ac-
cordance with the purpose of the model and this sim-
ple principle suggests that models for control design
should be of low order and preferably easy to linearize.
Unfortunately, physical systems are not sticking to this
class of models, on the contrary: most mathematical
first principle models are of distributed nature. The
natural way to describe such a model is partial differ-

ential equations (PDE). PDE are infinite dimensional
and their common numerical approximations, spatially
discretized PDEs using one of the many possible dis-
cretization schemes, are of high order and without fur-
ther model reduction not well suited for control de-
sign. The problem of control-oriented modeling is to
derive a model which at the same time fulfills the re-
quirements of control theory and characterizes those
features of the system which are needed to satisfy the
controller specification.
Moving boundary models for two phase flows in heat
exchangers are a good example of low order control
design models. They can be used for evaporators, con-
densers and steam generators. Their only disadvan-
tage is that a number of mathematically rather different
models arise depending on the operating conditions of
the heat exchanger and the fluid conditions at the inlet
of the equipment.
The model presented in this paper covers the most gen-
eral case of two-phase heat exchangers with subcooled
liquid at the inlet and superheated vapour at the outlet.
This flow configuration is commonly found in thermal
power systems, and the model can easily be extended
to condensers and heat exchangers with subcooled liq-
uid at the inlet and two-phase at the outlet. The special
case of dry-expansion evaporators for refrigeration has
been derived in [6].
The idea of a moving boundary model is to dynami-
cally track the lengths of the different regions in the
heat exchanger: the length from the inflow to the on-
set of boiling and the length of the two phase region.
Simulation results are given for an evaporator in an
organic rankine cycle, which utilizes the waste heat
from a gas turbine in a small power plant. Other refer-
ences to MB models include B.T. Beck that describes
a MB-model for incomplete vaporization [2], a two re-
gion MB-model by He [4] and a three region model by
Willatzen [7].
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Roman and Greek Letters

A area h enthalpy
Cv nozzle coef. ṁ mass flow
Cw heat cap. of wall q heat flux
D diameter t time
L length v velocity
S slip ratio x mass fraction
Vcyl cylinder volume z length coordinate

α heat transfer coef. ρ density
η liquid fraction ω pump speed
ηv volumetric efficiency Φ dissipation function
γ void fraction Ψ vapour generation
µ density ratio

Subscripts

1 subcooled i inner
2 two-phase in inlet
3 superheated l saturated liquid
12 interface 1-2 o outer
23 interface 2-3 out outlet
amb ambient r refrigerant
c condensation w wall
g saturated gas

Superscripts�
flux per length

� �
flux per area� � �

flux per volume

Table 1: Notation used in the Moving Boundary Model

2 Governing Equations

The general differential mass balance is

∂ρ
∂t

� ∇ � � ρ �v � 	 0 (1)

which for the one-dimensional case can be written as

∂Aρ
∂t

� ∂ṁ
∂z

	 0 (2)

The general differential energy balance is

∂ρh
∂t

� ∇ � � ρh �v � 	  ∇ � �q � �  q � � � � Dp
Dt

� Φ (3)

which can be simplified by neglecting the axial con-
ductivity, radiation and the viscous stresses and assum-
ing one dimensional flow:

∂ � Aρh  Ap �
∂t

� ∂ṁh
∂z

	 πDα � Tw  Tr � � (4)

A simplified differential energy balance for the wall is
achieved by setting all flow terms in (3) equal to zero
and neglecting the axial conductivity.

CwρwAw
∂Tw
∂t

	 αiπDi � Tr  Tw � � αoπDi � Tamb  Tw �
(5)

Equations (2), (4) and (5) are the differential balance
equations, which will be integrated over the three re-
gions to give the general three region lumped model
for a two-phase heat exchanger. A schematic of the
model is given in Figure 2. It is assumed in the fol-
lowing analysis that the change in pressure along the
evaporator pipe is negligible.

Figure 1: Schematic of the Three Region MB-model.
1 : subcooled, 2 : two-phase and 3 : superheated.

2.1 Mass Balance for the Subcooled Region

Integration of the mass balance (2) over the subcooled
region gives� L1

0

∂ � Aρ �
∂t

dz
� � L1

0

∂ṁ
∂z
dz 	 0 (6)

Applying Leibniz’s rule (see Appendix A) on the first
term and integrating the second term give for a con-
stant area pipe:

A
d
dt

� L1

0
ρdz  Aρ � L1 � dL1

dt
�
ṁ12  ṁin 	 0 � (7)

The density at the interface ρ � L1 � is equal to the satu-
rated liquid density ρl . Pressure and mean enthalpy h̄1

define the state of the subcooled region where

h̄1 	 1
2

� hin �
hl � (8)

The inlet enthalpy hin is known from the boundary
conditions and hl is a function of the pressure. The
mean density in the subcooled region is approximated
by

ρ̄1 	 1
L1

� L1

0
ρdz � ρ � p � h̄1 � (9)

The mean temperature is calculated from the same
states as T̄1 � T � p � h̄1 � . The mass balance for the sub-
cooled region can be rewritten as

A � � ρ̄1  ρl � dL1

dt
�
L1
dρ̄1

dt � 	 ṁin  ṁ12 (10)
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The term dρ̄1 � dt is calculated using the chain rule:

dρ̄1

dt
� ∂ρ̄1

∂p

���
h

dp
dt

� ∂ρ̄1

∂h̄1

���
p

dh̄1

dt

� � ∂ρ̄1

∂p

���
h

� 1
2

∂ρ̄1

∂h̄1

���
p

dhl
dp � dpdt� 1

2
∂ρ̄1

∂h̄1

���
p

dhin
dt

(11)

The term dhin � dt is determined from the boundary
conditions to the heat exchanger model. The expres-
sion for dρ̄1 � dt is inserted into the mass balance (10),
such that the final mass balance for the subcooled re-
gion reads:

A � � ρ̄1 � ρl � dL1

dt
�
L1 � ∂ρ̄1

∂p

���
h

� 1
2

∂ρ̄1

∂h̄1

���
p

dhl
dp � dpdt� 1

2
L1

∂ρ̄1

∂h̄1

���
p

dhin
dt � � ṁin � ṁ12 �

(12)

2.2 Energy Balance for the Subcooled Region

Integration of the energy balance (4) over the sub-
cooled region gives	 L1

0

∂ � Aρh � Ap �
∂t

dz
� 	 L1

0

∂ṁh
∂z

dz

� 	 L1

0
πDα � Tw � Tr � dz � (13)

Applying Leibniz’s rule on the first term and integrat-
ing the other terms give for a constant area pipe and a
constant heat transfer coefficient α

A
d
dt

	 L1

0
ρhdz � Aρ � L1 � h � L1 � dL1

dt
� AL1

dp
dt�

ṁ12hl � ṁinhin � πDiαi1L1 � Tw1 � T̄r1 � � (14)

The first two terms are evaluated as

d
dt

	 L1

0
ρhdz � ρ � L1 � h � L1 � dL1

dt� d
dt

� ρ̄1h̄1L1 � � ρlhl
dL1

dt� � 1
2

ρ̄1 � hin �
hl � � ρlhl � dL1

dt� 1
2
L1 � ρ̄1

� 1
2

� hin �
hl � ∂ρ̄1

∂h̄1

���
p � dhindt� 1

2
L1 � ρ̄1

dhl
dp

� � hin �
hl �

� ∂ρ̄1

∂p

���
h

� 1
2

∂ρ̄1

∂h̄1

���
p

dhl
dp � � dpdt �

(15)

where ρ̄1h̄1  ρ1h1 � � L1
0 ρhdz. The above equation

(15) is inserted into the energy balance (14), which
gives the final energy balance for the subcooled region:

1
2
A � � ρ̄1 � hin �

hl � � 2ρlhl � dL1

dt� � ρ̄1L1
� ∂ρ̄1

∂h

���
p � dhindt�

L1 � ρ̄1
dhl
dp

� � hin �
hl � �

� ∂ρ̄1

∂p

���
h

� 1
2

∂ρ̄1

∂h

���
p

dhl
dp

� 2 � � dpdt 	� ṁinhin � ṁ12hl
� πDiL1αi1 � Tw1 � T̄r1 � �

(16)

2.3 Mass and Energy Balances for the Two-
Phase and Superheated Regions

The mass and energy balances are integrated over the
two-phase region and the superheated region using the
same procedure as for the subcooled region. The equa-
tions are derived in detail in Appendix B.
The flow in the two-phase region is assumed to be ho-
mogeneous at equilibrium conditions with a mean den-
sity of ρ̄ � γ̄ρg

� � 1 � γ̄ � ρl , where the void fraction is
defined as γ � Ag � A. The average void fraction is de-
fined as γ̄ � 1

L2
� L1 
 L2
L1

γdz and is assumed to be invari-
ant with time. A detailed model of the calculation of
the void fraction is derived in section 2.5. The mass
balance for the two-phase region is

A � � ρl � ρg � L1

dt
� � 1 � γ̄ � � ρl � ρg � dL2

dt�
L2 � γ̄

dρg
dp

� � 1 � γ̄ � dρl
dp � dpdt � � ṁ12 � ṁ23

(17)

and the energy balance for the two-phase region is

A � L2 � γ̄
d � ρghg �
dp

� � 1 � γ̄ � d � ρlhl �
dp

� 1 � dpdt� � γ̄ρghg
� � 1 � γ̄ � ρlhl � dL1

dt� � � 1 � γ̄ � � ρlhl � ρghg � dL2

dt� ṁ12hl � ṁ23hg
� πDiαi2L2 � Tw2 � Tr2 �

(18)

The derivative of the properties at the phase bound-
aries are written in a short notation and can be rewrit-
ten as e.g. d � ρghg � � dp � hg � dρg � dp � � ρg � dρg � dp � .
Both d � ρghg � � dp and d � ρlhl � � dp can be calculated
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from the pressure. The mass balance for the super-
heated region reads:

A � L3 � 1
2

∂ρ̄3

∂h̄3

���
p

dhg
dp

� ∂ρ̄3

∂p

���
h �
dp
dt

� ρg � ρ̄3 � dL1

dt
� � ρg � ρ̄3 � dL2

dt� 1
2
L3

∂ρ̄3

∂h̄3

���
p

dhout
dt � � ṁ23 � ṁout �

(19)

The energy balance for the superheated region is given
by

A � � ρghg � 1
2

ρ̄3 � hg �
hout � � � dL1

dt
� dL2

dt ��
L3 � 1

2
� hg �

hout � � 1
2

∂ρ̄3

∂h̄3

���
p

dhg
dp

� ∂ρ̄3

∂p

���
h �� 1

2
ρ̄3
dhg
dp

� 1 � dp
dt

� 1
2

ρ̄3L3
� 1

4
∂ρ̄3

∂h̄3

���
p

� hg �
hout � L3 �

dhout
dt� ṁ23hg � ṁouthout

� πDiαi3L3 � Tw3 � T̄r3 �

(20)

The mean properties of the superheated region are
calculated in the same way as in the subcooled re-
gion. Thus h̄3 � 0 � 5 � hg �

hout � , ρ̄3 	 ρ � p 
 h̄3 � and
T̄r3 	 T � p 
 h̄3 � .

2.4 Energy Balance for the Wall Regions

The energy balances for the walls are derived. Integra-
tion of the wall energy equation (5) from α to β gives� β

α
CwρwAw

∂Tw
∂t

dz � � β

α
αiπDi � Tr � Tw � dz

� � β

α
αoπDi � Tamb � Tw � dz (21)

Applying Leibniz’s rule, assuming constant wall prop-
erties give and rearranging gives the general energy
balance for a wall region:

CwρwAw � � β � α � dTw
dt

� � Tw � α � � Tw  dα
dt� � Tw � Tw � β �  dβ

dt � � αiπDi � β � α � � Tr � Tw � αoπDo � β � α � � Tamb � Tw  �
(22)

For the wall region adjacent to the subcooled region
α � 0 and β � L1, which gives

CwρwAw � L1
dTw1

dt
� � Tw1 � Tw � L1 �  dL1

dt �� αi1πDiL1 � Tr1 � Tw1  � αoπDoL1 � Tamb � Tw1 
(23)

The wall temperature in the model is discontinuous at
L1 giving

Tw � L1 � � Tw2 for
dL1

dt � 0

Tw � L1 � � Tw1 for
dL1

dt � 0
(24)

Similar expressions are derived for the walls adjacent
to the two-phase and the superheated regions see Ap-
pendix B. Typically in the literature a simplified mean
value for Tw � L1 � has been used, which seems attrac-
tive in order to simplify the model see e.g. [4] and [7].
Simulations show that the response times for the sys-
tem for some test conditions depend significantly on
the expression for Tw � L1 � , and the full equations given
by (23) and (24) should therefore be used.
The general three region moving boundary model is
described by the mass and energy balances for the
flow stated in equations (12), (16), (17), (18), (19) and
(20) and the energy balances for the wall regions as
stated in equations (23), (49) and (51). In addition the
two discontinuous equations for the wall temperatures
as stated in (24) and (50) are needed. This equation
system contains 9 equations with the 7 state variables:� L1 
 L2 
 p 
 hout 
 Tw1 
 Tw2 and Tw3 � . The variable hin,
which also appears differentiated, is calculated as a
boundary condition and is thus not included in the
state variables for the MB-model. Dependent variables
can be calculated from the state variables and include:� ρ̄1 
 ρl 
 ρg 
 ρ̄3 
 ∂ρ̄1 � ∂h̄1 � p 
 ∂ρ̄1 � ∂p � h 
 dρl � dp 
 dρg � dp 

∂ρ̄3 � ∂h̄1 � p 
 ∂ρ̄3 � ∂p � h 
 h̄1 
 hlhg 
 h̄3 
 dhl � dp 
 dhg � dp 
 T̄r1 

T̄r2 
 T̄r3 
 ṁ12 
 ṁ23 � . Parameters are con-
stant during simulation and include:� A 
 Di 
 Do 
 αi1 
 αi2 
 αi3 
 αo 
 γ̄ 
 L 
 Tamb 
 Cw 
 ρw 
 Aw � . The
boundary models calculate the variables � ṁin 
 ṁout 
 hin
and dhin � dt � , which are boundary conditions to the
MB-model.

2.5 Calculation of the Average Liquid Frac-
tion η̄

The liquid fraction in the two phase region η � z � is re-
lated to the void fraction γ � z � via the equation

η � z � � γ � z � � 1 � (25)

The same equation holds for the average values η̄ and
γ̄ over the whole region, which are the parameters of
interest. It is computed as the integral over the nor-
malized profile. For the derivation of a η � z � profile, a
couple of assumptions are necessary:
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1. All assumptions made in the derivation of the
moving boundary model apply also to the deriva-
tion of the liquid fraction profile, in particular that
a constant pressure is assumed along the pipe.

2. The profile can be evaluated under steady state
conditions. For the purpose of slow, start-up tran-
sients as well as for linearization purposes this
does not pose any restrictions. This means in par-
ticular that the pressure is in steady state.

3. The vapour generation rate Ψ � is uniform over the
evaporator length.

4. The slip velocity ratio S � ug � ul between the
gas and the liquid velocities is constant along
the evaporator length and a known function of
the model states that also can be evaluated under
steady state conditions1.

A similar derivation but assuming a slip velocity ratio
of 1 has been done in [3]. Under the above assump-
tions, the following coupled ODE boundary value
problem holds:

ρl
∂ � Alul �

∂z
� � Ψ � (26)

ρg
∂ � Agug �

∂z
� Ψ � (27)

Ψ � is the net generation of saturated vapour per unit
length � kg � � ms � � , Al and Ag are the cross sectional ar-
eas taken up by liquid and vapour respectively and the
densities are independent of the length coordinate be-
cause we assumed no pressure loss and steady state
conditions for the pressure. This equation is normal-
ized by setting A � Al

�
Ag � 1 and letting the length

of the evaporation region run from 0 to 1 so that the
cross section area Al � z � is now equivalent to the liquid
volume fraction η � z � . Then, replacing ul with u and ug
with Su and dividing by ρl the following normalized
equation is obtained:

∂ � ηu �
∂z

� � Ψ � (28)

µS
∂ � � 1 � η � u �

∂z
� Ψ � (29)

1Remark: It is possible to weaken this assumption and use a
slip ratio S � z � which is a function of the length coordinate. Many
of the rather complex empirical slip correlations depend on the lo-
cal mass fraction x � ṁg � ṁ as well and in this case the profile and
the integral over the profile can only be solved numerically. For
certain applications this may result in the most accurate approxi-
mation of the mean void fraction.

where

Ψ � � Ψ
ρlA

� and µ � ρg
ρl

	
The boundary conditions at the length coordinates z �
0 	 0 and z � 1 	 0 are

η � 0 � � 1 � η � 1 � � 0 	 (30)

From (28), (29) and the boundary conditions, the fol-
lowing function for η � z � can be derived:

η � z � � 1 � z

1
�
z � 1

Sµ � 1 �
(31)

The influence of the slip ratio S on the amount of sat-
urated liquid in the evaporation region, η̄ can seen in
Figure 2. η � z � can be integrated symbolically to give:

0 0.2 0.4 0.6 0.8 1
DimensionlessLength z

0

0.2

0.4

0.6

0.8

1

liq
ui

d
fr
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tio

n
Η

Liquid Fraction Η over z for S � 1, 3, 5, and 7 and Μ � 0.01

S � 7.0

S � 5.0

S � 3.0

S � 1.0

Figure 2: Liquid Fraction η � z � along the normalized
evaporation region.

η̄ � � 1

0
η � z � dz � Sµ � Sµ � 1 � ln � Sµ � �� Sµ � 1 � 2 (32)

This η̄ can only be used together with the dynamic
model from the previous section when the time deriva-
tive of η̄ can be neglected. This holds for slow pressure
transients. The density ratio µ is a unique and simple
function of the pressure, but for the slip ratio S a num-
ber of empirical correlations are available to choose
from. Because of the assumptions made above, we
have to choose a slip ratio which is independent of the
local void fraction or mass fraction. A simple and ap-
pealing correlation is the one from Zivi (1964) cited
in [9] which minimizes the total kinetic energy flow
locally at each position z along the pipe:

S � ug
ul

�
	

ρl
ρg 
 1 � 3 � µ1 � 3 (33)

Using this slip correlation, the average liquid fraction
in the pipe becomes a function of only one variable,
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the density ratio µ.

η̄ � � 1

0
η � z � dz � 1

� � 1 � µ � 2 � 3 � 2 � 3 ln � 1 � µ � � 1 �
� � 1 � µ � 2 � 3 � 1 �

2

(34)
Both the density ratio µ and the slip S approach 1 when
the pressure is rising toward the critical pressure. In
the limit, the liquid and vapour densities are equal as
well as the flow speeds, so that a mean liquid fraction
of 0 � 5 is expected, compare the plot of η̄ in Figure 3.
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Figure 3: Average Liquid fraction η̄ as a function of
the density ratio µ.

3 Dominating Time Constants of the
LinearizedModel

In this section the influence of some model parame-
ters on the eigenvalues of a linearization of the sys-
tem derived in section 2 is investigated. Models for
fluid flow exhibit two types of time constants: fast, hy-
draulic time constants for disturbances traveling with
the speed of sound and much slower thermal ones,
whose disturbances move at the flow speed. In two
phase flows, the coupling between thermal and hy-
draulic phenomena is much tighter than in one phase
flows, because a change in the hydraulic pressure is
tightly coupled to a change in the temperature. The
eigenvectors reveal that the 7 eigenvalues are tightly
coupled, but roughly their physical interpretation is as
follows:

� one mode comes from the overall mass balance
of the evaporator which depends on the ratio be-
tween the total mass and the sum of the mass
flows in and out of the evaporator and

� one for the overall energy balance which depends
on the ratio of the total heat capacity to the sum
of convective and heat transfer energy flows,

� one for each of the lengths of the subcooled and
the two-phase regions. These are a combina-
tion of the mass and energy balances for the re-
specitive region.

� Three more eigenvalues come from the energy
balances of the evaporator walls.

In [1] Bauer derived a more detailed, distributed model
of heterogeneous flow2 and validated it against mea-
surement data for the refrigerant R22. According to
[1], the advantage of the heterogenous model over the
homogeneous one is that the void fraction turns out to
be more realistic. Therefore, the dominant time con-
stants are modeled more accurately. The average void
fraction 1 � η̄ has a strong influence on the total fluid
mass in the evaporator, as can be seen clearly from
Figure 4. It can be concluded from this argument that
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Figure 4: Total mass in the two-phase region as a func-
tion of velocity slip.

the void fraction γ̄ is a crucial parameter in the moving
boundary model. Using a good approximation of the
void fraction, which may be obtained from a detailed,
distributed model like in [1], is important for obtaining
realistic dynamic behaviour.
The slow modes in the overall system are mostly influ-
enced by the wall temperatures: higher heat capacities
and smaller heat transfer coefficients result in slower
modes. This means that the slowest mode usually is
governed by the pipe wall in the liquid region. Two
model parameters with a large influence on the slow
time constants are the void fraction γ̄ and the ratio
of the total heat capacities of fluid and pipe walls of
the evaporator pipes. The latter depend on the system
pressure and the pipe diameter. Correct estimation of

2Heterogeneous flow means that the flow speeds of the gas and
liquid phases can be different. A homogeneous flow assumption
is equivalent to the same flow speed for both phases.
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the void fraction gets more important at lower pres-
sures because the slip increases due to smaller density
ratio µ and the heat capacity of the pipes is usually
smaller due to thinner pipe walls.
The root locus plot in Figure 5 shows the slow eigen-
values of the system, which are the dominating ones
for control design purposes. These vary significantly
when the slip ratio S (and thus the void fraction) is
varied from 1.0 to 8.0. In the example with approx.
31 bars the pressure is relatively high for the working
fluid R22 and therefore the slip ratio is not very far
from 1. Nonetheless, the slow eigenvalues move con-
siderably on the root locus. The change in the model
dynamics will be larger at lower pressures.
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Figure 5: Root Locus for the slow eigenvalues. Dia-
monds mark a slip ratio of 1.0, stars a slip ratio of the
test case of � 1.7. Slip ratios vary from 1.0 to 8.0.

4 Model Variants

The main effect of using a velocity slip estimate to cal-
culate the average void fraction is an improved model
of the fluid mass in the evaporator. In a model for con-
trol design around a narrow operating pressure – the
short transient case – a constant void fraction based
on the profile derived above, will give sufficiently ac-
curate results. Different slip correlations than the one
from above and numerical quadrature can be used to
find a good estimate of the mean void fraction. A fixed
void fraction will be less adequate when “long” tran-
sients over wide pressure ranges are to be simulated.
During the simulation of the start-up of a near- or su-
percritial once-through boiler, which is a classical case
for a moving boundary model (see [3]), the density ra-
tio µ will change by 3 orders of magnitude. In that
case the simple slip correlation S � µ1 � 3 works well to
model the fluid mass in the evaporator.

The model derived above is still too complex and has
too many states for some purposes, e. g., online dy-
namic optimization as it is done in Model Predictive
Control (MPC). There are several ways to reduce the
number of states in the moving boundary model. One
possibility is to assume that the 2-phase heat transfer
coefficient is much higher than the outer heat transfer
coefficient so that the wall temperature and the fluid
temperature in the evaporation region are equal. This
assumption may also be extended to the subcooled
and superheated regions. The model will loose ac-
curacy in the high frequency range but will be very
similar to the full model at low frequency range. An-
other possible simplification is to get rid of the states in
the superheated region, because it is usually short and
contains only few percent of the fluid mass. The dy-
namic model for the region can be replaced by a semi-
empirical algebraic relation for the superheat temper-
ature, see [4]. Investigation of these options for model
reduction is the goal of future work by the authors.

4.1 Boundary Models

The test simulations for the heat exchanger are per-
formed for a simple cycle containing a pump that sup-
plies the liquid flow into the evaporator and a nozzle
(turbine) at the end of the evaporator. The pump model
is defined by a simple expression for the mass flow

ṁpump � ηvρpumpVcylω (35)

where ηv is the volumetric efficiency, ρpump is the inlet
density to the pump, Vcyl is the cylinder volume and ω
is the number of revolutions per second. The specific
enthalpy at the inflow of the evaporator is hin and is a
constant below the saturated liquid enthalpy.
The model of the nozzle is computed as:

ṁnozzle � Cv
�

ρout � p � pc � � (36)

whereCv is a coefficient, ρout is the outlet density from
the evaporator, p is the pressure in the evaporator and
pc is a constant pressure lower than p.

5 Simulation Result

The evaporator in an organic rankine cycle (ORC)
is simulated using the three region moving boundary
model and the models for the pump and the nozzle.
The simulation program Dymola [5] has been used to
perform the simulations. The ORC is used to con-
vert thermal energy to electric energy in applications
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with small temperature differences between the high
and the low temperature heat sources. The ORC can
thereby be used to improve the energy efficiency in
gas turbine power plants by converting the waste heat
energy in the exhaust gas to electricity. Simulation re-
sults for a test case of an evaporator pipe are shown in
Figure 6 to Figure 8.
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Figure 6: Lengths of the three regions

Pump and nozzle parameters

ηv � 0 � 6 [-] Cv � 3 � 76E � 5 [m2]
ω � 60 [rps] pc � 1 � 4 [Mpa]
Vcyl � 1 � 30E � 5 [m3]

Evaporator steady state results

L � 15 [m] Q � 163 [kW ]
Di � 0 � 020 [m] ṁ � 0 � 54 [kg � s]
Do � 0 � 022 [m] p � 3 � 6 [Mpa]
Cw � 385 [J � kgK] Tw1 � 388 � 8 [K]
ρw � 8 � 96E3 [kg � m3] Tw2 � 371 � 7 [K]
αi1 � 2451 [J � m2K] Tw3 � 449 � 5 [K]
αi2 � 11404 [J � m2K] Tr1 � 306 � 0 [K]
αi3 � 2071 [J � m2K] Tr2 � 352 � 3 [K]
αo � 500 [J � m2K] Tr3 � 384 � 0 [K]
Tamb � 573 � 1 [K] L1 � 3 � 9 �

m �
S � 1 � 67 [-] L2 � 8 � 7 �

m �
γ̄ � 0 � 665 [-] L3 � 2 � 4 �

m �

Table 2: Parameters and steady-state results

Three experiments are performed with parameters and
initial steady state results in table 2. At t � 0 s the
pump speed ω is increased by 5%, at t � 30 s the outer
heat transfer coefficient αo is increased by 10% and at
t � 60 s the nozzle coefficient Cv is increased by 10%.
Figure 6, 7 and 8 show the transient response of the
system.
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Figure 7: Pressure in the evaporator

The length of the subcooled and the two-phase region
is seen to increase as the pump speed is increased (at
t=0s). Also the pressure and the heating effect is in-
creased which is expected. An increase in outer heat
transfer (at t=30s) results in shorter two-phase and su-
perheated regions as well as in increased heating ef-
fect. The larger nozzle coefficient (t � 60 s) results in
a decrease in pressure. The reduced pressure lowers
the boiling point and thus the fluid temperature in the
evaporation region. The length of the subcooled region
is therefore shrinking. The length of the two-phase re-
gion grows in this case but this trend depends on the
conditions. The lower evaporating temperature tends
to decrease the length of the two-phase region and the
larger latent heat increases it. The heating effect rises
in this case, but this trend depends on the conditions
as well. The model gives the right trends even though
no experimental data has been available to validate the
model.
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Figure 8: Heating effect to the evaporator

5.1 Conclusions

A new moving boundary model has been presented
describing the dynamics of two phase heat exchang-
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ers with liquid at the inlet and vapour at the outlet.
The new model is numerically fast compared to dis-
cretized models and very robust to sudden changes in
the boundary conditions. The model is a 7th order
model (7 state variables), which is a suitable order for
control design. The model is also well suited for open
loop simulations for systems design and optimization.
It is shown that the average void fraction has a signifi-
cant influence on the system response. A new method
to calculate the average void fraction including the in-
fluence of the slip ratio is presented. The average void
fraction is computed from the symbolic solution to the
integral of the liquid fraction profile.

Appendix A: Leibniz's Rule

Leibniz’s rule for differentiation of integrals with time
varying limits reads ([8]):

d
dt

� z2

z1

f � z � t � dz � f � z2 � t � dz2

dt
� f � z1 � t � dz1

dt� � z2

z1

∂ f � z � t �
∂t

dz � (37)

Appendix B: Derivation of the Model
Equations

Mass Balance for the Two-Phase Region

The mass balance (2) is integrated over the two-phase
region from L1 to L1

�
L2 Applying Leibniz’s rule

gives for a constant area pipe

A
d
dt

� L1 � L2

L1

ρdz �
Aρ � L1 � dL1

dt

� Aρ � L1
�
L2 � d � L1

�
L2 �

dt�
ṁ23 � ṁ12 � 0

(38)

The flow is assumed to be homogeneous at equilibrium
conditions with a mean density of ρ � γ̄ρg

� � 1 � γ̄ � ρl .
The mass balance for the two-phase region becomes

A 	 d
dt

� ρ2L2 � � � ρl � ρg � dL1

dt
� ρg

dL2

dt 
� ṁ12 � ṁ23

(39)

where ρ2 � γ̄ρg
� � 1 � γ̄ � ρl . The time derivative of ρ2

is
dρ2

dt
� � γ̄

dρg
dp

� � 1 � γ̄ � dρl
dp �

dp
dt

(40)

which inserted into the mass balance (39) gives the fi-
nal mass balance for the two-phase region as stated in
(17).

Energy Balance for the Two-Phase Region

The energy balance (4) is integrated over the two-
phase region from L1 to L1

�
L2. Applying Leibniz’s

rule gives for a constant area pipe

A
d
dt

� L1 � L2

L1

ρhdz �
Aρ � L1 � h � L1 � dL1

dt
� AL1

dp
dt

� Aρ � L1
�
L2 � h � L1

�
L2 � d � L1

�
L2 �

dt
� AL2

dp
dt�

ṁ23hg � ṁ12hl � πDiαi2L2 � Tw2 � Tr2 �
(41)

The first term is evaluated as

d
dt

� L1 � L2

L1

ρhdz � d
dt

� L1 � L2

L1

� γρghg
� � 1 � γ � ρlhl � dz

� d
dt

	 � γ̄ρghg
� � 1 � γ̄ � ρlhl � L2 
� L2 	 γ̄

d � ρghg �
dp

� � 1 � γ̄ � d � ρlhl �
dp 
 dpdt� 	 γ̄ρghg

� � 1 � γ̄ � ρlhl 
 dL2

dt
(42)

Inserting (42) into (41) gives the final energy balance
for the two-phase region as state in (18).

Mass Balance for the Superheated Region

The mass balance (2) is integrated over the super-
heated region from L1

�
L2 to L which for a constant

area pipe gives� L

L1 � L2

∂Aρ
∂t

dz
� � L

L1 � L2

∂ṁ
∂z
dz � 0 (43)

Applying Leibniz’s rule on the first term and integrat-
ing the second term give for a constant area pipe

A
d
dt

� L

L1 � L2

ρdz �
Aρ � L1

�
L2 � d � L1

�
L2 �

dt�
ṁout � ṁ23 � 0 (44)

The mean density in the superheated region is ρ3 �
1
L3

� L
L1 � L2

ρdz � ρ � p � h3 � , which inserted in the mass
balance (44) gives

A 	 L3
dρ3

dt
� � ρg � ρ3 � dL1

dt
� � ρg � ρ3 � dL2

dt 
� ṁ23 � ṁout (45)

The derivative of ρ3 is calculated as

dρ3

dt
� ∂ρ3

∂p

���
h

dp
dt

� ∂ρ3

∂h

���
p

dh
dt

� � 1
2

∂ρ3

∂h3

���
p

dhg
dp

� ∂ρ3

∂p

���
h �
dp
dt

� 1
2

∂ρ3

∂h3

���
p

dhout
dt

(46)
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The expression for dρ3
dt is inserted into (45), which

gives the final mass balance for the superheated region
as stated in (19).

Energy Balance for the Superheated Region

The energy equation 4 is integrated over the super-
heated region from L1

�
L2 to L. Applying Leibniz’s

rule gives for a constant area pipe

A
d
dt

� L

L1 � L2

ρhdz �
Aρ � L1

�
L2 � h � L1

�
L2 � d � L2 �

dt

� AL3
dp
dt

�
ṁouthout � ṁ23hg� πDiαi3L3 � Tw3 � Tr3 �

(47)

The first term is calculated as

d
dt

� L

L1 � L2

ρhdz � d
dt

� ρ̄3h̄3L3 �
� � 1

2
ρ̄3 � hg �

hout � � d � L1
�
L2 �

dt �� 1
2
L3 � hg �

hout � dρ̄3

dt� 1
2

ρ̄3L3 � dhg
dp

dp
dt

� dhout
dt �

(48)

where h̄3 � 1
2 � hg �

hout � and ρ̄3 � ρ � p � h̄3 � . Equation

(48) and the expression for dρ̄3
dt from equation (46) is

inserted into (47), which after some rearranging gives
the final energy balance for the superheated region as
stated in (20).

Energy Balance for the Walls

For the wall region adjacent to the two-phase region
α � L1 and β � L1

�
L2, which inserted in (22) gives

CwρwAw � L2
dTw2

dt
� 	 Tw � L1 � � Tw2 
 dL1

dt� 	 Tw2 � Tw � L1
�
L2 � 
 dL2

dt �� αi2πDiL2 	 Tr2 � Tw2 
� αoπDoL2 	 Tamb � Tw2 

(49)

Tw � L1 � is given by (24), and Tw � L1
�
L2 � is given by

Tw � L1
�
L2 � � Tw3 for

dL2

dt �
0

Tw � L1
�
L2 � � Tw2 for

dL2

dt �
0

(50)

For the wall region adjacent to the superheated region
α � L1

�
L2 and β � L, which inserted in (22) gives

CwρwAw � L3
dTw3

dt
� 	 Tw � L1 � � Tw2 
 dL1

dt� 	 Tw � L1
�
L2 � � Tw3 
 � dL1

dt
� dL2

dt � �� αi3πDiL3 	 Tr3 � Tw3 
 � αoπDoL3 	 Tamb � Tw3 

(51)
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